JP2004068081A - Evaporation source container in vacuum deposition system - Google Patents

Evaporation source container in vacuum deposition system Download PDF

Info

Publication number
JP2004068081A
JP2004068081A JP2002228624A JP2002228624A JP2004068081A JP 2004068081 A JP2004068081 A JP 2004068081A JP 2002228624 A JP2002228624 A JP 2002228624A JP 2002228624 A JP2002228624 A JP 2002228624A JP 2004068081 A JP2004068081 A JP 2004068081A
Authority
JP
Japan
Prior art keywords
evaporation
evaporation source
heating
source container
deposition material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002228624A
Other languages
Japanese (ja)
Inventor
Takashi Sudo
須藤 崇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2002228624A priority Critical patent/JP2004068081A/en
Publication of JP2004068081A publication Critical patent/JP2004068081A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an evaporation source container in a vacuum deposition system with which a sublimable vapor deposition material solidified by the heating can stably be heated and evaporated by a resistance heating vapor deposition method without bursting the sublimable vapor deposition material. <P>SOLUTION: As for the evaporation source container 1 for a vacuum deposition system where a sublimable vapor deposition material is stored and heated by a heating means so that the sublimable vapor deposition material is evaporated and is vacuum-deposited, the evaporation source container is provided with diaphragms 2 for dividing and storing the sublimable vapor deposition material. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、真空蒸着装置における蒸発源容器に関し、特に真空蒸着装置において、抵抗加熱蒸着法を用いて昇華性蒸着材料を蒸発源により加熱するに際し、加熱により固形化する昇華性蒸着材料の破裂を防止する技術に関するものである。
【0002】
【従来の技術】
真空蒸着装置において、抵抗加熱蒸着法は従来から広い分野で利用されている薄膜形成方法である。この抵抗加熱蒸着法は、高融点の金属の板または線等を用いて皿形、箱形等の任意の形状に形成された蒸発源を構成する蒸発源容器内に蒸着材料を収容し、蒸発源に電流を流して蒸発源を加熱することにより、前記蒸発源容器内に収容されている蒸着材料を加熱し蒸発させ、蒸発させた蒸着材料を蒸発源と対称の位置に配置した基板上に堆積させるようにした、真空成膜方法の一手段である。
【0003】
【発明が解決しようとする課題】
ところで、蒸発源で蒸着材料を加熱し蒸発させる際の蒸着材料は、固体から液体となって蒸発する蒸着材料(以下、溶融性蒸着材料と記す。)と、加熱により昇華する蒸着材料(以下、昇華性蒸着材料と記す。)とに大きく分けてみることができる。上記抵抗加熱蒸着法で薄膜を形成するに際して、蒸着材料として上記溶融性蒸着材料を用いた場合には、この蒸着材料を安定良く蒸発させることができる。
【0004】
しかしながら、その蒸着材料として上記昇華性蒸着材料を用いた場合には、蒸発源の中央部分でほとんど蒸発せずに残った蒸着材料が、加熱の継続によって固形化し、さらには破裂することにより、安定な成膜プロセスの実現を阻害するという問題が生じる。
このため、蒸着材料の蒸発速度を安定に制御することができる電子ビーム蒸着法を用いることも考えられるが、電子の強い光エネルギーにより悪影響を受ける基板または膜に対しては、この方法を用いることは困難であり、このような場合には抵抗加熱蒸着法によらなければならないこととなる。
【0005】
そこで、本発明は、真空蒸着装置において、抵抗加熱蒸着法により昇華性蒸着材料を蒸発源により加熱するに際し、加熱により固形化する昇華性蒸着材料を破裂させることなく、安定良く加熱、蒸発させることが可能となる蒸発源容器を提供することを目的とするものである。
【0006】
【課題を解決するための手段】
本発明は、つぎの(1)〜(7)のように構成した真空蒸着装置における蒸発源容器を提供するものである。
(1)昇華性蒸着材料を収容して加熱手段で加熱することにより該昇華性蒸着材料を蒸発させ、真空蒸着する真空蒸着装置における蒸発源容器であって、前記蒸発源容器に昇華性蒸着材料を仕切って収容するための仕切り板を設けたことを特徴とする蒸発源容器。
(2)前記加熱手段は、蒸発源に電流を流して蒸発源を加熱する手段であることを特徴とする上記(1)に記載の蒸発源容器。
(3)前記蒸発源容器または仕切り板は、前記昇華性蒸着材料と反応性のない材料で形成されていることを特徴とする上記(1)または上記(2)に記載の蒸発源容器。
(4)前記仕切り板は、前記蒸発源容器の底面から該蒸発源容器の上縁の途中までを仕切るように構成されていることを特徴とする上記(1)〜(3)のいずれかに記載の蒸発源容器。
(5)前記仕切り板は、前記蒸発源容器の底面から該蒸発源容器の上縁までを仕切るように構成されていることを特徴とする上記(1)〜(3)のいずれかに記載の蒸発源容器。
(6)前記仕切り板は、前記蒸発源容器と同じ材料で形成されていることを特徴とする上記(1)〜(5)のいずれかに記載の蒸発源容器。
(7)前記仕切り板は、前記蒸発源容器と一体加工されていることを特徴とする上記(1)〜(6)のいずれかに記載の蒸発源容器。
【0007】
【発明の実施の形態】
上記構成を適用することにより、抵抗加熱蒸着法によって昇華性蒸着材料を成膜中に破裂させることなく加熱、蒸発させることができ、成膜速度を安定させることができ、また昇華性蒸着材料が破裂により真空蒸着装置内に飛び散ることがないため、蒸着装置内の汚染を低減させることが可能となるが、それは本発明者が鋭意検討したことによる、つぎのような知見に基づくものである。
【0008】
本発明者は、上記抵抗加熱蒸着法を用いて、種々の蒸着材料を検討した。すると、蒸発源で蒸着材料を加熱し蒸発させる際、蒸着材料により、蒸発中の蒸着材料形態が大きく異なることが確認された。さらにこの形態は、大きく二つのグループに分けられることが目視により確認でき、さらに、形態により蒸発の安定性が大きく異なることが確認された。
【0009】
一つは、蒸着材料が加熱により固体から液体となって蒸発するものである。(以下、溶融性蒸着材料とする)。溶融性蒸着材料を蒸発源に入れ加熱、蒸発させたとき、蒸着材料の蒸発の安定性は良かった。これは、液体になった蒸着材料が、蒸発源内に均一に広がったためである。つまり、蒸着材料を加熱することにより蒸着材料が固体から液体となり、蒸発源内に均一に広がり、蒸発がもっとも盛んに起こる蒸発源の壁面に常に蒸着材料が当たっており、蒸着材料が安定に蒸発したものである。
【0010】
もう一つは、蒸着材料が加熱により昇華するものである(以下、昇華性蒸着材料とする)。昇華性蒸着材料は、加熱により固体から液体の状態を介さずに蒸発する。このとき、蒸着材料の蒸発は非常に不安定なものであった。これは、蒸発源での蒸発の際、加熱ボートの壁面部と中央部で蒸発の度合いが大きく異なるからである。すなわち、昇華性蒸着材料を蒸発源で加熱し蒸発させたとき、溶融性蒸着材料と同様、蒸発源の壁面では蒸発が積極的に進んでいるのに対し、蒸発源の中央部分ではほとんど蒸発が行われていない。さらに、昇華性蒸着材料は溶融性蒸着材料と異なり、加熱しても液体にならないため、蒸発源の加熱が進行しても加熱ボート内に蒸着材料が広がることはない。このため、蒸発源を加熱している際、蒸発源の壁面部と中央部で蒸着材料の状態に大きな差が生まれる。それは、蒸発量が大きい蒸発源の壁面部からは蒸着材料が蒸発して消え、蒸発量の少ない蒸発源の中央部分では蒸着材料はほとんど蒸発せず蒸発源中央部に残ってしまう状況である。
【0011】
蒸発源の中央部分に昇華性蒸着材料が残った状態で、蒸発源の加熱を継続すると、昇華性蒸着材料が固形化し、さらには破裂してしまうことが確認された。
この結果、成膜速度は大きく変化し、安定な成膜プロセスを実現することができなかった。
また、昇華性蒸着材料が破裂により真空蒸着装置内に飛び散ってしまい、蒸着装置内を汚染させる原因となることが確認された。
【0012】
上記の問題を解決するため、真空蒸着装置により、昇華性蒸着材料を用いて成膜する際、真空成膜方法を抵抗加熱蒸着法から電子ビーム蒸着法に切り変え検討を実施した。
電子ビーム蒸着法は、抵抗加熱蒸着法と異なり、蒸着材料を加熱する際、電子を使用する。電子ビーム蒸着法では、真空蒸着装置の中に電子を発生させる装置を配置し、電子発生装置から発生させた電子を加速させ、加速した電子を蒸着材料の一部分に集中して衝突させる。蒸着材料に電子を衝突させることにより、蒸着材料が加熱され蒸発する。蒸発した蒸着材料は、蒸発源と対称の位置に配置した基板上に堆積される。電子ビーム蒸着法は、電子により直接蒸着材料を加熱することができるため、電子を常に蒸着材料に当てるよう制御すれば、蒸着材料の蒸発速度は安定に制御される。
昇華性蒸着材料を電子ビーム蒸着法で真空成膜したところ、抵抗加熱蒸着法で確認された現象は見られず、安定に蒸着材料を加熱することできることが確認された。
【0013】
しかしながら、電子ビーム蒸着法において、強い光エネルギーを当てることで特性が変化する基板を使用した際、真空蒸着前後で、基板の特性が変化することが確認された。
また、成膜する膜の種類によっては、抵抗加熱蒸着法で成膜した膜よりも電子ビーム蒸着法で成膜した膜の特性が悪いことが確認された。
これは、電子ビーム蒸着法で使用される電子が加速する際、強い光エネルギーが発せられ、その強い光エネルギーが、基板または膜の内部構造を変化させたことが原因である。
つまり、真空蒸着装置において、成膜したい基板の特性または成膜する膜の特性が、電子ビーム蒸着法で発せられる電子の強い光エネルギーにより悪影響を受ける場合、蒸着材料の加熱方法に、電子ビーム蒸着法を採用することが難しい。
【0014】
このようなことから、電子ビーム蒸着法で発せられる電子の強い光エネルギーにより悪影響を受ける基板または膜を真空蒸着装置で成膜するには、抵抗加熱蒸着法を採用しなければならず、そのため、鋭意検討した結果、加熱ボートの底面に仕切り板を設けることにより、昇華性蒸着材料を加熱ボートにより加熱する際、加熱により焼結し結晶化した昇華性蒸着材料の破裂を防止することが可能となるという知見を得て、本発明を完成するに至ったのである。
【0015】
以下に、本発明の実施形態について、図を用いて具体的に説明する。
図1は、本発明の実施の形態における仕切り板を設けた各種形態の蒸発源容器(以下、加熱ボートと記す。)の構成を示す図であり、(a)は長方形状の箱形で仕切り板が箱体の途中まで延設した形態の加熱ボートの構成を示す図、(b)は長方形の逆台形状の箱形で仕切り板が箱体の途中まで延設した形態の加熱ボートの構成を示す図、(c)は、長方形状の箱形で仕切り板が箱体の上縁まで延設した形態の加熱ボートの構成を示す図である。
【0016】
図1において、1は加熱ボートである。加熱ボート1には、高融点の金属(例えば、タングステン、モリブデン、タンタルなど)を使用する。加熱ボート1の材質を決定する際には、蒸着材料との相性を考慮する必要がある。特に、加熱ボートを加熱した際、加熱ボートと蒸着材料との濡れ性には気をつけなければならない。
【0017】
また、図1において、2は仕切り板である。仕切り板2の材質は、加熱ボート1と同じであることが望ましい。
また、仕切り板2は加熱ボート1と一体加工で作製することが望ましい。一体加工が無理である場合には、加熱ボート1に仕切り板2をスポット溶接で固定する。なお、溶接の際使用する溶接材料は、加熱ボート1、仕切り板2と同じ材料が望ましい。溶接材料が加熱ボート1、仕切り板2と同じ材料が無理であれば、成膜で使用する蒸着材料と反応性のない材料でかつ、加熱により溶接個所から発生するガスがほとんどない材料が望ましい。
【0018】
【実施例】
以下に、本発明の実施例について説明する。
図2、図3は、昇華性蒸着材料を加熱ボートで加熱した際、加熱前後で蒸着材料が仕切り板の有無によりどのように変化するか簡単に表した図である。
図2、図3において、(a)、(b)は仕切り板が無い加熱ボートでの加熱前後の蒸着材料の状況を表している。図2、図3の(a)の状態から加熱ボート1を加熱することにより、昇華性蒸着材料3は、加熱ボート1の壁面から積極的に蒸発する。これは、加熱ボート1を加熱することにより熱が壁面に集中するためである。さらに、加熱を続けることで、昇華性蒸着材料3は壁面から徐々になくなっていき、図2、図3の(b)の状態となる。図2、図3の(b)の状態において、昇華性蒸発材料3は加熱前と同じ粉末の状態ではなく、昇華性蒸着材料3が加熱により粉末から固形化していることが確認された。このとき、形成された固形物の大きさは、加熱前と比べ1〜3割程度小さくなっていた。特に、加熱ボート1の壁面と接触していた部分がなくなっていた。
【0019】
図2、図3の(b)の状態から、加熱ボート1の加熱を継続することで、固形化した昇華性蒸着材料が破裂してしまうことが確認された。また、破裂は、固形化した昇華性材料の中央部分から発生することが確認された。
さらに、固形化した昇華性蒸着材料が破裂してしまう現象は、加熱ボート1の大きさが大きいほど顕著に見られた。
【0020】
本発明者は、固形化した昇華性蒸着材料3が加熱中に破裂する際、中央部分から破裂することと、加熱ボート1の大きさが大きいほど顕著に見られることから、破裂の原因は、加熱中、加熱ボート1に触れている面と加熱ボート1に触れていない面とで、固形化の進行が異なり、加熱ボートから熱を直接受けない中央部分で固形化がもっとも遅くなり、固形化が遅れる個所がもろくなり、破裂するのではないかと考えた。
【0021】
この問題を解決するにあたって、我々は、昇華性蒸着材料が固形化する際、最初から形成される固形物の大きさが小さくなれば良いことに気が付いた。そこで、加熱中、蒸着材料ができるだけ加熱ボート1の面と触れているように加熱ボート1の形状を変えた。このとき、加熱ボート1に入れる蒸着材料の量を減らさないよう、加熱ボート1の容積をできるだけ変えないよう工夫した。
図2、図3において、(c)、(d)は仕切り板が有る加熱ボートの加熱前後での蒸着材料の状況を表している。昇華性蒸着材料3は、図2、図3の(c)の状態から加熱ボート1を加熱することにより、加熱ボート1と仕切り板2の壁面から積極的に蒸発する。加熱を続けることで、仕切り板が無いときと同様、昇華性蒸着材料3は壁面から徐々になくなっていき、図2、図3の(d)の状態となる。
図2、図3の(d)の状態において、図2、図3の(b)のときと同様、昇華性蒸着材料3は加熱により固形化した。
【0022】
しかしながら、図2、図3の(d)の状態において、加熱ボート1の加熱を継続しても、固形化した昇華性蒸着材料が破裂しないことが確認された。
これは、図2、図3の(d)の状態においては、仕切り板2が有ることにより、加熱ボート1に触れている面が広くなり、固形化した昇華性蒸着材料の固形物の大きさが小さくなり、固形化進行の差が小さくなったためと考えられる。つまり、固形物の大きさが小さくなったことにより、固形化の進行速度に差がなくなり、中央部分と壁面とで同じ程度の固形物ができたため、破裂しなくなったと考えられる。このとき、固形物の大きさは、加熱ボート壁と仕切り板2の間隔で決まる。
【0023】
【発明の効果】
本発明によれば、真空蒸着装置において、抵抗加熱蒸着法により昇華性蒸着材料を蒸発源により加熱するに際し、加熱により固形化する昇華性蒸着材料を破裂させることなく、安定良く加熱、蒸発させることが可能となる蒸発源容器を実現することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態における仕切り板を設けた各種形態の加熱ボートの構成を示す図であり、(a)は長方形状の箱形で仕切り板が箱体の途中まで延設した形態の加熱ボートの構成を示す図、(b)は長方形の逆台形状の箱形で仕切り板が箱体の途中まで延設した形態の加熱ボートの構成を示す図、(c)は、長方形状の箱形で仕切り板が箱体の上縁まで延設した形態の加熱ボートの構成を示す図である。
【図2】本発明の実施例において、加熱前後で蒸着材料が仕切り板の有無によってどのように変化するかを説明するための図であり、(a)は加熱前、(b)は加熱後の仕切り板の無い場合の加熱ボートの状態を示す平面図、(c)は加熱前、(d)は加熱後の仕切り板の有る場合の加熱ボートの状態を示す平面図である。
【図3】本発明の実施例において、加熱前後で蒸着材料が仕切り板有無によってどのように変化するかを説明するための図であり、(a)は加熱前、(b)は加熱後の仕切り板の無い場合の加熱ボートの状態を示す断面図、(c)は加熱前、(d)は加熱後の仕切り板の有る場合の加熱ボートの状態を示す断面図である。
【符号の説明】
1:加熱ボート
2:仕切り板
3:昇華性蒸着材料(粉末状)
4:昇華性蒸着材料(固形化したもの)
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an evaporation source container in a vacuum evaporation apparatus, in particular, in a vacuum evaporation apparatus, when heating a sublimable evaporation material by an evaporation source using a resistance heating evaporation method, the rupture of the sublimation evaporation material solidified by heating. It relates to the technology to prevent.
[0002]
[Prior art]
In a vacuum evaporation apparatus, a resistance heating evaporation method is a thin film forming method conventionally used in a wide field. In this resistance heating evaporation method, an evaporation material is housed in an evaporation source container that constitutes an evaporation source formed in an arbitrary shape such as a dish shape or a box shape using a high melting point metal plate or wire, and is evaporated. By applying a current to the source and heating the evaporation source, the evaporation material contained in the evaporation source container is heated and evaporated, and the evaporated evaporation material is placed on a substrate disposed at a position symmetrical to the evaporation source. This is one means of a vacuum film forming method for depositing.
[0003]
[Problems to be solved by the invention]
By the way, when a vapor deposition material is heated and evaporated by an evaporation source, a vapor deposition material (hereinafter, referred to as a fusible vapor deposition material) which evaporates from a solid to a liquid, and a vapor deposition material (hereinafter, referred to as a sublimable material which is heated) Sublimated deposition material). When forming the thin film by the resistance heating vapor deposition method, when the fusible vapor deposition material is used as the vapor deposition material, the vapor deposition material can be vaporized stably.
[0004]
However, when the above-described sublimable vapor deposition material is used as the vapor deposition material, the vapor deposition material which hardly evaporates in the central portion of the evaporation source is solidified by continuing heating, and furthermore, is stably ruptured. A problem arises that the realization of a complicated film forming process is hindered.
For this reason, it is conceivable to use an electron beam evaporation method that can stably control the evaporation rate of the evaporation material, but use this method for a substrate or a film that is adversely affected by the strong light energy of electrons. Is difficult, and in such a case, it is necessary to use a resistance heating evaporation method.
[0005]
Thus, the present invention provides a vacuum evaporation apparatus that, when heating a sublimable evaporation material by an evaporation source by a resistance heating evaporation method, without rupture of the sublimable evaporation material solidified by heating, stably heats and evaporates. It is an object of the present invention to provide an evaporation source container capable of performing the following.
[0006]
[Means for Solving the Problems]
The present invention provides an evaporation source container in a vacuum evaporation apparatus configured as in the following (1) to (7).
(1) An evaporation source container in a vacuum evaporation apparatus for evaporating the sublimation evaporation material by heating it with a heating means while accommodating the sublimation evaporation material, wherein the evaporation source container is provided with the sublimation evaporation material. An evaporation source container provided with a partition plate for partitioning and housing the water.
(2) The evaporation source container according to the above (1), wherein the heating means is a means for flowing a current to the evaporation source to heat the evaporation source.
(3) The evaporation source container according to the above (1) or (2), wherein the evaporation source container or the partition plate is formed of a material having no reactivity with the sublimable deposition material.
(4) The partition plate according to any one of (1) to (3), wherein the partition plate is configured to partition from a bottom surface of the evaporation source container to a middle of an upper edge of the evaporation source container. The evaporation source container as described.
(5) The partition according to any one of (1) to (3), wherein the partition plate is configured to partition from a bottom surface of the evaporation source container to an upper edge of the evaporation source container. Evaporation source container.
(6) The evaporation source container according to any one of (1) to (5), wherein the partition plate is formed of the same material as the evaporation source container.
(7) The evaporation source container according to any one of (1) to (6), wherein the partition plate is integrally formed with the evaporation source container.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
By applying the above configuration, the sublimable vapor deposition material can be heated and evaporated by a resistance heating vapor deposition method without being ruptured during film formation, the film formation rate can be stabilized, and the sublimable vapor deposition material can be heated. Since it does not scatter in the vacuum evaporation apparatus due to rupture, it is possible to reduce contamination in the evaporation apparatus, but this is based on the following knowledge obtained by intensive studies by the present inventors.
[0008]
The present inventors have studied various evaporation materials using the above-described resistance heating evaporation method. Then, it was confirmed that when the evaporation material was heated and evaporated by the evaporation source, the evaporation material form during evaporation greatly varied depending on the evaporation material. Furthermore, it was visually confirmed that this form was roughly divided into two groups, and further, it was confirmed that the stability of evaporation greatly differs depending on the form.
[0009]
One is a method in which a deposition material evaporates from a solid to a liquid by heating. (Hereinafter, it is referred to as a fusible deposition material). When the fusible deposition material was heated and evaporated in an evaporation source, the evaporation material had good evaporation stability. This is because the vaporized material that has become liquid has spread uniformly within the evaporation source. In other words, by heating the evaporation material, the evaporation material changes from a solid to a liquid, spreads evenly in the evaporation source, and the evaporation material always hits the wall surface of the evaporation source where evaporation most actively occurs, and the evaporation material stably evaporated. Things.
[0010]
The other is that the evaporation material sublimates by heating (hereinafter, referred to as a sublimation evaporation material). The sublimable vapor deposition material evaporates from a solid without going through a liquid state by heating. At this time, evaporation of the evaporation material was very unstable. This is because the degree of evaporation differs greatly between the wall portion and the central portion of the heating boat during the evaporation at the evaporation source. In other words, when the sublimable deposition material is heated and evaporated by the evaporation source, the evaporation proceeds positively on the wall surface of the evaporation source, as in the case of the fusible evaporation material, whereas almost no evaporation occurs in the central portion of the evaporation source. Not done. Furthermore, unlike a fusible vapor deposition material, a sublimable vapor deposition material does not become a liquid when heated, so that the vapor deposition material does not spread in the heating boat even when the evaporation source is heated. For this reason, when the evaporation source is heated, a large difference is generated in the state of the evaporation material between the wall portion and the central portion of the evaporation source. That is, the evaporation material evaporates and disappears from the wall portion of the evaporation source having a large evaporation amount, and the evaporation material hardly evaporates at the center portion of the evaporation source having a small evaporation amount and remains at the center of the evaporation source.
[0011]
It was confirmed that, when the heating of the evaporation source was continued in a state where the sublimable deposition material remained in the central portion of the evaporation source, the sublimation deposition material was solidified and further burst.
As a result, the film forming speed changed greatly, and a stable film forming process could not be realized.
In addition, it was confirmed that the sublimable vapor deposition material was scattered in the vacuum vapor deposition device due to the rupture, thereby causing contamination in the vapor deposition device.
[0012]
In order to solve the above problem, when forming a film using a sublimable deposition material with a vacuum deposition device, the vacuum deposition method was switched from a resistance heating deposition method to an electron beam deposition method and studied.
The electron beam evaporation method uses electrons when heating an evaporation material, unlike the resistance heating evaporation method. In the electron beam evaporation method, a device for generating electrons is arranged in a vacuum evaporation device, the electrons generated from the electron generation device are accelerated, and the accelerated electrons are intensively collided with a part of the evaporation material. By causing electrons to collide with the deposition material, the deposition material is heated and evaporated. The evaporated evaporation material is deposited on a substrate disposed at a position symmetrical with the evaporation source. In the electron beam evaporation method, since the evaporation material can be directly heated by the electrons, if the electron is always applied to the evaporation material, the evaporation rate of the evaporation material is stably controlled.
When the sublimable vapor deposition material was formed into a vacuum film by an electron beam vapor deposition method, the phenomenon confirmed by the resistance heating vapor deposition method was not observed, and it was confirmed that the vapor deposition material could be stably heated.
[0013]
However, in the electron beam evaporation method, it was confirmed that the characteristics of the substrate changed before and after vacuum evaporation when a substrate whose characteristics were changed by applying strong light energy was used.
In addition, it was confirmed that, depending on the type of the film to be formed, the characteristics of the film formed by the electron beam evaporation method were worse than those of the film formed by the resistance heating evaporation method.
This is because strong light energy is emitted when electrons used in the electron beam evaporation method are accelerated, and the strong light energy changes the internal structure of the substrate or the film.
In other words, in a vacuum evaporation apparatus, when the characteristics of the substrate to be formed or the characteristics of the film to be formed are adversely affected by the strong light energy of the electrons emitted by the electron beam evaporation method, the method of heating the evaporation material includes electron beam evaporation. Difficult to adopt the law.
[0014]
For this reason, in order to form a substrate or a film that is adversely affected by the strong light energy of electrons emitted by the electron beam evaporation method using a vacuum evaporation apparatus, a resistance heating evaporation method must be employed. As a result of intensive studies, it was possible to prevent the rupture of the crystallized sublimable deposition material that was sintered and crystallized by heating when the sublimable deposition material was heated by the heating boat by providing a partition plate on the bottom of the heating boat. Thus, the present invention was completed, and the present invention was completed.
[0015]
Hereinafter, embodiments of the present invention will be specifically described with reference to the drawings.
FIG. 1 is a diagram showing the configuration of various types of evaporation source containers (hereinafter, referred to as heating boats) provided with a partition plate according to an embodiment of the present invention. FIG. 1 (a) shows a rectangular box-shaped partition. The figure which shows the structure of the heating boat of the form in which the board extended to the middle of the box, (b) is the structure of the heating boat of the form in which the partition plate extended to the middle of the box in the shape of a rectangular inverted trapezoidal box. (C) is a diagram showing a configuration of a heating boat in a form in which a partition box is formed in a rectangular box shape and extends to an upper edge of the box body.
[0016]
In FIG. 1, reference numeral 1 denotes a heating boat. The heating boat 1 uses a metal having a high melting point (for example, tungsten, molybdenum, tantalum, or the like). When determining the material of the heating boat 1, it is necessary to consider compatibility with the evaporation material. In particular, when the heating boat is heated, attention must be paid to the wettability between the heating boat and the deposition material.
[0017]
In FIG. 1, reference numeral 2 denotes a partition plate. It is desirable that the material of the partition plate 2 is the same as that of the heating boat 1.
Further, it is desirable that the partition plate 2 be manufactured integrally with the heating boat 1. If integral processing is impossible, the partition plate 2 is fixed to the heating boat 1 by spot welding. The welding material used for welding is desirably the same material as the heating boat 1 and the partition plate 2. If the same material as the heating boat 1 and the partition plate 2 cannot be used as the welding material, a material that is not reactive with the vapor deposition material used for film formation and that hardly generates a gas from a welding location due to heating is desirable.
[0018]
【Example】
Hereinafter, examples of the present invention will be described.
FIG. 2 and FIG. 3 are diagrams simply showing how the deposition material changes before and after heating depending on the presence or absence of the partition plate when the sublimation deposition material is heated by the heating boat.
2 and 3, (a) and (b) show the state of the vapor deposition material before and after heating in a heating boat without a partition plate. By heating the heating boat 1 from the state shown in FIGS. 2 and 3A, the sublimable deposition material 3 evaporates positively from the wall surface of the heating boat 1. This is because heat is concentrated on the wall surface by heating the heating boat 1. Further, by continuing the heating, the sublimable vapor deposition material 3 gradually disappears from the wall surface, and the state shown in FIGS. 2 and 3B is obtained. In the state shown in FIG. 2 and FIG. 3B, it was confirmed that the sublimable evaporation material 3 was not in the same powder state as before heating, and the sublimable evaporation material 3 was solidified from the powder by heating. At this time, the size of the formed solid was about 10 to 30% smaller than before heating. In particular, the portion that was in contact with the wall surface of the heating boat 1 was missing.
[0019]
It has been confirmed that the solidification of the sublimable deposition material is ruptured by continuing to heat the heating boat 1 from the state shown in FIGS. 2 and 3B. It was also confirmed that the rupture occurred from the central portion of the solidified sublimable material.
Further, the phenomenon that the solidified sublimable deposition material bursts was more remarkable as the size of the heating boat 1 was larger.
[0020]
The present inventor has found that when the solidified sublimable vapor deposition material 3 ruptures during heating, it ruptures from the central portion and is more noticeable as the size of the heating boat 1 is larger. During heating, the solidification progresses differently between the surface touching the heating boat 1 and the surface not touching the heating boat 1, and the solidification is slowest in the central portion where the heat is not directly received from the heating boat, I thought that the place where it was late became brittle and might burst.
[0021]
In solving this problem, we have noticed that when the sublimable deposition material solidifies, the size of the solid formed from the beginning should be small. Therefore, during heating, the shape of the heating boat 1 was changed so that the vapor deposition material touched the surface of the heating boat 1 as much as possible. At this time, the volume of the heating boat 1 was devised so as not to change as much as possible so as not to reduce the amount of the vapor deposition material to be put into the heating boat 1.
2 and 3, (c) and (d) show the state of the vapor deposition material before and after the heating of the heating boat having the partition plate. The sublimable deposition material 3 evaporates positively from the wall surface of the heating boat 1 and the partition plate 2 by heating the heating boat 1 from the state shown in FIGS. By continuing the heating, the sublimable vapor deposition material 3 gradually disappears from the wall surface as in the case where there is no partition plate, and the state of FIG. 2 and FIG. 3D is obtained.
In the state of FIG. 2 and FIG. 3D, the sublimable vapor deposition material 3 was solidified by heating as in the case of FIG. 2 and FIG. 3B.
[0022]
However, in the state of FIG. 2 and FIG. 3D, it was confirmed that the solidified sublimable deposition material did not burst even if the heating of the heating boat 1 was continued.
This is because, in the state shown in FIG. 2 and FIG. 3D, the surface in contact with the heating boat 1 becomes wider due to the presence of the partition plate 2, and the size of the solidified sublimable vapor deposition material is increased. It is considered that the difference in solidification progress became smaller. In other words, it is considered that the reduction in the size of the solid material caused no difference in the progress rate of the solidification, and the solid material of the same degree was formed between the center portion and the wall surface. At this time, the size of the solid matter is determined by the distance between the wall of the heating boat and the partition plate 2.
[0023]
【The invention's effect】
According to the present invention, in a vacuum evaporation apparatus, when a sublimable evaporation material is heated by an evaporation source by a resistance heating evaporation method, the sublimation evaporation material solidified by heating is not ruptured, and the heating and evaporation are stably performed. Can be realized.
[Brief description of the drawings]
FIG. 1 is a view showing a configuration of a heating boat in various forms provided with a partition plate according to an embodiment of the present invention. FIG. 1 (a) is a rectangular box shape in which the partition plate extends halfway through the box. The figure which shows the structure of the heating boat of a form, (b) is the figure which shows the structure of the heating boat of the form which the partition plate extended in the middle of the box in the shape of a rectangular inverted trapezoid box, (c) is a rectangle It is a figure which shows the structure of the heating boat of the form in which the partition plate extended to the upper edge of the box in the shape of a box.
FIGS. 2A and 2B are diagrams for explaining how an evaporation material changes depending on the presence or absence of a partition plate before and after heating in an embodiment of the present invention, wherein FIG. FIG. 3C is a plan view showing a state of the heating boat when there is no partition plate, FIG. 4C is a plan view showing a state of the heating boat before heating, and FIG.
3A and 3B are diagrams for explaining how an evaporation material changes before and after heating depending on the presence or absence of a partition plate in an embodiment of the present invention, wherein FIG. 3A is before heating, and FIG. 3B is after heating. It is sectional drawing which shows the state of the heating boat when there is no partition board, (c) is before heating, (d) is sectional drawing which shows the state of the heating boat when there is a partition board after heating.
[Explanation of symbols]
1: Heated boat 2: Partition plate 3: Sublimable deposition material (powder)
4: Sublimable evaporation material (solidified)

Claims (7)

昇華性蒸着材料を収容して加熱手段で加熱することにより該昇華性蒸着材料を蒸発させ、真空蒸着する真空蒸着装置における蒸発源容器であって、前記蒸発源容器に昇華性蒸着材料を仕切って収容するための仕切り板を設けたことを特徴とする蒸発源容器。A sublimation deposition material is accommodated therein and heated by a heating means to evaporate the sublimation deposition material, which is an evaporation source container in a vacuum deposition apparatus for performing vacuum deposition, wherein the sublimation deposition material is partitioned into the evaporation source container. An evaporation source container provided with a partition plate for housing. 前記加熱手段は、蒸発源に電流を流して蒸発源を加熱する手段であることを特徴とする請求項1に記載の蒸発源容器。2. The evaporation source container according to claim 1, wherein the heating means is means for heating the evaporation source by supplying a current to the evaporation source. 前記蒸発源容器または仕切り板は、前記昇華性蒸着材料と反応性のない材料で形成されていることを特徴とする請求項1または請求項2に記載の蒸発源容器。The evaporation source container according to claim 1, wherein the evaporation source container or the partition plate is formed of a material that is not reactive with the sublimable deposition material. 前記仕切り板は、前記蒸発源容器の底面から該蒸発源容器の上縁の途中までを仕切るように構成されていることを特徴とする請求項1〜3のいずれか1項に記載の蒸発源容器。The evaporation source according to any one of claims 1 to 3, wherein the partition plate is configured to partition from a bottom surface of the evaporation source container to a middle of an upper edge of the evaporation source container. container. 前記仕切り板は、前記蒸発源容器の底面から該蒸発源容器の上縁までを仕切るように構成されていることを特徴とする請求項1〜3のいずれか1項に記載の蒸発源容器。The evaporation source container according to any one of claims 1 to 3, wherein the partition plate is configured to partition from a bottom surface of the evaporation source container to an upper edge of the evaporation source container. 前記仕切り板は、前記蒸発源容器と同じ材料で形成されていることを特徴とする請求項1〜5のいずれか1項に記載の蒸発源容器。The evaporation source container according to any one of claims 1 to 5, wherein the partition plate is formed of the same material as the evaporation source container. 前記仕切り板は、前記蒸発源容器と一体加工されていることを特徴とする請求項1〜6のいずれか1項に記載の蒸発源容器。The evaporation source container according to any one of claims 1 to 6, wherein the partition plate is integrally formed with the evaporation source container.
JP2002228624A 2002-08-06 2002-08-06 Evaporation source container in vacuum deposition system Pending JP2004068081A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002228624A JP2004068081A (en) 2002-08-06 2002-08-06 Evaporation source container in vacuum deposition system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002228624A JP2004068081A (en) 2002-08-06 2002-08-06 Evaporation source container in vacuum deposition system

Publications (1)

Publication Number Publication Date
JP2004068081A true JP2004068081A (en) 2004-03-04

Family

ID=32015256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002228624A Pending JP2004068081A (en) 2002-08-06 2002-08-06 Evaporation source container in vacuum deposition system

Country Status (1)

Country Link
JP (1) JP2004068081A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007034790A1 (en) * 2005-09-20 2007-03-29 Tohoku University Film forming apparatus, evaporating jig and measuring method
JP2007088247A (en) * 2005-09-22 2007-04-05 Matsushita Electric Ind Co Ltd Resin partitioning plate, and manufacturing method of film capacitor using same resin partitioning plate
JP2011127217A (en) * 2009-12-17 2011-06-30 Samsung Mobile Display Co Ltd Linear evaporation source, and deposition apparatus having the same
WO2013146601A1 (en) * 2012-03-28 2013-10-03 東洋紡株式会社 Vacuum-deposition apparatus
KR101350026B1 (en) * 2012-05-03 2014-01-16 주식회사 야스 Linear evapoator with replaceble evaporation nozzle

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5358778B2 (en) * 2005-09-20 2013-12-04 国立大学法人東北大学 Film forming apparatus, evaporation jig, and measuring method
WO2007034790A1 (en) * 2005-09-20 2007-03-29 Tohoku University Film forming apparatus, evaporating jig and measuring method
TWI421367B (en) * 2005-09-20 2014-01-01 Univ Tohoku Film-forming apparatus, evaporation tool, and measuring method
JP2007088247A (en) * 2005-09-22 2007-04-05 Matsushita Electric Ind Co Ltd Resin partitioning plate, and manufacturing method of film capacitor using same resin partitioning plate
JP4577170B2 (en) * 2005-09-22 2010-11-10 パナソニック株式会社 Resin partition plate and method of manufacturing film capacitor using resin partition plate
JP2011127217A (en) * 2009-12-17 2011-06-30 Samsung Mobile Display Co Ltd Linear evaporation source, and deposition apparatus having the same
US8845807B2 (en) 2009-12-17 2014-09-30 Samsung Display Co., Ltd. Linear evaporation source and deposition apparatus having the same
US10081867B2 (en) 2009-12-17 2018-09-25 Samsung Display Co., Ltd. Linear evaporation source and deposition apparatus having the same
US10364488B2 (en) 2009-12-17 2019-07-30 Samsung Display Co., Ltd. Linear evaporation source and deposition apparatus having the same
US10907245B2 (en) 2009-12-17 2021-02-02 Samsung Display Co., Ltd. Linear evaporation source and deposition apparatus having the same
JP2013204098A (en) * 2012-03-28 2013-10-07 Toyobo Co Ltd Vacuum deposition device
WO2013146601A1 (en) * 2012-03-28 2013-10-03 東洋紡株式会社 Vacuum-deposition apparatus
KR101350026B1 (en) * 2012-05-03 2014-01-16 주식회사 야스 Linear evapoator with replaceble evaporation nozzle

Similar Documents

Publication Publication Date Title
JPH03107452A (en) Method of attaching gas phase and its device
JP4740849B2 (en) Vacuum deposition method and sealed evaporation source apparatus for vacuum deposition
JP2004068081A (en) Evaporation source container in vacuum deposition system
EP0735157B1 (en) Formation of magnesium vapor with high evaporation speed
JPH0219459A (en) Evaporation source assembly having cruucible
JPS61213371A (en) Crucible for vapor deposition
JP4056680B2 (en) Film forming apparatus and method
JPH0892734A (en) Evaporation of mg
JPH0543784B2 (en)
JP5123567B2 (en) Vaporizer and plasma processing apparatus equipped with vaporizer
JP2002161355A (en) Accommodation container of evaporation material for vacuum deposition
JP2021527165A (en) Cartridges and methods for storing evaporative materials
JPH07126838A (en) Vapor-deposition boat
KR20140073764A (en) Crucible for evaporator source
JPS58136773A (en) Vacuum depositing method and constituting body of vacuum depositing source
JPH01108364A (en) Method for supplying material for vapor deposition of vapor source
JP2010132939A (en) Ion plating apparatus and film-forming method
JPH09165674A (en) Vacuum coating apparatus
JPH01306553A (en) Vapor deposition apparatus
JPH0995775A (en) Crucible mechanism of continuous vacuum deposition device
JPS5815491Y2 (en) Electron gun type evaporation source
JP2005320572A (en) Vapor deposition equipment for organic compound and vapor deposition method for organic compound
JPS6379956A (en) Evaporating material
JPH0451118A (en) Production of liquid crystal oriented film and apparatus for producing this film
JPH0544023A (en) Method and device for evaporating substance