JP2019199223A - Forefront part structure of movable body - Google Patents

Forefront part structure of movable body Download PDF

Info

Publication number
JP2019199223A
JP2019199223A JP2018096008A JP2018096008A JP2019199223A JP 2019199223 A JP2019199223 A JP 2019199223A JP 2018096008 A JP2018096008 A JP 2018096008A JP 2018096008 A JP2018096008 A JP 2018096008A JP 2019199223 A JP2019199223 A JP 2019199223A
Authority
JP
Japan
Prior art keywords
sectional area
change rate
area change
shape
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018096008A
Other languages
Japanese (ja)
Other versions
JP7033827B2 (en
Inventor
徳蔵 宮地
Tokuzo Miyaji
徳蔵 宮地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Original Assignee
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute filed Critical Railway Technical Research Institute
Priority to JP2018096008A priority Critical patent/JP7033827B2/en
Publication of JP2019199223A publication Critical patent/JP2019199223A/en
Application granted granted Critical
Publication of JP7033827B2 publication Critical patent/JP7033827B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T30/00Transportation of goods or passengers via railways, e.g. energy recovery or reducing air resistance

Landscapes

  • Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)

Abstract

To provide a forefront part structure of a movable body which can further improve the effect of reducing microbarometric waves.SOLUTION: A forefront part structure 6 has microbarometric wave reduction performance that can reduce microbarometric waves generated when a vehicle 2 enters a tunnel. A forefront part shape S of the forefront part structure 6 is optimized since it is assumed to have a plurality of peaks in cross sectional area change rate. With respect to the forefront part shape S as shown in the figure (A), the cross sectional area change rate dA/dX is represented by combination of predetermined numbers (for example, 10 numerical values) of error functions, and the values of peaks Pto Pof the cross sectional area change rate dA/dX, and the position and the spread thereof are optimized as optimum parameters. With respect to the forefront part shape S, there are at least three peaks Pto Pin the cross sectional area change rate distribution dA/dX of the forefront part 5A of the vehicle 2. As shown in the figure (A), the forefront part shape S has the peaks Pto Pof the cross sectional area change rate distribution dA/dX in a forefront part tip 5a, a forefront part intermediate 5b, and a forefront part rear end 5c.SELECTED DRAWING: Figure 1

Description

この発明は、移動体がトンネル内に突入するときに発生する微気圧波を低減可能な微気圧波低減性能を有する移動体の先頭部構造に関する。   The present invention relates to a head structure of a moving body having a micro-pressure wave reducing performance capable of reducing a micro-pressure wave generated when the moving body enters a tunnel.

列車が高速でトンネル内に突入するとトンネル内に圧縮波が生じる。この圧縮波は音速でトンネル内を伝搬し、出口で開口端反射する。この反射の際にトンネル外に放射されるパルス状の圧力波のことをトンネル微気圧波あるいは単に微気圧波と呼ぶ。微気圧波は、発破音や家屋の振動・ガタツキに騒音などの原因となるため対策を講じる必要がある。微気圧波は、トンネル出口に到着した圧縮波の圧力勾配(圧縮波の時間変化率)の最大値にほぼ比例するため、圧縮波の形成時間を長くして圧力勾配をなだらかにする対策が有効となる。実際の新幹線(登録商標)では列車先頭部の延伸・最適化や緩衝工の設置・延伸などの対策が行われている。   When the train enters the tunnel at high speed, a compression wave is generated in the tunnel. This compressed wave propagates through the tunnel at the speed of sound and is reflected at the exit end at the exit. A pulsed pressure wave radiated outside the tunnel during this reflection is called a tunnel micro-pressure wave or simply a micro-pressure wave. Since micro-pressure waves cause blasting noise, house vibration and rattling noise, it is necessary to take measures. Since the micro-pressure wave is almost proportional to the maximum value of the pressure gradient of the compression wave that arrives at the tunnel exit (time change rate of the compression wave), it is effective to take measures to make the pressure gradient gentle by extending the compression wave formation time. It becomes. In actual Shinkansen (registered trademark), measures such as extension / optimization of the train head and installation / extension of shock absorbers are taken.

図7に示す従来の先頭部形状S'は、車両102の先頭部先端105aの断面積変化率が大きく、車両102の先頭部105Aで断面積変化率が一定で増加し、車両102の後尾部105Bで断面積変化率が一定である。従来、微気圧波低減のための先頭部形状は、図7に示すような列車先端部をのぞき断面積変化率が一定となる形状がよいとされてきた(例えば、非特許文献1参照)。現在の新幹線列車の先頭部形状は、この方針が反映されている。このような従来の微気圧波低減のための先頭部形状は、少ない設計パラメータによって表現された先頭部形状を最適化して得られたものである。微気圧波低減のための先頭部形状では、音響理論をもとに列車先頭部長さを考慮した圧力勾配最大値の無次元化が提案されており、この圧力勾配最大値の逆数を効率として定義している(例えば、非特許文献2参照)。   7 has a large cross-sectional area change rate at the front end tip 105a of the vehicle 102, and the cross-sectional area change rate increases constantly at the front end 105A of the vehicle 102. At 105B, the cross-sectional area change rate is constant. Conventionally, the shape of the leading portion for reducing the micro-pressure wave has been considered to be a shape having a constant cross-sectional area change rate except for the train tip as shown in FIG. 7 (see, for example, Non-Patent Document 1). This policy is reflected in the shape of the front of the current Shinkansen train. Such a conventional head shape for reducing micro-pressure waves is obtained by optimizing the head shape expressed by a small number of design parameters. For the shape of the head for reducing micro-pressure waves, a dimensionless maximum pressure gradient has been proposed based on acoustic theory, taking into account the length of the train head, and the inverse of this pressure gradient is defined as efficiency. (See, for example, Non-Patent Document 2).

飯田 雅宣、他4名,「トンネル微気圧波低減のための列車先頭部形状の最適化」,日本機械学会論文集B編, 1996年,第62巻, p.1428〜1435Masanori Iida and four others, “Optimization of the shape of the train head for reducing tunnel micro-pressure waves”, Journal of the Japan Society of Mechanical Engineers, B, 1996, Vol. 62, pp. 1428-1435

Miyachi,T.,M.Fukuda,T.,Arai,T.," Nondimensional maximum pressure gradient of tunnel compression waves generated by offset running axisymmetric trains",Journal of Wind Engineering and Industrial Aerodynamics <http://www.sciencedirect.com/science/article/pii/S0167610515301525>Miyachi, T., M. Fukuda, T., Arai, T., "Nondimensional maximum pressure gradient of tunnel compression waves generated by offset running axisymmetric trains", Journal of Wind Engineering and Industrial Aerodynamics <http: //www.sciencedirect. com / science / article / pii / S0167610515301525>

このような従来の微気圧波低減のための先頭部形状では、効率は0.8程度であることが非特許文献2に示されている。この効率は、理想的な先頭部形状の場合には値が最大で1となるために、さらに微気圧波の低減効果の高い先頭部形状が存在する可能性が指摘された。   It is shown in Non-Patent Document 2 that the efficiency is about 0.8 in such a conventional head portion shape for reducing micro atmospheric pressure waves. Since this efficiency has a maximum value of 1 in the case of an ideal head shape, it has been pointed out that there is a possibility that a head shape having a higher effect of reducing micro-pressure waves exists.

この発明の課題は、微気圧波の低減効果をより一層向上させることができる移動体の先頭部構造を提供することである。   The subject of this invention is providing the head part structure of the moving body which can improve the reduction effect of a micro atmospheric pressure wave further.

この発明は、以下に記載するような解決手段により、前記課題を解決する。
なお、この発明の実施形態に対応する符号を付して説明するが、この実施形態に限定するものではない。
請求項1の発明は、図1(A)、図2(A)及び図3に示すように、移動体(2)がトンネル内に突入するときに発生する微気圧波を低減可能な微気圧波低減性能を有する移動体の先頭部構造であって、前記移動体の先頭部形状(S)は、この移動体の先頭部(5A)の断面積変化率分布(dA*/dX)に少なくとも3つのピーク(P1〜P3)があることを特徴とする移動体の先頭部構造(6)である。
The present invention solves the above-mentioned problems by the solving means described below.
In addition, although the code | symbol corresponding to embodiment of this invention is attached | subjected and demonstrated, it is not limited to this embodiment.
As shown in FIGS. 1 (A), 2 (A) and 3, the invention of claim 1 is a micro atmospheric pressure capable of reducing micro atmospheric waves generated when the moving body (2) enters the tunnel. A moving body having a wave reducing performance, wherein the moving body has a head shape (S) at least in a cross-sectional area change rate distribution (dA * / dX) of the moving body's leading portion (5A). It is a head part structure (6) of the moving body characterized by having three peaks (P 1 to P 3 ).

請求項2の発明は、請求項1に記載の移動体の先頭部構造において、図1〜図3に示すように、前記移動体の先頭部形状は、この移動体の先頭部の先端部(5a)、中間部(5b)及び後端部(5c)に前記断面積変化率分布のピークがあることを特徴とする移動体の先頭部構造である。   According to a second aspect of the present invention, in the leading portion structure of the moving body according to the first aspect, as shown in FIGS. 5a), an intermediate portion (5b), and a rear end portion (5c) having a peak of the cross-sectional area change rate distribution, the moving body leading portion structure.

請求項3の発明は、請求項1又は請求項2に記載の移動体の先頭部構造において、図2(A)に示すように、前記移動体の先頭部形状は、この移動体の先頭部の後端部(5c)における前記断面積変化率分布(dA*/dX)がゼロであることを特徴とする移動体の先頭部構造である。 According to a third aspect of the present invention, in the leading portion structure of the movable body according to the first or second aspect, as shown in FIG. 2A, the leading portion shape of the movable body is the leading portion of the movable body. This is a leading part structure of a moving body characterized in that the cross-sectional area change rate distribution (dA * / dX) at the rear end (5c) of the moving body is zero.

請求項4の発明は、請求項1から請求項3までのいずれか1項に記載の移動体の先頭部構造において、図1(A)及び図2(A)に示すように、前記移動体の先頭部形状は、この移動体の先頭部の長さ(ln)が20m未満であるときには、この移動体の先頭部の断面積変化率分布に3つのピーク(P1〜P3)があることを特徴とする移動体の先頭部構造である。 According to a fourth aspect of the present invention, there is provided a moving body head structure according to any one of the first to third aspects, wherein, as shown in FIGS. 1 (A) and 2 (A), the moving body. When the length (l n ) of the leading portion of the moving body is less than 20 m, three peaks (P 1 to P 3 ) are present in the cross-sectional area change rate distribution of the leading portion of the moving body. It is the head part structure of the moving body characterized by being.

請求項5の発明は、請求項1から請求項3までのいずれか1項に記載の移動体の先頭部構造において、図3に示すように、前記移動体の先頭部形状は、この移動体の先頭部の長さ(ln)が20m以上であるときには、この移動体の先頭部の断面積変化率分布に4つ以上のピーク(P1〜P4)があることを特徴とする移動体の先頭部構造である。 According to a fifth aspect of the present invention, in the head structure of the movable body according to any one of the first to third aspects, as shown in FIG. When the length (l n ) of the head portion of the moving body is 20 m or more, the moving body is characterized in that there are four or more peaks (P 1 to P 4 ) in the cross-sectional area change rate distribution of the head portion of the moving body. It is the top structure of the body.

この発明によると、微気圧波の低減効果をより一層向上させることができる。   According to the present invention, the effect of reducing the micro-pressure wave can be further improved.

この発明の第1実施形態に係る移動体の先頭部構造の側面図であり、(A)は先頭部形状が滑らかである場合を一例として模式的に示す側面図であり、(B)は先頭部形状の断面積変化率分布を一例として模式的に示すグラフである。BRIEF DESCRIPTION OF THE DRAWINGS It is a side view of the head part structure of the moving body which concerns on 1st Embodiment of this invention, (A) is a side view which shows typically the case where a head part shape is smooth, and (B) is a head. It is a graph which shows typically a sectional area change rate distribution of a part shape as an example. この発明の第2実施形態に係る移動体の先頭部構造の側面図であり、(A)は先頭部形状が先頭部後端を後尾部先端と滑らかに接続した場合を一例として模式的に示す側面図であり、(B)は先頭部形状の断面積変化率分布を一例として模式的に示すグラフである。It is a side view of the head part structure of the movable body concerning a 2nd embodiment of this invention, and (A) shows typically the case where the head part shape connects the head part rear end smoothly with the tail part tip as an example. It is a side view, (B) is a graph which shows typically cross-sectional area change rate distribution of head part shape as an example. この発明の第3実施形態に係る移動体の先頭部構造の側面図であり、(A)は先頭部形状が滑らかである場合を一例として模式的に示す側面図であり、(B)は先頭部形状が先頭部後端を後尾部先端と滑らかに接続した場合を一例として模式的に示す側面図である。It is a side view of the head part structure of the mobile object concerning a 3rd embodiment of this invention, (A) is a side view showing typically the case where the head part shape is smooth, and (B) is the head. FIG. 6 is a side view schematically showing, as an example, a case where the shape of the part smoothly connects the rear end of the head part to the tip of the tail part. この発明の実施例及び従来例に係る移動体の先頭部構造の側面図である。It is a side view of the head part structure of the movable body which concerns on the Example of this invention, and a prior art example. この発明の実施例及び従来例に係る移動体の先頭部構造における断面積変化率分布を一例として示すグラフである。It is a graph which shows the cross-sectional area change rate distribution in the head part structure of the moving body which concerns on the Example of this invention, and a prior art example as an example. この発明の実施例及び従来例に係る移動体の先頭部構造における圧力勾配波形を一例として示すグラフである。It is a graph which shows as an example the pressure-gradient waveform in the head part structure of the moving body which concerns on the Example of this invention, and a prior art example. 従来の移動体の先頭部構造を一例として模式的に示す側面図である。It is a side view which shows typically the head part structure of the conventional mobile body as an example.

(第1実施形態)
以下、図面を参照して、この発明の第1実施形態について詳しく説明する。
図1(A)に示す軌道1は、車両2が走行する通路(線路)である。軌道1は、車両2の車輪を支持し案内する一対のレールなどを備えている。車両2は、軌道1に沿って移動する移動体である。車両2は、例えば、300km/h以上の高速で新幹線(登録商標)を走行する鉄道車両などの高速列車である。図1(A)に示す車両2は、例えば、図中矢印方向に走行するときには先頭車両となり、この矢印方向とは逆方向に走行するときには後尾車両となる。車両2は、台車3と車体4などを備えている。台車3は、車体4を支持して軌道1上を走行する装置である。車体4は、乗務員及び乗客などの積載物を輸送するための構造物である。車体4は、先頭部5Aと後尾部5Bとを備えている。車体4は、車両2を運転制御するための主幹制御器を操作する乗務員が乗車する乗務員室が先頭部5A側に配置されており、乗客が乗車する客室が後尾部5B側に配置されている。
(First embodiment)
Hereinafter, a first embodiment of the present invention will be described in detail with reference to the drawings.
A track 1 shown in FIG. 1A is a path (track) on which the vehicle 2 travels. The track 1 includes a pair of rails that support and guide the wheels of the vehicle 2. The vehicle 2 is a moving body that moves along the track 1. The vehicle 2 is, for example, a high-speed train such as a railway vehicle that travels on the Shinkansen (registered trademark) at a high speed of 300 km / h or higher. The vehicle 2 shown in FIG. 1A is, for example, a leading vehicle when traveling in the direction of the arrow in the figure, and a trailing vehicle when traveling in the direction opposite to the arrow direction. The vehicle 2 includes a carriage 3 and a vehicle body 4. The carriage 3 is a device that supports the vehicle body 4 and travels on the track 1. The vehicle body 4 is a structure for transporting loads such as crew members and passengers. The vehicle body 4 includes a head portion 5A and a tail portion 5B. In the vehicle body 4, a crew room where a crew member who operates a master controller for driving and controlling the vehicle 2 is disposed on the front part 5 </ b> A side, and a passenger room on which a passenger gets is disposed on the rear part 5 </ b> B side. .

先頭部5Aは、車両2の前部側を構成する部分である。先頭部5Aは、空気抵抗及び微気圧波の低減を図るために長い流線形に形成されている。先頭部5Aは、この先頭部5Aの前部を構成する先頭部先端5aと、この先頭部先端5aと先頭部後端5cとの間の中間部を構成する先頭部中間5bと、この先頭部5Aの後部を構成する先頭部後端5cなどを備えている。   The leading portion 5 </ b> A is a portion constituting the front side of the vehicle 2. The leading portion 5A is formed in a long streamline in order to reduce air resistance and micro-pressure waves. The leading portion 5A includes a leading end tip 5a constituting the front portion of the leading portion 5A, a leading portion intermediate portion 5b constituting an intermediate portion between the leading portion leading end 5a and the leading portion rear end 5c, and the leading portion. The head rear end 5c constituting the rear portion of 5A is provided.

後尾部5Bは、車両2の後部側を構成する部分である。後尾部5Bは、車両2の中心線に対して直交する垂直面で切断したときの断面積が略一定である。後尾部5Bは、先頭部後端5cと接続する後尾部先端5dと、この後尾部先端5dとは反対側の端部である後尾部後端5eなどを備えている。後尾部5Bは、編成中に中間車として組成される他の車両を連結する連結装置などを後尾部後端5eに備えている。   The rear part 5B is a part constituting the rear side of the vehicle 2. The rear part 5 </ b> B has a substantially constant cross-sectional area when cut by a vertical plane orthogonal to the center line of the vehicle 2. The tail part 5B includes a tail part front end 5d connected to the head part rear end 5c, a tail part rear end 5e that is an end part opposite to the tail part front end 5d, and the like. The rear portion 5B is provided with a connecting device for connecting other vehicles that are formed as intermediate vehicles during knitting at the rear portion rear end 5e.

先頭部構造6は、車両2がトンネル内に突入するときに発生する微気圧波を低減可能な微気圧波低減性能を有する構造である。先頭部構造6は、断面積変化率が複数のピークをもつことを前提に先頭部形状Sが最適化されている。先頭部構造6は、先頭部5Aの周りの流れが断面積の急変化部で大きくはく離しないように、滑らかな先頭部形状Sに形成されている。   The leading portion structure 6 is a structure having a micro-pressure wave reducing performance capable of reducing a micro-pressure wave generated when the vehicle 2 enters the tunnel. In the head portion structure 6, the head portion shape S is optimized on the assumption that the cross-sectional area change rate has a plurality of peaks. The leading portion structure 6 is formed in a smooth leading portion shape S so that the flow around the leading portion 5A is not largely separated at the rapidly changing portion of the cross-sectional area.

先頭部形状Sは、車両2の中心線を通過する垂直面で切断したときの断面形状である。図1(A)に示す先頭部形状Sは、所定の個数(例えば、10個)の誤差関数の組み合わせによって断面積変化率を表現し、断面積変化率のピークP1〜P3の大きさ、位置及び広がりを最適パラメータとして最適化されている。先頭部形状Sは、車両2の先頭部5Aの断面積変化率分布に少なくとも3つのピークP1〜P3がある。先頭部形状Sは、断面積変化率が誤差関数の組み合わせで表される滑らかな形状である。ここで、断面積変化率とは、車両2の中心線に対して直交する垂直面で切断したときの断面積が先頭部先端5aから後尾部後端5eに向かって変化する割合である。図1に示す断面積変化率分布dA*/dXは、10個の誤差関数を基底に与えられたものであり、各基底の大きさ、位置及び広がりをパラメータとして最適化されている。 The leading portion shape S is a cross-sectional shape when cut along a vertical plane passing through the center line of the vehicle 2. The head shape S shown in FIG. 1A expresses the cross-sectional area change rate by combining a predetermined number (for example, 10) of error functions, and the cross-sectional area change rate peaks P 1 to P 3 are large. The position and spread are optimized as the optimum parameters. The leading portion shape S has at least three peaks P 1 to P 3 in the cross-sectional area change rate distribution of the leading portion 5A of the vehicle 2. The leading portion shape S is a smooth shape in which the cross-sectional area change rate is represented by a combination of error functions. Here, the cross-sectional area change rate is a ratio at which the cross-sectional area when cut along a vertical plane orthogonal to the center line of the vehicle 2 changes from the front end 5a toward the rear rear end 5e. The cross-sectional area change rate distribution dA * / dX shown in FIG. 1 is obtained by giving 10 error functions to the base, and is optimized using the size, position, and spread of each base as parameters.

先頭部形状Sは、図1(A)に示すように、先頭部先端5a、先頭部中間5b及び先頭部後端5cに断面積変化率分布dA*/dXのピークP1〜P3がある。先頭部形状Sは、先頭部先端5a、先頭部中間5b及び先頭部後端5cにおいて断面積を略1/3程度ずつ増加させるような形状である。先頭部形状Sは、断面積変化率dA/dXが先頭部先端5a及び先頭部後端5cで大きな単一のピークP1,P3を持ち、先頭部中間5bに小さく広いピークP2を持つ略W字型である。先頭部形状Sは、先頭部5Aの長さlnが20m未満であるときには、先頭部5Aの断面積変化率分布dA*/dXに3つのピークP1〜P3がある。 As shown in FIG. 1A, the head portion shape S has peaks P 1 to P 3 of the cross-sectional area change rate distribution dA * / dX at the head front end 5a, the head middle 5b, and the head rear end 5c. . The leading portion shape S is a shape that increases the cross-sectional area by about 1/3 at the leading end front end 5a, the leading end middle 5b, and the leading end rear end 5c. The head portion shape S has a large single peak P 1 , P 3 with a cross-sectional area change rate dA / dX at the leading end 5a and the leading end 5c, and a small wide peak P 2 at the leading middle 5b. It is substantially W-shaped. When the length l n of the head portion 5A is less than 20 m, the head portion shape S has three peaks P 1 to P 3 in the cross-sectional area change rate distribution dA * / dX of the head portion 5A.

この発明の第1実施形態に係る移動体の先頭部構造には、以下に記載するような効果がある。
(1) この第1実施形態では、車両2の先頭部5Aの断面積変化率分布dA*/dXに少なくとも3つのピークP1〜P3がある先頭部形状Sである。また、この第1実施形態では、車両2の先頭部先端5a、先頭部中間5b及び先頭部後端5cに断面積変化率分布dA*/dXのピークP1〜P3がある先頭部形状Sである。このため、断面積変化率分布dA*/dXに3つのピークP1〜P3がある略W型の先頭部形状Sにすることによって、トンネル内の圧力勾配最大値のピークを分散することができ、微気圧波を低減することができる。
The leading part structure of the moving body according to the first embodiment of the present invention has the following effects.
(1) In the first embodiment, the head portion shape S has at least three peaks P 1 to P 3 in the cross-sectional area change rate distribution dA * / dX of the head portion 5A of the vehicle 2. Further, in the first embodiment, the leading end shape S having peaks P 1 to P 3 of the cross-sectional area change rate distribution dA * / dX at the leading end front end 5a, the leading end middle 5b, and the leading end rear end 5c of the vehicle 2. It is. For this reason, the peak of the pressure gradient maximum value in the tunnel can be dispersed by forming the substantially W-shaped head shape S having three peaks P 1 to P 3 in the cross-sectional area change rate distribution dA * / dX. It is possible to reduce micro-pressure waves.

(2) この第1実施形態では、車両2の先頭部5Aの長さlnが20m未満であるときには、この車両2の先頭部5Aの断面積変化率分布dA*/dXに3つのピークP1〜P3がある先頭部形状Sである。このため、トンネル内の圧力勾配波形のピーク値を低減することができる。 (2) In the first embodiment, when the length l n of the leading portion 5A of the vehicle 2 is less than 20 m, the three peak Ps appear in the cross-sectional area change rate distribution dA * / dX of the leading portion 5A of the vehicle 2. It is the head part shape S with 1 to P 3 . For this reason, the peak value of the pressure gradient waveform in the tunnel can be reduced.

(第2実施形態)
以下では、図1に示す部分と同一の部分については、同一の符号を付して詳細な説明を省略する。
図2(A)に示す先頭部構造6は、先頭部5Aの周りの流れが先頭部後端5cで大きくはく離しないように、先頭部後端5cが後尾部先端5dと滑らかに接続された先頭部形状Sに形成されている。先頭部形状Sは、所定の個数(例えば、10個)の誤差関数の組み合わせと、先頭部後端5cを後尾部先端5dと滑らかに接続することを表す重み関数とによって断面積変化率dA/dXを表現し、断面積変化率dA/dXのピークP1〜P3の大きさ、位置及び広がりを最適パラメータとして最適化されている。先頭部形状Sは、先頭部後端5cにおける断面積変化率分布dA*/dXがゼロである。図1(A)に示す先頭部形状Sは、車体4の断面積が一定になる後尾部先端5dと先頭部後端5cとの接続部において断面積変化率dA/dXが不連続となり、流れのはく離による影響が懸念される。図2(A)に示す先頭部形状Sは、車体4の断面積が一定になる後尾部先端5dと先頭部後端5cとの接続部において、この先頭部後端5cがこの後尾部先端5dと滑らかに接続するように丸みが付与されている。先頭部形状Sは、先頭部5Aの後端にcos型の重み関数を乗じてこの先頭部形状Sが最適化されており、cos型の重み関数によって先頭部後端5cの断面積変化率dA/dXが滑らかにゼロになる。
(Second Embodiment)
In the following, the same parts as those shown in FIG. 1 are denoted by the same reference numerals, and detailed description thereof is omitted.
The leading portion structure 6 shown in FIG. 2A has a leading end in which the leading end rear end 5c is smoothly connected to the trailing end leading end 5d so that the flow around the leading portion 5A is not largely separated at the leading end rear end 5c. A part shape S is formed. The head shape S is a cross-sectional area change rate dA / based on a combination of a predetermined number (for example, 10) of error functions and a weight function indicating that the head rear end 5c is smoothly connected to the tail tip 5d. dX is expressed, and the size, position, and spread of the peaks P 1 to P 3 of the cross-sectional area change rate dA / dX are optimized as the optimum parameters. In the head portion shape S, the cross-sectional area change rate distribution dA * / dX at the head rear end 5c is zero. 1A, the cross-sectional area change rate dA / dX becomes discontinuous at the connecting portion between the rear end front end 5d and the front end rear end 5c where the cross-sectional area of the vehicle body 4 is constant. There are concerns about the effects of peeling. 2A, the leading end shape S is a connecting portion between the leading end 5d and the leading end 5c where the cross-sectional area of the vehicle body 4 is constant, and the leading end 5c is the leading end 5d. And rounded to give a smooth connection. The leading portion shape S is optimized by multiplying the rear end of the leading portion 5A by a cos type weight function, and the cross-sectional area change rate dA of the leading portion rear end 5c by the cos type weight function. / dX becomes zero smoothly.

図2(A)に示す先頭部形状Sは、先頭部先端5a、先頭部中間5b及び先頭部後端5cに断面積変化率分布dA*/dXにピークP1〜P3がある。先頭部形状Sは、先頭部5Aの長さlnが20m未満であるときには、先頭部5Aの断面積変化率分布dA*/dXに3つのピークP1〜P3がある。 The head shape S shown in FIG. 2A has peaks P 1 to P 3 in the cross-sectional area change rate distribution dA * / dX at the head front end 5a, the head middle 5b, and the head rear end 5c. When the length l n of the head portion 5A is less than 20 m, the head portion shape S has three peaks P 1 to P 3 in the cross-sectional area change rate distribution dA * / dX of the head portion 5A.

この発明の第2実施形態に係る移動体の先頭部構造には、第1実施形態の効果に加えて、以下に記載するような効果がある。
この第2実施形態では、車両2の先頭部後端5cにおける断面積変化率分布dA*/dXがゼロである先頭部形状Sである。このため、車体4の断面積が一定になる後尾部先端5dと先頭部後端5cとの接続部における流れのはく離を抑制することができる。
In addition to the effects of the first embodiment, the leading portion structure of the moving body according to the second embodiment of the present invention has the effects described below.
In the second embodiment, the head portion shape S has a cross-sectional area change rate distribution dA * / dX at the head rear end 5c of the vehicle 2 that is zero. For this reason, it is possible to suppress separation of the flow at the connecting portion between the rear end front end 5d and the front end rear end 5c where the cross-sectional area of the vehicle body 4 is constant.

(第3実施形態)
図3に示す車体4は、車両2の先頭部5Aの長さlnが20m以上の長大な先頭部5Aを備えている。図3(A)に示す先頭部構造6は、図1(A)に示す先頭部構造6と同様に滑らかな先頭部形状Sに形成されている。図3(B)に示す先頭部構造6は、図2(A)に示す先頭部構造6と同様に先頭部後端5cが後尾部先端5dと滑らかに接続された先頭部形状Sに形成されている。先頭部形状Sは、車両2の先頭部5Aの長さlnが20m以上であるときには、この車両2の先頭部5Aの断面積変化率分布dA*/dXに4つのピークP1〜P4がある。この第3実施形態には、第1実施形態及び第2実施形態と同様の効果がある。
(Third embodiment)
The vehicle body 4 shown in FIG. 3 includes a long leading portion 5A in which the length l n of the leading portion 5A of the vehicle 2 is 20 m or more. The head portion structure 6 shown in FIG. 3A is formed in a smooth head portion shape S in the same manner as the head portion structure 6 shown in FIG. The leading portion structure 6 shown in FIG. 3B is formed in a leading portion shape S in which the leading portion rear end 5c is smoothly connected to the trailing portion leading end 5d in the same manner as the leading portion structure 6 shown in FIG. ing. The top portion shape S, when the length l n of the head portion 5A of the vehicle 2 is not less than 20m, the cross-sectional area change rate of the top portion 5A distribution dA * / dX 4 one at the peak P 1 to P 4 of the vehicle 2 There is. The third embodiment has the same effects as the first embodiment and the second embodiment.

図4に示すグラフは、実施例1,2及び従来例に係る先頭部形状を一例として示すグラフである。図4に示す縦軸は、形状であり、横軸は先頭部先端からの距離である。図5に示すグラフは、実施例1,2及び従来例に係る先頭部形状の断面積変化率分布dA*/dXを一例として示すグラフである。図5に示す縦軸は、断面積変化率dA/dXであり、横軸は先頭部先端からの距離である。図4及び図5に示す実施例1は、図1(A)に示す第1実施形態に係る先頭部形状Sに相当し、先頭部5Aの長さln=12mの断面積変化率分布dA*/dXの例である。図4及び図5に示す実施例2は、図2(A)に示す第2実施形態に係る先頭部形状Sに相当する断面積変化率分布dA*/dXの例である。実施例1,2は、いずれもHoweの音響理論によって先頭部形状Sを最適化したときの断面積変化率分布dA*/dXの例である。図4及び図5に示す従来例は、図7に示す従来の先頭部形状S'に相当する断面積変化率dA/dXの例である。 The graph shown in FIG. 4 is a graph showing, as an example, the top shape according to Examples 1 and 2 and the conventional example. The vertical axis shown in FIG. 4 is the shape, and the horizontal axis is the distance from the front end. The graph shown in FIG. 5 is a graph showing, as an example, the cross-sectional area change rate distribution dA * / dX of the head shape according to Examples 1 and 2 and the conventional example. The vertical axis shown in FIG. 5 is the cross-sectional area change rate dA / dX, and the horizontal axis is the distance from the front end. Example 1 shown in FIGS. 4 and 5 corresponds to the head shape S according to the first embodiment shown in FIG. 1A, and the cross-sectional area change rate distribution dA having a length l n = 12 m of the head 5A. * / dX example. Example 2 shown in FIGS. 4 and 5 is an example of the cross-sectional area change rate distribution dA * / dX corresponding to the head portion shape S according to the second embodiment shown in FIG. Examples 1 and 2 are examples of the cross-sectional area change rate distribution dA * / dX when the head shape S is optimized according to Howe's acoustic theory. The conventional example shown in FIGS. 4 and 5 is an example of the cross-sectional area change rate dA / dX corresponding to the conventional head portion shape S ′ shown in FIG.

Howeの音響理論によって計算した圧力勾配波形を図6に示す。図6に示す縦軸は、圧力勾配∂p/∂tであり、横軸は時間である。図6に示す圧力勾配波形のピークはトンネル微気圧波のピークに比例する。図6に示すように、実施例1,2の圧力勾配波形は従来例の圧力勾配波形に比べてピークが分散しており、微気圧波の低減効果が確認された。また、実施例1,2のような断面積変化率分布dA*/dXが複数のピークを持つ先頭部形状が微気圧波の低減効果の高い先頭部形状であることが確認された。 The pressure gradient waveform calculated by Howe's acoustic theory is shown in FIG. The vertical axis shown in FIG. 6 is the pressure gradient ∂p / ∂t, and the horizontal axis is time. The peak of the pressure gradient waveform shown in FIG. 6 is proportional to the peak of the tunnel micro-pressure wave. As shown in FIG. 6, the pressure gradient waveforms of Examples 1 and 2 have more dispersed peaks than the pressure gradient waveform of the conventional example, and the effect of reducing the micro-pressure wave was confirmed. In addition, it was confirmed that the head shape having a plurality of peaks in the cross-sectional area change rate distribution dA * / dX as in Examples 1 and 2 is a head shape having a high effect of reducing micro-pressure waves.

(他の実施形態)
この発明は、以上説明した実施形態に限定するものではなく、以下に記載するように種々の変形又は変更が可能であり、これらもこの発明の範囲内である。
(1) この実施形態では、移動体として鉄道車両である場合を例に挙げて説明したがこれに限定するものではない。例えば、広い空間から狭い空間に突入する種々の移動体であって、高速で走行する磁気浮上式鉄道、自動車、航空機又は飛翔体などの移動体についても、この発明を適用することができる。また、この実施形態では、車両2が新幹線列車である場合を例に挙げて説明したが、在来線を走行する在来線列車、又は新幹線と在来線とを相互に走行可能な新在直通運転用の列車などについても、この発明を適用することができる。さらに、この実施形態では、構造物としてトンネルを例に挙げて説明したが、トンネル微気圧波を低減するためにトンネル坑口を覆うトンネル緩衝工、軌道1上に架け渡した跨線橋、軌道1上に駅本屋を配置した橋上駅などの構造物についてもこの発明を適用することができる。
(Other embodiments)
The present invention is not limited to the embodiment described above, and various modifications or changes can be made as described below, and these are also within the scope of the present invention.
(1) In this embodiment, the case where the moving body is a railway vehicle has been described as an example, but the present invention is not limited to this. For example, the present invention can also be applied to various moving objects that enter a narrow space from a wide space, such as a magnetic levitation railway, an automobile, an aircraft, or a flying object that travels at high speed. In this embodiment, the case where the vehicle 2 is a Shinkansen train has been described as an example. However, a conventional train that travels on a conventional line, or a new train that can travel between the Shinkansen and a conventional line mutually. The present invention can also be applied to trains for direct operation. Furthermore, in this embodiment, the tunnel is taken as an example of the structure. However, a tunnel buffer covering the tunnel wellhead to reduce the tunnel micro-pressure wave, a bridge over the track 1, a track 1 The present invention can also be applied to structures such as Hashigami Station where a station bookstore is arranged.

(2) この第1実施形態及び第2実施形態では、車両2の先頭部先端5aにおける断面積変化率分布dA*/dXのピークP1よりも、車両2の先頭部後端5cにおける断面積変化率分布dA*/dXのピークP3のほうが小さい場合を例に挙げて説明したがこれに限定するものではない。例えば、車両2の先頭部先端5a及び/又は先頭部中間5bにおける断面積変化率分布dA*/dXのピークP1,P2よりも、車両2の先頭部後端5cにおける断面積変化率分布dA*/dXのピークP3のほうが小さくする場合についても、この発明を適用することができる。また、この第3実施形態では、車両2の先頭部5Aの長さlnが20m以上であるときには、この車両2の先頭部5Aの断面積変化率分布dA*/dXに4つのピークP1〜P4がある場合を例に挙げて説明したがこれに限定するものではない。例えば、車両2の先頭部5Aの長さlnが20m以上であるときには、この車両2の先頭部5Aの断面積変化率分布dA*/dXに4つ以上のピークP1,P2,P3,P4,…がある場合についても、この発明を適用することができる。 (2) cross-sectional area in this first embodiment and the second embodiment, than the peak P 1 of the cross-sectional area change rate distribution dA * / dX at the head tip 5a of the vehicle 2, the top rear end 5c of the vehicle 2 The case where the peak P 3 of the change rate distribution dA * / dX is smaller has been described as an example, but the present invention is not limited to this. For example, the cross-sectional area change rate distribution at the head rear end 5c of the vehicle 2 is higher than the peaks P 1 and P 2 of the cross-sectional area change rate distribution dA * / dX at the head front end 5a and / or the head middle 5b of the vehicle 2. The present invention can also be applied to the case where the peak P 3 of dA * / dX is made smaller. Further, in the third embodiment, when the length l n of the head portion 5A of the vehicle 2 is 20 m or more, the four peaks P 1 appear in the cross-sectional area change rate distribution dA * / dX of the head portion 5A of the vehicle 2. when there are to P 4 it has been described as an example not limited to this. For example, when the length l n of the head portion 5A of the vehicle 2 is 20 m or more, the cross-sectional area change rate distribution dA * / dX of the head portion 5A of the vehicle 2 has four or more peaks P 1 , P 2 , P The present invention can be applied to the case where there are 3 , P 4 ,.

1 軌道
2 車両(移動体)
3 台車
4 車体
5A 先頭部
5B 後尾部
5a 先頭部先端
5b 先頭部中間
5c 先頭部後端
5d 後尾部先端
5e 後尾部後端
dA/dX 断面積変化率
dA*/dX 断面積変化率分布
∂p/∂t 圧力勾配
S 先頭部形状
1〜P4 ピーク
1 track 2 vehicle (moving body)
3 dolly 4 car body 5A head part 5B tail part 5a head part front end 5b head part middle 5c head part rear end 5d tail part front end 5e tail part rear end dA / dX cross-sectional area change rate distribution dA * / dX cross-sectional area change rate distribution ∂p / ∂t Pressure gradient S Lead shape P 1 to P 4 peak

Claims (5)

移動体がトンネル内に突入するときに発生する微気圧波を低減可能な微気圧波低減性能を有する移動体の先頭部構造であって、
前記移動体の先頭部形状は、この移動体の先頭部の断面積変化率分布に少なくとも3つのピークがあること、
を特徴とする移動体の先頭部構造。
The structure of the front of the moving body has a micro-pressure wave reducing performance capable of reducing the micro-pressure wave generated when the moving body enters the tunnel,
The shape of the leading portion of the moving body has at least three peaks in the cross-sectional area change rate distribution of the leading portion of the moving body,
The top structure of a moving object characterized by
請求項1に記載の移動体の先頭部構造において、
前記移動体の先頭部形状は、この移動体の先頭部の先端部、中間部及び後端部に前記断面積変化率分布のピークがあること、
を特徴とする移動体の先頭部構造。
In the head part structure of the mobile object according to claim 1,
The shape of the leading portion of the moving body has a peak of the cross-sectional area change rate distribution at the front end portion, the middle portion and the rear end portion of the leading end portion of the moving body,
The top structure of a moving object characterized by
請求項1又は請求項2に記載の移動体の先頭部構造において、
前記移動体の先頭部形状は、この移動体の先頭部の後端部における前記断面積変化率分布がゼロであること、
を特徴とする移動体の先頭部構造。
In the head part structure of the movable body according to claim 1 or claim 2,
The leading end shape of the moving body is such that the cross-sectional area change rate distribution at the rear end of the leading end of the moving body is zero,
The top structure of a moving object characterized by
請求項1から請求項3までのいずれか1項に記載の移動体の先頭部構造において、
前記移動体の先頭部形状は、この移動体の先頭部の長さが20m未満であるときには、この移動体の先頭部の断面積変化率分布に3つのピークがあること、
を特徴とする移動体の先頭部構造。
In the head part structure of the movable body according to any one of claims 1 to 3,
The top shape of the moving body has three peaks in the cross-sectional area change rate distribution of the leading portion of the moving body when the length of the leading portion of the moving body is less than 20 m.
The top structure of a moving object characterized by
請求項1から請求項3までのいずれか1項に記載の移動体の先頭部構造において、
前記移動体の先頭部形状は、この移動体の先頭部の長さが20m以上であるときには、この移動体の先頭部の断面積変化率分布に4つ以上のピークがあること、
を特徴とする移動体の先頭部構造。
In the head part structure of the movable body according to any one of claims 1 to 3,
When the length of the leading portion of the moving body is 20 m or more, the shape of the leading portion of the moving body has four or more peaks in the cross-sectional area change rate distribution of the leading portion of the moving body,
The top structure of a moving object characterized by
JP2018096008A 2018-05-18 2018-05-18 Head structure of moving body Active JP7033827B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018096008A JP7033827B2 (en) 2018-05-18 2018-05-18 Head structure of moving body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018096008A JP7033827B2 (en) 2018-05-18 2018-05-18 Head structure of moving body

Publications (2)

Publication Number Publication Date
JP2019199223A true JP2019199223A (en) 2019-11-21
JP7033827B2 JP7033827B2 (en) 2022-03-11

Family

ID=68612794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018096008A Active JP7033827B2 (en) 2018-05-18 2018-05-18 Head structure of moving body

Country Status (1)

Country Link
JP (1) JP7033827B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11321640A (en) * 1998-05-12 1999-11-24 Kawasaki Heavy Ind Ltd Body form of head rolling stock
JP2002308092A (en) * 2001-04-11 2002-10-23 Nippon Sharyo Seizo Kaisha Ltd Forefront part shape of high speed railway rolling stock
JP2004066887A (en) * 2002-08-02 2004-03-04 Central Japan Railway Co Car body for railroad head car and railroad head car using the car body
JP2006056439A (en) * 2004-08-23 2006-03-02 Nippon Sharyo Seizo Kaisha Ltd High speed railway vehicle
WO2014202147A1 (en) * 2013-06-20 2014-12-24 Bombardier Transportation Gmbh High-speed rail vehicle provided with a streamlined nose

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003063386A (en) 2001-08-22 2003-03-05 Nippon Sharyo Seizo Kaisha Ltd Top part shape of rapid-transit railway rolling stock

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11321640A (en) * 1998-05-12 1999-11-24 Kawasaki Heavy Ind Ltd Body form of head rolling stock
JP2002308092A (en) * 2001-04-11 2002-10-23 Nippon Sharyo Seizo Kaisha Ltd Forefront part shape of high speed railway rolling stock
JP2004066887A (en) * 2002-08-02 2004-03-04 Central Japan Railway Co Car body for railroad head car and railroad head car using the car body
JP2006056439A (en) * 2004-08-23 2006-03-02 Nippon Sharyo Seizo Kaisha Ltd High speed railway vehicle
WO2014202147A1 (en) * 2013-06-20 2014-12-24 Bombardier Transportation Gmbh High-speed rail vehicle provided with a streamlined nose

Also Published As

Publication number Publication date
JP7033827B2 (en) 2022-03-11

Similar Documents

Publication Publication Date Title
JP2014521549A (en) Suspension system for train
CN107054395A (en) A kind of active control type actuator and bogie
JP6677309B2 (en) Bogies for railway vehicles, railway vehicles and trains
CN206691123U (en) A kind of active control type actuator and bogie
JP4456557B2 (en) High speed train
JP2019199223A (en) Forefront part structure of movable body
CN102166960B (en) Bionic anti-drag and noise-reducing high-speed pantograph
JP4793934B2 (en) Scarlet structure of the vehicle
Kitada History of air spring development for Shinkansen trains
JP6734754B2 (en) Railway vehicle
CN211166896U (en) Vibration damper suitable for low-speed maglev train
JP6615598B2 (en) High speed train
JP6932097B2 (en) Bogie for rail vehicles
KR101524010B1 (en) Bogie air dam
JP2021142944A (en) Forefront part structure of movable body
JP6722533B2 (en) Railway vehicle body structure
JP5833217B1 (en) Railway vehicle
JP4201756B2 (en) Body structure of the leading railway
JP2019001349A (en) Railway vehicle
CN208602472U (en) Empty iron train and empty iron series system for empty iron series system
JP4187488B2 (en) RAILWAY VEHICLE AND METHOD FOR REDUCING RANGE VEHICLE MOVEMENT IN TUN
CN104176085A (en) Railway vehicle and brake pull rod device thereof
JP7332884B2 (en) bogies and railcars
JP2020185859A (en) Railway vehicle
JP2017024535A (en) Railway vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201031

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211019

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220228

R150 Certificate of patent or registration of utility model

Ref document number: 7033827

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150