JP2004066887A - Car body for railroad head car and railroad head car using the car body - Google Patents

Car body for railroad head car and railroad head car using the car body Download PDF

Info

Publication number
JP2004066887A
JP2004066887A JP2002226089A JP2002226089A JP2004066887A JP 2004066887 A JP2004066887 A JP 2004066887A JP 2002226089 A JP2002226089 A JP 2002226089A JP 2002226089 A JP2002226089 A JP 2002226089A JP 2004066887 A JP2004066887 A JP 2004066887A
Authority
JP
Japan
Prior art keywords
sectional area
cross
vehicle
vehicle body
increase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002226089A
Other languages
Japanese (ja)
Other versions
JP3939218B2 (en
Inventor
Akihiko Torii
鳥居 昭彦
Isao Naruse
成瀬 功
Takashi Kuriyama
栗山 敬
Katsuyuki Tsukahara
塚原 克之
Hideshi Shima
嶋 英志
Takashi Sasaki
佐々木 隆
Kazuto Nakai
中井 一人
Atsushi Sano
佐野 淳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Central Japan Railway Co
Original Assignee
Kawasaki Heavy Industries Ltd
Central Japan Railway Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd, Central Japan Railway Co filed Critical Kawasaki Heavy Industries Ltd
Priority to JP2002226089A priority Critical patent/JP3939218B2/en
Publication of JP2004066887A publication Critical patent/JP2004066887A/en
Application granted granted Critical
Publication of JP3939218B2 publication Critical patent/JP3939218B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T30/00Transportation of goods or passengers via railways, e.g. energy recovery or reducing air resistance

Landscapes

  • Body Structure For Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To ensure volume of a cab sufficiently while maintaining effect for reducing minute pressure wave. <P>SOLUTION: A car body 1 is constituted in such a way that cross sectional area increasing regions Z11, Z12, Z13 on a front side, an intermediate side, and a rear side in which cross sectional area is greatly changed in the direction in which it is increased toward a rear end side from a head side are provided to greatly change cross sectional area at three steps in the forward and backward directions and reach a general part Z2 so that the cross sectional area becomes the maximum and substantially uniform. Cross sectional area increase rates in the cross sectional area increasing regions on the front side and the rear side are substantially 6.0m<SP>2</SP>/m and 2.0m<SP>2</SP>/m, respectively. A cross sectional area increase rate in the intermediate cross sectional area increasing region is substantially 1.0 m<SP>2</SP>/m. Area ratio of the cross sectional area increasing regions on the front side, the intermediate side, and the rear side for cross sectional area of the general part is changed in a scope of 0 to 0.33, 0.43 to 0.62, and 0.76 to 1.0, respectively. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は、高速走行する新幹線等の鉄道先頭車両用車体及びこれを用いた鉄道先頭車両に関する。
【0002】
【従来の技術】
一般に、新幹線などの高速の鉄道車両がトンネルに突入する場合には、その先頭車両によって、トンネル内の限られた空間に存在する空気を押し込むように前記空気が圧縮される。この圧縮された空気が圧縮波となってトンネル内をほぼ音速に等しい速度で前方へ伝播される。そして、この圧縮波はトンネルの出口に到達したときには出口で反射されるが、それの一部はパルス状の圧力波となってトンネル出口から外部へ放射される。このパルス状の圧力波を、微気圧波(トンネル微気圧波)という。この微気圧波(パルス状の圧力波)が外部へ放射されることにより、トンネルの出口付近では爆発音とともに微振動等が生じ、周辺の環境に影響を及ぼす場合がある。
【0003】
そのため、高速性能が要求される鉄道車両では、先頭車両の車体先頭部の形状に、いわゆる高速走行時の走行抵抗を減少させるだけでなく、前述したところのトンネルに突入した際に生じる微気圧波を低減させることができる形状とすることが必要とされる。
【0004】
近年、そのような微気圧波を低減させる先頭車両の車体形状がいくつか提案されている。
(1)例えば特開平7−89439号公報には、横断面積が一定の胴部に接合する接合部から最先端に至る先頭領域を尖らせ、先頭領域の上面側へ突出する運転室窓部(キャノピー)の前後の長さを、先頭領域の前後長さより短くし、運転室窓部の突設根元部に連接する上方肩部の横断面積を、上方肩部に隣接する隣接肩部の横断面積より小さくし、前記先頭領域における最先端寄りの横断面積急変域を除く領域のスカート部または仮想スカート部を含む横断面積を、接合部から最先端へ向かっていく程に正比例に減少させた構造に先頭部の車体を構成するものが記載されている。
(2)例えば特開平8−198105号公報には、車体先端から車体前後方向における車体横断面積が増大する先頭部を有した鉄道車両において、先頭部を先端領域と中間領域とから構成し、先端領域は最大車体横断面積の半分の断面積に相当する位置よりも先端側とし、中間領域は該先端領域よりも車体長手方向他端側とし、前記中間領域は一定の断面積変化率によって車体横断面積が変化し、かつ前記先端領域の断面積変化率を中間領域の断面積変化率よりも大きくするものである。この技術においては、前記中間領域に運転室を配置しており、この運転室部前面窓の傾斜角度を前方注視に支障のない角度としており、前記運転室前面窓の両側方部分より下方に凹み部を形成するものが記載されている。
【0005】
しかしながら、前記公報に記載の両技術は、次の点で大きな課題を有する。すなわち、
第1に、いずれの技術も先頭部の横断面積の変化が先頭車両の車体先端から後方の接合部(一般断面部あるいは最大横断面積部との接合部)にかけて車体横断面積が連続して緩やかに増大するように、先端から後方にかけてやや上方に傾斜する曲面形状に形成するとともに、その傾斜曲面部分が車体前後方向にできるだけ長くなるように先端部をノーズ状に延ばしている。このため、実際の車体形状の製作に際しては、骨組みに溶接等により張り付ける板金を、ハンマー等で打ち出すことによって凹凸部などの複雑な形状を形成しているので、作業に熟練を要することはもとより、多大な時間がかかって生産性が非常に低く、製造コストが極めて高くなるうえに、車体先頭部の車体前後方向において占める長さが長くなるため、車室が制限され、乗車定員が減少する。
【0006】
第2に、いずれの発明も先頭部の横断面積の変化が先頭車両の車体先端から後方の接合部にかけて直線的(正比例)に連続している。このため、鉄道車両がトンネル内に突入したときの、トンネル内のある位置における圧力変化は、圧力勾配が緩やかになっているとしても漸次高くなっている。一方、トンネル内を伝播する圧縮波の速度(音速に近い)は、圧力が上昇するのにしたがって速くなるから、トンネルの距離がある程度長くなると、せっかく車体の先頭部形状を工夫したことによって圧縮波の圧力を分散したにも拘わらず、分散された圧力がトンネルの出口では集合されて一度に大きな圧力のパルス状圧力波(微気圧波)となって外部へ放射され、トンネルの出口周辺において大きな爆発音が発生したり、振動等が生じたりするおそれがある。
【0007】
そこで、出願人は、鉄道車両がトンネル内に突入する場合に、トンネルと車両によって発生する微気圧波を分散させて低減するための鉄道先頭車両の車体形状を先に提案している(特開平11−321640号公報参照)。具体的には、車体の先端部分をやや後方に傾斜させて上方に立ち上げることにより第1段目の横断面積増加領域を形成した後、横断面積をほぼ一定に保ってほぼ水平に後方に延設した後、再びやや後方に傾斜させて上方に立ち上げることにより第2段目の横断面積増加領域を形成し、前記第1段目の横断面積/前記第2段目の横断面積の面積比が0.6以上で、前記第1段目と第2段目の横断面積増加領域の間隔を15m以上にしたものである。
【0008】
しかしながら、このような構成にすると、微気圧波の低減に効果があるとしても、そのために前記第1段目と第2段目の横断面積増加領域の間隔を15m以上にする必要があり、車両の先頭部分の長さが長くなってしまう。
【0009】
そのため、車両の長さをあまり長くすることなく、すなわち前記第1段目と第2段目の横断面積増加領域の間隔をあまり広くすることなく、微気圧波の低減効果を得たいという要求がある。
【0010】
その一方、現在高速走行している車両の一つとして、前記第1段目と第2段目の横断面積増加領域の間隔が9.2m程度で、走行速度が255km/hの性能を有するもの(以下、従来の車体形状という)が知られており、さらに走行速度を30km/h速めて、走行速度285km/hでもって高速走行したいという要求がある。
【0011】
そして、発明者らは、走行速度285km/hでもって高速走行することを検討する際に、前記第1段目と第2段目の横断面積増加領域の間隔をあまり広くすることなく、微気圧波の低減効果を得るべく研究開発を進めたところ、発明者らは、このような車体形状を考える場合に、組み合せが多すぎて解き方がまったく分からない問題でも比較的スムーズに最適解を求めることができる遺伝的アルゴリズム(GA:Genetic Algorithm)が、最適化設計手法として最も適していることを知見した。
【0012】
ここで、遺伝的アルゴリズムとは、ミシガン大学のJ・ホランドによって1975年に提案され発展してきたもので、メンデルの法則やダーウィンの進化論で示されている自然界の自然淘汰(進化)の過程そのもの、すなわち生物が遺伝子を組み換えながら進化する「進化過程」をモデル化し、最適化問題の解法に応用した確率的アルゴリズムである。つまり、遺伝子に見立てた複数の個体(解の候補)からなる集団を用いて、解の候補を次々に組み換えて最適解を探索する計算手法である。GAでは、解の候補をビット列に置き換える。ビット列の解釈を与えるのが適応度関数である。その関数は各ビット列に対して、与えられた問題空間におけるその問題の強さ(適応度)を与える。次にビット列を部分的に入れ替える「交叉」や、確率的に選んだ適当なビットを反転させる「突然変異」の処理を施す。その中から所定の条件を満たす(適応度の高い)解の候補だけを取捨選択して、同様の操作を繰り返す。環境に適応した生物だけが生き残れるように、条件を満たす解の候補が自動的に作成できるようになっている。
【0013】
そこで、発明者らは、理想的な鉄道車両の先頭車体について、最適な車体形状を得るために、従来までの形状設計に関する試行錯誤的な手法から、数値流体解析(CFD解析)と最適化設計手法(遺伝的アルゴリズム)を組み合わせて、数値的に微気圧波が低減する最適先頭形状(最適断面積分布)を研究したところ、車両の長さをあまり長くすることなく、高速車両がトンネルに突入する際に生ずる微気圧波を低減することができる鉄道先頭車両用車体を開発した。具体的には、先頭部分より横断面積が最大でほぼ一様となる一般部分に至るまでに、横断面積が車体前後方向に沿って変化する鉄道先頭車両用車体であって、前記先頭部分と、前記一般部分の直前の部分に、先頭側から後端側に向かって横断面積が大きくなる方向に大きく変化する前側及び後側の断面積増加領域を設け、前記前側の断面積増加領域と後側の断面積増加領域とは、断面積増加率が2.0m/m程度であり、前記両領域の間の部分は、断面積増加率が0.3m/m程度であり、かつ前記一般部分の横断面積に対する面積比が0.6程度である中間断面積増加領域としたものである(以下、GAによる車体形状という)。
【0014】
この車体(車体形状)は、従来の形状設計に関する試行錯誤的な手法ではなく、CFDと最適化設計手法(遺伝的アルゴリズム)を組み合わせて、数値的に微気圧波が低減する最適先頭形状(最適断面積分布)を求める設計技術を適用して求めたものである。
【0015】
具体的には、「人口」と呼ばれる解の集団を作り、これを構成する「個体」(設計変数を一組有するもの)と呼ばれる解候補群が「選択」「交叉」、そして「突然変異」というプロセスを繰り返しながら最適解へと収束していくものである。基本的なフローチャートは、図9に示す通りで、まず、設計空間内でランダムに設計変数を発生し(ステップS1)、初期集団内の固体を評価し、成績の善し悪しを判断する(ステップS2)。それから、成績の良いもの(親)を優先的に選択し(ステップS3)、成績の良い2つの”親”から、重み付けを使って”子”を作成し(ステップS4)、”子”に対し、設計空間内で攪乱を付加する(ステップS5)。それから、作成された”子”を評価し、成績の善し悪しを判断し(ステップS6)、評価が最適であれば、最適解とし(ステップS7)、最適でなければ、ステップS3に戻る。
【0016】
前記最適化手法を用いて得られた車体形状(GAによる車体形状)の最適断面積分布を、図10に二点鎖線で示す従来の車体形状についての断面積分布である初期断面積分布(図10破線参照)と一緒に図10に示す。
【0017】
図10において、一般部分の横断面積がほぼ11m程度で、先頭部分の緩やかな部分(中間断面積増加領域のほぼ中間点)の横断面積はほぼ6.5m程度で、その比は0.59であり、0.6程度である。そして、図10より、前記前側の断面積増加領域と後側の断面積増加領域との断面積増加率は2m/m程度(直線L11,L12参照)であり、前記中間断面積増加領域の断面積増加率は、0.3m/m程度(直線L2参照)であることがわかる。ここで、断面積増加率は、各増加領域での変化を直線的変化であるとみなして求めたものである。
【0018】
具体的に説明すると、非定常、軸対称、圧縮性および非粘性を仮定した数値流体解析(CFD解析)を用いた。ここで、最適断面積分布形状を求めるための計算条件は、列車速度:285km/h,列車/トンネル断面積比:0.173とした。また、先頭部分(先頭長さ9.2m)における断面積分布のみ変化させ、一般部分の断面積分布は一定とした。
(1)基礎方程式:2次元軸対称圧縮性オイラー方程式
(2)空間離散化:非構造格子法によるセルセンター型有限体積法
(3)収束計算;基本変数のMUSCL+SHUS(Simple High resolutionUpwind Scheme)による高精度風上法
(4)時間積分:MFGS(Mtrix Free Gauss Seidel)陰解法
(5)解析手順
▲1▼非定常計算の初期条件を得るために、障害物のない、いわゆる明かり区間において定常計算による収束解を求める。
▲2▼▲1▼で求めた結果を初期条件に、トンネル突入による非定常計算を行う。トンネルと鉄道車両(以下列車という)の間に相対的な運動が発生するため、計算領域を、図11に示すように、トンネルを含む領域P11、列車を含む領域P12との2つに分類し、それらを相対的に移動させて計算を進めた。
▲3▼圧力変化の観測点×はトンネル入り口から80mの地点のトンネル内壁上とした。
【0019】
図12に、前記最適化手法による微気圧波の低減効果を示す。ここで、従来の車両(前側及び後側の横断面積増加領域の間隔が9.2m程度で、走行速度が285km/hの性能を有するもの、図10の破線参照)を基準の車体形状として、その圧力勾配(dp/dt)の最大値を1とし、指数化して、評価値として表示した。なお、形状の連続性を考慮して、ベジェ曲線で平滑化した。
【0020】
この結果から、CFDと最適化設計手法(遺伝的アルゴリズム)を組み合わせて、数値的に微気圧波が低減する最適先頭形状(最適断面積分布)を求める設計技術を適用して得られた前述したところの先頭車両の車体形状によれば、世代が進むにつれて評価値が下がり、微気圧波の低減の程度が大きくなっているのがわかる。そして、10世代以降の形状であれば、評価値がほぼ0.85となり、微気圧波が、初期形状に比べて約15%程度低減していることがわかる。
【0021】
よって、先頭部分と、前記一般部分の直前の部分に、先頭側から後端側に向かって横断面積が大きくなる方向に大きく変化する前側及び後側の断面積増加領域を設け、前記前側の断面積増加領域と後側の断面積増加領域とは、断面積増加率が2.0m/m程度であり、前記両領域の間の部分は、前記前側及び後側の断面積増加領域よりも断面積増加率が0.3m/m程度であり、かつ前記一般部分の横断面積に対する面積比が0.6程度である中間断面積増加領域としたことにより、先頭部がトンネルに突入する際に生じる微気圧波(圧力上昇)は低減されるといえる。
【0022】
続いて、前記横断面積分布の車体について、微気圧波の低減作用が生じる根拠を、計算に基づいて説明する。
【0023】
計算条件について詳しく説明すると、非定常、軸対称、圧縮性および非粘性を仮定した数値流体解析(CFD解析)を用いた。ここで、最適断面積分布形状を求めるための計算条件は、列車速度:285km/h,列車/トンネル断面積比:0.173とした。また、先頭部分(先頭長さ9.2m)における断面積分布のみ変化させ、一般部分の断面積分布は一定とした。
(1)基礎方程式:2次元軸対称圧縮性オイラー方程式
(2)空間離散化:非構造格子法によるセルセンター型有限体積法
(3)収束計算;基本変数のMUSCL+SHUS(Simple High resolution Upwind Scheme)による高精度風上法
(4)時間積分:MFGS(Matrix Free Gauss Seidel)陰解法
(5)解析手順
▲1▼非定常計算の初期条件を得るために、障害物のないいわゆる明かり区間において定常計算による収束解を求める。
▲2▼▲1▼で求めた結果を初期条件に、トンネル突入による非定常計算を行う。トンネルと鉄道車両(列車という)の間に相対的な運動が発生するため、計算領域を、図11に示すように、トンネルを含む領域P11、列車を含む領域P12との2つに分類し、それらを相対的に移動させて計算を進めた。
▲3▼圧力変化の観測点×はトンネル入り口から80mの地点のトンネル内壁上とした。
【0024】
図12に、前記最適化手法による微気圧波の低減効果を示す。ここで、従来の車両(前側及び後側の横断面積増加領域の間隔が9.2m程度で、走行速度が285km/hの性能を有するもの、図10の破線参照)を基準の車体形状として、その圧力勾配(dp/dt)の最大値を1とし、指数化して、評価値として表示した。なお、形状の連続性を考慮して、ベジェ曲線で平滑化した。
【0025】
この結果から、CFDと最適化設計手法(遺伝的アルゴリズム)を組み合わせて、数値的に微気圧波が低減する最適先頭形状(最適断面積分布)を求める設計技術を適用して得られた前述したところの先頭車両の車体形状によれば、世代が進むにつれて評価値が下がり、微気圧波の低減の程度が大きくなっているのがわかる。そして、10世代以降の形状であれば、評価値がほぼ0.85となり、微気圧波が、初期形状に比べて約15%程度低減していることがわかる。
【0026】
よって、先頭部分と、前記一般部分の直前の部分に、先頭側から後端側に向かって横断面積が大きくなる方向に大きく変化する前側及び後側の断面積増加領域を設け、前記前側の断面積増加領域と後側の断面積増加領域とは、断面積増加率が2.0m/m程度であり、前記両領域の間の部分は、前記前側及び後側の断面積増加領域よりも断面積増加率が0.3m/m程度であり、かつ前記一般部分の横断面積に対する面積比が0.6程度である中間断面積増加領域としたことにより、先頭部がトンネルに突入する際に生じる圧縮波(圧力上昇)は低減されるといえる。
【0027】
そして、具体的には図13〜図16に示すように、そのような鉄道先頭車両の先頭部分における各種機器の配置がなされる。
【0028】
車体1の前側の断面積増加領域Z11’の後側部分に連続する中間断面積増加領域Z2の後側部分付近に運転室風防21’が配設され、この運転室風防21’が、運転室の上側に位置し、運転席31の上側を覆うようになっている。運転席31は、車両中心より若干左側寄りに配設され、ほぼ中央前方に運転情報制御装置32を配置している。運転室の左側部には、高さの低い運転台配電器33が設けられている。なお、運転席31の側部には、運転指令操作盤35が設けられている。
【0029】
前記中間断面積増加領域Z2の後側部分及び前記一般部分Z3の前側部分に、車両左右方向に延びる前側及び後側の横通路22’,23’がそれぞれ形成されている。前記両横通路22’,23’が、車両左右方向に一側において車両前後方向に延びる縦通路24’でもって接続されている。前記前側及び後側の横通路22’,23’の左右両側に乗降用扉25’,26が開閉可能に配設されている。
【0030】
前記縦通路24’の一側部分であって後側の横通路23’の前側部分に、縦通路24’、自動列車制御装置(ATC)47が配設されている。また、後側の横通路23’の後側には、それらの部分の高さに応じて、各種機器が配置されている。すなわち、右側にはデータ伝送装置44が設けられ、左側には中央側から端子架45、データ伝送装置46及び信号制御架43が順に配設されている。
【0031】
また、前側の横通路22’の右前側には総括配電盤42が配設され、それのさらに前側にモニタ中央装置41が配設されている。一方、前側の横通路22’の左前側には送受信架49が配設されている。なお、運転室の前方には、気圧スイッチ34と共に、補助ブレーキパタン発生器51および車内圧開放弁52が設けられている。
【0032】
よって、このようなレイアウトにより、微気圧波を低減することができる形状において、横断面積の変化にもかかわらず、運転室風防21’、モニタ中央装置41、自動列車制御装置47及び総括配電盤42などの各種機器のレイアウトが無理なく実現され、運転士の乗降もスムーズに行える。すなわち、運転室の後側に、左右両側に乗降用扉25’が設けられた前側の横通路22’を設け、それのさらに後側に各種機器を配置するようにしているので、運転士が乗降する際に、十分な通過スペースでもって乗降することができる。
【0033】
【発明が解決しようとする課題】
しかしながら、そのような車体形状としても、断面積が必要な運転席近傍(先頭から6m付近)の断面積が小さく、運転室の容積を十分に確保できず、機器の自由な配置のために十分なスペースを確保することはが困難である。
【0034】
ところで、微気圧波の数値シミュレーション解析により、微気圧波の大きさの指針となる圧力勾配指数(圧力勾配dp/dtと基準となる圧力勾配dp/dtとの比)は、ほぼ断面積分布の増減率に比例するものと考えられる。即ち、GAによる形状では、先頭部分の立ち上がり(後述の図6の▲1▼参照)、一般部分への立ち上がり(図6の▲2▼参照)に対応して、2つの山(ピーク値)が発生する。また、この圧力勾配指数のピーク値が最大値を決めると考えられ、断面積増加領域を2つ設けたGAによる形状で、そのような断面積増加領域が1つである従来の形状よりもピーク値自体も低下している。
【0035】
そこで、発明者は、前述した断面積増加領域を2つよりもさらに数を増せば、圧力勾配指数のピーク値の数も増え、そのピーク値自体もさらに低下するものと予測されることから、前側および後側の断面積増加領域の間に、もう一つの断面積増加領域を運転室に対応する部位に設ければ、微気圧波に影響を与える圧力勾配指数のピーク値を下げることができる共に運転室の容積も大きくすることができるとの着想に基づき、微気圧波を低減できるだけでなく、運転室の容積を確保して機器配置上も好ましい本発明を開発するに至ったものである。
【0036】
本発明は、微気圧波の低減効果を維持して、運転室の容積を余裕を持って確保することができる鉄道先頭車両の車体構造及びこれを用いた鉄道先頭車両を提供するものである。
【0037】
【課題を解決するための手段】
請求項1の発明は、先頭部分より、横断面積が最大でほぼ一様となる一般部分に至るまでに、横断面積が車体前後方向に沿って変化する鉄道先頭車両の車体構造であって、前記先頭部分から前記一般部分に至るまでの間に、先頭側から後端側に向かって横断面積が大きくなる方向に大きく変化する前側及び後側の断面積増加領域を備え、前記前側および後側の断面積増加領域の断面積増加率がそれぞれほぼ6.0m/mおよびほぼ2.0m/mであり、それらの領域の間であって運転室に対応する部分に、前半部分の断面積増加率が後半部分のそれより大きい中間断面積増加領域を設け、前記前側、中間および後側の断面積増加領域がなめらかに連続するように接続されていることを特徴とする。
【0038】
このようにすれば、先端側から後端側に向かって横断面積が大きくなる方向に変化する前側及び後側の断面積増加領域を、車体前後方向に沿って間隔を存して設け、それらの間に、前前半部分の断面積増加率が後半部分より大きい中間の断面積増加領域を設けることで、微気圧波の低減効果を維持して、運転席近傍(運転室)の断面積、すなわち運転室の容積が余裕を持って確保される。よって、運転室での機器配置の自由度が高められ、無理のない機器配置が実現される。
【0039】
この場合、請求項2に記載のように、前記中間断面積増加領域は、前半部分の断面積増加率がほぼ1.0m/mであり、後半部分の断面積増加率がほぼ0.5m/mであることが望ましい。
【0040】
また、請求項3に記載のように、前記前側、中間および後側の断面積増加領域は、前記一般部分の横断面積に対する面積比がそれぞれ0〜0.28、0.47〜0.75、0.83〜1.0の範囲で変化するように構成することで、請求項1や請求項2に記載の車体形状が無理なく実現される。
【0041】
特に、前記前側、中間および後側の断面積増加領域の断面積増加率がそれぞれほぼ6.0m/m、ほぼ1.0m/m(前半部分)、ほぼ0.5m/m(後半部分)、ほぼ2.0m/mであり、前記前側、中間および後側の断面積増加領域は、前記一般部分の横断面積に対する面積比がそれぞれ0〜0.28、0.47〜0.75、0.83〜1.0の範囲であるようにしているので、従来の車両に比べて、微気圧波の目安となる圧力勾配指数が30%程度低減される。
【0042】
このような微気圧波を低減する請求項1に記載の横断面積の分布を満足させ、運行に必要な運転席スペースを確保するために、請求項4に記載のように、前記前側断面積増加領域から前記中間断面積増加領域にかけて、車体幅が徐々に広くなって前記一般部分の車体幅とほぼ等しい幅となり、また、前記前側断面積増加領域から前記中間断面積増加領域まではほぼ同じ高さで、前記中間断面積増加領域から前記後側断面積増加領域にかけて徐々に高くなる形状とされる構成とすることができる。
【0043】
このようにすれば、微気圧波を低減することができる形状において、車体幅方向中央部にほぼ運転室の幅に相当する幅を有する突部を設けることで、請求項4に記載される断面積増加率の関係を達成できる形状を無理なく形成することができる。
【0044】
請求項5に記載のように、請求項1〜4のいずれかに記載の鉄道先頭車両用車体を用いた鉄道先頭車両であって、前記中間断面積増加領域の後側部分に運転室を配設し、前記後側断面積増加領域に、車両左右方向に延びる前側及び後側の横通路を形成し、前記両横通路を、車両左右方向に一側において車両前後方向に延び前記運転室に連通する縦通路でもって接続し、前記前側及び後側の横通路の左右両側に乗降用扉を配設し、前記縦通路の左右両側部分及び横通路の前後側部分に、各種機器を配置した構成とすることができる。ここで、「前記縦通路の左右両側部分及び横通路の前後側部分に、各種機器を配置した」とは、縦通路の左右両側部分及び横通路の前後側部分のすべての部分に各種機器を配置するという意味ではなく、それらの部分のうち各種機器が配置されていない部分がある場合も含まれる。
【0045】
このようにすれば、微気圧波を低減することができる形状において、横断面積の変化にもかかわらず、運転室風防、モニタ中央装置、自動列車制御装置及び総括配電盤などの各種機器のレイアウトが無理なく実現され、また、縦通路の左右両側部分及び横通路の前後側部分に、それらの部分の高さに応じて、各種機器を配置するようにしているので、運転士が乗降する際に、各種機器が配置されている部分を通過することなく、乗降することができ、運転士の乗降もスムーズに行える。
【0046】
【発明の実施の形態】
以下、この発明の実施の形態を図面に沿って説明する。
【0047】
図1は本発明に係る実施の形態の一例である鉄道先頭車両の基本形状を示す側面図、図2は同平面図、図3および図4は図1のA−A線およびB−B線における断面図である。
【0048】
図1及び図2に示すように、車体1の前側の断面積増加領域Z11に続く、断面積変化率の緩やかな前記中間断面積増加領域Z12に運転室風防21が配設され、この運転室風防21が、運転室の上側に位置し、運転席31の上側を覆うようになっている。運転席31は、車両中心より若干左側寄りに配設され、右側前方に運転情報制御装置32を配置している。運転室の左側部には、高さの低い運転台配電器33及び気圧スイッチ34が設けられている。なお、運転席31の側部には、運転指令操作盤35が設けられている。
【0049】
前記中間断面積増加領域Z12の後側部分及び前記一般部分Z2の前側部分に、車両左右方向に延びる前側及び後側の横通路22,23がそれぞれ形成されている。前記両横通路22,23が、車両左右方向に一側において車両前後方向に延びる縦通路24でもって接続されている。前記前側及び後側の横通路22,23の左右両側に乗降用扉25,26が開閉可能に配設されている。
【0050】
前記縦通路24の左右両側部分及び後側の横通路23の前側部分に、それらの部分の高さに応じて、各種機器が配置されている。すなわち、縦通路24の右側にはモニタ中央装置41及び総括配電盤42が、左側には信号制御架43、データ伝送装置44,端子架45及びデータ伝送装置46がそれぞれ配設されている。また、後側の横通路23の前側には、自動列車制御装置(ATC)47が配設され、その前方に構内防護架48及び送受信架49が配設されている。なお、51は補助ブレーキパタン発生器、52は車内圧開放弁である。
【0051】
よって、このようなレイアウトにより、微気圧波を低減することができる形状において、横断面積の変化にもかかわらず、運転室風防21、モニタ中央装置41、自動列車制御装置47及び総括配電盤42などの各種機器のレイアウトが無理なく実現され、運転士の乗降もスムーズに行える。すなわち、運転室の後側に、左右両側に乗降用扉25が設けられた前側の横通路22を設け、それのさらに後側に各種機器を配置するようにしているので、運転士が乗降する際に、各種機器が配置されている部分を通過することなく、乗降することができる。
【0052】
本例の車体1は、平面視では従来の新幹線用先頭車両の車体と同じようなほぼ弾丸形の流線形状からなっており、側面視においては車体1の上側部分が変化し、先頭側から後端側に向かって高さが変化するように横断面積が大きくなる方向に大きく変化する3つの断面積増加領域すなわち前側、中間及び後側の断面積増加領域Z11,Z12,Z13を設けて、横断面積を前後方向において3段階でもって大きく変化させ、横断面積が最大でほぼ一様となる一般部分Z2に至っている。
【0053】
このように、車体1の横断面積が車体前後方向に沿って変化しているが、前記前側、中間および後側の断面積増加領域Z11,Z12,Z13の断面積増加率がそれぞれほぼ6.0m/m、ほぼ1.0m/m(前半部分)、ほぼ0.5m/m(後半部分)、ほぼ2.0m/mであり、前記前側、中間および後側の断面積増加領域Z11,Z12,Z13は、前記一般部分の横断面積に対する面積比がそれぞれ0〜0.28、0.47〜0.75、0.83〜1.0の範囲とされている。
【0054】
このような断面積分布を満たすために、前記車体1は、前記前側の断面積増加領域Z11から前記中間断面積増加領域Z12の中間部分付近まで、車体幅方向中央部にほぼ運転室の幅に相当する幅を有し徐々に高さが高くなることで横断面積が増加する突部1aが形成され、前記突部1aが、前記中間断面積増加領域Z2の中間部分付近から、後側の断面積増加領域Z12において上方向及び左右方向に膨らむことで横断面積がさらに増加し、前記一般部分Z3の高さ及び幅に等しくなるように形成されている。
【0055】
前述したように、前記車体形状(車体1)は、従来まで用いられていた形状設計に関する試行錯誤的な手法ではなく、CFDと最適化設計手法(遺伝的アルゴリズム)を組み合わせて、数値的に微気圧波が低減する最適先頭形状(最適断面積分布)を求める設計技術を適用して求め、それに修正を加えたものである。
【0056】
前記CFDおよび最適化手法を用いて得られた車体形状に修正を加えた車体形状の最適断面積分布を、図1に二点鎖線で示す従来の車体形状についての断面積分布である初期断面積分布(図5破線参照)と一緒に図5に示し、これを具体化したものが前記図1〜図4に示す車体形状である。
【0057】
図5において、先頭長さが11.5mである先頭部分において横断面積が車体前後方向に沿って変化し、横断面積が最大でほぼ10.5m程度で一様になる一般部分に至っている。
【0058】
前記先頭部分から前記一般部分に至るまでの間に、図1に示すように先頭側から後端側に向かって横断面積が大きくなる方向に大きく変化する前側及び後側の断面積増加領域Z11,Z13を備えるが、前記前側および後側の断面積増加領域Z11,Z13の断面積増加率がそれぞれほぼ6.0m/mおよびほぼ2.0m/mであり、直線L21,L23が対応している。そして、それらの領域Z11,Z13の間であって運転室に対応する部分に、前側および後側の断面積増加領域Z11,Z13よりも断面積増加率が小さく前記前半部分の断面積増加率が後半部分のそれより大きい中間断面積増加領域Z12を設けているが、その中間断面積増加領域Z12の前半部分の断面積増加率がほぼ1.0m/mであり、後半部分の断面積増加率がほぼ0.5m/mであり、それぞれ直線L22F,L22Rに対応している。ここで、断面積増加率は、各増加領域での変化を直線的変化であるとみなして求めたものである。
【0059】
そして、前記前側、中間および後側の断面積増加領域Z11,Z12,Z13がなめらかに連続するように接続されている。そのため、前側の断面積増加領域Z11と中間断面積増加領域Z12との間には、緩やかに断面積が増加する接続用の断面積増加領域が形成されている。この接続用の断面積増加領域は、断面積増加率が0.25m/mであり、直線L21’が対応している。
【0060】
また、前述したように、前記前側、中間および後側の断面積増加領域Z11,Z12,Z13は、前記一般部分Z2の横断面積に対する面積比がそれぞれ0〜0.28、0.47〜0.75、0.83〜1.0の範囲で変化するように構成されるのは、図5に基づく。
【0061】
また、前述したように、3つの断面積増加領域Z11,Z12,Z13を有する車体形状(本発明例)で、微気圧波による影響をシミュレーション解析をしてみると、図6に示すように、GAによる車体形状の場合は微気圧波の影響の目安となる圧力勾配指数のピーク値が2つであるのに対し、本発明例の車体形状では圧力勾配指数のピーク値が3つになり、微気圧それ自体も低減されることが確認できた。すなわち、そのピーク値の最大値を比較すると、従来の車体形状に比べて、GAによる車体形状では22%程度低減されるだけであるが、本発明例の車体形状では28%程度低減されていることが確認される。
【0062】
さらに、これを実験的に確かめるために、トンネル打ち込み試験を実施した。試験装置は、図7に示すように構成される。すなわち、前述したところの先頭車体形状に対応する横断面積分布を持つ円錐形状の列車模型61(縮尺モデル)を発射装置62を用いて、トンネルを模擬した円筒状パイプ63に、列車速度で打ち込み、評価点(図示せず)での圧力値を測定し、圧力勾配(dp/dt)を計測するものである。なお、64は制動装置である。
【0063】
この試験結果を示す図8(a)(b)(c)からも明らかなように、従来の車体形状(図8(a)参照)やGAによる車体形状(図8(b)参照)に比べて、本発明例による車体形状(図8(c)参照)の圧力勾配指数の低減性能が良いことが確認される。また、その試験結果は、具体的には、GAによる車体形状や本発明例による形状は、従来の車体形状に比べて、14%、28%程度低減され、前記シミュレーション解析の結果とも一致している。
【0064】
前述した実施の形態における各種機器の配置は、一例を示したものにすぎず、前記縦通路の両側及び両横通路の間に形成される空間部を、その部分(通路)の高さに応じて、各種機器を自由に配置することができるのはいうまでもない。
【0065】
【発明の効果】
この発明は、以上に説明したように実施され、以下に述べるような効果を奏する。
【0066】
請求項1の発明は、前側及び後側の断面積増加領域の間に、前半部分の断面積増加率が後半部分より大きい中間の断面積増加領域を設けているので、微気圧波の低減効果を維持して、運転席近傍(運転室)の断面積、すなわち運転室の容積を余裕を持って確保することができる。よって、運転室での機器配置の自由度を高め、無理のない機器配置を実現できる。
【0067】
この場合、請求項2に記載のように、前記中間断面積増加領域は、前半部分の断面積増加率がほぼ1.0m/mであり、後半部分の断面積増加率がほぼ0.5m/mとすれば、微気圧波を低減することができる。
【0068】
また、請求項3に記載のように、前記前側、中間および後側の断面積増加領域の前記前側、中間および後側の断面積増加領域は、前記一般部分の横断面積に対する面積比がそれぞれ0〜0.28、0.47〜0.75、0.83〜1.0の範囲で変化するように構成することで、請求項1や請求項2に記載の車体形状を容易に実現することができる。
【0069】
また、請求項4に記載のように、前記中間断面積増加領域から後側の断面積増加領域にかけて、幅が徐々にが狭くなってほぼ運転室の幅に相当する幅となり、それから幅が徐々に大きくなって一般部分の車体幅になる一方、高さが徐々に高くなる突部を形成するようにすれば、請求項3に記載される断面積増加率の関係を達成できる形状を無理なく形成することが可能となる。
【0070】
請求項5に記載のように、運転士、車掌の通行に必要とされる通路である縦通路の左右両側部分や、横通路の前後側部分を、その部分の空間高さに応じて、有効に利用することで、各種機器をその大きさ、高さに応じて配置するようにしているので、微気圧波の低減に有効な車体形状としても、前記各種機器を無理なく配置することができる。特に、縦通路の左右両側部分及び横通路の前後側部分に、それらの部分の高さに応じて、各種機器を配置するようにしているので、運転士が乗降する際に、各種機器が配置されている部分を通過することなく、乗降することができ、運転士の乗降もスムーズに行うことが可能となる。
【図面の簡単な説明】
【図1】本発明に係る実施の形態の一例である鉄道先頭車両の基本形状概略側面図である。
【図2】同概略平面図である。
【図3】図1におけるA−A線断面図である。
【図4】図1におけるB−B線断面図である。
【図5】先頭長さと(横)断面積との関係を示す図である。
【図6】微気圧波の指針となる圧力勾配指数を示す説明図である。
【図7】試験装置の説明図である。
【図8】図7の試験装置による試験結果を示し、図7(a)は従来車体形状についての試験結果を、図7(b)はGAによる車体形状についての試験結果を、図7(c)は本発明に係る車体形状についての試験結果をそれぞれ示す図である。
【図9】遺伝的アルゴリズムの原理の説明図である。
【図10】先頭長さと(横)断面積との関係を示す図である。
【図11】先頭車両モデルとトンネルとの関係を示す説明図である。
【図12】遺伝的アルゴリズムによる世代と評価値との関係を示す図である。
【図13】GA形状による鉄道先頭車両の概略側面図である。
【図14】同概略平面図である。
【図15】図13におけるI−I線断面図である。
【図16】図13におけるJ−J線断面図である。
【符号の説明】
Z11  前側の断面積増加領域
Z12  中間断面積増加領域
Z13  後側の断面積増加領域
Z3  一般部分
1,  車体
1a  突部
21  運転室風防
22,23,  横通路
24  縦通路
25,26  乗降用扉
31  運転席
41  モニタ中央装置
42  総括配電盤
47  自動列車制御装置
[0001]
TECHNICAL FIELD OF THE INVENTION
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vehicle body for a train leading vehicle such as a Shinkansen running at a high speed and a train leading vehicle using the same.
[0002]
[Prior art]
Generally, when a high-speed railway vehicle such as a bullet train enters a tunnel, the air is compressed by the leading vehicle so as to push air existing in a limited space in the tunnel. The compressed air becomes a compression wave and propagates in the tunnel at a speed substantially equal to the speed of sound. When this compression wave arrives at the exit of the tunnel, it is reflected at the exit, but part of the compression wave is emitted as a pulse-like pressure wave from the tunnel exit to the outside. This pulse-shaped pressure wave is called a micro-pressure wave (tunnel micro-pressure wave). When this micro-pressure wave (pulse-like pressure wave) is radiated to the outside, explosion sound and micro-vibration are generated near the exit of the tunnel, which may affect the surrounding environment.
[0003]
Therefore, in a railway car that requires high-speed performance, the shape of the leading part of the leading car not only reduces the running resistance during so-called high-speed running, but also generates the micro-pressure wave generated when entering the tunnel as described above. It is required to have a shape that can reduce the pressure.
[0004]
In recent years, several body shapes of a leading vehicle that reduce such a micro-pressure wave have been proposed.
(1) For example, Japanese Patent Application Laid-Open No. 7-89439 discloses that a driver's cab window portion (see FIG. 1) which sharpens a leading region from a joining portion joined to a body having a constant cross-sectional area to the forefront and protrudes toward the upper surface side of the leading region. The front and rear length of the canopy is shorter than the front and rear length of the head area, and the cross-sectional area of the upper shoulder connected to the protruding base of the driver's cab window is defined as the cross-sectional area of the adjacent shoulder adjacent to the upper shoulder. In a structure in which the cross section including the skirt portion or the virtual skirt portion in the region excluding the abruptly changing area near the forefront in the leading region is reduced in direct proportion from the junction to the forefront. What constitutes the vehicle body at the head is described.
(2) For example, in Japanese Patent Application Laid-Open No. 8-198105, in a railway vehicle having a leading portion whose cross-sectional area in the vehicle longitudinal direction increases from the leading end of the vehicle body, the leading portion is constituted by a leading end region and an intermediate region. The region is located on the distal end side from a position corresponding to half the cross-sectional area of the maximum cross-sectional area of the vehicle body, the intermediate region is located on the other end side in the vehicle body longitudinal direction from the distal end region, and the intermediate region crosses the vehicle body at a constant cross-sectional area change rate. The area changes, and the cross-sectional area change rate of the tip region is made larger than the cross-sectional area change rate of the intermediate region. In this technique, a driver's cab is arranged in the intermediate area, and the inclination angle of the driver's cab part front window is set to an angle that does not hinder forward gaze, and is recessed below both sides of the driver's cab front window. What forms a part is described.
[0005]
However, both of the techniques described in the above publication have significant problems in the following points. That is,
First, in each of the technologies, the cross-sectional area of the leading portion changes gradually from the front end of the leading vehicle body to the rear joint (joint with the general cross-section or the maximum cross-sectional area). In order to increase, a curved surface shape is formed which is slightly inclined upward from the front end to the rear, and the front end portion is extended like a nose so that the inclined curved surface portion is as long as possible in the vehicle longitudinal direction. For this reason, when manufacturing the actual body shape, a complicated shape such as an uneven portion is formed by punching out a sheet metal to be attached to the frame by welding or the like with a hammer, etc. It takes a lot of time, productivity is very low, manufacturing costs are extremely high, and the length of the front part of the vehicle body in the vehicle front-rear direction is long, so the cabin is limited and the number of passengers is reduced. .
[0006]
Second, in any of the inventions, the change in the cross-sectional area of the leading portion is linearly (directly proportional) from the leading end of the leading vehicle body to the rear joint. For this reason, the pressure change at a certain position in the tunnel when the railway vehicle enters the tunnel is gradually increased even if the pressure gradient is gentle. On the other hand, the speed of the compression wave propagating in the tunnel (close to the speed of sound) increases as the pressure rises. Therefore, when the distance of the tunnel is increased to some extent, the compression wave is devised by devising the shape of the head of the car body. Despite the dispersion of the pressure, the dispersed pressures are gathered at the exit of the tunnel and radiated to the outside as a large pressure pulse wave (micro-pressure wave) at a time. There is a possibility that an explosion sound may be generated or vibration may occur.
[0007]
In view of this, the applicant has previously proposed a body shape of a railway leading vehicle for dispersing and reducing micro-pressure waves generated by the tunnel and the vehicle when the railway vehicle enters the tunnel (Japanese Patent Application Laid-Open No. HEI 9-163556). 11-321640). Specifically, after the front end portion of the vehicle body is inclined slightly rearward and rises upward to form a first-stage cross-sectional area increasing area, the cross-sectional area is maintained substantially constant and extends rearward substantially horizontally. After being installed, it is again inclined slightly rearward and rises upward to form a second-stage cross-sectional area increasing area, and an area ratio of the first-stage cross-sectional area / the second-stage cross-sectional area Is 0.6 or more, and the distance between the first-stage and second-stage cross-sectional area increasing regions is 15 m or more.
[0008]
However, even if such a configuration is effective in reducing micro-pressure waves, the distance between the first-stage and second-stage cross-sectional area increasing regions must be 15 m or more. Becomes longer.
[0009]
Therefore, there is a demand that the effect of reducing the micro-pressure wave should be obtained without making the length of the vehicle too long, that is, without making the interval between the first-stage and the second-stage cross-sectional area increasing regions too large. is there.
[0010]
On the other hand, one of the vehicles currently traveling at a high speed has a performance in which the distance between the first-stage and second-stage cross-sectional area increasing areas is about 9.2 m and the traveling speed is 255 km / h. (Hereinafter referred to as a conventional vehicle body shape), and there is a demand that the traveling speed be further increased by 30 km / h and the traveling speed be increased to 285 km / h.
[0011]
When the inventors consider traveling at high speed at a traveling speed of 285 km / h, the micro-atmospheric pressure is not increased so much as to increase the space between the first-stage and second-stage cross-sectional area increasing regions. After research and development to obtain the effect of wave reduction, the inventors found that when considering such a vehicle body shape, it was possible to find the optimal solution relatively smoothly even if there were too many combinations and the solution could not be understood at all. It has been found that a genetic algorithm (GA: Genetic Algorithm) that can be used is most suitable as an optimization design technique.
[0012]
Here, the genetic algorithm has been proposed and developed by J. Holland of the University of Michigan in 1975, and the process itself of natural selection (evolution) in the natural world indicated by Mendel's law and Darwin's theory of evolution In other words, it is a probabilistic algorithm that models the "evolutionary process" in which an organism evolves while recombining genes and applies it to solving optimization problems. In other words, this is a calculation method of searching for an optimal solution by reassembling the solution candidates one after another using a group consisting of a plurality of individuals (solution candidates) assumed as genes. In the GA, a solution candidate is replaced with a bit string. The fitness function gives the interpretation of the bit sequence. The function gives, for each bit sequence, the strength (fitness) of the problem in a given problem space. Next, a "crossover" process of partially replacing the bit string and a "mutation" process of inverting an appropriate bit selected stochastically are performed. The same operation is repeated by selecting only solution candidates satisfying a predetermined condition (higher fitness) from among them. A solution candidate that satisfies the conditions can be automatically created so that only living organisms adapted to the environment can survive.
[0013]
In order to obtain the optimal body shape of the leading vehicle body of an ideal railway vehicle, the present inventors conducted a computational fluid analysis (CFD analysis) and an optimization design based on a conventional trial and error method for shape design. Research on the optimal top shape (optimum cross-sectional area distribution) that numerically reduces micro-pressure waves by combining techniques (genetic algorithm). A high-speed vehicle enters a tunnel without making the vehicle length too long. We have developed a body for leading railway vehicles that can reduce the micro-pressure waves generated during the operation. Specifically, a cross-sectional area varies along the vehicle front-rear direction until the cross-sectional area reaches a general portion where the cross-sectional area is almost uniform at the maximum from the head portion, and the head portion is In the portion immediately before the general portion, a front and rear cross-sectional area increasing region that greatly changes in a direction in which the cross-sectional area increases from the front side toward the rear end side is provided, and the front cross-sectional area increasing region and the rear side are provided. The cross-sectional area increase area is a cross-sectional area increase rate of 2.0 m 2 / M, and the portion between the two regions has a cross-sectional area increase rate of 0.3 m 2 / M, and the area ratio of the general portion to the cross-sectional area is about 0.6 (hereinafter referred to as the body shape by GA).
[0014]
This vehicle body (body shape) is not a trial and error method related to the conventional shape design, but is a combination of the CFD and the optimization design method (genetic algorithm) to obtain an optimal head shape (optimum shape) that numerically reduces micro-pressure waves. (Cross-sectional area distribution).
[0015]
Specifically, a group of solutions called "population" is created, and a group of solution candidates called "individuals" (one having a set of design variables) is composed of "selection", "crossover", and "mutation". The process converges to an optimal solution while repeating the process. The basic flowchart is as shown in FIG. 9. First, design variables are randomly generated in the design space (step S1), and the solids in the initial group are evaluated to determine whether the results are good or bad (step S2). . Then, those with good grades (parents) are preferentially selected (step S3), and a "child" is created from the two "parents" with good grades using weighting (step S4). Then, a disturbance is added in the design space (step S5). Then, the created "child" is evaluated to determine whether the results are good or bad (step S6). If the evaluation is optimal, the optimal solution is determined (step S7). If the evaluation is not optimal, the process returns to step S3.
[0016]
The initial cross-sectional area distribution (see FIG. 10), which is the cross-sectional area distribution of the conventional vehicle body shape shown by the two-dot chain line in FIG. FIG. 10 together with FIG.
[0017]
In FIG. 10, the cross-sectional area of the general part is approximately 11 m. 2 Approximately, the cross-sectional area of the gentle part at the head (approximately the middle point of the intermediate area increase area) is approximately 6.5 m 2 The ratio is about 0.59, which is about 0.6. From FIG. 10, the cross-sectional area increase rate between the front cross-sectional area increase area and the rear cross-sectional area increase area is 2 m. 2 / M (see straight lines L11 and L12), and the cross-sectional area increase rate of the intermediate cross-sectional area increase area is 0.3 m 2 / M (see straight line L2). Here, the cross-sectional area increase rate is obtained by regarding a change in each increase area as a linear change.
[0018]
Specifically, a computational fluid analysis (CFD analysis) assuming unsteady, axisymmetric, compressible, and inviscid was used. Here, the calculation conditions for finding the optimum cross-sectional area distribution shape were as follows: train speed: 285 km / h, train / tunnel cross-sectional area ratio: 0.173. Further, only the cross-sectional area distribution at the head (the head length is 9.2 m) was changed, and the cross-sectional area distribution of the general part was kept constant.
(1) Basic equation: Two-dimensional axisymmetric compressible Euler equation
(2) Spatial discretization: cell center type finite volume method by unstructured grid method
(3) Convergence calculation; high-precision upwind method using MUSCL + SHUS (Simple High resolution Upwind Scheme) of basic variables
(4) Time integration: MFGS (Mtric Free Gauss Seidel) implicit method
(5) Analysis procedure
{Circle around (1)} In order to obtain the initial condition of the unsteady calculation, a convergence solution by the steady calculation is obtained in a so-called light section where there is no obstacle.
Unsteady calculation based on the entry into the tunnel is performed using the results obtained in (2) and (1) as initial conditions. Since a relative movement occurs between the tunnel and the railcar (hereinafter referred to as a train), the calculation area is classified into two areas, an area P11 including the tunnel and an area P12 including the train, as shown in FIG. , They were moved relatively to proceed with the calculations.
(3) The observation point x of the pressure change was on the inner wall of the tunnel at a point 80 m from the entrance of the tunnel.
[0019]
FIG. 12 shows the effect of reducing the micro-pressure wave by the optimization method. Here, a conventional vehicle (having a performance in which the interval between the front and rear cross-sectional area increasing areas is about 9.2 m and the traveling speed is 285 km / h, see the broken line in FIG. 10) is taken as a reference vehicle body shape, The maximum value of the pressure gradient (dp / dt) was set to 1, indexed, and displayed as an evaluation value. In addition, in consideration of the continuity of the shape, smoothing was performed using a Bezier curve.
[0020]
From these results, the above-mentioned design technique obtained by applying a design technique for obtaining an optimal head shape (optimum cross-sectional area distribution) that numerically reduces micro-pressure waves by combining CFD and an optimization design technique (genetic algorithm) is described above. However, according to the body shape of the leading vehicle, it can be seen that the evaluation value decreases as the generation progresses, and the degree of reduction of the micro-pressure wave increases. In the case of the shape after the tenth generation, the evaluation value is approximately 0.85, which indicates that the micro-pressure wave is reduced by about 15% as compared with the initial shape.
[0021]
Therefore, the front portion and the portion immediately before the general portion are provided with front and rear cross-sectional area increasing areas that greatly change in a direction in which the cross-sectional area increases from the front side to the rear end side, and the front side section is provided. The area increase region and the rear cross-sectional increase region have a cross-sectional area increase rate of 2.0 m. 2 / M, and the portion between the two regions has a cross-sectional area increase rate of 0.3 m more than the front and rear cross-sectional area increase regions. 2 / M, and the area ratio of the general portion to the cross-sectional area is about 0.6, so that the area of the intermediate section is increased, so that the micro-pressure wave (pressure rise) generated when the head enters the tunnel Can be reduced.
[0022]
Next, the grounds for the effect of reducing the micro-pressure wave in the vehicle body having the cross-sectional area distribution will be described based on calculations.
[0023]
To explain the calculation conditions in detail, a computational fluid analysis (CFD analysis) assuming unsteady, axisymmetric, compressible, and inviscid was used. Here, the calculation conditions for finding the optimum cross-sectional area distribution shape were as follows: train speed: 285 km / h, train / tunnel cross-sectional area ratio: 0.173. Further, only the cross-sectional area distribution at the head (the head length is 9.2 m) was changed, and the cross-sectional area distribution of the general part was kept constant.
(1) Basic equation: Two-dimensional axisymmetric compressible Euler equation
(2) Spatial discretization: cell center type finite volume method by unstructured grid method
(3) Convergence calculation; high-precision upwind method using MUSCL + SHUS (Simple High resolution Upwind Scheme) of basic variables
(4) Time integration: MFGS (Matrix Free Gauss Seidel) implicit method
(5) Analysis procedure
{Circle around (1)} In order to obtain the initial condition of the unsteady calculation, a convergence solution by the steady calculation is obtained in a so-called light section having no obstacle.
Unsteady calculation based on the entry into the tunnel is performed using the results obtained in (2) and (1) as initial conditions. Since a relative movement occurs between the tunnel and the railway vehicle (called a train), the calculation regions are classified into two regions, a region P11 including a tunnel and a region P12 including a train, as shown in FIG. The calculations were advanced by moving them relatively.
(3) The observation point x of the pressure change was on the inner wall of the tunnel at a point 80 m from the entrance of the tunnel.
[0024]
FIG. 12 shows the effect of reducing the micro-pressure wave by the optimization method. Here, a conventional vehicle (having a performance in which the interval between the front and rear cross-sectional area increasing areas is about 9.2 m and the traveling speed is 285 km / h, see the broken line in FIG. 10) is taken as a reference vehicle body shape, The maximum value of the pressure gradient (dp / dt) was set to 1, indexed, and displayed as an evaluation value. In addition, in consideration of the continuity of the shape, smoothing was performed using a Bezier curve.
[0025]
From these results, the above-mentioned design technique obtained by applying a design technique for obtaining an optimal head shape (optimum cross-sectional area distribution) that numerically reduces micro-pressure waves by combining CFD and an optimization design technique (genetic algorithm) is described above. However, according to the body shape of the leading vehicle, it can be seen that the evaluation value decreases as the generation progresses, and the degree of reduction of the micro-pressure wave increases. In the case of the shape after the tenth generation, the evaluation value is approximately 0.85, which indicates that the micro-pressure wave is reduced by about 15% as compared with the initial shape.
[0026]
Therefore, the front portion and the portion immediately before the general portion are provided with front and rear cross-sectional area increasing areas that greatly change in a direction in which the cross-sectional area increases from the front side to the rear end side, and the front side section is provided. The area increase region and the rear cross-sectional increase region have a cross-sectional area increase rate of 2.0 m. 2 / M, and the portion between the two regions has a cross-sectional area increase rate of 0.3 m more than the front and rear cross-sectional area increase regions. 2 / M and the area ratio of the general part to the cross-sectional area is about 0.6, so that the compression wave (pressure rise) generated when the head part enters the tunnel is reduced. It can be said that it is reduced.
[0027]
Then, specifically, as shown in FIGS. 13 to 16, various devices are arranged at the leading portion of such a leading vehicle.
[0028]
A driver's cab windshield 21 'is provided near a rear portion of the intermediate cross-sectional area increase region Z2 which is continuous with a rear portion of the front cross-sectional area increase region Z11' of the vehicle body 1. The driver's cab windshield 21 ' , And covers the upper side of the driver's seat 31. The driver's seat 31 is disposed slightly to the left of the vehicle center, and the driving information control device 32 is disposed substantially in front of the center. On the left side of the cab, a cab distributor 33 with a low height is provided. An operation command operation panel 35 is provided on the side of the driver's seat 31.
[0029]
Front and rear lateral passages 22 'and 23' extending in the vehicle left-right direction are formed in a rear portion of the intermediate cross-sectional area increasing region Z2 and a front portion of the general portion Z3, respectively. The two lateral passages 22 'and 23' are connected by a vertical passage 24 'extending in the vehicle front-rear direction on one side in the vehicle left-right direction. Doors 25 ', 26 for getting on and off are provided on the left and right sides of the front and rear lateral passages 22', 23 'so as to be openable and closable.
[0030]
A vertical passage 24 'and an automatic train control device (ATC) 47 are disposed on one side of the vertical passage 24' and in front of the rear horizontal passage 23 '. Various devices are arranged on the rear side of the rear lateral passage 23 'in accordance with the height of those portions. That is, a data transmission device 44 is provided on the right side, and a terminal frame 45, a data transmission device 46, and a signal control frame 43 are sequentially provided on the left side from the center.
[0031]
A general switchboard 42 is provided on the right front side of the front side passage 22 ', and a monitor central device 41 is further provided on the front side thereof. On the other hand, a transmission / reception frame 49 is provided on the left front side of the front lateral passage 22 '. In addition, an auxiliary brake pattern generator 51 and an in-vehicle pressure release valve 52 are provided in front of the cab, together with the air pressure switch 34.
[0032]
Therefore, with such a layout, in a shape in which the micro-pressure wave can be reduced, the driver's cab windshield 21 ′, the monitor central device 41, the automatic train control device 47, the general switchboard 42, and the like despite the change in the cross-sectional area. The layout of various devices can be realized without difficulty, and the driver can get on and off smoothly. That is, a front side passage 22 'provided with entrance doors 25' on both the left and right sides is provided at the rear side of the operator's cab, and various devices are arranged further behind it. When getting on and off, it is possible to get on and off with sufficient passage space.
[0033]
[Problems to be solved by the invention]
However, even with such a vehicle body shape, the cross-sectional area in the vicinity of the driver's seat requiring a cross-sectional area (around 6 m from the top) is small, and the volume of the driver's cab cannot be sufficiently secured, and sufficient space for the equipment can be provided. It is difficult to secure a sufficient space.
[0034]
By the way, by a numerical simulation analysis of the micro-pressure wave, a pressure gradient index (a pressure gradient dp / dt and a reference pressure gradient dp as a guide of the size of the micro-pressure wave) is obtained. 0 / Dt 0 Is considered to be substantially proportional to the rate of change of the cross-sectional area distribution. That is, in the shape based on the GA, two peaks (peak values) correspond to the rising of the head portion (see (1) in FIG. 6 described later) and the rising of the general portion (see (2) in FIG. 6). appear. Further, it is considered that the peak value of the pressure gradient index determines the maximum value, and the shape of the GA provided with two cross-sectional area increasing regions has a peak more than the conventional shape having one such cross-sectional area increasing region. The value itself has also dropped.
[0035]
Therefore, the inventor predicts that if the number of the above-described cross-sectional area increasing regions is further increased than two, the number of peak values of the pressure gradient index increases, and the peak value itself is expected to further decrease. If another cross-sectional area increase area is provided between the front and rear cross-sectional area increase areas at a portion corresponding to the driver's cab, the peak value of the pressure gradient index affecting the micro-pressure wave can be reduced. Based on the idea that both the cab volume can be increased, the present invention not only can reduce the micro-pressure wave but also secures the cab volume and develops the present invention which is preferable in terms of equipment arrangement. .
[0036]
An object of the present invention is to provide a vehicle body structure of a railway leading vehicle capable of ensuring a sufficient capacity of a driver's cab while maintaining the effect of reducing micro-pressure waves, and a railway leading vehicle using the same.
[0037]
[Means for Solving the Problems]
The invention according to claim 1 is a vehicle body structure of a railway leading vehicle in which a cross-sectional area changes along a vehicle front-rear direction from a head portion to a general portion having a cross-sectional area that is substantially uniform at the maximum, Between the head portion and the general portion, the front and rear cross-sectional area increasing areas that greatly change in a direction in which the cross-sectional area increases from the head side toward the rear end side are provided. The cross-sectional area increase rate of the cross-sectional area increase area is approximately 6.0 m each. 2 / M and almost 2.0 m 2 / M, and a portion between the regions and corresponding to the cab is provided with an intermediate cross-sectional area increasing region in which the cross-sectional area increasing rate of the front half is larger than that of the rear half, and the front, middle and rear sides are provided. Are connected so that the cross-sectional area increasing regions of the two are smoothly continuous.
[0038]
With this configuration, the front and rear cross-sectional area increasing areas that change in the direction in which the cross-sectional area increases from the front end side to the rear end side are provided at intervals along the vehicle body front-rear direction, and these are provided. By providing an intermediate cross-sectional area increase area in which the cross-sectional area increase rate of the first half is larger than that of the second half, the effect of reducing the micro-pressure wave is maintained, and the cross-sectional area near the driver's seat (cab), that is, The cab volume is secured with a margin. Therefore, the degree of freedom in arranging the devices in the driver's cab is increased, and a reasonable device arrangement is realized.
[0039]
In this case, as described in claim 2, in the intermediate cross-sectional area increase area, the cross-sectional area increase rate of the first half is approximately 1.0 m. 2 / M, and the rate of increase in the sectional area of the latter half is approximately 0.5 m 2 / M is desirable.
[0040]
Further, as described in claim 3, the front, middle and rear cross-sectional area increasing areas have an area ratio of 0 to 0.28, 0.47 to 0.75, respectively, to the cross-sectional area of the general portion, By configuring so as to change in the range of 0.83 to 1.0, the vehicle body shape described in claims 1 and 2 can be realized without difficulty.
[0041]
In particular, the cross-sectional area increase rates of the front, middle and rear cross-sectional area increase areas are each approximately 6.0 m. 2 / M, almost 1.0m 2 / M (first half), almost 0.5m 2 / M (the latter half), almost 2.0m 2 / M, and the front, middle and rear cross-sectional area increasing areas have an area ratio of 0 to 0.28, 0.47 to 0.75, 0.83 to 1. Since it is set to be in the range of 0, the pressure gradient index, which is a standard of the micro-pressure wave, is reduced by about 30% as compared with the conventional vehicle.
[0042]
The front cross-sectional area is increased to satisfy the distribution of the cross-sectional area according to claim 1 for reducing such a micro-pressure wave and to secure a driver's seat space necessary for operation, as described in claim 4. From the area to the intermediate cross-sectional area increase area, the vehicle body width gradually increases and becomes substantially equal to the vehicle body width of the general portion, and the height from the front cross-sectional area increase area to the intermediate cross-sectional area increase area is substantially the same. Now, it is possible to adopt a configuration in which the height gradually increases from the intermediate cross-sectional area increase region to the rear cross-sectional area increase region.
[0043]
According to this configuration, in a shape capable of reducing the micro-pressure wave, a protrusion having a width substantially corresponding to the width of the driver's cab is provided at the center of the vehicle body in the width direction. A shape that can achieve the relationship of the area increase rate can be formed without difficulty.
[0044]
A railway leading vehicle using the vehicle body for a railway leading vehicle according to any one of claims 1 to 4, wherein a driver's cab is arranged at a rear portion of the intermediate cross-sectional area increasing region. In the rear cross-sectional area increase area, a front side and a rear side passage extending in the vehicle left-right direction are formed, and the two side passages extend in the vehicle front-rear direction on one side in the vehicle left-right direction to the driver's cab. Connected by communicating vertical passages, doors for getting on and off are arranged on both left and right sides of the front and rear horizontal passages, and various devices are arranged on both left and right portions of the vertical passages and front and rear sides of the horizontal passages. It can be configured. Here, "the various devices are arranged on both the left and right portions of the vertical passage and the front and rear portions of the horizontal passage" means that various devices are disposed on all of the left and right sides of the vertical passage and the front and rear portions of the horizontal passage. This does not mean that the devices are arranged, but also includes a case where various devices are not arranged among those portions.
[0045]
In this way, the layout of various devices such as the driver's cab windshield, the monitor central unit, the automatic train control unit, and the general switchboard is impossible despite the change in cross-sectional area in a shape that can reduce micro-pressure waves. In addition, since various devices are arranged according to the height of those parts on the left and right sides of the vertical passage and the front and rear parts of the horizontal passage, when the driver gets on and off, It is possible to get on and off without passing through the part where various devices are arranged, and the driver can get on and off smoothly.
[0046]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0047]
FIG. 1 is a side view showing a basic shape of a leading railway vehicle as an example of an embodiment according to the present invention, FIG. 2 is a plan view thereof, and FIGS. 3 and 4 are lines AA and BB of FIG. FIG.
[0048]
As shown in FIGS. 1 and 2, a driver's cab windshield 21 is provided in the intermediate cross-sectional area increase area Z12 having a gentle cross-sectional area change rate following the cross-sectional area increase area Z11 on the front side of the vehicle body 1. The windshield 21 is located above the driver's cab and covers the upper side of the driver's seat 31. The driver's seat 31 is disposed slightly to the left of the vehicle center, and a driving information control device 32 is disposed on the right front side. On the left side of the cab, a low-cab driver's cab distributor 33 and a pressure switch 34 are provided. An operation command operation panel 35 is provided on the side of the driver's seat 31.
[0049]
Front and rear lateral passages 22 and 23 extending in the vehicle left-right direction are formed in a rear portion of the intermediate cross-sectional area increasing region Z12 and a front portion of the general portion Z2, respectively. The two lateral passages 22 and 23 are connected by a vertical passage 24 extending in the vehicle front-rear direction on one side in the vehicle left-right direction. Doors 25, 26 for getting on and off are provided on the left and right sides of the front and rear lateral passages 22, 23 so as to be openable and closable.
[0050]
Various devices are arranged at both left and right portions of the vertical passage 24 and at a front portion of the rear horizontal passage 23 in accordance with the height of those portions. That is, a monitor central device 41 and a general switchboard 42 are provided on the right side of the vertical passage 24, and a signal control frame 43, a data transmission device 44, a terminal frame 45, and a data transmission device 46 are provided on the left side. In addition, an automatic train control device (ATC) 47 is disposed in front of the rear lateral passage 23, and a yard protection frame 48 and a transmission / reception frame 49 are disposed in front of the automatic train control device (ATC) 47. In addition, 51 is an auxiliary brake pattern generator, and 52 is a vehicle internal pressure release valve.
[0051]
Therefore, with such a layout, in a shape capable of reducing the micro-pressure wave, the cab windshield 21, the monitor central device 41, the automatic train control device 47, the general switchboard 42, etc. The layout of various devices can be easily realized, and the driver can get on and off smoothly. That is, the front side passage 22 provided with the doors 25 for getting on and off on the left and right sides is provided at the rear side of the driver's cab, and various devices are arranged behind the front side passage 22, so that the driver gets on and off. At this time, it is possible to get on and off without passing through a portion where various devices are arranged.
[0052]
The vehicle body 1 of the present example has a substantially bullet-shaped streamline shape similar to the vehicle body of the conventional Shinkansen leading vehicle in plan view, and the upper part of the vehicle body 1 changes in side view, Provided are three cross-sectional area increasing areas that largely change in the direction in which the cross-sectional area increases so that the height changes toward the rear end side, that is, front, middle, and rear cross-sectional area increasing areas Z11, Z12, and Z13. The cross-sectional area is greatly changed in three steps in the front-rear direction, and reaches a general portion Z2 in which the cross-sectional area is substantially uniform at the maximum.
[0053]
As described above, although the cross-sectional area of the vehicle body 1 changes along the vehicle front-rear direction, the cross-sectional area increase rates of the front, middle, and rear cross-sectional area increase areas Z11, Z12, and Z13 are each approximately 6.0 m. 2 / M, almost 1.0m 2 / M (first half), almost 0.5m 2 / M (the latter half), almost 2.0m 2 / M, and the front, middle, and rear cross-sectional area increase areas Z11, Z12, and Z13 have an area ratio of 0 to 0.28, 0.47 to 0.75, and 0 with respect to the cross-sectional area of the general portion, respectively. 0.83 to 1.0.
[0054]
In order to satisfy such a cross-sectional area distribution, the vehicle body 1 has a width approximately equal to the width of the driver's cab at the center in the vehicle width direction from the front-side cross-sectional area increasing area Z11 to the vicinity of the intermediate portion of the intermediate cross-sectional area increasing area Z12. A protrusion 1a having a corresponding width and gradually increasing in height to increase the cross-sectional area is formed, and the protrusion 1a is cut from the vicinity of the middle portion of the middle cross-sectional area increase region Z2 on the rear side. The swelling in the area increasing region Z12 in the upward and leftward directions further increases the cross-sectional area, and is formed so as to be equal to the height and width of the general portion Z3.
[0055]
As described above, the body shape (body 1) is not a trial and error method related to the shape design that has been used until now, but is a numerically fine-grained combination of the CFD and the optimization design method (a genetic algorithm). This is obtained by applying a design technique for obtaining an optimum head shape (optimum cross-sectional area distribution) at which a pressure wave is reduced, and is modified.
[0056]
The initial cross-sectional area distribution of the conventional vehicle body shape shown by a two-dot chain line in FIG. 1 is an optimum cross-sectional area distribution of the vehicle body shape obtained by modifying the vehicle body shape obtained by using the CFD and the optimization method. This is shown in FIG. 5 together with the distribution (see the broken line in FIG. 5), and a specific example thereof is the vehicle body shape shown in FIGS.
[0057]
In FIG. 5, the cross-sectional area changes along the front-rear direction of the vehicle body at the head portion where the head length is 11.5 m, and the cross-sectional area is approximately 10.5 m at the maximum. 2 It has reached a general part that is uniform in degree.
[0058]
Between the head part and the general part, as shown in FIG. 1, the front and rear cross-sectional area increasing areas Z11, which greatly change in the direction in which the cross-sectional area increases from the head side to the rear end side, Z13, and the cross-sectional area increase rates of the front-side and rear-side cross-sectional area increase areas Z11 and Z13 are each approximately 6.0 m. 2 / M and almost 2.0 m 2 / M, and the straight lines L21 and L23 correspond to each other. The cross-sectional area increase rate of the front half portion is smaller than that of the front and rear cross-sectional area increase areas Z11 and Z13 in the portion corresponding to the cab between the regions Z11 and Z13. An intermediate cross-sectional area increasing region Z12 larger than that of the rear half portion is provided, and the cross-sectional area increasing rate of the front half portion of the intermediate cross-sectional increasing region Z12 is approximately 1.0 m. 2 / M, and the rate of increase in the sectional area of the latter half is approximately 0.5 m 2 / M, and correspond to the straight lines L22F and L22R, respectively. Here, the cross-sectional area increase rate is obtained by regarding a change in each increase area as a linear change.
[0059]
The front, middle, and rear cross-sectional areas Z11, Z12, and Z13 are connected so as to be smoothly continuous. Therefore, between the front cross-sectional area increase area Z11 and the intermediate cross-sectional area increase area Z12, a cross-sectional area increase area for connection whose cross-sectional area gradually increases is formed. The cross-sectional area increase area for this connection has a cross-sectional area increase rate of 0.25 m. 2 / M, and corresponds to the straight line L21 ′.
[0060]
In addition, as described above, the front, middle, and rear cross-sectional areas Z11, Z12, and Z13 have an area ratio of 0 to 0.28, 0.47 to 0. It is based on FIG. 5 that it is configured to change in the range of 75, 0.83 to 1.0.
[0061]
As described above, when a simulation analysis is performed on the influence of the micro-pressure wave in a vehicle body shape (example of the present invention) having three cross-sectional area increase areas Z11, Z12, and Z13, as shown in FIG. In the case of the body shape by GA, the peak value of the pressure gradient index, which is a measure of the effect of the micro-pressure wave, is two, whereas in the body shape of the present invention, the peak value of the pressure gradient index is three, It was confirmed that the micro-pressure itself was reduced. That is, comparing the maximum values of the peak values, the body shape by the GA is reduced by only about 22% as compared with the conventional body shape, but is reduced by about 28% in the body shape of the present invention. It is confirmed that.
[0062]
Further, in order to confirm this experimentally, a tunnel driving test was performed. The test apparatus is configured as shown in FIG. That is, a conical train model 61 (scale model) having a cross-sectional area distribution corresponding to the above-described leading vehicle body shape is driven into the cylindrical pipe 63 simulating a tunnel at a train speed using the launching device 62, A pressure value at an evaluation point (not shown) is measured to measure a pressure gradient (dp / dt). In addition, 64 is a braking device.
[0063]
As is clear from FIGS. 8 (a), 8 (b) and 8 (c) showing the test results, compared to the conventional vehicle body shape (see FIG. 8 (a)) and the vehicle body shape by GA (see FIG. 8 (b)). Thus, it is confirmed that the performance of reducing the pressure gradient index of the vehicle body shape (see FIG. 8C) according to the example of the present invention is good. In addition, the test results show that, specifically, the body shape by GA and the shape according to the present invention are reduced by about 14% and 28% as compared with the conventional body shape, and are consistent with the results of the simulation analysis. I have.
[0064]
The arrangement of the various devices in the above-described embodiment is merely an example, and the space formed between both sides of the vertical passage and between the two horizontal passages is changed according to the height of the portion (passage). Needless to say, various devices can be freely arranged.
[0065]
【The invention's effect】
The present invention is implemented as described above, and has the following effects.
[0066]
According to the first aspect of the present invention, an intermediate cross-sectional area increasing area in which the cross-sectional area increasing rate of the first half is larger than the second half area is provided between the front and rear cross-sectional increasing areas. Is maintained, the cross-sectional area in the vicinity of the driver's seat (driver's cab), that is, the volume of the driver's cab can be secured with a margin. Therefore, the degree of freedom in arranging the devices in the driver's cab is increased, and a reasonable device arrangement can be realized.
[0067]
In this case, as described in claim 2, in the intermediate cross-sectional area increase area, the cross-sectional area increase rate of the first half is approximately 1.0 m. 2 / M, and the rate of increase in the sectional area of the latter half is approximately 0.5 m 2 / M, it is possible to reduce micro-pressure waves.
[0068]
The front, middle and rear cross-sectional area increasing areas of the front, middle and rear cross-sectional area increasing areas each have an area ratio of 0 to the cross-sectional area of the general portion. The vehicle body shape according to claim 1 or 2 can be easily realized by being configured to change in the range of 0.28, 0.47 to 0.75, and 0.83 to 1.0. Can be.
[0069]
Further, as described in claim 4, the width gradually decreases from the intermediate cross-sectional area increase area to the rear cross-sectional area increase area to become a width substantially corresponding to the width of the cab, and then the width gradually increases. If the projections gradually increase in height while forming the vehicle body width of the general part, the shape that can achieve the relationship of the cross-sectional area increase rate described in claim 3 can be easily achieved. It can be formed.
[0070]
As described in claim 5, the right and left side portions of the vertical passage, which is a passage required for the driver and the conductor, and the front and rear portions of the horizontal passage are effective according to the space height of the portion. The various devices are arranged according to their sizes and heights, so that the various devices can be arranged without difficulty even in a vehicle body shape effective for reducing micro-pressure waves. . In particular, since various devices are arranged on both the left and right sides of the vertical passage and the front and rear sides of the horizontal passage according to the height of those parts, various devices are arranged when the driver gets on and off. It is possible to get on and off the vehicle without passing through the part where the vehicle is being driven, and the driver can get on and off the vehicle smoothly.
[Brief description of the drawings]
FIG. 1 is a schematic side view of a basic shape of a railway leading vehicle which is an example of an embodiment according to the present invention.
FIG. 2 is a schematic plan view of the same.
FIG. 3 is a sectional view taken along line AA in FIG.
FIG. 4 is a sectional view taken along line BB in FIG.
FIG. 5 is a diagram illustrating a relationship between a head length and a (lateral) cross-sectional area.
FIG. 6 is an explanatory diagram showing a pressure gradient index serving as a guideline for a micro-pressure wave.
FIG. 7 is an explanatory diagram of a test apparatus.
8 shows test results obtained by the test apparatus shown in FIG. 7, FIG. 7 (a) shows test results for a conventional vehicle body shape, FIG. 7 (b) shows test results for a vehicle body shape using GA, and FIG. 4) is a diagram showing a test result of a vehicle body shape according to the present invention.
FIG. 9 is an explanatory diagram of the principle of the genetic algorithm.
FIG. 10 is a diagram showing a relationship between a head length and a (lateral) cross-sectional area.
FIG. 11 is an explanatory diagram showing a relationship between a leading vehicle model and a tunnel.
FIG. 12 is a diagram illustrating a relationship between a generation and an evaluation value according to a genetic algorithm.
FIG. 13 is a schematic side view of a railroad leading vehicle in a GA shape.
FIG. 14 is a schematic plan view of the same.
15 is a sectional view taken along line II in FIG.
FIG. 16 is a sectional view taken along line JJ in FIG.
[Explanation of symbols]
Z11 Front cross-sectional area increase area
Z12 intermediate cross-sectional area increase area
Z13 Rear cross-sectional area increase area
Z3 General part
1, body
1a Projection
21 cab windshield
22, 23, lateral passage
24 vertical passage
25, 26 Getting on and off door
31 Driver's seat
41 Monitor Central Unit
42 general distribution board
47 Automatic train control device

Claims (5)

先頭部分より、横断面積が最大でほぼ一様となる一般部分に至るまでに、横断面積が車体前後方向に沿って変化する鉄道先頭車両の車体構造であって、
前記先頭部分から前記一般部分に至るまでの間に、先頭側から後端側に向かって横断面積が大きくなる方向に大きく変化する前側及び後側の断面積増加領域を備え、
前記前側および後側の断面積増加領域の断面積増加率がそれぞれほぼ6.0m/mおよびほぼ2.0m/mであり、
それらの領域の間であって運転室に対応する部分に、前側および後側の断面積増加領域よりも断面積増加率が小さく前記前半部分の断面積増加率が後半部分のそれより大きい中間断面積増加領域を設け、
前記前側、中間および後側の断面積増加領域がなめらかに連続するように接続されていることを特徴とする鉄道先頭車両用車体。
The body structure of the leading railway vehicle in which the cross-sectional area changes along the vehicle front-rear direction from the head to the general part where the cross-sectional area is almost uniform at the maximum,
Between the head portion and the general portion, a cross-sectional area increase area on the front side and the rear side that largely changes in a direction in which the cross-sectional area increases from the head side toward the rear end side,
The cross-sectional area increase rates of the front and rear cross-sectional area increase areas are approximately 6.0 m 2 / m and approximately 2.0 m 2 / m, respectively;
Between these regions and at a portion corresponding to the driver's cab, an intermediate section in which the cross-sectional area increase rate is smaller than that of the front and rear cross-sectional area increase areas is larger than that of the latter half section. Provide an area increase area,
A vehicle body for a leading railway vehicle, wherein the front, middle and rear cross-sectional area increasing areas are connected so as to be smoothly continuous.
前記中間断面積増加領域は、前半部分の断面積増加率がほぼ1.0m/mであり、後半部分の断面積増加率がほぼ0.5m/mである請求項1記載の鉄道先頭車両用車体。 2. The railway head according to claim 1, wherein in the intermediate cross-sectional area increase area, a cross-sectional area increase rate of a first half is approximately 1.0 m 2 / m, and a cross-sectional area increase rate of a second half portion is approximately 0.5 m 2 / m. Vehicle body. 前記前側、中間および後側の断面積増加領域は、前記一般部分の横断面積に対する面積比がそれぞれ0〜0.28、0.47〜0.75、0.83〜1.0の範囲で変化するように構成されている請求項2記載の鉄道先頭車両用車体。The front, middle, and rear cross-sectional areas increase in cross-sectional area of the general portion in the range of 0 to 0.28, 0.47 to 0.75, and 0.83 to 1.0, respectively. The vehicle body for a leading vehicle of a railway according to claim 2, wherein the vehicle body is configured to perform the following. 前記前側断面積増加領域から前記中間断面積増加領域にかけて、車体幅が徐々に広くなって前記一般部分の車体幅とほぼ等しい幅となり、また、前記前側断面積増加領域から前記中間断面積増加領域まではほぼ同じ高さで、前記中間断面積増加領域から前記後側断面積増加領域にかけて徐々に高くなる形状とされる請求項1〜3のいずれかに記載の鉄道先頭車両用車体。From the front cross-sectional area increase area to the intermediate cross-sectional area increase area, the vehicle body width gradually increases to become substantially equal to the vehicle body width of the general portion, and the front cross-sectional area increase area to the intermediate cross-sectional increase area The vehicle body for a railway leading vehicle according to any one of claims 1 to 3, wherein the vehicle body has substantially the same height up to and including the intermediate cross-sectional area increasing area and the rear cross-sectional area increasing area. 請求項1〜4のいずれかに記載の鉄道先頭車両用車体を用いた鉄道先頭車両であって、
前記中間断面積増加領域の後側部分に運転室を配設し、
前記後側断面積増加領域に、車両左右方向に延びる前側及び後側の横通路を形成し、前記両横通路を、車両左右方向に一側において車両前後方向に延び前記運転室に連通する縦通路でもって接続し、
前記前側及び後側の横通路の左右両側に乗降用扉を配設し、
前記縦通路の左右両側部分及び横通路の前後側部分に、各種機器を配置したことを特徴とする鉄道先頭車両。
A railway leading vehicle using the railway leading vehicle body according to any one of claims 1 to 4,
Arranging a driver's cab at a rear portion of the intermediate cross-sectional area increasing area,
Front and rear lateral passages extending in the vehicle left-right direction are formed in the rear cross-sectional area increase area, and the two lateral passages extend in the vehicle front-rear direction on one side in the vehicle left-right direction and communicate with the driver's cab. Connect in the aisle,
Arrangement doors on both left and right sides of the front and rear side passages,
A railway leading vehicle, wherein various devices are arranged on both left and right portions of the vertical passage and front and rear portions of the horizontal passage.
JP2002226089A 2002-08-02 2002-08-02 Railway head vehicle body and railway leading vehicle using the same Expired - Fee Related JP3939218B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002226089A JP3939218B2 (en) 2002-08-02 2002-08-02 Railway head vehicle body and railway leading vehicle using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002226089A JP3939218B2 (en) 2002-08-02 2002-08-02 Railway head vehicle body and railway leading vehicle using the same

Publications (2)

Publication Number Publication Date
JP2004066887A true JP2004066887A (en) 2004-03-04
JP3939218B2 JP3939218B2 (en) 2007-07-04

Family

ID=32013544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002226089A Expired - Fee Related JP3939218B2 (en) 2002-08-02 2002-08-02 Railway head vehicle body and railway leading vehicle using the same

Country Status (1)

Country Link
JP (1) JP3939218B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009056896A (en) * 2007-08-30 2009-03-19 Nippon Sharyo Seizo Kaisha Ltd Method for determining pressure wave form regarding top shape of high speed railway vehicle
CN105307917A (en) * 2013-06-20 2016-02-03 庞巴迪运输有限公司 High-speed rail vehicle provided with a streamlined nose
JP2019199223A (en) * 2018-05-18 2019-11-21 公益財団法人鉄道総合技術研究所 Forefront part structure of movable body
JP2020090914A (en) * 2018-12-04 2020-06-11 トヨタ紡織株式会社 Intake manifold for internal combustion engine

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009056896A (en) * 2007-08-30 2009-03-19 Nippon Sharyo Seizo Kaisha Ltd Method for determining pressure wave form regarding top shape of high speed railway vehicle
CN105307917A (en) * 2013-06-20 2016-02-03 庞巴迪运输有限公司 High-speed rail vehicle provided with a streamlined nose
CN105307917B (en) * 2013-06-20 2017-09-08 庞巴迪运输有限公司 It is provided with the high-speed rail transportation instrument of streamlined head
JP2019199223A (en) * 2018-05-18 2019-11-21 公益財団法人鉄道総合技術研究所 Forefront part structure of movable body
JP7033827B2 (en) 2018-05-18 2022-03-11 公益財団法人鉄道総合技術研究所 Head structure of moving body
JP2020090914A (en) * 2018-12-04 2020-06-11 トヨタ紡織株式会社 Intake manifold for internal combustion engine
JP7087970B2 (en) 2018-12-04 2022-06-21 トヨタ紡織株式会社 Internal combustion engine intake manifold

Also Published As

Publication number Publication date
JP3939218B2 (en) 2007-07-04

Similar Documents

Publication Publication Date Title
KR101621649B1 (en) Method for Generating Position Distribution Information of Moving Obstacle, Method and System for Controlling Vehicle Using the Position Distribution Information
CN109299533B (en) Method and system for rapidly predicting noise outside high-speed train
CN102609765A (en) Intelligent vehicle lane change path planning method based on polynomial and radial basis function (RBF) neural network
CN101500840A (en) Collision avoidance for electric mining shovels
Zhang et al. Multi-agent DRL-based lane change with right-of-way collaboration awareness
JPH04315300A (en) Method and apparatus for high-speed vehicle control
CN112829742A (en) Passenger safety decision method and device
JP3939218B2 (en) Railway head vehicle body and railway leading vehicle using the same
CN108009344A (en) The method, apparatus and train of a kind of train far field aerodynamic noise prediction
JP4371837B2 (en) Body structure of the leading railway
CN106991811B (en) Expressway exit ring road upstream trackside road information optimum design method based on drive simulation experiment porch
CN113029151A (en) Intelligent vehicle path planning method
JP4798053B2 (en) Safety evaluation device
JP3939219B2 (en) Railway head vehicle body and railroad leading vehicle using the same
JP4243657B2 (en) Body structure of the leading railway
CN114167860B (en) Automatic driving optimal track generation method and device
Chen Warning and control for vehicle rollover prevention
JP2010244404A (en) New vehicle plan review support method
JP2004157910A (en) Vehicular recommended control input generation system
CN114781064A (en) Social force-based vehicle behavior modeling method
JP4243658B2 (en) Body shape of the first train
JP4201756B2 (en) Body structure of the leading railway
JP2004175135A (en) Train in formation for high-speed running
Frimpong et al. Intelligent machine monitoring and sensing for safe surface mining operations
Certad et al. Extraction of Road Users' Behavior from Realistic Data According to Assumptions in Safety-Related Models for Automated Driving Systems

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060620

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070327

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070327

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110406

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120406

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120406

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130406

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130406

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140406

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150406

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees