JP2004175135A - Train in formation for high-speed running - Google Patents

Train in formation for high-speed running Download PDF

Info

Publication number
JP2004175135A
JP2004175135A JP2002340459A JP2002340459A JP2004175135A JP 2004175135 A JP2004175135 A JP 2004175135A JP 2002340459 A JP2002340459 A JP 2002340459A JP 2002340459 A JP2002340459 A JP 2002340459A JP 2004175135 A JP2004175135 A JP 2004175135A
Authority
JP
Japan
Prior art keywords
vehicle
sectional area
cross
width
leading
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002340459A
Other languages
Japanese (ja)
Other versions
JP3913162B2 (en
Inventor
Akihiko Torii
昭彦 鳥居
Isao Naruse
功 成瀬
Takashi Kuriyama
敬 栗山
Katsuyuki Tsukahara
克之 塚原
Kazuto Nakai
一人 中井
Atsushi Sano
淳 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Central Japan Railway Co
Original Assignee
Kawasaki Heavy Industries Ltd
Central Japan Railway Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd, Central Japan Railway Co filed Critical Kawasaki Heavy Industries Ltd
Priority to JP2002340459A priority Critical patent/JP3913162B2/en
Publication of JP2004175135A publication Critical patent/JP2004175135A/en
Application granted granted Critical
Publication of JP3913162B2 publication Critical patent/JP3913162B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T30/00Transportation of goods or passengers via railways, e.g. energy recovery or reducing air resistance

Landscapes

  • Body Structure For Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a train in formation for high-speed running capable of securing a spacious passenger space without impairing the reducing effect of fine pressure air waves. <P>SOLUTION: The car body is furnished at the head part Z1 with section area increasing regions Z11, Z13 in front and in the rear in which the section area varies incrementally toward the rear of the body. Another section area increasing region Z12 as intermediate region having a smaller section area increasing rate than the front region Z11 and the rear region Z13 is provided between the two regions. The general part Z2 is composed of a front portion Z21 continued to the tail of the forefront part Z21 and having an approximately uniform section area and a rear portion Z22 having a greater body height and body width than the front portion and having approximately the same body height and body width as the following car. The head part Z1 is shaped so that the body width gradually increases linearly from the head toward the general part in the direction fore and aft of the body. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は、高速走行する新幹線等の高速走行用の編成列車に関する。
【0002】
【従来の技術】
一般に、新幹線などの高速の鉄道車両がトンネルに突入する場合には、その先頭車両によって、トンネル内の限られた空間に存在する空気を押し込むように前記空気が圧縮される。この圧縮された空気が圧縮波となって、トンネル内をほぼ音速に等しい速度で前方へ伝播される。そして、この圧縮波はトンネルの出口に到達したときには出口で反射されるが、それの一部はパルス状の圧力波となってトンネルの出口から外部へ放射される。このパルス状の圧力波を、微気圧波(トンネル微気圧波)という。この微気圧波(パルス状の圧力波)が外部へ放射されることにより、トンネルの出口付近では爆発音とともに微振動等が生じ、周辺の環境に影響を及ぼす場合がある。
【0003】
そのため、高速性能が要求される鉄道車両では、先頭車両の車体先頭部の形状に、いわゆる高速走行時の走行抵抗を減少させるだけでなく、前述したところのトンネルに突入した際に生じる微気圧波を低減させることができる形状とすることが必要とされる。
【0004】
近年、そのような微気圧波を低減させる先頭車両の車体形状がいくつか提案されている。例えば、
(1)横断面積が一定の胴部に接合する接合部から最先端に至る先頭領域を尖らせ、先頭領域の上面側へ突出する運転室窓部(キャノピー)の前後の長さを、先頭領域の前後長さより短くし、運転室窓部の突設根元部に連接する上方肩部の横断面積を、上方肩部に隣接する隣接肩部の横断面積より小さくし、前記先頭領域における最先端寄りの横断面積急変域を除く領域のスカート部又は仮想スカート部を含む横断面積を、接合部から最先端へ向かっていく程に正比例に減少させた構造に先頭部の車体を構成することを提案しているものがある(例えば、特許文献1参照)。
(2)車体先端から車体前後方向における横断面積が増大する先頭部を有した鉄道車両において、先頭部を先端領域と中間領域とから構成し、先端領域は最大横断面積の半分の断面積に相当する位置よりも先端側とし、中間領域は該先端領域よりも車体長手方向他端側とし、前記中間領域は一定の断面積変化率によって横断面積が変化し、かつ前記先端領域の断面積変化率を中間領域の断面積変化率よりも大きくするものである。この技術においては、前記中間領域に運転室を配置しており、この運転室部前面窓の傾斜角度を前方注視に支障のない角度としており、前記運転室前面窓の両側方部分より下方に凹み部を形成することを提案しているものがある(例えば、特許文献2参照)。
【0005】
しかしながら、前記公報に記載の技術は、いずれも、次の点で課題を有する。すなわち、
第1に、いずれの技術も先頭部の横断面積の変化が先頭車両の車体先端から後方の接合部(一般断面部あるいは最大横断面積部との接合部)にかけて車体の横断面積が連続して緩やかに増大するように、先端から後方にかけてやや上方に傾斜する曲面形状に形成するとともに、その傾斜曲面部分が車体前後方向にできるだけ長くなるように先端部をノーズ状に延ばしている。このため、実際の車体形状の製作に際しては、骨組みに溶接等により張り付ける板金を、ハンマー等で打ち出すことによって凹凸部などの複雑な形状を形成しているので、作業に熟練を要することはもとより、多大な時間がかかって生産性が非常に低く、製造コストが極めて高くなるうえに、車体先頭部の車体前後方向において占める長さが長くなるため、車室が制限され、乗車定員が減少する。
【0006】
第2に、いずれの技術も先頭部の横断面積の変化が先頭車両の車体先端から後方の接合部にかけて直線的に連続している。このため、鉄道車両がトンネル内に突入したときの、トンネル内のある位置における圧力変化は、圧力勾配が緩やかになっているとしても漸次高くなっている。一方、トンネル内を伝播する圧縮波の速度(音速に近い)は、圧力が上昇するのにしたがって速くなるから、トンネルの距離がある程度長くなると、せっかく車体の先頭部形状を工夫したことによって圧縮波の圧力を分散したにもかかわらず、分散された圧力がトンネルの出口では集合されて一度に大きな圧力のパルス状圧力波(微気圧波)となって外部へ放射され、トンネルの出口周辺において大きな爆発音が発生したり、振動等が生じたりするおそれがある。
【0007】
そこで、出願人は、鉄道車両がトンネル内に突入する場合に、トンネルと車両によって発生する微気圧波を分散させて低減するための鉄道先頭車両の車体形状を先に提案している(例えば、特許文献3参照)。具体的には、車体の先端部分をやや後方に傾斜させて上方に立ち上げることにより第1段目の断面積増加領域を形成した後、横断面積をほぼ一定に保ってほぼ水平に後方に延設した後、再びやや後方に傾斜させて上方に立ち上げることにより第2段目の断面積増加領域を形成し、(第1段目の横断面積)/(第2段目の横断面積)の面積比が0.6以上で、第1段目と第2段目の断面積増加領域の間隔を15m以上にしたものである。
【0008】
【特許文献1】
特開平7−89439号公報(第2頁〜第3頁)
【特許文献2】
特開平8−198105号公報(第2頁〜第5頁)
【特許文献3】
特開平11−321640号公報(第2頁〜第4頁、図1〜図4)
【0009】
【発明が解決しようとする課題】
そのような高速走行する先頭車両の車体は、一般に、微気圧波の低減を図るため、運転室が形成される先端部分について横断面積を小さくする等の何らかの工夫が施されている。そして、その先頭部分の後端に連続し客室空間が形成される一般部分は、先頭部分の後端とほぼ同じ大きさの一様な横断面積とされ、これの後続車両(二両目以降の車両)もほぼ同じ大きさの一様な横断面積とされている。
【0010】
ところで、図8に示すように、鉄道先頭車両の車体は、一般部分を基準として断面積比が小さいほど、微気圧波の大きさの指針となる圧力勾配指数(圧力勾配dp/dtと基準となる圧力勾配dp/dtとの比)が小さくなることが確認されている。
【0011】
そこで、そのような一般部分において、客室空間を大きくするために段部を設け横断面積を大きくしても、その段部(断面積変化部分)を前側部分(先頭部分に連続する部分)に設ける場合には微気圧波の低減効果に影響があるかもしれないが、後側部分に設ける場合には大きな影響がないのではないかという着想に基づき、それの後側部分の高さ及び車体幅を前側部分のそれらよりも2割程度大きくして、微気圧波の数値シミュレーション解析を行ったところ、(i)先頭部分での圧力勾配指数の変化程度は、一般部分の後側部分の高さ及び車体幅を大きくしない場合と同じ程度であり、(ii)一般部分の後側部分の高さ及び車体幅を大きくしたことによる前記一般部分での圧力勾配指数のピーク値は、先頭部分での圧力勾配指数のピーク値を超えることはないことを見出した(図9(a)参照)。すなわち、一般部分において、後側部分の高さ及び車体幅を前側部分のそれらよりも大きくしても、微気圧波に対する影響は大きくないと考えられる。
【0012】
この点についてさらに具体的に説明すると、一般部分の後側部分の高さ及び車体幅を大きくしない場合についての結果を図9(a)に実線で示す一方、一般部分の後側部分の高さ及び車体幅を大きくした場合(一般部分の前側部分に対し後側部分を1.2倍の横断面積にした場合)についての結果を図9(a)に他の線で示す。一般部分において後側部分の横断面積を前側部分のそれより大きくすると、一般部分の断面積変化部分(段部)に対して圧力勾配指数のピーク値が新たに生ずる。そのピーク値は、先頭部分におけるピーク値(最大値)の6割程度で、それを超えないことが確認された(この圧力勾配指数のピーク値が、微気圧波の最大値を決定すると考えられる)。図9(a)には、先頭部分の長さをLtop、先頭から一般部分の後側部分の高さ及び車体幅を大きくした部位までの長さをLnon roofとし(図9(b)参照)、Lnon roof/Ltop=1.1,1.6,2.2の3種類について解析した結果を示すが、いずれの場合のピーク値も、先頭部分のピーク値(最大値)を超えることがなかった。
【0013】
つまり、一般部分において後側部分の高さ及び車体幅を大きくしても、微気圧波に対する影響はほとんどなく、しかもその大きくする部位(段部)の位置もあまり問題にならないと考えられる。この段部の位置があまり問題とならないことから、先頭車両に続く後続車両の高さ又は車体幅を大きくしても、同様な効果が得られると考えられる。
【0014】
そこで、発明者らは、先頭車両の一般部分の後側部分や先頭車両に続く後続車両においてそれらの車体高さ又は車体幅を大きくすることにより、客室空間が形成される部分の横断面積を増大させても、微気圧波の低減効果を損なうことなく、余裕がある客室空間を確保することができるとの着想に基づき、微気圧波の低減効果と余裕がある客室空間の確保の両立が図れる本発明を開発するに至ったものである。
【0015】
本発明は、微気圧波の低減効果を損なうことなく、余裕がある客室空間を確保することができる鉄道先頭車両の車体を提供するものである。
【0016】
【課題を解決するための手段】
本発明は、複数の車両を連結して編成される高速走行用の編成列車において、運転室が形成される先頭部分の後側に、客室空間が形成される一般部分が連続する先頭車両を備え、前記先頭車両の一般部分が、前記先頭部分の後端に連続し横断面積がほぼ一様である前側部分と、この前側部分より車体高さ又は車体幅が大きく後続車両とほぼ同じ車体高さ又は車体幅となる後側部分とを有することを特徴とする。つまり、先頭車両の後部に、先頭車両の後側部分に前側部分に対して横断面積が大きくなる段部(断面積変化部分)が形成されていることになる。ここで、段部(断面積変化部分)における車体高さと車体幅との変化量(車体上方や車体左右側方に突出する量)は等しくする必要はなく、例えば車体高さの変化量を車体幅の変化量より小さくすることができる。
【0017】
このようにすれば、客室空間が形成される一般部分が、先頭部分の後端に連続し横断面積がほぼ一様である前側部分と、この前側部分より車体高さ又は車体幅が大きく後続車両とほぼ同じ車体高さ又は車体幅となる後側部分とを有することで、その後側部分に、高さ方向又は幅方向に余裕のある客室空間が確保される。
また、前側部分より車体高さ又は車体幅が大きく後続車両とほぼ同じ車体高さ又は車体幅となる後側部分を先頭部分が有することは、先頭部分の前側部分が、微気圧波を低減する効果を損ねることがない。よって、微気圧波の低減効果を損ねることなく、余裕がある客室空間が確保され、微気圧波の低減と余裕がある客室空間の確保との両立を図ることができる。
【0018】
また、先頭部分は、車体幅が車体前後方向において車両先頭から一般部分に向かって直線的(比例的)に徐々に大きくなっているようにすれば、車体高さ方向だけでなく車体幅方向においても寸法を調整して、一般部分に対する先頭部分の断面積比を小さくすることができるようになり、微気圧波の低減を図る上で一層有利となる。
【0019】
すなわち、車体幅方向において寸法を変化させないと、一般部分に対する先頭部分の断面積比を小さくするためには、車体の高さ方向の寸法の調整だけで行う必要がある。これに対し、車体幅方向においても、車両先頭(車両先端)から一般部分に向かって直線的に徐々に大きくなっているように寸法を変化させると、先端側になるほど車体幅が小さくなるので、高さ方向の寸法の調整と相俟って、一般部分に対する先頭部分の断面積比を小さくすることがより一層容易となる。
【0020】
また、前述したところ段部(車体高さ又は車体幅が大きくなる部分)は、先頭車両に設ける必要なく、それに後続する車両に設けてもよい。さらには、車両自体の車体高さ又は車両幅がそれの前側に位置する車両の車体高さ又は車両幅より大きくなるようにしてもよい。この場合には、車両と車両との間に、横断面積が変化する段部が位置することになる。
【0021】
すなわち、請求項3に記載のように、複数の車両を連結して編成される高速走行用の編成列車において、先頭車両に続く後続車両のいずれかの車両が、それより前側に位置する車両の後尾の横断面積とほぼ一様の横断面積を有する前側部分と、この前側部分より車体高さ又は車体幅が大きく後側に位置する車両の先端の横断面積とほぼ同じ車体高さ又は車体幅となる後側部分とを有することができるし、請求項4に記載のように、複数の車両を連結して編成される高速走行用の編成列車において、先頭車両に続く後続車両のいずれかの車両が、それより前側に位置する車両の後尾より車体高さ又は車体幅が大きく後側に位置する車両の先端の横断面積とほぼ同じ車体高さ又は車体幅となるようにしてもよい。
【0022】
【発明の実施の形態】
以下、この発明の実施の形態を図面に沿って説明する。
【0023】
図1は本発明に係る実施の形態の一例である高速走行用の編成列車の先頭車両を示す側面図、図2は同平面図である。
【0024】
図1及び図2に示すように、先頭車両の車体1は、運転室が形成される先頭部分Z1の後側に、客室空間が形成される一般部分Z2が連続する構成とされている。そして、先頭部分Z1には、車体高さ及び車体幅が変化することで、車体1の横断面積が車体1の先頭側から後尾側に向かって大きくなる方向に変化する3つの断面積増加領域(すなわち前側、中間及び後側の断面積増加領域Z11,Z12,Z13)が設けられ、横断面積を前後方向において3段階でもって変化させている。そして、前記一般部分Z2が、先頭部分Z1の後端に連続し横断面積がほぼ一様である前側部分Z21と、この前側部分Z21より車体高さ及び車体幅が大きく後続車両(図示せず)とほぼ同じ車体高さ及び車体幅となる後側部分Z22とを有する。この後側部分Z22は、後続車両と横断面積がほぼ等しく、客室空間が前側部分Z21より大きくなっている。
【0025】
先頭部分Z1の前側の断面積増加領域Z11に続く、断面積変化率が緩やかな中間の断面積増加領域Z12に対応して運転室風防21が配設され、この運転室風防21が、運転室の上側に位置し、運転席28の上側を覆うようになっている。運転席28は、車両中心より若干左側寄りに配設されている。
【0026】
先頭部分Z1における後側の断面積増加領域Z13から一般部分Z2における前側部分Z21にわたって、車両左右方向に延びる前側及び後側の横通路22,23がそれぞれ形成されている。両横通路22,23が、車両左右方向に一側において車両前後方向に延びる縦通路24でもって接続されている。前側及び後側の横通路22,23の左右両側に乗降用扉25,26が開閉可能に配設されている。
【0027】
具体的に図示していないが、縦通路24の左右両側部分及び後側の横通路23の前側部分に、それらの部分の高さに応じて各種機器が配置され、微気圧波を低減することができる形状(車体1の形状)において、横断面積の変化にもかかわらず、各種機器のレイアウトが無理なく実現され、運転士の乗降もスムーズに行えるようにされている。すなわち、運転室の後側に横通路22を設け、それの左右両側に乗降用扉25を設け、それのさらに後側に各種機器を配置するようにしているので、運転士が乗降する際に、各種機器が配置されている部分を通過することなく、乗降することができる。
【0028】
従来の先頭車両の車体の先頭部分は、平面視ではほぼ弾丸形状である(図1及び図2破線参照)が、本例の車体1の先頭部分Z1は、平面視では車体幅が車体前後方向において先頭から一般部分Z2に向かって直線的に徐々に大きくなる形状とされている(図1及び図2実線参照)。
【0029】
このように、車体1の先端部分Z1は、横断面積が車体前後方向に沿って変化しているが、前側の断面積増加領域Z11の断面積増加率は、後側の断面積増加領域Z13の断面積増加率よりも大きく、中間の断面積増加領域Z12は、運転室に対応する部分であって、前側及び後側の断面積増加領域Z11,Z13よりも断面積増加率が小さく前半部分の断面積増加率が後半部分のそれより大きくなっている。これにより微気圧波低減効果を有する断面積分布となっている。
【0030】
このような断面積分布を満たすために、車体1は、車体の高さ方向及び車体幅方向において車体高さや車体幅が変化している。そして、前側の断面積増加領域Z11から中間の断面積増加領域Z12の中間部分付近まで、車体幅方向中央部にほぼ運転室の幅に相当する幅を有し徐々に高さが高くなることで横断面積が増加する突部が形成されている。この突部が、中間の断面積増加領域Z12の中間部分付近から、後側の断面積増加領域Z13において上方向及び左右方向に膨らむことで横断面積がさらに増加し、一般部分Z2(前側部分Z21)の車体高さ及び車体幅に等しくなるように形成されている。
【0031】
前述した車体1の形状(以下本発明の車体形状という)は、従来まで用いられていた形状設計に関する試行錯誤的な手法ではなく、数値流体解析(CFD解析)と最適化設計手法(遺伝的アルゴリズム)を組み合わせて、微気圧波が低減する最適先頭部分(最適断面積分布)を数値的に求める設計技術を適用して求め、それに修正を加えたものである。
【0032】
また、前述したように、3つの断面積増加領域Z11,Z12,Z13を有する本発明の車体の先頭部分で、微気圧波による影響をシミュレーション解析をしてみると、図3に示すように、従来の車体の先頭部分の場合(図3の破線参照)には微気圧波の影響の目安となる圧力勾配指数のピーク値が1つでかなり大きいのに対し、本発明の車体の先頭部分の場合(3の実線参照)には圧力勾配指数のピーク値が3つで小さくなり、微気圧波の大きさ自体も大幅に低減されることが確認できた。そのピーク値(最大値)を比較すると、従来の先頭部分に比べて、本発明の先頭部分では28%程度低減されていることが確認される。
【0033】
さらに、これを実験的に確かめるために、トンネル打ち込み試験を実施した。
試験装置は、図4に示すように構成される。すなわち、前述したところの先頭部分に対応する横断面積分布を持つ円錐形状の車両模型61(縮尺モデル)を発射装置62を用いて、トンネルを模擬した円筒状パイプ63に、車両速度で打ち込み、評価点(図示せず)での圧力値を測定し、圧力勾配(dp/dt)を計測するものである。なお、64は制動装置である。
【0034】
この試験結果を示す図5(a)(b)からも明らかなように、従来の先頭部分(図5(a)参照)に比べて、本発明の先頭部分(図5(b)参照)の方が圧力勾配指数の低減性能に優れることが確認される。また、その試験結果は、具体的には、本発明の先頭部分は、従来の先頭部分に比べて、28%程度低減され、シミュレーション解析の結果とも一致している。
【0035】
前記一般部分Z2は、前述したように、前側部分Z21と後側部分Z22とで車体高さ及び車体幅が異なる構成とされ、それらの部分Z21,Z22の間に段部1a(傾斜段部)が形成されている。このように一般部分Z2の後端寄りの部位に段部1aを形成しているが、この段部1aを形成することにより微気圧波の低減効果を損なうことはない(図9(a)(b)参照)。このようにして、微気圧波の低減効果を損なうことなく、高速走行用の鉄道先頭車両の後側部分Z22(一般部分Z2)において、車体高さ方向(車体上下方向)及び車体幅方向に余裕がある客室空間が確保される。この客室空間には、前側から連続して左右の座席27L,27Rが一定間隔で前後方向に配設されている。
【0036】
ここで、本例では、前側部分Z21は車体高さ3500mm、車体幅3360mmで、後側部分Z22は車体高さ3600mm、車体幅3380mmとされており、段部1aは、車両全長の90%程度の長さだけ先頭より後方部位に設けられている。ここで、段部1aを設ける位置は、図9(a)より、一般部分Z2の部位であれば、先頭部分Z1の断面積の変化による微気圧波の低減効果を損なうことがないことがわかる。
【0037】
上述したほか、本発明に係る鉄道先頭車両の車体は、次のように構成することも可能である。
(1)前記実施の形態においては、後側部分Z22が、前側部分Z21より車体高さ及び車体幅が大きく後続車両(図示せず)とほぼ同じ車体高さ及び車体幅となるようにしているが、車体高さ及び車体幅を共に同じにする必要はなく、いずれか一方のみ前側部分より大きくし後続車両と同じになるようにすることも可能である。
(2)前述した試験(図4及び図5参照)においては、横断面積を1.2倍にした場合について説明しているが、それに限定されるものではなく、横断面積を2倍程度にすることも可能である。
(3)前記実施の形態においては、車体の横断面積が先頭側から後尾側に向かって大きくなる方向に変化する3つの断面積増加領域(すなわち前側、中間及び後側の断面積増加領域Z11,Z12,Z13)が設けられ、横断面積を前後方向において3段階でもって変化させている先頭部分に適用したものについて説明したが、本発明はそれに限定されるものではなく、先頭部分の前側部分が平面視ではほぼ弾丸形状である従来の車体形状(図1及び図2破線参照)にも適用することができるし、微気圧波の低減効果が要求されるそのほかの高速走行する先頭車両の先頭部分にも適用することができる。なお、先頭部分の前側部分が平面視ではほぼ弾丸形状である従来の先頭部分を有する先頭車両(図1及び図2破線参照)についても、一般部分の段部が圧力勾配指数に対して影響を与えないことが確認されている(図6参照)。
(4)また、前記実施の形態においては、段部1a(車体高さ又は車体幅が大きくなる断面積変化部分)を1つ設けているだけであるが、それに限らず、複数設けることも可能である。
(5)前記実施の形態においては、先頭車両の後部に段部を形成するようにしているが、そのほか、先頭車両に後続する車両のいずれかに段部を形成するようにしてもよい。例えば図7(a)に、先頭車両31に続く2番目の車両32に段部32aを形成する例を示す。
【0038】
また、先頭車両に後続する車両のいずれかの車両を、形成するようにしてもよい。例えば図7(b)に、先頭車両41に続く2番目の車両42の先頭部で段部42aを形成する例を示す。
【0039】
これらの場合は、編成列車の長手方向において対称に配置されていることが望ましい。
(6)前述した実施の形態における各種機器の配置は、一例を示したものにすぎず、縦通路の両側及び両横通路の間に形成される空間部を、その部分(通路)の高さに応じて、各種機器を自由に配置することができる。
【0040】
【発明の効果】
この発明は、以上に説明したように実施され、以下に述べるような効果を奏する。
【0041】
この発明は、車体前後方向の断面積の変化により微気圧波低減効果がある先頭部分の後端に連続する一般部分を、先頭部分の後端に連続横断面積がほぼ一様である前側部分と、この前側部分より車体高さ又は車体幅が大きく後続車両とほぼ同じ高さ又は車体幅である後側部分とで形成するようにしているので、微気圧波の低減効果を損なうことなく、後側部分に余裕のある客室空間を確保できる。よって、微気圧波の低減と、客室空間の確保の両立を図ることができる。
【0042】
その場合には、先頭部分は、車体幅が車体前後方向において先頭から一般部分に向かって直線的に徐々に大きくなっているようにすれば、車体高さ方向だけでなく車体幅方向においても寸法を調整することができるようになり、一般部分を基準として断面積比を小さくすることができ、微気圧波の低減を図る上で一層有利となる。
【図面の簡単な説明】
【図1】本発明に係る実施の形態の一例である高速走行用の編成列車の先頭車両を示す側面図である。
【図2】同平面図である。
【図3】微気圧波の指針となる圧力勾配指数を示す図である。
【図4】試験装置の説明図である。
【図5】図4の試験装置による試験結果を示し、図5(a)は従来の車体先頭形状についての試験結果を、図5(b)は本発明に係る車体先頭形状についての試験結果をそれぞれ示す図である。
【図6】先頭部分における段部の位置と圧力勾配指数との関係を示す図である。
【図7】図7(a)(b)はそれぞれ変形例についての高速走行用の編成列車を示す図である。
【図8】一般部分の段部が圧力勾配指数に対して与える影響を示す図である。
【図9】先頭部分における段部の位置と圧力勾配指数との関係を示す図である。
【符号の説明】
Z1 先頭部分
Z2 一般部分
Z21 前側部分
Z22 後側部分
1 車体
1a 段部
21 運転室風防
28 運転席
32a 段部
42a 段部
[0001]
TECHNICAL FIELD OF THE INVENTION
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a train set for high-speed running such as a bullet train running at high speed.
[0002]
[Prior art]
Generally, when a high-speed railway vehicle such as a bullet train enters a tunnel, the air is compressed by the leading vehicle so as to push air existing in a limited space in the tunnel. The compressed air becomes a compression wave and propagates forward in the tunnel at a speed substantially equal to the speed of sound. When the compression wave reaches the exit of the tunnel, it is reflected at the exit, but a part of the compression wave is emitted as a pulse-like pressure wave from the exit of the tunnel to the outside. This pulse-shaped pressure wave is called a micro-pressure wave (tunnel micro-pressure wave). When this micro-pressure wave (pulse-like pressure wave) is radiated to the outside, explosion sound and micro-vibration are generated near the exit of the tunnel, which may affect the surrounding environment.
[0003]
Therefore, in a railway car that requires high-speed performance, the shape of the leading part of the leading car not only reduces the running resistance during so-called high-speed running, but also generates the micro-pressure wave generated when entering the tunnel as described above. It is required to have a shape that can reduce the pressure.
[0004]
In recent years, several body shapes of a leading vehicle that reduce such a micro-pressure wave have been proposed. For example,
(1) The leading area from the joint to the body having a constant cross-sectional area to the forefront is sharpened, and the length before and after the cab window (canopy) projecting toward the upper surface side of the leading area is defined as the leading area. And the cross-sectional area of the upper shoulder connected to the protruding base of the driver's cab window is smaller than the cross-sectional area of the adjacent shoulder adjacent to the upper shoulder. It is proposed to construct the body of the top part in a structure in which the cross-sectional area including the skirt part or virtual skirt part in the area excluding the suddenly changing area of the cross-sectional area is reduced in direct proportion from the joint to the forefront. (For example, see Patent Document 1).
(2) In a railway vehicle having a leading portion whose cross-sectional area in the vehicle longitudinal direction increases from the leading end of the vehicle body, the leading portion is composed of a leading end region and an intermediate region, and the leading end region corresponds to a cross-sectional area of half the maximum transverse area. The intermediate region is located at the other end in the longitudinal direction of the vehicle body from the distal end region, and the intermediate region has a cross-sectional area that changes at a constant cross-sectional area change rate, and the cross-sectional area change rate of the distal end region. Is made larger than the cross-sectional area change rate of the intermediate region. In this technique, a driver's cab is arranged in the intermediate area, and the inclination angle of the driver's cab part front window is set to an angle that does not hinder forward gaze, and is recessed below both sides of the driver's cab front window. Some have proposed forming a part (for example, see Patent Document 2).
[0005]
However, all of the techniques described in the above publications have problems in the following points. That is,
First, in any of the technologies, the cross-sectional area of the leading portion changes gradually from the leading end of the vehicle to the rear joint (joint portion with the general cross section or the maximum cross-sectional portion). In order to increase the height of the vehicle body, it is formed in a curved surface shape that is inclined slightly upward from the front end to the rear, and the front end portion is extended in a nose shape so that the inclined curved surface portion becomes as long as possible in the longitudinal direction of the vehicle body. For this reason, when manufacturing the actual body shape, a complicated shape such as an uneven portion is formed by punching out a sheet metal to be attached to the frame by welding or the like with a hammer, etc. It takes a lot of time, productivity is very low, manufacturing costs are extremely high, and the length of the front part of the vehicle body in the vehicle front-rear direction is long, so the cabin is limited and the number of passengers is reduced. .
[0006]
Secondly, in each of the technologies, the change in the cross-sectional area of the leading portion is linearly continuous from the leading end of the leading vehicle body to the rear joint. For this reason, the pressure change at a certain position in the tunnel when the railway vehicle enters the tunnel is gradually increased even if the pressure gradient is gentle. On the other hand, the speed of the compression wave propagating in the tunnel (close to the speed of sound) increases as the pressure rises. Therefore, when the distance of the tunnel is increased to some extent, the compression wave is devised by devising the shape of the head of the car body. Despite the dispersion of the pressure, the dispersed pressure is collected at the exit of the tunnel and radiated to the outside as a large pressure pulse wave (micro-pressure wave) at a time. There is a possibility that an explosion sound may be generated or vibration may occur.
[0007]
Therefore, the applicant has previously proposed a body shape of a railway leading vehicle for dispersing and reducing micro-pressure waves generated by the tunnel and the vehicle when the railway vehicle enters the tunnel (for example, Patent Document 3). Specifically, the first end of the vehicle body is tilted slightly rearward to rise upward to form a first-stage cross-sectional area increase area, and then extends substantially horizontally rearward while maintaining a substantially constant cross-sectional area. After being installed, it is tilted a little backward again and rises upward to form a second-stage cross-sectional area increase area, and the (first-stage cross-sectional area) / (second-stage cross-sectional area) The area ratio is 0.6 or more, and the interval between the first-stage and second-stage cross-sectional area increasing regions is 15 m or more.
[0008]
[Patent Document 1]
JP-A-7-89439 (pages 2 to 3)
[Patent Document 2]
JP-A-8-198105 (pages 2 to 5)
[Patent Document 3]
JP-A-11-321640 (pages 2 to 4, FIGS. 1 to 4)
[0009]
[Problems to be solved by the invention]
In order to reduce the micro-pressure wave, such a vehicle body of the leading vehicle running at a high speed is generally devised by reducing the cross-sectional area of a leading end portion where a driver's cab is formed. The general portion which is continuous with the rear end of the head portion and has a cabin space formed therein has a uniform cross-sectional area having substantially the same size as the rear end of the head portion, and the subsequent vehicle (vehicles after the second vehicle) ) Have a uniform cross-sectional area of approximately the same size.
[0010]
By the way, as shown in FIG. 8, as the cross-sectional area ratio of the vehicle body of the railway leading vehicle becomes smaller with respect to the general portion, the pressure gradient index (pressure gradient dp / dt and the reference Pressure ratio dp 0 / dt 0 ).
[0011]
Therefore, even in such a general portion, even if a step is provided to increase the cabin space and the cross-sectional area is increased, the step (the cross-sectional area change portion) is provided in the front portion (the portion continuous to the head portion). In that case, the effect of reducing the micro-pressure wave may be affected, but if it is installed in the rear part, it will have no significant effect, based on the idea that the height of the rear part and the body width Was made about 20% larger than those of the front part, and numerical simulation analysis of the micro-pressure wave was performed. (I) The degree of change of the pressure gradient index at the head part was the height of the rear part of the general part. And (ii) the peak value of the pressure gradient index in the general portion due to the increase in the height and the vehicle width of the rear portion of the general portion, Pressure gradient index peak It found that does not exceed the value (see FIG. 9 (a)). That is, even if the height and the vehicle width of the rear portion are made larger than those of the front portion in the general portion, it is considered that the influence on the micro-pressure wave is not great.
[0012]
To explain this point more specifically, the results when the height and the vehicle width of the rear part of the general part are not increased are shown by solid lines in FIG. 9A, while the height of the rear part of the general part is shown. FIG. 9A shows the result of the case where the width of the vehicle body is increased (when the cross-sectional area of the rear part is 1.2 times larger than the front part of the general part). When the cross-sectional area of the rear portion in the general portion is larger than that of the front portion, a new peak value of the pressure gradient index is generated for the cross-sectional area change portion (step portion) of the general portion. The peak value was about 60% of the peak value (maximum value) at the head portion, and it was confirmed that the peak value did not exceed it (it is considered that the peak value of the pressure gradient index determines the maximum value of the micro-pressure wave. ). In FIG. 9A, the length of the top portion is Ltop, and the length from the top to the portion where the height of the rear portion of the general portion and the vehicle width is increased is Lnon roof, (see FIG. 9B). , Lnon roof / Ltop = 1.1, 1.6, and 2.2, the results of analysis are shown. In each case, the peak value does not exceed the peak value (maximum value) of the head part. Was.
[0013]
That is, even if the height of the rear portion and the width of the vehicle body are increased in the general portion, there is almost no effect on the micro-pressure wave, and the position of the portion (step) to be increased is not considered to be a problem. Since the position of the step does not matter much, it is considered that the same effect can be obtained even if the height or the width of the following vehicle following the leading vehicle is increased.
[0014]
Therefore, the inventors increased the vehicle body height or body width of the rear part of the general part of the leading vehicle and the succeeding vehicle following the leading vehicle, thereby increasing the cross-sectional area of the part where the cabin space is formed. Even if this is done, it is possible to achieve both the effect of reducing the micro-pressure wave and the securing of a room with sufficient space, based on the idea that a room with room can be secured without impairing the effect of reducing the micro-pressure wave. The present invention has been developed.
[0015]
SUMMARY OF THE INVENTION The present invention provides a vehicle body of a railroad leading vehicle that can secure a sufficient cabin space without impairing the effect of reducing micro-pressure waves.
[0016]
[Means for Solving the Problems]
The present invention relates to a train for high-speed traveling formed by connecting a plurality of vehicles, comprising a leading vehicle in which a general portion in which a cabin space is formed is continuous behind a leading portion in which a cab is formed. A front portion in which the general portion of the leading vehicle is continuous with the rear end of the leading portion and has a substantially uniform cross-sectional area; and a body height or width that is larger than that of the front portion and substantially the same as the following vehicle Or a rear portion having a width of the vehicle body. That is, a step portion (cross-sectional area change portion) having a larger cross-sectional area than the front portion is formed at the rear portion of the front vehicle at the rear portion of the front vehicle. Here, the amount of change between the vehicle height and the vehicle width at the step portion (the portion where the cross-sectional area changes) (the amount of protrusion above the vehicle or to the left and right sides of the vehicle) does not need to be equal. It can be smaller than the width variation.
[0017]
With this configuration, the general portion where the cabin space is formed is continuous with the rear end of the head portion, and the front portion has a substantially uniform cross-sectional area. And a rear portion having substantially the same vehicle height or width as the above, a room in the rear portion can be secured with room in the height direction or the width direction.
In addition, the front portion has a rear portion where the vehicle height or width is larger than the front portion and has substantially the same vehicle height or width as the following vehicle, so that the front portion of the front portion reduces micro-pressure waves. There is no loss of effectiveness. Therefore, a room space with a margin can be secured without impairing the effect of reducing the micro-pressure wave, and it is possible to achieve both reduction of the micro-pressure wave and securing a room with a margin.
[0018]
Also, if the width of the vehicle body is made to increase linearly (proportionally) linearly (proportionally) from the vehicle head to the general part in the vehicle front-rear direction, not only in the vehicle body height direction but also in the vehicle body width direction Also, the dimensions can be adjusted to reduce the cross-sectional area ratio of the leading portion to the general portion, which is further advantageous in reducing micro-pressure waves.
[0019]
That is, if the dimensions are not changed in the vehicle width direction, it is necessary to adjust only the dimensions in the height direction of the vehicle body in order to reduce the cross-sectional area ratio of the leading portion to the general portion. On the other hand, in the vehicle width direction, if the dimensions are changed so that the width gradually increases linearly from the vehicle front (vehicle front) toward the general portion, the vehicle width decreases toward the front end, Together with the adjustment of the dimension in the height direction, it becomes much easier to reduce the cross-sectional area ratio of the leading portion to the general portion.
[0020]
Further, as described above, the step portion (the portion where the vehicle body height or the vehicle body width becomes large) does not need to be provided in the leading vehicle, but may be provided in the following vehicle. Further, the vehicle body height or the vehicle width of the vehicle itself may be larger than the vehicle body height or the vehicle width of the vehicle located on the front side thereof. In this case, a step portion whose cross-sectional area changes is located between the vehicles.
[0021]
That is, in a high-speed running train formed by connecting a plurality of vehicles as described in claim 3, any one of the following vehicles following the leading vehicle is a vehicle located ahead of the leading vehicle. A front portion having a cross-sectional area substantially equal to the cross-sectional area of the rear, and a vehicle height or a vehicle width substantially equal to a cross-sectional area of a front end of a vehicle in which a vehicle height or a vehicle width is larger than the front portion and located on the rear side. And a rear train following the leading car in a high-speed running train composed by connecting a plurality of cars as described in claim 4. However, the vehicle body height or the vehicle body width may be larger than the rear part of the vehicle located on the front side and substantially equal to the cross-sectional area of the front end of the vehicle located on the rear side.
[0022]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0023]
FIG. 1 is a side view showing a leading car of a high-speed train set which is an example of an embodiment according to the present invention, and FIG. 2 is a plan view thereof.
[0024]
As shown in FIGS. 1 and 2, the vehicle body 1 of the leading vehicle has a configuration in which a general portion Z2 in which a cabin space is formed is continuous behind a leading portion Z1 in which a driver's cab is formed. In the leading portion Z1, three cross-sectional area increase areas (in which the cross-sectional area of the vehicle body 1 changes from the head side to the rear side of the vehicle body 1 in a direction in which the cross-sectional area increases as the vehicle body height and the vehicle body width change). That is, the front, middle, and rear cross-sectional area increase areas Z11, Z12, and Z13) are provided, and the cross-sectional area is changed in three steps in the front-rear direction. A front portion Z21 in which the general portion Z2 is continuous with the rear end of the head portion Z1 and has a substantially uniform cross-sectional area, and a following vehicle (not shown) having a larger body height and width than the front portion Z21. And a rear portion Z22 having substantially the same vehicle height and width. The rear portion Z22 has substantially the same cross-sectional area as the following vehicle, and the cabin space is larger than the front portion Z21.
[0025]
An operator's cab windshield 21 is provided corresponding to an intermediate cross-sectional area increase area Z12 having a gentle cross-sectional area change rate following the cross-sectional area increase area Z11 on the front side of the leading portion Z1. And covers the upper side of the driver's seat 28. The driver's seat 28 is disposed slightly to the left of the center of the vehicle.
[0026]
Front and rear lateral passages 22 and 23 extending in the left-right direction of the vehicle are formed from the rear cross-sectional area increase area Z13 of the head part Z1 to the front part Z21 of the general part Z2. The two lateral passages 22 and 23 are connected by a longitudinal passage 24 extending in the vehicle front-rear direction on one side in the vehicle left-right direction. Doors 25, 26 for getting on and off are provided on both left and right sides of the front and rear lateral passages 22, 23 so as to be openable and closable.
[0027]
Although not specifically illustrated, various devices are arranged at both left and right portions of the vertical passage 24 and a front portion of the rear horizontal passage 23 according to the height of those portions to reduce micro-pressure waves. In such a shape (shape of the vehicle body 1), the layout of various devices can be realized without difficulty irrespective of changes in the cross-sectional area, and the driver can get on and off smoothly. That is, since the lateral passage 22 is provided on the rear side of the driver's cab, the doors 25 for getting on and off are provided on the left and right sides thereof, and various devices are arranged further on the rear side, so that when the driver gets on and off, It is possible to get on and off without passing through a portion where various devices are arranged.
[0028]
The leading portion of the body of the conventional leading vehicle is substantially bullet-shaped in plan view (see broken lines in FIGS. 1 and 2), but the leading portion Z1 of the body 1 of the present example has a vehicle width in the vehicle longitudinal direction in plan view. Has a shape that gradually increases linearly from the head toward the general portion Z2 (see solid lines in FIGS. 1 and 2).
[0029]
As described above, the cross-sectional area of the distal end portion Z1 of the vehicle body 1 changes along the vehicle front-rear direction, but the cross-sectional area increase rate of the front-side cross-sectional area Z11 is equal to that of the rear-side cross-sectional area Z13. The middle cross-sectional area increase area Z12, which is larger than the cross-sectional area increase rate, is a portion corresponding to the driver's cab, and has a smaller cross-sectional area increase rate than the front and rear cross-sectional area increase areas Z11 and Z13. The cross-sectional area increase rate is larger than that of the latter half. This results in a cross-sectional area distribution having a micro-pressure wave reduction effect.
[0030]
In order to satisfy such a cross-sectional area distribution, the vehicle body 1 changes in the vehicle body height and the vehicle body width in the vehicle body height direction and the vehicle body width direction. Then, from the front cross-sectional area increase area Z11 to the middle of the intermediate cross-sectional area increase area Z12, the width is substantially equal to the width of the cab at the center in the vehicle width direction, and the height gradually increases. Protrusions with increasing cross-sectional area are formed. The projecting portion expands in the upward and leftward directions in the rear cross-sectional area increasing region Z13 from near the intermediate portion of the intermediate cross-sectional area increasing region Z12, so that the cross-sectional area further increases, and the general portion Z2 (the front portion Z21) ) Is formed to be equal to the vehicle body height and vehicle body width.
[0031]
The shape of the vehicle body 1 described above (hereinafter, referred to as the vehicle body shape of the present invention) is not a trial and error method relating to the shape design used hitherto, but is a computational fluid analysis (CFD analysis) and an optimization design method (a genetic algorithm). ) In combination with a design technique for numerically obtaining an optimum head portion (optimal cross-sectional area distribution) at which the micro-pressure wave is reduced, and a modification thereto.
[0032]
Further, as described above, when the effect of the micro-pressure wave is analyzed by simulation at the leading portion of the vehicle body of the present invention having the three cross-sectional area increasing areas Z11, Z12, and Z13, as shown in FIG. In the case of the front part of the conventional vehicle body (see the broken line in FIG. 3), the peak value of the pressure gradient index, which is a measure of the influence of the micro-pressure wave, is one and considerably large. In this case (see the solid line 3), it was confirmed that the peak value of the pressure gradient index was reduced by three, and the magnitude of the micro-pressure wave was also significantly reduced. When the peak values (maximum values) are compared, it is confirmed that the peak value of the present invention is reduced by about 28% as compared with the conventional head portion.
[0033]
Further, in order to confirm this experimentally, a tunnel driving test was performed.
The test apparatus is configured as shown in FIG. That is, a cone-shaped vehicle model 61 (reduced-scale model) having a cross-sectional area distribution corresponding to the head portion described above is driven into a cylindrical pipe 63 simulating a tunnel at a vehicle speed by using a launching device 62 and evaluated. A pressure value at a point (not shown) is measured to measure a pressure gradient (dp / dt). In addition, 64 is a braking device.
[0034]
As is clear from FIGS. 5 (a) and 5 (b) showing the test results, the head of the present invention (see FIG. 5 (b)) is compared with the conventional head (see FIG. 5 (a)). It is confirmed that the better pressure gradient index reduction performance is obtained. In addition, the test results show that the leading part of the present invention is reduced by about 28% as compared with the conventional leading part, and is consistent with the result of the simulation analysis.
[0035]
As described above, the general portion Z2 has a configuration in which the vehicle height and the vehicle width are different between the front portion Z21 and the rear portion Z22, and a step portion 1a (inclined step portion) is provided between the portions Z21 and Z22. Is formed. As described above, the step portion 1a is formed near the rear end of the general portion Z2. However, the formation of the step portion 1a does not impair the effect of reducing the micro-pressure wave (FIG. 9A). b)). In this way, in the rear part Z22 (general part Z2) of the leading vehicle for high-speed traveling, there is a margin in the vehicle body height direction (vehicle body vertical direction) and the vehicle body width direction without impairing the effect of reducing the micro-pressure wave. There is room space available. In this cabin space, left and right seats 27L, 27R are continuously arranged at regular intervals in the front-rear direction from the front side.
[0036]
Here, in this example, the front portion Z21 has a body height of 3500 mm and a body width of 3360 mm, the rear portion Z22 has a body height of 3600 mm and a body width of 3380 mm, and the step portion 1a is about 90% of the entire vehicle length. At the rear of the head by the length of Here, it can be seen from FIG. 9A that the position where the step portion 1a is provided is the general portion Z2 and does not impair the effect of reducing the micro-pressure wave due to the change in the cross-sectional area of the leading portion Z1. .
[0037]
In addition to the above, the vehicle body of the leading railway vehicle according to the present invention may be configured as follows.
(1) In the above embodiment, the rear portion Z22 is larger in vehicle height and width than the front portion Z21, and has substantially the same vehicle height and width as the following vehicle (not shown). However, it is not necessary to make the vehicle body height and the vehicle body width the same, and it is also possible to make only one of them larger than the front part and make it the same as the following vehicle.
(2) In the above-described test (see FIGS. 4 and 5), the case where the cross-sectional area is 1.2 times is described. However, the present invention is not limited to this, and the cross-sectional area is about twice as large. It is also possible.
(3) In the above-described embodiment, three cross-sectional area increasing areas in which the cross-sectional area of the vehicle body increases from the leading side toward the rear side (that is, the cross-sectional area increasing areas Z11, Z11, Z12, Z13) are provided and applied to the leading portion whose cross-sectional area is changed in three steps in the front-rear direction. However, the present invention is not limited to this. It can be applied to a conventional vehicle body shape (see broken lines in FIGS. 1 and 2) which is almost a bullet shape in a plan view, and a leading portion of another high-speed running leading vehicle which requires an effect of reducing micro-pressure waves. Can also be applied. It should be noted that the step portion of the general portion also has an influence on the pressure gradient index for a conventional leading vehicle having a front portion in which the front portion of the front portion has a substantially bullet shape in plan view (see broken lines in FIGS. 1 and 2). It has been confirmed that it will not be given (see FIG. 6).
(4) Further, in the above-described embodiment, only one step portion 1a (a cross-sectional area change portion where the vehicle body height or the vehicle body width becomes large) is provided. It is.
(5) In the above embodiment, the step is formed at the rear of the leading vehicle. However, the step may be formed at any of the vehicles following the leading vehicle. For example, FIG. 7A shows an example in which a step portion 32a is formed in a second vehicle 32 following the leading vehicle 31.
[0038]
Further, any one of the vehicles following the leading vehicle may be formed. For example, FIG. 7B shows an example in which a step portion 42a is formed at the head of a second vehicle 42 following the head vehicle 41.
[0039]
In these cases, it is desirable that the trains are arranged symmetrically in the longitudinal direction of the train.
(6) The arrangement of the various devices in the above-described embodiment is merely an example, and the space formed between both sides of the vertical passage and between the two horizontal passages is defined by the height of the portion (passage). Various devices can be freely arranged according to the requirements.
[0040]
【The invention's effect】
The present invention is implemented as described above, and has the following effects.
[0041]
The present invention relates to a general portion that is continuous to the rear end of a head portion having a micro-pressure wave reducing effect due to a change in a cross-sectional area in a vehicle front-rear direction, and a front portion that has a substantially uniform continuous cross-sectional area at the rear end of the head portion. However, since the vehicle body height or body width is larger than the front part and the rear part is substantially the same height or body width as the following vehicle, it is formed without losing the effect of reducing micro-pressure waves. Ample room space can be secured on the side. Therefore, it is possible to achieve both reduction of the micro-pressure wave and securing of the cabin space.
[0042]
In such a case, if the width of the vehicle body gradually increases linearly from the head toward the general part in the front-rear direction of the vehicle body, the size of the head part can be measured not only in the vehicle body height direction but also in the vehicle body width direction. Can be adjusted, and the cross-sectional area ratio can be reduced with respect to the general portion, which is more advantageous in reducing micro-pressure waves.
[Brief description of the drawings]
FIG. 1 is a side view showing a leading car of a train set for high-speed traveling which is an example of an embodiment according to the present invention.
FIG. 2 is a plan view of the same.
FIG. 3 is a diagram showing a pressure gradient index serving as a guide for a micro-pressure wave.
FIG. 4 is an explanatory diagram of a test apparatus.
5A and 5B show test results obtained by the test apparatus shown in FIG. 4; FIG. 5A shows test results for a conventional body top shape; FIG. 5B shows test results for a vehicle body top shape according to the present invention; FIG.
FIG. 6 is a diagram showing a relationship between a position of a step portion in a head portion and a pressure gradient index.
FIGS. 7 (a) and 7 (b) are diagrams each showing a train set for high-speed traveling according to a modified example.
FIG. 8 is a diagram showing an influence of a step portion of a general portion on a pressure gradient index.
FIG. 9 is a diagram showing a relationship between the position of a stepped portion in a leading portion and a pressure gradient index.
[Explanation of symbols]
Z1 Front part Z2 General part Z21 Front part Z22 Rear part 1 Body 1a Step 21 Driver's cab windshield 28 Driver's seat 32a Step 42a Step

Claims (4)

複数の車両を連結して編成される高速走行用の編成列車において、
運転室が形成される先頭部分の後側に、客室空間が形成される一般部分が連続する先頭車両を備え、
前記先頭車両の一般部分が、前記先頭部分の後端に連続し横断面積がほぼ一様である前側部分と、この前側部分より車体高さ又は車体幅が大きく後続車両とほぼ同じ車体高さ又は車体幅となる後側部分とを有することを特徴とする高速走行用の編成列車。
In a high-speed running train composed by connecting a plurality of vehicles,
On the rear side of the head portion where the driver's cab is formed, there is a leading vehicle where a general portion where the cabin space is formed is continuous,
A general portion of the leading vehicle is a front portion that is continuous with the rear end of the leading portion and has a substantially uniform cross-sectional area. A knitted train for high-speed running, comprising a rear portion having a width of a vehicle body.
前記先頭車両の先頭部分は、車体幅が車体前後方向において先頭から一般部分に向かって直線的に徐々に大きくなっている請求項1記載の高速走行用の編成列車。The train set according to claim 1, wherein the width of the vehicle body at the head of the head vehicle gradually increases linearly from the head toward the general part in the vehicle front-rear direction. 複数の車両を連結して編成される高速走行用の編成列車において、
先頭車両に続く後続車両のいずれかの車両が、それより前側に位置する車両の後尾の横断面積とほぼ一様の横断面積を有する前側部分と、この前側部分より車体高さ又は車体幅が大きく後側に位置する車両の先端の横断面積とほぼ同じ車体高さ又は車体幅となる後側部分とを有することを特徴とする高速走行用の編成列車。
In a high-speed running train composed by connecting a plurality of vehicles,
Any one of the following vehicles following the leading vehicle has a front portion having a cross-sectional area substantially equal to the cross-sectional area of the rear tail of the vehicle located on the front side, and a vehicle body height or width larger than this front portion. A train for high-speed running, comprising a rear portion having a vehicle body height or a vehicle width substantially equal to a cross-sectional area of a front end of a vehicle located on a rear side.
複数の車両を連結して編成される高速走行用の編成列車において、
先頭車両に続く後続車両のいずれかの車両が、それより前側に位置する車両の後尾より車体高さ又は車体幅が大きく後側に位置する車両の先端の横断面積とほぼ同じ車体高さ又は車体幅となることを特徴とする高速走行用の編成列車。
In a high-speed running train composed by connecting a plurality of vehicles,
Any one of the following vehicles following the leading vehicle is larger in body height or body width than the tail of the vehicle located in front of it, and has substantially the same body height or body width as the cross-sectional area of the front end of the vehicle located behind. A high-speed train train characterized by its width.
JP2002340459A 2002-11-25 2002-11-25 Train train for high speed running Expired - Lifetime JP3913162B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002340459A JP3913162B2 (en) 2002-11-25 2002-11-25 Train train for high speed running

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002340459A JP3913162B2 (en) 2002-11-25 2002-11-25 Train train for high speed running

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006304676A Division JP4357522B2 (en) 2006-11-10 2006-11-10 Train train for high speed running

Publications (2)

Publication Number Publication Date
JP2004175135A true JP2004175135A (en) 2004-06-24
JP3913162B2 JP3913162B2 (en) 2007-05-09

Family

ID=32703067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002340459A Expired - Lifetime JP3913162B2 (en) 2002-11-25 2002-11-25 Train train for high speed running

Country Status (1)

Country Link
JP (1) JP3913162B2 (en)

Also Published As

Publication number Publication date
JP3913162B2 (en) 2007-05-09

Similar Documents

Publication Publication Date Title
JP4371837B2 (en) Body structure of the leading railway
JP4478633B2 (en) High speed train
JP4456557B2 (en) High speed train
CN105307917B (en) It is provided with the high-speed rail transportation instrument of streamlined head
JP2004175135A (en) Train in formation for high-speed running
JP4357522B2 (en) Train train for high speed running
JP4243657B2 (en) Body structure of the leading railway
JP3939218B2 (en) Railway head vehicle body and railway leading vehicle using the same
CN109911037A (en) Air director part for motor vehicles
US5927795A (en) Vehicle aerodynamic stability device
JP4201756B2 (en) Body structure of the leading railway
JP3685816B2 (en) Top shape of the leading vehicle that forms a high-speed train
JP4692153B2 (en) Wheel pressure resistance reduction device
JP2003063386A (en) Top part shape of rapid-transit railway rolling stock
EP0722872B2 (en) Railway vehicle
JP4243660B2 (en) Body structure of the leading railway
JP2005335512A (en) Organized train for traveling at high speed
JP3966050B2 (en) Railway vehicle vibration control device and railway vehicle
JP4749831B2 (en) Method and apparatus for reducing underfloor wind of railway vehicles
JP2000069602A (en) Collector shoe for pantograph
JP2009196446A (en) Railroad head car
JP2004066888A (en) Car body for railroad head car and railroad head car using the car body
JP2002308092A (en) Forefront part shape of high speed railway rolling stock
JP3626760B2 (en) Railway vehicle
JPH11321640A (en) Body form of head rolling stock

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060418

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060919

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070130

R150 Certificate of patent or registration of utility model

Ref document number: 3913162

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110209

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120209

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130209

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130209

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140209

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150209

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term