JP2004071309A - Transparent conductive substrate and its manufacturing method and coating liquid for transparent coating layer formation used for manufacturing this transparent conductive substrate and display device applying the same - Google Patents

Transparent conductive substrate and its manufacturing method and coating liquid for transparent coating layer formation used for manufacturing this transparent conductive substrate and display device applying the same Download PDF

Info

Publication number
JP2004071309A
JP2004071309A JP2002227894A JP2002227894A JP2004071309A JP 2004071309 A JP2004071309 A JP 2004071309A JP 2002227894 A JP2002227894 A JP 2002227894A JP 2002227894 A JP2002227894 A JP 2002227894A JP 2004071309 A JP2004071309 A JP 2004071309A
Authority
JP
Japan
Prior art keywords
fine particles
silver
transparent
transparent conductive
noble metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002227894A
Other languages
Japanese (ja)
Inventor
Kenichi Fujita
藤田 賢一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2002227894A priority Critical patent/JP2004071309A/en
Publication of JP2004071309A publication Critical patent/JP2004071309A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a transparent conductive substrate and its manufacturing method wherein transmission factor of the transparent conductive layer is kept high and the substrate is superior in conductivity or the like wherein manufacturing cost is reduced, and provide a coating liquid used for this manufacturing and a display device to which the transparent conductive substrate is applied. <P>SOLUTION: In this transparent conductive substrate provided with a transparent substrate and a transparent two-layered film constituted of a transparent conductive layer and a transparent coating layer formed on the transparent substrate in order, the transparent conductive layer contains as a main component gold particulates having average particle diameter of 1-100 nm or gold containing noble metal particulates containing gold 5 wt% or more, and the transparent coating layer contains silica as a main component, and silver particulates or silver containing noble metal particulates. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、透明基板と、この上に順次形成された透明導電層と透明コート層とで構成された透明2層膜を備え、例えば、ブラウン管(CRT)、プラズマディスプレイパネル(PDP)、蛍光表示管(VFD)、液晶ディスプレイ(LCD)等表示装置の前面板等に利用される透明導電性基材に係り、特に、耐候性、導電性等に優れ、しかも製造コストの低減が図れる透明導電性基材の改良とその製造方法および透明導電性基材の製造に用いられる透明コート層形成用塗布液と透明導電性基材が適用された表示装置に関するものである。
【0002】
【従来の技術】
現在、コンピュータディスプレイ等として用いられている陰極線管(上記ブラウン管とも称する:以下CRTと記す)には、表示画面が見やすく、視覚疲労を感じさせないことの外に、CRT表面の帯電によるほこりの付着や電撃ショックがないこと等が要求されている。更に、これ等に加えて最近ではCRTから発生する低周波電磁波の人体に対する悪影響が懸念され、このような電磁波が外部に漏洩しないことが望まれている。また、最近、壁掛けテレビ等に用いられているプラズマディスプレイパネル(PDP)においても、CRTと同様に上記帯電や漏洩電磁波の問題が指摘されている。
【0003】
このような漏洩電磁波に対し、例えば、ディスプレイの前面板に透明導電層を形成することにより防止することが可能である。
【0004】
漏洩電磁波に対する上記防止方法は、近年、帯電防止のために取られてきた対策と原理的には同一である。しかし、上記透明導電層には、帯電防止用に形成されていた導電層(表面抵抗で10〜1010 Ω/□程度)よりもはるかに高い導電性が求められている。
【0005】
すなわち、漏洩電磁波防止(電界シールド)用として、CRTにおいては、少なくとも106 Ω/□以下、好ましくは5×103 Ω/□以下、さらに好ましくは103 Ω/□以下である低抵抗の透明導電層を形成する必要があり、また、PDPにおいては、例えば10Ω/□以下が要求されている。
【0006】
そして、電界シールドに対処するため、これまでにいくつかの提案がなされており、例えば、CRTにおいては、
(1)インジウム錫酸化物(ITO)等の導電性酸化物微粒子や金属微粒子を溶媒中に分散した透明導電層形成用塗液を、CRTの前面ガラス(前面板)に塗布・乾燥後、200℃程度の温度で焼成して上記透明導電層を形成する方法。
(2)塩化錫の高温化学気相成長法(CVD)により、前面ガラス(前面板)に透明導電酸化錫膜(ネサ膜)を形成する方法。
(3)インジウム錫酸化物、酸窒化チタン等のスパッタリング法により前面ガラス(前面板)に透明導電膜を形成する方法。
等の方法が提案されている。
【0007】
また、PDPにおいては、
(4)PDPにおける前面板の装置本体側に金属製または金属コート繊維製の導電性メッシュを設けて導電膜を形成する方法。
(5)銀等の金属のスパッタリング法により上記前面板に透明導電膜を形成する方法。
等の方法が提案されている。
【0008】
しかし、PDPにおける(4)の方法は、導電性メッシュを用いるため表面抵抗は低いが透過率も低く、かつ、モアレが発生する問題と導電膜形成の工程が煩雑でコスト高になる問題を有している。
【0009】
これに対し、CRTにおける(1)に示された方法は、(2)(3)(5)に示されたCVD法やスパッタ法等で透明導電膜を形成する方法に較べてはるかに簡便でかつ製造コストも低いため、上記CRTに限らずPDPにおいても極めて有利な方法である。但し、(1)に示された方法において透明導電層形成用塗液として、インジウム錫酸化物(ITO)等の導電性酸化物微粒子が適用された場合、得られる膜の表面抵抗が10〜10Ω/□と高く、漏洩電界を遮蔽するには充分でなかった。
【0010】
一方、金属微粒子が適用された透明導電層形成用塗液では、ITOを用いた塗液に比べ、若干、膜の透過率が低くなるものの、10〜10Ω/□という低抵抗膜が得られるため、今後、有望な方法であると思われる。
【0011】
そして、上記透明導電層形成用塗液に適用される金属微粒子としては、特開平8−77832号公報や特開平9−55175号公報等に示されるように空気中で酸化され難い、銀、金、白金、ロジウム、パラジウム等の貴金属に限られている。これは、貴金属以外の金属微粒子、例えば、鉄、ニッケル、コバルト等が適用された場合、大気雰囲気下でこれ等金属微粒子の表面に酸化物皮膜が必ず形成されてしまい透明導電層として良好な導電性が得られなくなるからである。
【0012】
尚、上述した銀、金、白金、ロジウム、パラジウムなどの比抵抗を比較した場合、白金、ロジウム、パラジウムの比抵抗は、それぞれ10.6、5.1、10.8μΩ・cmで、銀、金の1.62、2.2μΩ・cmに比べて高く、表面抵抗の低い透明導電層を形成するには銀微粒子や金微粒子を適用した方が有利なため、上記金属微粒子として銀微粒子や金微粒子等が主に利用されている。
【0013】
但し、銀微粒子を適用した場合、硫化、酸化や食塩水、紫外線等による劣化が激しく耐候性に問題があるため、上記銀微粒子に代わって、最近、銀微粒子表面を金等でコーティングした金コート銀微粒子や金と金以外の複数の貴金属(例えば銀)から成る合金微粒子等の金含有貴金属微粒子も提案されている(特開2000−224501号公報)。
【0014】
また、一方では表示画面を見易くするために、例えばCRTにおいては前面板表面に防眩処理を施して画面の反射を抑えることも行われている。この防眩処理は、微細な凹凸を設けて表面の拡散反射を増加させる方法によってもなされるが、この方法を用いた場合、解像度が低下して画質が落ちるためあまり好ましい方法とはいえない。従って、むしろ反射光が入射光に対して破壊的干渉を生ずるように、透明皮膜の屈折率と膜厚とを制御する干渉法によって防眩処理を行うことが好ましい。このような干渉法により低反射効果を得るため、一般的には高屈折率膜と低屈折率膜の光学的膜厚をそれぞれ1/4λと1/4λ(λは波長)、あるいは1/2λと1/4λに設定した二層構造膜が採用されており、前述のインジウム錫酸化物(ITO)微粒子からなる膜もこの種の高屈折率膜として用いられている。
【0015】
尚、金属においては、光学定数(n−ik,n:屈折率,i=−1,k:消衰係数)のうち、nの値は小さいがkの値がITO等と比べ極端に大きいため、金属微粒子からなる透明導電層を用いた場合でも、ITO(高屈折率膜)と同様に、二層構造膜で光の干渉による反射防止効果が得られる。
【0016】
ところで、金属微粒子として上記金微粒子若しくは金含有貴金属微粒子が適用された透明導電層形成用塗液を用いて10〜10Ω/□という低抵抗膜を得るためには、上記微粒子が網目状のネットワーク構造を形成し、導電パスが確保されることが必須となる。しかし、十分な導電パスを確保するために透明導電層を厚くすると、上記金微粒子若しくは金含有貴金属微粒子は可視光領域に吸収を持つため、透明導電層の透過率が低くなりブラウン管等の輝度が損なわれてしまうという問題が生じる。また、透明導電層の膜厚を薄くすると、上記網目状のネットワーク構造を形成するために必要な金微粒子若しくは金含有貴金属微粒子の量が不足してしまい、上記導電パスがある部分で断裂して導電性を示さなくなるという問題を有していた。
【0017】
【発明が解決しようとする課題】
本発明は、この様な問題点に着目してなされたもので、その課題とするところは、透明導電層の透過率を高く保ってブラウン管等の輝度を損なわず、なおかつ導電性等に優れ、しかも製造コストの低減が図れる透明導電性基材とその製造方法および透明導電性基材の製造に用いられる透明コート層形成用塗布液と透明導電性基材が適用された表示装置を提供することにある。
【0018】
【課題を解決するための手段】
そこで、この課題を解決するため本発明者が鋭意研究を継続した結果、以下に示すような導電パスの修復方法を発見をするに至った。すなわち、上記透明コート層形成用塗布液内に銀微粒子若しくは銀を含有する銀含有貴金属微粒子を添加して適用した場合、透明導電層の金微粒子若しくは金含有貴金属微粒子が形成する網目状ネットワーク構造の断裂した部分に透明コート層形成用塗布液の上記銀微粒子若しくは銀含有貴金属微粒子が入り込み、断裂した導電パスを修復することが可能となることを発見するに至った。本発明はこのような技術的発見に基づき完成されたものである。
【0019】
すなわち、請求項1に係る発明は、
透明基板、および、この透明基板上に順次形成された透明導電層と透明コート層とで構成された透明2層膜を備える透明導電性基材を前提とし、
上記透明導電層が、平均粒径1〜100nmの金微粒子若しくは金を5重量%以上含有する金含有貴金属微粒子を主成分とし、上記透明コート層が、酸化ケイ素を主成分としかつ銀微粒子若しくは銀を含有する銀含有貴金属微粒子を含んでいることを特徴とするものである。
【0020】
また、請求項2に係る発明は、
請求項1記載の発明に係る透明導電性基材を前提とし、
上記透明コート層における酸化ケイ素と銀微粒子若しくは銀を含有する銀含有貴金属微粒子の配合割合が、酸化ケイ素100重量部に対して銀微粒子若しくは銀含有貴金属微粒子0.1〜5重量部であることを特徴とし、
請求項3に係る発明は、
請求項1または2記載の発明に係る透明導電性基材を前提とし、
上記銀微粒子若しくは銀を含有する銀含有貴金属微粒子の平均粒径が、1〜50nmであることを特徴とし、
請求項4に係る発明は、
請求項1、2または3記載の発明に係る透明導電性基材を前提とし、
上記金含有貴金属微粒子における金の含有量が、50〜95重量%の範囲に設定されていることを特徴とし、
また、請求項5に係る発明は、
請求項1、2、3または4記載の発明に係る透明導電性基材を前提とし、
上記透明2層膜の表面抵抗が、5〜3000Ω/□であり、かつ、可視光線波長域(380〜780nm)の5nmおきの各波長における上記透明基板を含まない透明2層膜だけの透過率の標準偏差が、0〜5%であることを特徴とするものである。
【0021】
次に、請求項6〜9に係る発明は上記透明導電性基材の製造方法を特定した発明に関する。
【0022】
すなわち、請求項6に係る発明は、
請求項1記載の発明に係る透明導電性基材の製造方法を前提とし、
溶媒と平均粒径1〜100nmの金微粒子若しくは金を5重量%以上含有する金含有貴金属微粒子とを主成分とする透明導電層形成用塗液を透明基板上に塗布し、次いで、溶媒、シリカゾルを主成分とする無機バインダーおよび銀微粒子若しくは銀を含有する銀含有貴金属微粒子とを主成分とする透明コート層形成用塗布液を塗布した後、加熱処理することを特徴とし、
請求項7に係る発明は、
請求項6記載の発明に係る透明導電性基材の製造方法を前提とし、
上記無機バインダーと銀微粒子若しくは銀を含有する銀含有貴金属微粒子の配合割合が、SiO換算で無機バインダー100重量部に対して銀微粒子若しくは銀含有貴金属微粒子0.1〜5重量部であることを特徴とし、
請求項8に係る発明は、
請求項6または7記載の発明に係る透明導電性基材の製造方法を前提とし、
上記銀微粒子若しくは銀を含有する銀含有貴金属微粒子の平均粒径が、1〜50nmであることを特徴とし、
また、請求項9に係る発明は、
請求項6、7または8記載の発明に係る透明導電性基材の製造方法を前提とし、
上記金含有貴金属微粒子における金の含有量が、50〜95重量%の範囲に設定されていることを特徴とするものである。
【0023】
次に、請求項10〜11に係る発明は、上記透明導電性基材の製造方法に適用される透明コート層形成用塗布液に関する。
【0024】
すなわち、請求項10に係る発明は、
透明基板、および、この透明基板上に順次形成された透明導電層と透明コート層とで構成された透明2層膜を備える透明導電性基材の製造に用いられる透明コート層形成用塗布液を前提とし、
溶媒、シリカゾルを主成分とする無機バインダーおよび銀微粒子若しくは銀を含有する銀含有貴金属微粒子とを主成分とし、かつ、無機バインダーと銀微粒子若しくは銀含有貴金属微粒子の配合割合が、SiO換算で無機バインダー100重量部に対して銀微粒子若しくは銀含有貴金属微粒子0.1〜5重量部であることを特徴とし、
請求項11に係る発明は、
請求項10記載の発明に係る透明コート層形成用塗布液を前提とし、
上記銀微粒子若しくは銀を含有する銀含有貴金属微粒子の平均粒径が、1〜50nmであることを特徴とするものである。
【0025】
また、請求項12に係る発明は、
装置本体とこの前面側に配置された前面板とを備える表示装置を前提とし、
上記前面板として請求項1〜5のいずれかに記載の透明導電性基材がその透明2層膜側を外面にして組込まれていることを特徴とするものである。
【0026】
【発明の実施の形態】
以下、本発明の実施の形態について詳細に説明する。
【0027】
まず、金は化学的に安定で、耐候性、耐薬品性、耐酸化性等に優れており、更に、比抵抗が、銀、銅に次いで低いため、上記透明導電層の金属微粒子として金微粒子若しくは金含有貴金属微粒子を用いれば、良好な導電性と高い化学的安定性を両立できる。
【0028】
ところで、金属微粒子として上記金微粒子若しくは金含有貴金属微粒子が適用された透明導電層形成用塗液を用いて10〜10Ω/□という低抵抗膜を得るためには、上述したように上記微粒子が網目状のネットワーク構造を形成し、導電パスが確保されることが必須となる。
【0029】
しかし、十分な導電パスを確保するために透明導電層を厚く設定した場合、上記金微粒子若しくは金含有貴金属微粒子は可視光領域に吸収を持つことから透明導電層の透過率が低くなり、ブラウン管等の輝度が損なわれてしまうという問題が生じる。また、透明導電層の膜厚を薄く設定した場合、上記網目状のネットワーク構造を形成するために必要な金微粒子若しくは金含有貴金属微粒子の量が不足してしまうため、上記導電パスがある部分で断裂し、導電性を示さず十分な電磁波シールド効果が得られないという問題を有していた。
【0030】
尚、透過率が低くならずしかも十分な電磁波シールド効果が得られるために上記透明導電層の許容される膜厚についてより具体的に説明すると、適用する透明導電層形成用塗液内における金微粒子若しくは金含有貴金属微粒子の含有量、網目状のネットワーク構造の出来具合、膜密度など多くの透明導電層製膜時における条件等により特定の値に限定して述べることはできないが、その目安として、透明導電層形成用塗液として好ましいとされる金微粒子若しくは金含有貴金属微粒子が0.25重量%〜0.35重量%含有する上記塗液を用いた場合の好適な膜厚としては20nm〜30nmが例示される。すなわち、金微粒子若しくは金含有貴金属微粒子が0.25重量%〜0.35重量%含有する上記透明導電層形成用塗液を用いて形成された透明導電層の膜厚がおよそ15nmより薄くなると上記導電パスが部分的に断裂し易くなる傾向があり、反対に、上記塗液を用いて形成された透明導電層の膜厚がおよそ35nmを超える程厚くなると透明導電層の可視光透過率が85%以下に低下して適用が難しくなる傾向を示すことが確認されている。
【0031】
そこで、本発明においては、上記銀微粒子若しくは銀を含有する銀含有貴金属微粒子が添加された透明コート層形成用塗布液を適用することにより、透明導電層の金微粒子若しくは金含有貴金属微粒子が形成する網目状ネットワーク構造の断裂した部分に上記銀微粒子若しくは銀含有貴金属微粒子が入り込み、断裂した導電パスを修復して上述した問題の解決を図っている。
【0032】
すなわち、ブラウン管等の輝度を損なわないように透明導電層の膜厚を薄く設定した場合でも、銀微粒子若しくは銀含有貴金属微粒子が添加された透明コート層形成用塗布液を用いて透明コート層を形成することで、十分な電磁波シールド効果を持つ低抵抗の透明2層膜を得ることが可能となる。
【0033】
ここで、透明コート層における上記酸化ケイ素と銀微粒子若しくは銀含有貴金属微粒子の配合割合については原則として任意であるが、好ましくは上記酸化ケイ素100重量部に対して銀微粒子若しくは銀含有貴金属微粒子0.1〜5重量部であることが望ましい(請求項2)。銀微粒子若しくは銀含有貴金属微粒子の割合が5重量部を超えると、透明コート層の銀微粒子若しくは銀含有貴金属微粒子の吸収が大きくなり膜の透過率が低下してしまう場合があるからである。反対に、銀微粒子若しくは銀含有貴金属微粒子の割合が0.1重量部未満になると、透明導電層におけるネットワーク構造の断裂した部分に入り込む銀微粒子若しくは銀含有貴金属微粒子が不足し、断裂した導電パスを修復する効果が少なくなって低抵抗の膜が得られない場合があるからである。
【0034】
また、銀微粒子若しくは銀を含有する銀含有貴金属微粒子の平均粒径については上記導電パスの修復効果が得られる範囲において任意に設定されるが、好ましくは1〜50nmであることが望ましい(請求項3)。1nm未満の場合、この微粒子の製造は実際上難しく、かつ、塗液中において凝集する場合があるからである。また、50nmを超えると、透明導電層のネットワーク構造の断裂した部分に入り込むことが難しくなり低抵抗の膜が得られない場合があるからである。
【0035】
尚、ここで言う平均粒径とは、透過電子顕微鏡(TEM)で観察される微粒子の平均粒径を示している。
【0036】
また、上記銀微粒子若しくは銀を含有する銀含有貴金属微粒子としては、銀単体からなる微粒子、あるいは、銀と、金、白金、パラジウム、ルテニウム、イリジウム、ロジウムなどの合金、あるいは、銀と銀以外の複数の貴金属との合金からなる微粒子などが挙げられる。更に、金属、金属酸化物などの表面を銀で被覆した微粒子も上記銀含有貴金属微粒子に含まれるが、銀を含む粒子であればよく、これらに限定されるものではない。
【0037】
次に、本発明における金微粒子若しくは金含有貴金属微粒子は、その平均粒径が1〜100nmであることを要する(請求項1)。1nm未満の場合、この微粒子の製造は困難であり、更に、塗液中で凝集しやすく実用的でないからである。また、100nmを超えると、形成された透明導電層の可視光線透過率が低くなり過ぎてしまい、仮に、膜厚を薄く設定して可視光線透過率を高くした場合でも、表面抵抗が高くなり過ぎてしまい実用的ではないからである。
【0038】
尚、ここで言う平均粒径も、上記同様、透過電子顕微鏡(TEM)で観察される微粒子の平均粒径を示している。
【0039】
また、上記金含有貴金属微粒子における金の含有量については5重量%以上(請求項1)、好ましくは5〜95重量%の範囲、より好ましくは50〜95重量%の範囲に設定する(請求項4)とよい。金の含有量が5重量%未満だと、金の効果が弱まって耐候性が悪くなり、反対に、95重量%を超えるとコスト的に難があるからである。
【0040】
次に、金属微粒子として金含有貴金属微粒子が適用される本発明の透明導電層形成用塗液は、例えば、以下の方法でこれを製造することができる。
【0041】
すなわち、既知の方法[例えば、Carey−Lea法、Am. J. Sci.、 37、 47(1889)、Am. J. Sci.、 38(1889)]により銀微粒子のコロイド分散液を調製した後、この分散液にヒドラジン等の還元剤と金酸塩の溶液を加えることにより銀微粒子に対し金のコーティングを行い、金コート銀微粒子すなわち金含有貴金属微粒子の分散液を得ることができる。尚、必要により、上記金コーティング工程で、銀微粒子のコロイド分散液、金酸塩溶液の一方、または双方に少量の分散剤を加えてもよい。
【0042】
この後、透析、電気透析、イオン交換、限外ろ過等の方法で、分散液内の電解質濃度を下げることが好ましい。これは、電解質濃度を下げないとコロイドは電解質で一般に凝集してしまうからであり、この現象は、Schulze−Hardy則としても知られている。
【0043】
そして、最終的には、得られた金含有貴金属微粒子分散液からの濃縮脱水、有機溶剤等の添加による成分調整(微粒子濃度、水分濃度等)等がなされ、金含有貴金属微粒子を含んだ塗液、すなわち、透明導電層形成用塗液が調製される。
【0044】
次に、本発明に係る透明導電性基材は、ガラス基板、プラスチック基板等の透明基板、および、平均粒径1〜100nmの金微粒子若しくは金含有貴金属微粒子を主成分とし上記透明基板上に形成された透明導電層の下層と、この透明導電層上に形成された透明コート層の上層とでその主要部が構成されている。
【0045】
そして、透明基板上に上記透明導電層の下層と透明コート層の上層とで構成される透明2層膜を形成するには以下の方法でこれを行うことができる。例えば、溶媒とこの溶媒に分散された平均粒径1〜100nmの金微粒子若しくは金含有貴金属微粒子を主成分とする透明導電層形成用塗液を、ガラス基板、プラスチック基板等の透明基板(この透明基板は、例えば上述したCRTやPDPの前面板を構成している)上に、スプレーコート、スピンコート、ワイヤーバーコート、ドクターブレードコート等の手法にて塗布し、乾燥した後、溶媒、シリカゾル等の無機バインダーおよび上記銀微粒子若しくは銀を含有する銀含有貴金属微粒子とを主成分とする透明コート層形成用塗布液を上述した手法によりオーバーコートする。
【0046】
次に、例えば、50〜250℃程度の温度で加熱処理を施し、オーバーコートした透明コート層形成用塗布液の硬化を行って上記透明2層膜を形成する(請求項6)。
【0047】
そして、上記加熱処理の過程で、透明導電層の金微粒子若しくは金含有貴金属微粒子が形成する網目状ネットワーク構造の断裂した部分に入り込んだ上記銀微粒子若しくは銀含有貴金属微粒子が透明導電層の金微粒子若しくは金含有貴金属微粒子と合金化し、断裂した導電パスの修復が図れる。
【0048】
ここで、溶媒、シリカゾル等の無機バインダーおよび上記銀微粒子若しくは銀を含有する銀含有貴金属微粒子とを主成分とする透明コート層形成用塗布液を上述した手法によりオーバーコートした際、金微粒子若しくは金含有貴金属微粒子を主成分とする透明導電層形成用塗液により予め形成された金微粒子若しくは金含有貴金属微粒子層に、オーバーコートした上記透明コート層形成用塗布液がしみ込み、金微粒子若しくは金含有貴金属微粒子が形成する網目状ネットワーク構造の断裂した部分に、銀微粒子若しくは銀含有貴金属微粒子が入り込む。更に、加熱処理の段階で、上記銀微粒子若しくは銀含有貴金属微粒子と金微粒子若しくは金含有貴金属微粒子が上述したように合金化し、最終的に断裂した導電パスが修復されることで、導電性の向上が達成される。尚、透明導電層形成用塗液と相違して上記透明コート層形成用塗布液に銀単体で構成される銀微粒子が適用できる理由は、上記加熱処理の段階で透明コート層形成用塗布液に添加された大部分の銀微粒子と金微粒子若しくは金含有貴金属微粒子とが合金化することから、透明導電層と透明コート層とで構成される透明2層膜内に存在する銀微粒子の割合が極めて少ないためである。
【0049】
また、上記透明導電層と透明コート層とで構成される透明2層膜の透過光線プロファイルに関し、例えば、可視光線波長域(380〜780nm)の5nmおきの各波長での透明基板を含まない透明2層膜だけの透過率についてその標準偏差は1〜2%程度の小さな値となり、非常にフラットな透過プロファイルが得られている(請求項5)。
【0050】
ここで、上記透明コート層形成用塗布液に適用されるシリカゾルとしては、オルトアルキルシリケートに水や酸触媒を加えて加水分解しかつ脱水縮重合を進ませた重合物、あるいは、既に4〜5量体まで重合を進ませた市販のアルキルシリケート溶液に水や酸触媒を加えてさらに加水分解と脱水縮重合を進行させた重合物等が利用できる。
【0051】
また、上記銀微粒子若しくは銀を含有する銀含有貴金属微粒子の分散安定性を向上させるために、上記透明コート層形成用塗布液に、界面活性剤、分散樹脂等を添加することも可能である。
【0052】
更に、上記透明導電層の形成工程において、溶媒とこの溶媒に分散された平均粒径1〜100nmの金微粒子若しくは金含有貴金属微粒子に加え、高分子樹脂を配合した塗液を用いてもよい。高分子樹脂を添加すると、透明導電層形成用塗液中の金微粒子若しくは金含有貴金属微粒子が安定化され、透明導電層形成用塗液のポットライフを延長させることが可能となる。但し、得られる透明導電膜の強度、耐候性が若干悪くなる傾向がある。
【0053】
以上、詳細に説明したように、本発明に係る透明導電性基材は、従来の透明導電性基材よりも優れた膜強度と耐候性を有し、かつ、優れた反射防止効果と透過光線プロファイルおよび高い電界シールド効果を有するため、例えば、ブラウン管(CRT)、プラズマディスプレイパネル(PDP)、蛍光表示管(VFD)、フィールドエミッションディスプレイ(FED)、エレクトロルミネッセンスディスプレイ(ELD)、液晶ディスプレイ(LCD)等表示装置における前面板等に適用することができる。
【0054】
【実施例】
以下、本発明の実施例を具体的に説明するが、本発明はこれら実施例に限定されるものではない。また、本文中の「%」は、透過率、反射率、ヘーズ値の(%)を除いて「重量%」を示し、また「部」は「重量部」を示している。
【0055】
[実施例1]
前述の Carey−Lea 法により銀微粒子のコロイド分散液を調製した。具体的には、9%硝酸銀水溶液33gに、23%硫酸鉄(II)水溶液39gと37.5%クエン酸ナトリウム水溶液48gの混合液を加えた後、沈降物をろ過・洗浄した後、純水を加えて銀微粒子のコロイド分散液(Ag:0.15%)を調製した。
【0056】
得られたコロイド分散液を透過電子顕微鏡で観察した結果、銀微粒子の平均粒径は、3.2nmであった。
【0057】
この銀微粒子のコロイド分散液60gに、ヒドラジン1水和物(N・HO)の1%水溶液8.0g、金酸カリウム[KAu(OH)]水溶液(Au:0.075%)480gと1%高分子分散剤水溶液0.2gの混合液を攪拌しながら加え、金コート銀微粒子すなわち金含有貴金属微粒子のコロイド分散液を得た。
【0058】
次に、金含有貴金属微粒子のコロイド分散液をイオン交換樹脂(三菱化学社製商品名ダイヤイオンSK1B,SA20AP)で脱塩した後、限外ろ過により濃縮した液に、エタノール(EA)、ジアセトンアルコール(DAA)を加え、透明導電層形成用塗液(Ag:0.05%、Au:0.20%、水:8.5%、EA:86.25%、DAA:5.0%)を得た。
【0059】
得られた透明導電層形成用塗液を透過電子顕微鏡で観察した結果、金含有貴金属微粒子の平均粒径は、6.2nmであった。
【0060】
次に、メチルシリケート51(コルコート社製商品名)17.4部に、エタノール59.9部、純水14.7部、1%硝酸水溶液7.9部を加え、重量平均分子量が2070であるSiO(酸化ケイ素)固形分濃度10%のシリカゾル濃縮液を得た。
【0061】
このシリカゾル濃縮液をイオン交換樹脂で脱塩し、イソプロピルアルコール(IPA)とn−ブタノール(NBA)の混合物(IPA/NBA=3/1)により希釈し、固形分濃度2.0%のシリカゾル液を得た。
【0062】
このシリカゾル液40部に、IPA58部と上記銀微粒子のコロイド分散液(Ag:0.15%)2部を加え、透明コート層形成用塗布液(SiO:0.80%、Ag:0.003%)を得た。
【0063】
次に、この上記透明導電層形成用塗液を、40℃に加熱されたガラス基板(厚さ3mmのソーダライムガラス)上に、スピンコート(150rpm,100秒間)した後、続けて、上記透明コート層形成用塗布液をスピンコート(150rpm,60秒間)し、さらに、180℃、20分間硬化させて、金含有貴金属微粒子から成る透明導電層と、酸化ケイ素を主成分としかつ銀微粒子を含有するシリケート膜から成る透明コート層とで構成された透明2層膜付きのガラス基板、すなわち、実施例1に係る透明導電性基材を得た。
【0064】
そして、上記ガラス基板上に形成された透明2層膜の膜特性(可視光線透過率、ヘーズ値、ボトム反射率/ボトム波長、表面抵抗)を以下の表1に示す。
【0065】
尚、上記ボトム反射率とは透明導電性基材の反射プロファイルにおいて極小の反射率をいい、ボトム波長とは反射率が極小における波長を意味している。
【0066】
また、可視光線波長域(380〜780nm)の5nmおきの各波長における透明基板(ガラス基板)を含まない透明2層膜だけの可視光線透過率は、以下の様にして求められている。すなわち、
透明基板を含まない透明2層膜だけの透過率(%)=[(透明基板ごと測定した透過率)/(透明基板の透過率)]×100
ここで、本明細書においては、特に言及しない限り、透過率としては、透明基板を含まない透明2層膜だけの透過率の値を用いている。
【0067】
また、透明2層膜の表面抵抗は、三菱化学(株)製の表面抵抗計ロレスタAP(MCP−T400)を用い測定した。
【0068】
ヘーズ値と可視光線透過率は、村上色彩技術研究所製ヘーズメーター(HR−200)を用いて測定した。
【0069】
反射率および表1の膜特性(「ボトム反射率/ボトム波長」等)を求めるための反射・透過プロファイルは、日立製作所(株)製分光光度計(U−4000)を用いて測定した。また、銀微粒子および金含有貴金属微粒子の粒径は日本電子製の透過電子顕微鏡で評価している。
【0070】
[実施例2]
実施例1において、透明コート層形成用塗布液の調製時に、シリカゾル液40部に、IPA56部と銀微粒子のコロイド分散液(Ag:0.15%)4部を加え、透明コート層形成用塗布液(SiO:0.80%、Ag:0.006%)を得た以外は、実施例1と同様に行い、金含有貴金属微粒子から成る透明導電層と、酸化ケイ素を主成分としかつ銀微粒子を含有するシリケート膜から成る透明コート層とで構成された透明2層膜付きのガラス基板、すなわち、実施例2に係る透明導電性基材を得た。
【0071】
ガラス基板上に形成された透明2層膜の膜特性を以下の表1に示す。
【0072】
[実施例3]
実施例1において、透明コート層形成用塗布液の調製時に、シリカゾル液40部に、IPA59.8部と、以下に述べる方法で調製した銀含有貴金属微粒子のコロイド分散液(Ag:0.30%、Au:1.20%)0.2部を加え、透明コート層形成用塗布液(SiO:0.80%、Ag:0.0006%、Au:0.0024%)を得た以外は、実施例1と同様に行い、金含有貴金属微粒子から成る透明導電層と、酸化ケイ素を主成分としかつ銀含有貴金属微粒子を含有するシリケート膜から成る透明コート層とで構成された透明2層膜付きのガラス基板、すなわち、実施例3に係る透明導電性基材を得た。ガラス基板上に形成された透明2層膜の膜特性を以下の表1に示す。
【0073】
上記銀含有貴金属微粒子のコロイド分散液は、前述の銀微粒子のコロイド分散液60gに、ヒドラジン1水和物(N・HO)の1%水溶液8.0g、金酸カリウム[KAu(OH)]水溶液(Au:0.075%)480gと1%高分子分散剤水溶液0.2gの混合液を攪拌しながら加え、イオン交換樹脂(三菱化学社製 商品名ダイヤイオンSK1B,SA20AP)で脱塩した後、限外ろ過により濃縮した液に、エタノール(EA)を加え、固形分濃度1.5%(Ag:0.30%、Au:1.20%)に調製して得ている。
【0074】
尚、この銀含有貴金属微粒子の平均粒径も6.2nmであった。
【0075】
[実施例4]
実施例1において、透明コート層形成用塗布液の調製時に、シリカゾル液40部に、IPA59.6部と、実施例3の上記銀含有貴金属微粒子のコロイド分散液(Ag:0.30%、Au:1.20%)0.4部を加え、透明コート層形成用塗布液(SiO:0.80%、Ag:0.0012%、Au:0.0048%)を得た以外は、実施例1と同様に行い、金含有貴金属微粒子から成る透明導電層と、酸化ケイ素を主成分としかつ銀含有貴金属微粒子を含有するシリケート膜から成る透明コート層とで構成された透明2層膜付きのガラス基板、すなわち、実施例4に係る透明導電性基材を得た。
【0076】
ガラス基板上に形成された透明2層膜の膜特性を以下の表1に示す。
【0077】
[比較例1]
実施例1において、透明コート層形成用塗布液の調製時に、シリカゾル液40部に、IPA60部を加え、透明コート層形成用塗布液(SiO:0.80%)を得た以外は、実施例1と同様に行い、金含有貴金属微粒子から成る透明導電層と、酸化ケイ素を主成分とするシリケート膜から成る透明コート層とで構成された透明2層膜付きのガラス基板、すなわち、比較例1に係る透明導電性基材を得た。ガラス基板上に形成された透明2層膜の膜特性を以下の表1に示す。
【0078】
[比較例2]
実施例1において、透明コート層形成用塗布液の調製時に、シリカゾル液40部に、IPA60部を加え、透明コート層形成用塗布液(SiO:0.80%)を得た点と、各実施例と比較例1に較べて金含有貴金属微粒子の配合割合が高い(Ag:0.06%、Au:0.24%、水:11.9%、EA:82.75%、DAA:5.0%)透明導電層形成用塗液を適用している点以外は、実施例1と同様に行い、金含有貴金属微粒子から成る透明導電層と、酸化ケイ素を主成分とするシリケート膜から成る透明コート層とで構成された透明2層膜付きのガラス基板、すなわち、比較例2に係る透明導電性基材を得た。
【0079】
尚、金含有貴金属微粒子の配合割合が高い透明導電層形成用塗液を適用していることから、透過電子顕微鏡により観察された透明導電層の膜厚は約38nmで、各実施例と比較例1に較べて大きな膜厚となっていた。
【0080】
ガラス基板上に形成された透明2層膜の膜特性を以下の表1に示す。
【0081】
【表1】

Figure 2004071309
注1:銀微粒子若しくは銀含有貴金属微粒子の重量部/酸化ケイ素の重量部
「評  価」
(1)表1に示された結果から明らかなように、比較例1の表面抵抗(Ω/□)は「>10」で各実施例と比較例2に較べて悪い値となっている。
【0082】
これは、適用されている透明導電層形成用塗液内における金含有貴金属微粒子の配合割合が「Ag:0.05%+Au:0.20%=0.25%」と低いため、この塗液により形成された透明導電層の膜厚が若干薄く設定されていることに起因しているものと思われる。すなわち、導電パスが部分的に断裂していることによるものと思われる。但し、可視光線透過率(%)については各実施例と同様の「88.0%」を示している。
(2)これに対し、比較例1と同一の透明導電層形成用塗液が適用されかつそのスピンコート条件も比較例1と同一になされている実施例1〜4については、その表面抵抗(Ω/□)が844〜1020(Ω/□)と良好な数値を示している。
【0083】
これは、各実施例においては、比較例1と相違し銀微粒子若しくは銀含有貴金属微粒子が添加された透明コート層形成用塗布液を適用しており、透明導電層における上記導電パスの断裂部位が補修された結果によるものと思われる。
【0084】
すなわち、各実施例においては、銀微粒子若しくは銀含有貴金属微粒子が添加された透明コート層形成用塗布液を適用したことにより、高透過率でかつ低抵抗である非常に優れた特性を示す透明2層膜を得られることが確認される。
(3)次に、比較例2においては、表面抵抗が390(Ω/□)と良好な値であるが、可視光線透過率が83.2(%)とブラウン管等の輝度を損なう値となっている。
【0085】
これは、比較例2においては金含有貴金属微粒子の配合割合が高い透明導電層形成用塗液を適用していることから、上述したようにその透明導電層の膜厚が各実施例と比較例1に較べて大きくなっており、これが原因してその可視光線透過率が悪い値を示しているものと思われる。
(4)以上のことから、実施例1〜4に係る透明2層膜をブラウン管等の表示装置に適用した場合、輝度を損なわずにより優れた電磁波シールド特性が得られることが確認される。
(5)尚、各実施例と各比較例においては、透明導電層形成用塗液の金属微粒子として金コート銀微粒子すなわち金−銀2成分系微粒子(金含有貴金属微粒子)が適用されているが、この金含有貴金属微粒子に代えて金微粒子を適用した実験も行なっている。
【0086】
そして、金属微粒子として金微粒子を適用した場合も各実施例と同様の評価が得られていることを確認している。
【0087】
【発明の効果】
請求項1〜5記載の発明に係る透明導電性基材によれば、
透明導電層が平均粒径1〜100nmの金微粒子若しくは金を5重量%以上含有する金含有貴金属微粒子を主成分とし、上記透明コート層が酸化ケイ素を主成分としかつ銀微粒子若しくは銀を含有する銀含有貴金属微粒子を含んでいることから、透明導電層の膜厚を若干薄くしてその透過率を高く設定しても透明導電層の導電パスが上記銀微粒子若しくは銀を含有する銀含有貴金属微粒子により補修されて導電性の低下を引き起こすことがない。
【0088】
従って、ブラウン管等の輝度を損なわない透過率を有すると共に導電性等にも優れた透明導電性基材を提供できる効果を有する。
【0089】
また、請求項6〜9記載の発明に係る透明導電性基材の製造方法によれば、
溶媒と平均粒径1〜100nmの金微粒子若しくは金を5重量%以上含有する金含有貴金属微粒子とを主成分とする透明導電層形成用塗液を透明基板上に塗布し、次いで、溶媒、シリカゾルを主成分とする無機バインダーおよび銀微粒子若しくは銀を含有する銀含有貴金属微粒子とを主成分とする透明コート層形成用塗布液を塗布した後、加熱処理するため、透明導電層の導電パスが上記銀微粒子若しくは銀を含有する銀含有貴金属微粒子により補修された透明導電性基材を簡便、確実かつ低コストで製造できる効果を有する。
【0090】
次に、請求項10〜11記載の発明に係る透明コート層形成用塗布液によれば、
溶媒、シリカゾルを主成分とする無機バインダーおよび銀微粒子若しくは銀を含有する銀含有貴金属微粒子とを主成分とし、かつ、無機バインダーと銀微粒子若しくは銀含有貴金属微粒子の配合割合が、SiO換算で無機バインダー100重量部に対して銀微粒子若しくは銀含有貴金属微粒子0.1〜5重量部に設定されていることから、請求項6〜9に係る透明導電性基材の製造方法に適用できる効果を有し、
また、請求項12記載の発明に係る表示装置によれば、
前面板として請求項1〜5のいずれかの透明導電性基材がその透明2層膜側を外面にして組込まれていることから、ブラウン管等の輝度を損なわずに高い電界シールド効果を発揮させることが可能となる効果を有する。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention includes a transparent substrate, and a transparent two-layer film composed of a transparent conductive layer and a transparent coat layer sequentially formed thereon, such as a cathode ray tube (CRT), a plasma display panel (PDP), and a fluorescent display. The present invention relates to a transparent conductive substrate used for a front panel of a display device such as a tube (VFD), a liquid crystal display (LCD), etc. In particular, a transparent conductive material having excellent weather resistance, conductivity, etc. and capable of reducing manufacturing costs. The present invention relates to an improvement of a base material, a method of manufacturing the same, and a display device to which a coating liquid for forming a transparent coat layer used for manufacturing a transparent conductive base material and a transparent conductive base material are applied.
[0002]
[Prior art]
At present, a cathode ray tube (also referred to as a cathode ray tube: hereinafter referred to as a CRT) used as a computer display or the like has a display screen that is easy to see and does not cause visual fatigue. It is required that there is no electric shock. Further, in addition to the above, recently, there is a concern that a low-frequency electromagnetic wave generated from a CRT may adversely affect a human body, and it is desired that such an electromagnetic wave does not leak to the outside. In addition, recently, in plasma display panels (PDPs) used for wall-mounted televisions and the like, problems of the above-described charging and leakage electromagnetic waves have been pointed out similarly to CRTs.
[0003]
Such a leakage electromagnetic wave can be prevented, for example, by forming a transparent conductive layer on the front plate of the display.
[0004]
The above-described method for preventing leakage electromagnetic waves is in principle the same as the measures that have been taken in recent years to prevent charging. However, the above-mentioned transparent conductive layer has a conductive layer formed for antistatic purposes (with a surface resistance of 10%). 8 -10 10 (Approximately Ω / □).
[0005]
In other words, at least 10% of CRTs are used to prevent leakage electromagnetic waves (electric field shielding). 6 Ω / □ or less, preferably 5 × 10 3 Ω / □ or less, more preferably 10 3 It is necessary to form a transparent conductive layer having a low resistance of Ω / □ or less, and a PDP requires, for example, 10 Ω / □ or less.
[0006]
Some proposals have been made to deal with electric field shielding. For example, in a CRT,
(1) A transparent conductive layer forming coating liquid in which conductive oxide fine particles such as indium tin oxide (ITO) or metal fine particles are dispersed in a solvent is applied to the front glass (front plate) of a CRT and dried. A method in which the transparent conductive layer is formed by firing at a temperature of about ° C.
(2) A method of forming a transparent conductive tin oxide film (Nesa film) on a front glass (front plate) by high temperature chemical vapor deposition (CVD) of tin chloride.
(3) A method of forming a transparent conductive film on a front glass (front plate) by a sputtering method using indium tin oxide, titanium oxynitride, or the like.
And other methods have been proposed.
[0007]
In PDP,
(4) A method of forming a conductive film by providing a conductive mesh made of metal or metal-coated fiber on a device body side of a front panel of a PDP.
(5) A method of forming a transparent conductive film on the front plate by sputtering a metal such as silver.
And other methods have been proposed.
[0008]
However, the method (4) for a PDP has a problem that the surface resistance is low but the transmittance is low because a conductive mesh is used, and that moire occurs and the process of forming the conductive film is complicated and the cost increases. are doing.
[0009]
On the other hand, the method shown in (1) of the CRT is much simpler than the method of forming a transparent conductive film by the CVD method, the sputtering method, or the like shown in (2), (3), and (5). Further, since the manufacturing cost is low, it is a very advantageous method not only for the CRT but also for a PDP. However, when conductive oxide fine particles such as indium tin oxide (ITO) are applied as the coating liquid for forming a transparent conductive layer in the method shown in (1), the surface resistance of the obtained film is 10%. 4 -10 6 Ω / □, which was not enough to shield the leakage electric field.
[0010]
On the other hand, in the coating liquid for forming a transparent conductive layer to which metal fine particles are applied, the transmittance of the film is slightly lower than that of the coating liquid using ITO. 2 -10 3 Since a low resistance film of Ω / □ is obtained, it is considered to be a promising method in the future.
[0011]
Examples of the metal fine particles applied to the transparent conductive layer forming coating solution include silver, gold, and the like which are hardly oxidized in the air as described in JP-A-8-77832 and JP-A-9-55175. , Platinum, rhodium, palladium and other noble metals. This is because when a metal fine particle other than a noble metal, for example, iron, nickel, cobalt, etc. is applied, an oxide film is necessarily formed on the surface of the metal fine particle under an air atmosphere, and a good conductive property as a transparent conductive layer is obtained. This is because the property cannot be obtained.
[0012]
When the specific resistances of silver, gold, platinum, rhodium, palladium, etc. are compared, the specific resistances of platinum, rhodium, and palladium are 10.6, 5.1, and 10.8 μΩ · cm, respectively. Silver fine particles or gold fine particles are more advantageous for forming a transparent conductive layer having a surface resistivity higher than 1.62 and 2.2 μΩ · cm and low surface resistance of gold. Fine particles and the like are mainly used.
[0013]
However, when silver fine particles are applied, they are severely deteriorated by sulfuration, oxidation, saline solution, ultraviolet rays, etc., and have a problem in weather resistance. Gold-containing noble metal fine particles such as silver fine particles and alloy fine particles composed of a plurality of noble metals other than gold and gold (for example, silver) have also been proposed (Japanese Patent Application Laid-Open No. 2000-224501).
[0014]
On the other hand, in order to make the display screen easy to see, for example, in a CRT, the surface of the front plate is subjected to an anti-glare treatment to suppress the reflection of the screen. This anti-glare treatment is also performed by a method of increasing the diffuse reflection on the surface by providing fine irregularities, but this method is not a very preferable method because the resolution is reduced and the image quality is reduced. Therefore, it is preferable to perform the anti-glare treatment by an interference method that controls the refractive index and the thickness of the transparent film so that the reflected light causes destructive interference with the incident light. In order to obtain a low reflection effect by such an interference method, generally, the optical thicknesses of the high refractive index film and the low refractive index film are respectively set to λλ and 4λ (where λ is a wavelength), or λλ. And a 1 / 4λ two-layer structure film, and the above-mentioned film made of indium tin oxide (ITO) fine particles is also used as this kind of high refractive index film.
[0015]
In the case of metal, the optical constants (n-ik, n: refractive index, i 2 = -1, k: extinction coefficient), since the value of n is small but the value of k is extremely large as compared with ITO or the like, even when a transparent conductive layer made of metal fine particles is used, ITO (high refractive index) As in the case of (film), an antireflection effect due to light interference can be obtained with a two-layer structure film.
[0016]
By the way, a transparent conductive layer forming coating liquid to which the above-mentioned gold fine particles or gold-containing noble metal fine particles are applied as metal fine particles is used. 2 -10 3 In order to obtain a low resistance film of Ω / □, it is essential that the fine particles form a network-like network structure and a conductive path is secured. However, when the thickness of the transparent conductive layer is increased in order to secure a sufficient conductive path, the gold fine particles or the gold-containing noble metal fine particles have absorption in the visible light region, so that the transmittance of the transparent conductive layer is reduced and the brightness of a cathode ray tube or the like is reduced. There is a problem of being damaged. Further, when the thickness of the transparent conductive layer is reduced, the amount of gold fine particles or gold-containing noble metal fine particles necessary for forming the network-like network structure becomes insufficient, and the conductive path is torn at a portion where the conductive path exists. There was a problem that conductivity was not exhibited.
[0017]
[Problems to be solved by the invention]
The present invention has been made in view of such problems, and the subject thereof is to maintain the transmittance of the transparent conductive layer high without impairing the brightness of a cathode ray tube or the like, and yet excellent in conductivity and the like, In addition, the present invention provides a transparent conductive substrate capable of reducing the manufacturing cost, a method for manufacturing the same, and a display device to which a coating liquid for forming a transparent coat layer and a transparent conductive substrate used for manufacturing the transparent conductive substrate are applied. It is in.
[0018]
[Means for Solving the Problems]
In order to solve this problem, the inventor of the present invention has conducted intensive research, and as a result, has found a method of repairing a conductive path as described below. That is, in the case where silver fine particles or silver-containing noble metal fine particles containing silver are added to and applied in the coating liquid for forming the transparent coat layer, a network-like network structure in which gold fine particles or gold-containing noble metal fine particles of the transparent conductive layer are formed. The inventors have found that the silver fine particles or the silver-containing noble metal fine particles of the coating liquid for forming a transparent coat layer enter into the ruptured portion, and the ruptured conductive path can be repaired. The present invention has been completed based on such technical findings.
[0019]
That is, the invention according to claim 1 is
Assuming a transparent substrate, and a transparent conductive substrate having a transparent two-layer film composed of a transparent conductive layer and a transparent coat layer sequentially formed on the transparent substrate,
The transparent conductive layer is mainly composed of gold fine particles having an average particle diameter of 1 to 100 nm or gold-containing noble metal fine particles containing 5% by weight or more of gold, and the transparent coat layer is mainly composed of silicon oxide and has silver fine particles or silver. Or silver-containing noble metal fine particles containing
[0020]
The invention according to claim 2 is
Assuming the transparent conductive substrate according to the invention of claim 1,
The mixing ratio of silicon oxide and silver fine particles or silver-containing noble metal fine particles containing silver in the transparent coat layer is 0.1 to 5 parts by weight of silver fine particles or silver-containing noble metal fine particles with respect to 100 parts by weight of silicon oxide. Features and
The invention according to claim 3 is:
Based on the transparent conductive substrate according to the invention of claim 1 or 2,
The average particle diameter of the silver fine particles or silver-containing noble metal fine particles containing silver is 1 to 50 nm,
The invention according to claim 4 is
Based on the transparent conductive substrate according to the invention of claim 1, 2 or 3,
The gold content in the gold-containing noble metal fine particles is set in a range of 50 to 95% by weight,
The invention according to claim 5 is
Assuming the transparent conductive substrate according to the invention of claims 1, 2, 3 or 4,
The surface resistance of the transparent two-layer film is 5 to 3000 Ω / □, and the transmittance of only the transparent two-layer film not including the transparent substrate at each wavelength of 5 nm in the visible light wavelength range (380 to 780 nm). Has a standard deviation of 0 to 5%.
[0021]
Next, the inventions according to claims 6 to 9 relate to the invention in which the method for producing the transparent conductive substrate is specified.
[0022]
That is, the invention according to claim 6 is
Assuming a method for producing a transparent conductive substrate according to the invention of claim 1,
A transparent conductive layer-forming coating liquid containing a solvent and gold fine particles having an average particle diameter of 1 to 100 nm or gold-containing noble metal fine particles containing 5% by weight or more of gold as a main component is applied on a transparent substrate, and then a solvent and a silica sol After applying a coating liquid for forming a transparent coat layer containing an inorganic binder and silver fine particles containing silver as a main component or silver-containing noble metal fine particles containing silver as a main component, a heat treatment is performed,
The invention according to claim 7 is
Assuming a method for manufacturing a transparent conductive substrate according to the invention of claim 6,
The mixing ratio of the inorganic binder and silver fine particles or silver-containing noble metal fine particles containing silver is SiO 2 2 Silver fine particles or silver-containing noble metal fine particles 0.1 to 5 parts by weight based on 100 parts by weight of the inorganic binder in conversion,
The invention according to claim 8 is
Assuming a method for producing a transparent conductive substrate according to the invention of claim 6 or 7,
The average particle diameter of the silver fine particles or silver-containing noble metal fine particles containing silver is 1 to 50 nm,
The invention according to claim 9 is
Assuming a method for producing a transparent conductive substrate according to the invention of claim 6, 7 or 8,
The gold content in the gold-containing noble metal fine particles is set in a range of 50 to 95% by weight.
[0023]
Next, the invention according to claims 10 to 11 relates to a coating liquid for forming a transparent coat layer applied to the above-mentioned method for producing a transparent conductive substrate.
[0024]
That is, the invention according to claim 10 is
A transparent substrate, and a coating liquid for forming a transparent coat layer used for manufacturing a transparent conductive substrate having a transparent two-layer film composed of a transparent conductive layer and a transparent coat layer sequentially formed on the transparent substrate. Assuming,
Solvent, an inorganic binder mainly composed of silica sol and silver fine particles or silver-containing noble metal fine particles containing silver as a main component, and the compounding ratio of the inorganic binder and silver fine particles or silver-containing noble metal fine particles is SiO 2 Silver fine particles or silver-containing noble metal fine particles 0.1 to 5 parts by weight based on 100 parts by weight of the inorganic binder in conversion,
The invention according to claim 11 is
Assuming the coating liquid for forming a transparent coat layer according to the invention of claim 10,
The silver fine particles or silver-containing noble metal fine particles containing silver have an average particle diameter of 1 to 50 nm.
[0025]
The invention according to claim 12 is
Assuming a display device including a device body and a front plate arranged on the front side,
The front plate is characterized in that the transparent conductive substrate according to any one of claims 1 to 5 is incorporated with the transparent two-layer film side facing the outside.
[0026]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail.
[0027]
First, gold is chemically stable, has excellent weather resistance, chemical resistance, oxidation resistance, and the like. Further, since the specific resistance is the second lowest after silver and copper, gold fine particles are used as the metal fine particles of the transparent conductive layer. Alternatively, by using gold-containing noble metal fine particles, both good conductivity and high chemical stability can be achieved.
[0028]
By the way, a transparent conductive layer forming coating liquid to which the above-mentioned gold fine particles or gold-containing noble metal fine particles are applied as metal fine particles is used. 2 -10 3 In order to obtain a low resistance film of Ω / □, it is essential that the fine particles form a network-like network structure and a conductive path is secured as described above.
[0029]
However, when the transparent conductive layer is set to be thick to secure a sufficient conductive path, the transmittance of the transparent conductive layer becomes low because the gold fine particles or the gold-containing noble metal fine particles have absorption in the visible light region, and the cathode ray tube or the like A problem arises that the brightness of the image is deteriorated. Further, when the thickness of the transparent conductive layer is set to be thin, the amount of the gold fine particles or the gold-containing noble metal fine particles necessary for forming the network-like network structure becomes insufficient, so that the conductive path is formed in a portion where the conductive path exists. There was a problem that the film was ruptured, did not exhibit conductivity, and could not obtain a sufficient electromagnetic wave shielding effect.
[0030]
Note that the allowable film thickness of the transparent conductive layer is more specifically described in order that the transmittance does not decrease and a sufficient electromagnetic wave shielding effect can be obtained. Or the content of the gold-containing noble metal fine particles, the state of the network-like network structure, the film density and the like at the time of forming many transparent conductive layers and the like can not be limited to a specific value, but as a guide, When the above-mentioned coating liquid containing 0.25% by weight to 0.35% by weight of gold fine particles or gold-containing noble metal fine particles which is preferable as a coating liquid for forming a transparent conductive layer is used, a suitable film thickness is 20 nm to 30 nm. Is exemplified. That is, when the thickness of the transparent conductive layer formed using the transparent conductive layer forming coating liquid containing 0.25% by weight to 0.35% by weight of gold fine particles or gold-containing noble metal fine particles becomes thinner than about 15 nm, When the thickness of the transparent conductive layer formed using the above-mentioned coating liquid is so thick as to exceed about 35 nm, the visible light transmittance of the transparent conductive layer is 85%. % Has been confirmed to tend to be difficult to apply.
[0031]
Therefore, in the present invention, by applying a coating liquid for forming a transparent coat layer to which the silver fine particles or silver-containing noble metal fine particles containing silver are added, gold fine particles or gold-containing noble metal fine particles of the transparent conductive layer are formed. The silver fine particles or silver-containing noble metal fine particles enter into the broken portion of the network network structure, and the broken conductive path is repaired to solve the above-mentioned problem.
[0032]
That is, even when the thickness of the transparent conductive layer is set to be thin so as not to impair the brightness of a cathode ray tube or the like, a transparent coat layer is formed using a transparent coat layer forming coating solution to which silver fine particles or silver-containing noble metal fine particles are added. By doing so, it is possible to obtain a low-resistance transparent two-layer film having a sufficient electromagnetic wave shielding effect.
[0033]
Here, the mixing ratio of the silicon oxide and the silver fine particles or the silver-containing noble metal fine particles in the transparent coat layer is arbitrary in principle, but it is preferable that the silver fine particles or the silver-containing noble metal fine particles are contained in 100 parts by weight of the silicon oxide. It is desirable that the amount be 1 to 5 parts by weight. If the proportion of the silver fine particles or the silver-containing noble metal fine particles exceeds 5 parts by weight, the absorption of the silver fine particles or the silver-containing noble metal fine particles in the transparent coat layer may increase, and the transmittance of the film may decrease. On the other hand, when the ratio of the silver fine particles or the silver-containing noble metal fine particles is less than 0.1 part by weight, the silver fine particles or the silver-containing noble metal fine particles that enter the broken portion of the network structure in the transparent conductive layer are insufficient, and the broken conductive path is not formed. This is because the effect of restoring is reduced and a low-resistance film may not be obtained.
[0034]
The average particle size of the silver fine particles or the silver-containing noble metal fine particles containing silver is arbitrarily set within a range in which the effect of repairing the conductive path can be obtained, but is preferably 1 to 50 nm. 3). If it is less than 1 nm, it is practically difficult to produce these fine particles, and they may aggregate in the coating liquid. On the other hand, if it exceeds 50 nm, it is difficult to enter the broken portion of the network structure of the transparent conductive layer, and a low-resistance film may not be obtained.
[0035]
Here, the average particle size indicates the average particle size of the fine particles observed with a transmission electron microscope (TEM).
[0036]
Further, as the silver fine particles or silver-containing noble metal fine particles containing silver, fine particles consisting of silver alone, or silver and an alloy of gold, platinum, palladium, ruthenium, iridium, rhodium, or a material other than silver and silver Fine particles made of an alloy with a plurality of noble metals are exemplified. Further, fine particles whose surfaces such as metals and metal oxides are coated with silver are also included in the silver-containing noble metal fine particles, but may be any particles containing silver, and are not limited thereto.
[0037]
Next, the gold fine particles or gold-containing noble metal fine particles in the present invention need to have an average particle diameter of 1 to 100 nm (claim 1). If it is less than 1 nm, it is difficult to produce the fine particles, and further, the particles are easily aggregated in the coating liquid, which is not practical. On the other hand, if the thickness exceeds 100 nm, the visible light transmittance of the formed transparent conductive layer becomes too low. Even if the visible light transmittance is increased by setting the film thickness to be thin, the surface resistance becomes too high. It is not practical.
[0038]
Incidentally, the average particle diameter here also indicates the average particle diameter of the fine particles observed by a transmission electron microscope (TEM), as described above.
[0039]
The gold content in the gold-containing noble metal fine particles is set to 5% by weight or more (claim 1), preferably in the range of 5 to 95% by weight, more preferably in the range of 50 to 95% by weight (claims). 4) is good. If the content of gold is less than 5% by weight, the effect of gold is weakened and the weather resistance is deteriorated. Conversely, if the content exceeds 95% by weight, cost is difficult.
[0040]
Next, the coating liquid for forming a transparent conductive layer of the present invention to which gold-containing noble metal fine particles are applied as metal fine particles can be produced, for example, by the following method.
[0041]
That is, a known method [for example, the Carey-Lea method, Am. J. Sci. 37, 47 (1889), Am. J. Sci. 38 (1889)] to prepare a colloidal dispersion of silver microparticles, and then add a solution of a reducing agent such as hydrazine and a gold salt to the dispersion to coat the silver microparticles with gold. Fine particles, that is, a dispersion of gold-containing noble metal fine particles can be obtained. If necessary, in the gold coating step, a small amount of a dispersant may be added to one or both of the colloidal dispersion of silver fine particles and the gold salt solution.
[0042]
Thereafter, it is preferable to lower the electrolyte concentration in the dispersion by a method such as dialysis, electrodialysis, ion exchange, or ultrafiltration. This is because the colloid generally aggregates with the electrolyte unless the electrolyte concentration is reduced, and this phenomenon is also known as the Schulze-Hardy rule.
[0043]
Finally, the obtained gold-containing noble metal fine particle dispersion is subjected to concentration dehydration, component adjustment by adding an organic solvent, etc. (fine particle concentration, water concentration, etc.), and the like, and a coating liquid containing gold-containing noble metal fine particles. That is, a coating liquid for forming a transparent conductive layer is prepared.
[0044]
Next, the transparent conductive substrate according to the present invention is formed on a transparent substrate such as a glass substrate, a plastic substrate, or the like, and mainly containing fine gold particles or fine gold-containing noble metal particles having an average particle diameter of 1 to 100 nm. The main part is constituted by the lower layer of the transparent conductive layer thus formed and the upper layer of the transparent coat layer formed on the transparent conductive layer.
[0045]
Then, in order to form a transparent two-layer film composed of the lower layer of the transparent conductive layer and the upper layer of the transparent coat layer on a transparent substrate, this can be performed by the following method. For example, a solvent and a coating liquid for forming a transparent conductive layer mainly composed of gold fine particles or gold-containing noble metal fine particles having an average particle diameter of 1 to 100 nm dispersed in the solvent are coated on a transparent substrate such as a glass substrate or a plastic substrate. The substrate constitutes, for example, the front plate of the above-mentioned CRT or PDP), and is applied by a method such as spray coating, spin coating, wire bar coating, doctor blade coating and the like, dried, and then a solvent, silica sol, etc. The inorganic binder and the silver fine particles or the silver-containing noble metal fine particles containing silver are overcoated with a coating solution for forming a transparent coat layer by the above-described method.
[0046]
Next, for example, a heat treatment is performed at a temperature of about 50 to 250 ° C., and the overcoated transparent coating layer forming coating liquid is cured to form the transparent two-layer film (claim 6).
[0047]
Then, in the course of the heat treatment, the silver fine particles or the silver-containing noble metal fine particles that have entered the broken portion of the network structure formed by the gold fine particles or the gold-containing noble metal fine particles of the transparent conductive layer are the gold fine particles of the transparent conductive layer or Alloying with gold-containing noble metal fine particles can repair broken conductive paths.
[0048]
Here, a solvent, an inorganic binder such as silica sol and the above-mentioned silver fine particles or silver-containing noble metal fine particles containing silver are overcoated with a coating solution for forming a transparent coat layer by the above-described method. The coating liquid for forming the transparent coat layer, which has been overcoated, penetrates into the gold fine particles or the gold-containing noble metal fine particle layer previously formed by the transparent conductive layer-forming coating liquid containing the precious metal fine particles as a main component, and contains the gold fine particles or the gold-containing fine particles. The silver fine particles or the silver-containing noble metal fine particles enter into the broken portion of the network-like network structure formed by the noble metal fine particles. Furthermore, at the stage of the heat treatment, the silver fine particles or silver-containing noble metal fine particles and the gold fine particles or gold-containing noble metal fine particles are alloyed as described above, and the conductive paths finally broken are repaired, thereby improving the conductivity. Is achieved. Note that, unlike the transparent conductive layer forming coating liquid, the reason why silver fine particles composed of silver alone can be applied to the transparent coating layer forming coating liquid is that the transparent coating layer forming coating liquid is used in the heat treatment step. Since most of the added silver fine particles and gold fine particles or gold-containing noble metal fine particles are alloyed, the ratio of the silver fine particles present in the transparent two-layer film composed of the transparent conductive layer and the transparent coat layer is extremely low. Because it is small.
[0049]
Further, regarding the transmitted light profile of the transparent two-layer film composed of the transparent conductive layer and the transparent coat layer, for example, the transparent light-excluding the transparent substrate at each wavelength of 5 nm in the visible light wavelength range (380 to 780 nm). The standard deviation of the transmittance of only the two-layer film is a small value of about 1 to 2%, and a very flat transmission profile is obtained (Claim 5).
[0050]
Here, as the silica sol to be applied to the coating liquid for forming the transparent coat layer, a polymer obtained by adding water or an acid catalyst to an orthoalkyl silicate and hydrolyzing it and allowing dehydration condensation polymerization to proceed, or already 4 to 5 A polymer or the like obtained by adding water or an acid catalyst to a commercially available alkyl silicate solution in which polymerization has been advanced to a monomer to further promote hydrolysis and dehydration condensation polymerization can be used.
[0051]
Further, in order to improve the dispersion stability of the silver fine particles or the silver-containing noble metal fine particles containing silver, a surfactant, a dispersing resin and the like can be added to the coating liquid for forming the transparent coat layer.
[0052]
Further, in the step of forming the transparent conductive layer, a coating liquid containing a polymer resin may be used in addition to a solvent and gold fine particles or gold-containing noble metal fine particles having an average particle diameter of 1 to 100 nm dispersed in the solvent. When the polymer resin is added, the gold fine particles or the gold-containing noble metal fine particles in the coating liquid for forming a transparent conductive layer are stabilized, and the pot life of the coating liquid for forming a transparent conductive layer can be extended. However, the strength and weather resistance of the obtained transparent conductive film tend to slightly deteriorate.
[0053]
As described above in detail, the transparent conductive substrate according to the present invention has better film strength and weather resistance than conventional transparent conductive substrates, and has an excellent antireflection effect and transmitted light. Due to having a profile and a high electric field shielding effect, for example, a cathode ray tube (CRT), a plasma display panel (PDP), a fluorescent display tube (VFD), a field emission display (FED), an electroluminescence display (ELD), a liquid crystal display (LCD) Etc. can be applied to a front plate or the like in a display device.
[0054]
【Example】
Hereinafter, examples of the present invention will be specifically described, but the present invention is not limited to these examples. In addition, “%” in the text indicates “% by weight” excluding (%) of transmittance, reflectance and haze value, and “part” indicates “part by weight”.
[0055]
[Example 1]
A colloidal dispersion of fine silver particles was prepared by the Carey-Lea method described above. Specifically, a mixture of 39 g of a 23% aqueous iron (II) sulfate solution and 48 g of a 37.5% aqueous sodium citrate solution was added to 33 g of a 9% aqueous silver nitrate solution, and the precipitate was filtered and washed. Was added to prepare a colloidal dispersion of silver fine particles (Ag: 0.15%).
[0056]
As a result of observing the obtained colloidal dispersion liquid with a transmission electron microscope, the average particle diameter of the silver fine particles was 3.2 nm.
[0057]
To 60 g of this colloidal dispersion of fine silver particles, hydrazine monohydrate (N 2 H 4 ・ H 2 8.0 g of a 1% aqueous solution of O), potassium aurate [KAu (OH) 4 A mixture of 480 g of an aqueous solution (Au: 0.075%) and 0.2 g of a 1% aqueous solution of a polymer dispersant was added with stirring to obtain a colloidal dispersion of gold-coated silver fine particles, that is, gold-containing noble metal fine particles.
[0058]
Next, after the colloidal dispersion liquid of the gold-containing noble metal fine particles was desalted with an ion exchange resin (trade name: Diaion SK1B, SA20AP manufactured by Mitsubishi Chemical Corporation), ethanol (EA) and diacetone were added to the liquid concentrated by ultrafiltration. Alcohol (DAA) was added, and a coating liquid for forming a transparent conductive layer (Ag: 0.05%, Au: 0.20%, water: 8.5%, EA: 86.25%, DAA: 5.0%) Got.
[0059]
As a result of observing the obtained coating liquid for forming a transparent conductive layer with a transmission electron microscope, the average particle diameter of the gold-containing noble metal fine particles was 6.2 nm.
[0060]
Next, 59.9 parts of ethanol, 14.7 parts of pure water and 7.9 parts of a 1% nitric acid aqueous solution were added to 17.4 parts of methyl silicate 51 (trade name, manufactured by Colcoat), and the weight average molecular weight was 2,070. SiO 2 (Silicon oxide) A silica sol concentrate having a solid content of 10% was obtained.
[0061]
The silica sol concentrate was desalted with an ion exchange resin, diluted with a mixture of isopropyl alcohol (IPA) and n-butanol (NBA) (IPA / NBA = 3/1), and a silica sol solution having a solid concentration of 2.0% was used. Got.
[0062]
To 40 parts of this silica sol, 58 parts of IPA and 2 parts of a colloidal dispersion of silver fine particles (Ag: 0.15%) were added, and a coating liquid for forming a transparent coat layer (SiO 2) was added. 2 : 0.80%, Ag: 0.003%).
[0063]
Next, this transparent conductive layer forming coating liquid is spin-coated (150 rpm, 100 seconds) on a glass substrate (soda-lime glass having a thickness of 3 mm) heated to 40 ° C. The coating liquid for forming a coat layer is spin-coated (150 rpm, 60 seconds) and further cured at 180 ° C. for 20 minutes to contain a transparent conductive layer composed of gold-containing noble metal fine particles, containing silicon oxide as a main component and silver fine particles. Thus, a glass substrate with a transparent two-layer film composed of a transparent coat layer made of a silicate film, that is, a transparent conductive substrate according to Example 1 was obtained.
[0064]
The film properties (visible light transmittance, haze value, bottom reflectance / bottom wavelength, surface resistance) of the transparent two-layer film formed on the glass substrate are shown in Table 1 below.
[0065]
The bottom reflectance refers to a minimum reflectance in the reflection profile of the transparent conductive substrate, and the bottom wavelength refers to a wavelength at which the reflectance is minimum.
[0066]
Further, the visible light transmittance of only the transparent two-layer film not including the transparent substrate (glass substrate) at each wavelength of every 5 nm in the visible light wavelength range (380 to 780 nm) is determined as follows. That is,
Transmittance (%) of only the transparent two-layer film not including the transparent substrate = [(transmittance measured for each transparent substrate) / (transmittance of transparent substrate)] × 100
Here, in this specification, the value of the transmittance of only the transparent two-layer film not including the transparent substrate is used as the transmittance unless otherwise specified.
[0067]
The surface resistance of the transparent two-layer film was measured using a surface resistance meter Loresta AP (MCP-T400) manufactured by Mitsubishi Chemical Corporation.
[0068]
The haze value and the visible light transmittance were measured using a haze meter (HR-200) manufactured by Murakami Color Research Laboratory.
[0069]
The reflection and transmission profiles for determining the reflectance and the film properties ("bottom reflectance / bottom wavelength") in Table 1 were measured using a spectrophotometer (U-4000) manufactured by Hitachi, Ltd. The particle diameters of the silver fine particles and the gold-containing noble metal fine particles are evaluated with a transmission electron microscope manufactured by JEOL.
[0070]
[Example 2]
In Example 1, at the time of preparing the coating liquid for forming a transparent coat layer, 56 parts of IPA and 4 parts of a colloidal dispersion liquid (Ag: 0.15%) of silver fine particles were added to 40 parts of the silica sol solution, and the coating liquid for forming the transparent coat layer was formed. Liquid (SiO 2 : 0.80%, Ag: 0.006%) in the same manner as in Example 1, except that the transparent conductive layer is made of gold-containing noble metal fine particles, contains silicon oxide as a main component, and contains silver fine particles. A glass substrate with a transparent two-layer film composed of a transparent coat layer composed of a silicate film, that is, a transparent conductive substrate according to Example 2 was obtained.
[0071]
Table 1 below shows the film properties of the transparent two-layer film formed on the glass substrate.
[0072]
[Example 3]
In Example 1, at the time of preparing the coating liquid for forming a transparent coat layer, 409.8 parts of a silica sol liquid, 59.8 parts of IPA, and a colloidal dispersion liquid of silver-containing noble metal fine particles prepared by the method described below (Ag: 0.30% , Au: 1.20%) in an amount of 0.2 part, and a coating solution for forming a transparent coat layer (SiO 2 : 0.80%, Ag: 0.0006%, Au: 0.0024%) in the same manner as in Example 1 except that a transparent conductive layer composed of fine particles of gold-containing noble metal and silicon oxide as main components were obtained. Thus, a glass substrate with a transparent two-layer film composed of a transparent coat layer composed of a silicate film containing silver-containing noble metal fine particles, that is, a transparent conductive substrate according to Example 3 was obtained. Table 1 below shows the film properties of the transparent two-layer film formed on the glass substrate.
[0073]
The above-mentioned colloidal dispersion of silver-containing noble metal fine particles was added to 60 g of the above-mentioned colloidal dispersion of silver fine particles by adding hydrazine monohydrate (N 2 H 4 ・ H 2 8.0 g of a 1% aqueous solution of O), potassium aurate [KAu (OH) 4 ] A mixture of 480 g of an aqueous solution (Au: 0.075%) and 0.2 g of a 1% aqueous solution of a polymer dispersant is added with stirring, and desalted with an ion-exchange resin (Diaion SK1B, SA20AP manufactured by Mitsubishi Chemical Corporation). After that, ethanol (EA) was added to the liquid concentrated by ultrafiltration to obtain a solid concentration of 1.5% (Ag: 0.30%, Au: 1.20%).
[0074]
The average particle size of the silver-containing noble metal fine particles was 6.2 nm.
[0075]
[Example 4]
In Example 1, at the time of preparing the coating liquid for forming a transparent coat layer, 59.6 parts of IPA and 40 parts of a silica sol liquid and a colloidal dispersion liquid of the silver-containing noble metal fine particles of Example 3 (Ag: 0.30%, Au) were used. : 1.20%) 0.4 part of a coating liquid for forming a transparent coat layer (SiO 2 2 : 0.80%, Ag: 0.0012%, Au: 0.0048%) in the same manner as in Example 1, except that a transparent conductive layer composed of gold-containing noble metal fine particles and silicon oxide as main components were used. Thus, a glass substrate with a transparent two-layer film composed of a transparent coat layer composed of a silicate film containing silver-containing noble metal fine particles, that is, a transparent conductive substrate according to Example 4 was obtained.
[0076]
Table 1 below shows the film properties of the transparent two-layer film formed on the glass substrate.
[0077]
[Comparative Example 1]
In Example 1, at the time of preparing the coating liquid for forming a transparent coat layer, 60 parts of IPA was added to 40 parts of the silica sol liquid, and the coating liquid for forming a transparent coat layer (SiO 2 : 0.80%), except that a transparent conductive layer composed of gold-containing noble metal fine particles and a transparent coat layer composed of a silicate film containing silicon oxide as a main component were obtained. A glass substrate with a transparent two-layer film, that is, a transparent conductive substrate according to Comparative Example 1 was obtained. Table 1 below shows the film properties of the transparent two-layer film formed on the glass substrate.
[0078]
[Comparative Example 2]
In Example 1, at the time of preparing the coating liquid for forming a transparent coat layer, 60 parts of IPA was added to 40 parts of the silica sol liquid, and the coating liquid for forming a transparent coat layer (SiO 2 : 0.80%), and the mixture ratio of the gold-containing noble metal fine particles is higher (Ag: 0.06%, Au: 0.24%, water: 11.0%) as compared with Examples and Comparative Example 1. 9%, EA: 82.75%, DAA: 5.0%) A transparent conductive layer made of gold-containing noble metal fine particles was performed in the same manner as in Example 1 except that the coating liquid for forming a transparent conductive layer was applied. Then, a glass substrate with a transparent two-layer film composed of a transparent coat layer composed of a silicate film containing silicon oxide as a main component, that is, a transparent conductive substrate according to Comparative Example 2 was obtained.
[0079]
Since the coating liquid for forming the transparent conductive layer having a high blending ratio of the gold-containing noble metal fine particles was applied, the film thickness of the transparent conductive layer observed by a transmission electron microscope was about 38 nm, and each Example and Comparative Example The film thickness was larger than that of No. 1.
[0080]
Table 1 below shows the film properties of the transparent two-layer film formed on the glass substrate.
[0081]
[Table 1]
Figure 2004071309
Note 1: Parts by weight of silver fine particles or silver-containing noble metal fine particles / parts by weight of silicon oxide
"Evaluation"
(1) As is clear from the results shown in Table 1, the surface resistance (Ω / □) of Comparative Example 1 was “> 10 5 "Is a bad value as compared with each of Examples and Comparative Example 2.
[0082]
This is because the mixing ratio of the gold-containing noble metal fine particles in the applied coating liquid for forming a transparent conductive layer is as low as “Ag: 0.05% + Au: 0.20% = 0.25%”. It seems that the thickness of the transparent conductive layer formed by the method is set to be slightly thinner. That is, it is considered that the conductive path is partially torn. However, the visible light transmittance (%) shows “88.0%” which is the same as in each of the examples.
(2) On the other hand, in Examples 1 to 4 where the same coating liquid for forming a transparent conductive layer as in Comparative Example 1 was applied and the spin coating conditions were the same as in Comparative Example 1, the surface resistance ( Ω / □) shows a good numerical value of 844 to 1020 (Ω / □).
[0083]
This is different from Comparative Example 1 in each of the examples, in which a coating liquid for forming a transparent coat layer to which silver fine particles or silver-containing noble metal fine particles are added is applied, and the rupture site of the conductive path in the transparent conductive layer is reduced. Probably due to the repaired result.
[0084]
That is, in each of the examples, by applying the coating liquid for forming the transparent coat layer to which the silver fine particles or the silver-containing noble metal fine particles are added, the transparent 2 layer having high transmittance and low resistance and exhibiting extremely excellent characteristics is provided. It is confirmed that a layer film can be obtained.
(3) Next, in Comparative Example 2, the surface resistance is 390 (Ω / □), which is a good value, but the visible light transmittance is 83.2 (%), which is a value that impairs the brightness of a CRT or the like. ing.
[0085]
This is because, in Comparative Example 2, the coating liquid for forming a transparent conductive layer in which the blending ratio of the gold-containing noble metal fine particles was high was applied, and as described above, the film thickness of the transparent conductive layer was It is considered that the visible light transmittance has a poor value due to this.
(4) From the above, it is confirmed that when the transparent two-layer films according to Examples 1 to 4 are applied to a display device such as a cathode ray tube, more excellent electromagnetic wave shielding characteristics can be obtained without deteriorating luminance.
(5) In each of Examples and Comparative Examples, gold-coated silver fine particles, that is, gold-silver two-component fine particles (gold-containing noble metal fine particles) are applied as metal fine particles of the coating liquid for forming a transparent conductive layer. An experiment using gold fine particles instead of the gold-containing noble metal fine particles is also being conducted.
[0086]
Also, it has been confirmed that the same evaluation as in each example was obtained when gold fine particles were applied as metal fine particles.
[0087]
【The invention's effect】
According to the transparent conductive substrate according to the invention of claims 1 to 5,
The transparent conductive layer is mainly composed of gold fine particles having an average particle diameter of 1 to 100 nm or gold-containing noble metal fine particles containing 5% by weight or more of gold, and the transparent coat layer is mainly composed of silicon oxide and contains silver fine particles or silver. Since the silver-containing noble metal particles are contained, the conductive path of the transparent conductive layer is the above-mentioned silver fine particles or the silver-containing noble metal fine particles containing silver even if the transmittance of the transparent conductive layer is set slightly higher by slightly reducing the thickness of the transparent conductive layer. And does not cause a decrease in conductivity.
[0088]
Therefore, the present invention has the effect of providing a transparent conductive substrate having a transmittance that does not impair the luminance of a cathode ray tube or the like and having excellent conductivity and the like.
[0089]
According to the method for producing a transparent conductive substrate according to the invention of claims 6 to 9,
A transparent conductive layer-forming coating liquid containing a solvent and gold fine particles having an average particle diameter of 1 to 100 nm or gold-containing noble metal fine particles containing 5% by weight or more of gold as a main component is applied on a transparent substrate, and then a solvent and silica sol are applied. After applying a coating liquid for forming a transparent coat layer containing as a main component an inorganic binder and silver fine particles or silver-containing noble metal fine particles containing silver, the conductive path of the transparent conductive layer is subjected to heat treatment, so that The transparent conductive substrate repaired with silver fine particles or silver-containing noble metal fine particles containing silver has an effect of being able to be manufactured simply, reliably and at low cost.
[0090]
Next, according to the coating liquid for forming a transparent coat layer according to the invention of claims 10 to 11,
Solvent, an inorganic binder mainly composed of silica sol and silver fine particles or silver-containing noble metal fine particles containing silver as a main component, and the compounding ratio of the inorganic binder and silver fine particles or silver-containing noble metal fine particles is SiO 2 Since the silver fine particles or the silver-containing noble metal fine particles are set to 0.1 to 5 parts by weight with respect to 100 parts by weight of the inorganic binder, the method can be applied to the method for producing a transparent conductive substrate according to claims 6 to 9. Has an effect,
According to the display device of the twelfth aspect,
Since the transparent conductive substrate according to any one of claims 1 to 5 is incorporated with the transparent two-layer film side as an outer surface as a front plate, a high electric field shielding effect is exhibited without impairing the brightness of a cathode ray tube or the like. It has the effect that it becomes possible.

Claims (12)

透明基板、および、この透明基板上に順次形成された透明導電層と透明コート層とで構成された透明2層膜を備える透明導電性基材において、
上記透明導電層が、平均粒径1〜100nmの金微粒子若しくは金を5重量%以上含有する金含有貴金属微粒子を主成分とし、上記透明コート層が、酸化ケイ素を主成分としかつ銀微粒子若しくは銀を含有する銀含有貴金属微粒子を含んでいることを特徴とする透明導電性基材。
A transparent substrate, and a transparent conductive substrate comprising a transparent two-layer film composed of a transparent conductive layer and a transparent coat layer sequentially formed on the transparent substrate,
The transparent conductive layer is mainly composed of gold fine particles having an average particle diameter of 1 to 100 nm or gold-containing noble metal fine particles containing 5% by weight or more of gold, and the transparent coat layer is mainly composed of silicon oxide and has silver fine particles or silver. A transparent conductive substrate comprising silver-containing noble metal fine particles containing:
上記透明コート層における酸化ケイ素と銀微粒子若しくは銀を含有する銀含有貴金属微粒子の配合割合が、酸化ケイ素100重量部に対して銀微粒子若しくは銀含有貴金属微粒子0.1〜5重量部であることを特徴とする請求項1記載の透明導電性基材。The mixing ratio of silicon oxide and silver fine particles or silver-containing noble metal fine particles containing silver in the transparent coat layer is 0.1 to 5 parts by weight of silver fine particles or silver-containing noble metal fine particles with respect to 100 parts by weight of silicon oxide. The transparent conductive substrate according to claim 1, wherein: 上記銀微粒子若しくは銀を含有する銀含有貴金属微粒子の平均粒径が、1〜50nmであることを特徴とする請求項1または2記載の透明導電性基材。3. The transparent conductive substrate according to claim 1, wherein the silver fine particles or silver-containing noble metal fine particles containing silver have an average particle size of 1 to 50 nm. 上記金含有貴金属微粒子における金の含有量が、50〜95重量%の範囲に設定されていることを特徴とする請求項1、2または3記載の透明導電性基材。4. The transparent conductive substrate according to claim 1, wherein the gold content in the gold-containing noble metal fine particles is set in a range of 50 to 95% by weight. 上記透明2層膜の表面抵抗が、5〜3000Ω/□であり、かつ、可視光線波長域(380〜780nm)の5nmおきの各波長における上記透明基板を含まない透明2層膜だけの透過率の標準偏差が、0〜5%であることを特徴とする請求項1、2、3または4記載の透明導電性基材。The surface resistance of the transparent two-layer film is 5 to 3000 Ω / □, and the transmittance of only the transparent two-layer film not including the transparent substrate at each wavelength of 5 nm in the visible light wavelength range (380 to 780 nm). 5. The transparent conductive substrate according to claim 1, wherein the standard deviation of the transparent conductive substrate is 0 to 5%. 請求項1記載の透明導電性基材の製造方法において、
溶媒と平均粒径1〜100nmの金微粒子若しくは金を5重量%以上含有する金含有貴金属微粒子とを主成分とする透明導電層形成用塗液を透明基板上に塗布し、次いで、溶媒、シリカゾルを主成分とする無機バインダーおよび銀微粒子若しくは銀を含有する銀含有貴金属微粒子とを主成分とする透明コート層形成用塗布液を塗布した後、加熱処理することを特徴とする透明導電性基材の製造方法。
The method for producing a transparent conductive substrate according to claim 1,
A transparent conductive layer-forming coating liquid containing a solvent and gold fine particles having an average particle diameter of 1 to 100 nm or gold-containing noble metal fine particles containing 5% by weight or more of gold as a main component is applied on a transparent substrate, and then a solvent and silica sol are applied. A transparent conductive base material, comprising applying a coating liquid for forming a transparent coat layer containing, as a main component, an inorganic binder containing silver as a main component and silver fine particles or silver-containing noble metal fine particles containing silver, followed by heat treatment. Manufacturing method.
上記無機バインダーと銀微粒子若しくは銀を含有する銀含有貴金属微粒子の配合割合が、SiO換算で無機バインダー100重量部に対して銀微粒子若しくは銀含有貴金属微粒子0.1〜5重量部であることを特徴とする請求項6記載の透明導電性基材の製造方法。The mixing ratio of the inorganic binder and silver fine particles or silver-containing noble metal fine particles containing silver is 0.1 to 5 parts by weight of silver fine particles or silver-containing noble metal fine particles with respect to 100 parts by weight of the inorganic binder in terms of SiO 2. The method for producing a transparent conductive substrate according to claim 6, characterized in that: 上記銀微粒子若しくは銀を含有する銀含有貴金属微粒子の平均粒径が、1〜50nmであることを特徴とする請求項6または7記載の透明導電性基材の製造方法。8. The method for producing a transparent conductive substrate according to claim 6, wherein the silver fine particles or silver-containing noble metal fine particles containing silver have an average particle size of 1 to 50 nm. 上記金含有貴金属微粒子における金の含有量が、50〜95重量%の範囲に設定されていることを特徴とする請求項6、7または8記載の透明導電性基材の製造方法。9. The method for producing a transparent conductive substrate according to claim 6, wherein the gold content in the gold-containing noble metal fine particles is set in a range of 50 to 95% by weight. 透明基板、および、この透明基板上に順次形成された透明導電層と透明コート層とで構成された透明2層膜を備える透明導電性基材の製造に用いられる透明コート層形成用塗布液において、
溶媒、シリカゾルを主成分とする無機バインダーおよび銀微粒子若しくは銀を含有する銀含有貴金属微粒子とを主成分とし、かつ、無機バインダーと銀微粒子若しくは銀含有貴金属微粒子の配合割合が、SiO換算で無機バインダー100重量部に対して銀微粒子若しくは銀含有貴金属微粒子0.1〜5重量部であることを特徴とする透明コート層形成用塗布液。
A transparent substrate, and a coating liquid for forming a transparent coat layer used for manufacturing a transparent conductive substrate including a transparent two-layer film composed of a transparent conductive layer and a transparent coat layer formed sequentially on the transparent substrate. ,
Solvent, an inorganic binder containing silica sol as a main component and silver fine particles or silver-containing noble metal fine particles containing silver as a main component, and the mixing ratio of the inorganic binder and the silver fine particles or the silver-containing noble metal fine particles is inorganic in terms of SiO 2. A coating liquid for forming a transparent coat layer, comprising 0.1 to 5 parts by weight of silver fine particles or silver-containing noble metal fine particles with respect to 100 parts by weight of a binder.
上記銀微粒子若しくは銀を含有する銀含有貴金属微粒子の平均粒径が、1〜50nmであることを特徴とする請求項10記載の透明コート層形成用塗布液。The coating liquid for forming a transparent coat layer according to claim 10, wherein the silver fine particles or silver-containing noble metal fine particles containing silver have an average particle diameter of 1 to 50 nm. 装置本体とこの前面側に配置された前面板とを備える表示装置において、
上記前面板として請求項1〜5のいずれかに記載の透明導電性基材がその透明2層膜側を外面にして組込まれていることを特徴とする表示装置。
In a display device including a device body and a front plate disposed on the front side,
A display device, wherein the transparent conductive substrate according to any one of claims 1 to 5 is incorporated as the front plate with the transparent two-layer film side facing the outside.
JP2002227894A 2002-08-05 2002-08-05 Transparent conductive substrate and its manufacturing method and coating liquid for transparent coating layer formation used for manufacturing this transparent conductive substrate and display device applying the same Pending JP2004071309A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002227894A JP2004071309A (en) 2002-08-05 2002-08-05 Transparent conductive substrate and its manufacturing method and coating liquid for transparent coating layer formation used for manufacturing this transparent conductive substrate and display device applying the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002227894A JP2004071309A (en) 2002-08-05 2002-08-05 Transparent conductive substrate and its manufacturing method and coating liquid for transparent coating layer formation used for manufacturing this transparent conductive substrate and display device applying the same

Publications (1)

Publication Number Publication Date
JP2004071309A true JP2004071309A (en) 2004-03-04

Family

ID=32014783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002227894A Pending JP2004071309A (en) 2002-08-05 2002-08-05 Transparent conductive substrate and its manufacturing method and coating liquid for transparent coating layer formation used for manufacturing this transparent conductive substrate and display device applying the same

Country Status (1)

Country Link
JP (1) JP2004071309A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005293937A (en) * 2004-03-31 2005-10-20 Harima Chem Inc Method of forming metal thin-film layer on conductive ito film or on glass substrate surface as base substrate of ito film, and metal thin-film layer on conductive ito film or on glass substrate surface as base substrate of the ito film
JP2016060906A (en) * 2014-09-12 2016-04-25 Jsr株式会社 Composition for forming conductive film, conductive film, manufacturing method of plating film, plating film and electronic device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005293937A (en) * 2004-03-31 2005-10-20 Harima Chem Inc Method of forming metal thin-film layer on conductive ito film or on glass substrate surface as base substrate of ito film, and metal thin-film layer on conductive ito film or on glass substrate surface as base substrate of the ito film
JP2016060906A (en) * 2014-09-12 2016-04-25 Jsr株式会社 Composition for forming conductive film, conductive film, manufacturing method of plating film, plating film and electronic device

Similar Documents

Publication Publication Date Title
US6673142B2 (en) Transparent conductive layered structure and method of producing the same, and transparent coat layer forming coating liquid used in the method of producing the same, and display device to which transparent conductive layered structure is applied
US6398985B2 (en) Transparent electro-conductive structure, process for its production, transparent electro-conductive layer forming coating fluid used for its production, and process for preparing the coating fluid
KR100630595B1 (en) Transparent conductive layered structure and method of producing the same, and coating liquid for forming transparent conductive layer used in production of transparent conductive layered structure and method of producing the same
JP2002083518A (en) Transparent conductive substrate, its manufacturing method, display device using this transparent conductive substrate, coating solution for forming transparent conductive layer, and its manufacturing method
JP4035934B2 (en) Transparent conductive substrate, method for producing the same, coating solution for forming transparent conductive layer used for production of transparent conductive substrate, and method for producing the same
JP4411672B2 (en) Coating liquid for forming transparent conductive layer and method for producing the same
US6569359B2 (en) Transparent conductive layer forming coating liquid containing formamide
US6716480B2 (en) Transparent conductive layered structure and method of producing the same, coating liquid for forming transparent coating layer and coating liquid for forming transparent conductive layer
JP3975310B2 (en) Transparent conductive substrate, method for producing the same, and display device to which the substrate is applied
JP3750461B2 (en) Transparent conductive layer forming coating liquid, transparent conductive layer and transparent conductive substrate
JP2004071309A (en) Transparent conductive substrate and its manufacturing method and coating liquid for transparent coating layer formation used for manufacturing this transparent conductive substrate and display device applying the same
JP4325201B2 (en) Transparent conductive layer forming coating liquid and transparent conductive film
JP2005154453A (en) Coating liquid for forming transparent conductive layer and transparent conductive base material
JP3870669B2 (en) Transparent conductive substrate, method for producing the same, coating liquid for forming transparent coat layer used for production of transparent conductive substrate, and display device to which transparent conductive substrate is applied
JP2004335410A (en) Forming method of transparent electric conductive layer
JP2003132734A (en) Coating solution for forming transparent electroconductive layer
JP2005056774A (en) Coating liquid for transparent conductive film formation, transparent conductive film, and display device
JP2002069335A (en) Coating liquid for forming transparent electroconductive layer
JP2002343149A (en) Forming method of transparent electric conductive layer
JP2005135722A (en) Coating liquid for forming transparent conductive layer and transparent conductive substrate
JP2004051746A (en) Coating fluid for forming transparent electrical conductive layer
JP2003020420A (en) Coating liquid containing gold fine particle and method for manufacturing the same