JP2004059948A - Method and apparatus for recovering metal from metal dissolution liquid - Google Patents

Method and apparatus for recovering metal from metal dissolution liquid Download PDF

Info

Publication number
JP2004059948A
JP2004059948A JP2002216216A JP2002216216A JP2004059948A JP 2004059948 A JP2004059948 A JP 2004059948A JP 2002216216 A JP2002216216 A JP 2002216216A JP 2002216216 A JP2002216216 A JP 2002216216A JP 2004059948 A JP2004059948 A JP 2004059948A
Authority
JP
Japan
Prior art keywords
metal
cathode
metal solution
solution
cylindrical body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002216216A
Other languages
Japanese (ja)
Inventor
Koichi Ezaki
江崎 浩一
Hidenori Shibata
柴田 英則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mishima Kosan Co Ltd
Original Assignee
Mishima Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mishima Kosan Co Ltd filed Critical Mishima Kosan Co Ltd
Priority to JP2002216216A priority Critical patent/JP2004059948A/en
Publication of JP2004059948A publication Critical patent/JP2004059948A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

<P>PROBLEM TO BE SOLVED: To recover metal ions from a metal dissolution liquid having low metal ion concentration, and to recycle the metal dissolution liquid. <P>SOLUTION: The inside of an electrolytic cell 1 into which a metal dissolution liquid comprising metal ions of ≤0.2 mol/L is introduced is provided with a copper tube 2 for a cathode. A tube rod 3 for an anode is arranged at the central part of the copper tube 2 so as to be inserted therein. An electric current is applied to the copper tube 2 and the tube rod 3 in the meanwhile when the metal dissolution liquid is made to flow to the axial direction of the copper tube 2 while swirling the same between the copper tube 2 and the tube rod 3. The metal ions in the metal dissolution liquid are electrodeposited inside the copper tube 2, and are recovered. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、金属溶解液特に金属酸洗液のような希薄金属溶解液からの金属回収方法およびその装置に関する。
【0002】
【従来の技術】
一般に、銅および銅合金を鋳造、圧延、引抜き、鍛造などの熱間または冷間加工して得られる伸銅製品は、加工後に表面清浄や表面改善のために例えば硫酸液によって洗浄される。この洗浄後の硫酸液(以下、硫酸洗液という)には、銅イオンのほかに銅合金にあっては添加金属もしくはその金属酸化物が含有されている。例えば、リン青銅の硫酸洗液では銅イオンのほかに、粒径が1〜20μmの、錫やリンの酸化物が微粒子として浮遊している。
【0003】
硫酸洗液にこのような微小な酸化物が不純物として蓄積し、あるいは硫酸洗液中の銅イオン量が一定以上に増加すると、洗浄した製品の品質に悪影響を及ぼすために、微小な酸化物は糸巻きカートリッジなどを用いて適宜濾過し取り除いている。しかし、硫酸洗液中の銅イオンはこのような濾過で除去できないため、銅イオン量が一定以上に達すると、新規硫酸液に取り替えし、使用済み液はそのほとんどが産業廃棄物として処理されている。
【0004】
一方、特開2001−20091公報および特公昭64−476号公報には、めっき液に旋回流を生ぜしめて、被めっき体とめっき液の相対速度を増加することにより、全面均一なめっき皮膜を高いめっき効率で形成することが記載されている。すなわち、特開2001−20091公報では、めっき槽内のめっき液に接触させて被めっき基板と陽極とを対向して設け、めっき槽内に供給されるめっき液を、めっき槽の中心から偏心した向きにすることで、被めっき基板と陽極との間のめっき液に旋回流を発生させ、被めっき基板に対するめっき液の相対速度を高めている。また、特公昭64−476号公報ではめっきする管端の内部においてめっき液を攪拌羽根で攪拌して旋回流を発生させている。
【0005】
しかし、特開2001−20091公報では旋回しているめっき液の中央に回転する陰極(被めっき体)を設置しており、めっき液の旋回効力は旋回半径の大きい外側にあるので、このようなめっき液では陰極の中央部には充分な旋回効力が得られない。また、上記特開2001−20091公報および特公昭64−476号公報は、いずれもめっき技術であるために、めっき液中のめっき金属イオンの濃度が上記硫酸洗液中の金属イオン濃度より十乃至数十倍も高く、かつ陰極の材質は常にめっき液中のめっき金属イオンと異なる金属からなっている。したがって、金属イオンを含有している金属溶解液から該金属イオンを回収し除去するものとは、技術思想が全く異なっている。
【0006】
【発明が解決しようとする課題】
伸銅加工品を硫酸液で洗浄したとき発生する硫酸洗液は、含有されている銅イオン量を一定以下に除去できれば、産業廃棄物として取り扱わずに再使用あるいは継続使用できる。さらに、前記硫酸洗液中の銅イオンを銅として回収できれば、回収された銅も資源として有効活用できる。
【0007】
しかしながら、これまでは上記硫酸洗液のような比較的少量の金属イオンを含有する希薄金属溶解液から金属イオンを金属として回収し除去する実用的方法は知られていない。そのため、銅イオンの含有量が限界を超えた硫酸洗液は、前記したように産業廃棄物として取り扱わざるを得ないのが実情である。
【0008】
このような硫酸洗液を産業廃棄物として処理するには、環境面から問題があるばかりでなく、その処理に多額の経費が必要であるために、コスト高騰の要因となっており、使用済み硫酸洗液から銅イオンを銅として回収し取り除くことが強く求められている。
【0009】
本発明は、このような濾過で除去できない金属イオンを含有する希薄金属溶解液から、金属イオンを電析により金属として回収し除去する方法およびその装置を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明は、前記目的を達成するために、金属イオンを含有する希薄金属溶解液から金属イオンを金属として回収し除去する方法について鋭意検討した結果、該金属イオンの回収除去に電解技術を応用し、金属イオンを陰極上に電気化学的に被着すなわち電析させることによって、金属溶解液中の金属イオンを金属として効率よく回収し除去できることを見出し完成されたもので、以下の金属溶解液からの金属回収方法およびその装置を提供する。すなわち、
1.0.2モル/L以下の金属イオンを含有する金属溶解液が導入されている電解槽内に陰極と陽極を設置し、該陰極の界面における金属溶解液の流速を速くするとともに、該陰極と陽極に電流を印加し、金属溶解液中の金属イオンを前記陰極上に電析させて回収することを特徴とする金属溶解液からの金属回収方法。
2.0.2モル/L以下の金属イオンを含有する金属溶解液が導入されている電解槽内に陰極と陽極を設置し、該陰極と陽極の一方を円筒状体とし、他方を該円筒状体の中心部分に挿通される管棒体にして、前記金属溶解液を該円筒状体と管棒体との間を旋回させながら円筒状体の軸方向に流動させる間に、該円筒状体と管棒体に電流を印加し、金属溶解液中の金属イオンを陰極上に電析させて回収する上記1の金属溶解液からの金属回収方法。
3.前記金属溶解液を電解槽から取り出した後に再び電解槽に戻し循環させる間に、金属溶解液中の金属イオンを回収する上記1または2の金属溶解液からの金属回収方法。
4.陰極を円筒状体とし、陽極を管棒体として、金属溶解液中の金属イオンを円筒状体の内面に電析させる上記1、2または3の金属溶解液からの金属回収方法。
5.電解槽内に設置した円筒状体のほぼ接線方向から金属溶解液を所定の流速で供給することにより、円筒状体内の金属溶解液に旋回流を生ぜしめる上記2〜4のいずれか一つの金属溶解液からの金属回収方法。
6.電解槽内の金属溶解液に処理すべき金属溶解液の原液を所定量づつ補充することにより、金属イオン回収後の金属溶解液をオーバーフローさせて電解槽から取り出す上記1〜5のいずれか一つの金属溶解液からの金属回収方法。
7.金属溶解液が伸銅製品の硫酸洗液である上記1〜6のいずれか一つの金属溶解液からの金属回収方法。
8.電解槽と該電解槽内に設置した陰極と陽極とを有し、該陰極と陽極の一方は円筒状体であり、他方は該円筒状体の中心部分に挿通された管棒体であり、前記電解槽は金属溶解液を円筒状体に導入するための導入管と金属溶解液を取り出すための排出管を具備し、該排出管と導入管とはポンプを介在して循環系を形成しているとともに、導入管は円筒状体の中心から偏心して設けられており、金属溶解液を該導入管から円筒状体のほぼ接線方向に供給することにより旋回流を発生させて、金属溶解液を円筒状体と管棒体との間を旋回させながら円筒状体の軸方向に流動させる間に陰極と陽極に電流を印加し、金属溶解液中の金属イオンを陰極上に電析させ回収するように構成したことを特徴とする金属溶解液からの金属回収装置。
9.陽極の電解有効長さが陰極より短く、かつ陽極の前記有効長さの端部が陰極の端部の内側に位置している上記8の金属溶解液からの金属回収装置。
10.陽極の前記有効長さの端部が、陽極と陰極との極間距離の1〜1.5倍の長さだけ陰極の端部より内側に位置している上記9の金属溶解液からの金属回収装置。
11.前記円筒状体および管棒体が電解槽に固定されないで設けられている上記8、9または10の金属溶解液からの金属回収装置。
【0011】
【発明の実施の形態】
本発明は、前記したように金属イオンを含有する金属溶解液が入っている電解槽に陰極と陽極を設置し、該陰極の界面における金属溶解液の液速度を速くするとともに、陰極と陽極に電流を印加することにより、前記金属イオンを陰極上に電析させて回収し除去することを要件としている。つまり、本発明は、金属溶解液中の金属イオンを電解処理により金属として回収し、更に金属溶解液中の金属イオン濃度を所定以下に下げて、金属溶解液を再生させるものである。
【0012】
本発明において前記金属イオンは、この金属イオンが含有されている金属溶解液から回収するに値する価値を有し、かつ陰極での電析において水素発生電位より貴な電位をもつ金属で、具体的には銅、銀、金などが例示される。特に、銅は伸銅品の製造加工において酸洗浄を実施するために、使用済み酸洗浄液の処理として銅イオンを回収し除去する必要性が大きいことから最も多く適用される。
【0013】
また、前記金属溶解液は、前記金属がイオン化した状態で溶解でき、該金属イオンを電解にて陰極上に電析できるもので、通常は前記金属もしくはその合金の酸洗浄液として使用される、例えば硫酸、塩酸、硝酸などである。例えばリン青銅の酸洗浄には通常14〜25%の硫酸液が好ましく用いられる。硫酸濃度が低すぎると、洗浄効果が劣り効率的な洗浄が得られなくなり、逆に硫酸濃度が高すぎると、均一な表面状態の酸洗効果が得られないので好ましくない。リン青銅を硫酸液で洗浄すると、硫酸洗液には銅がC++として溶解しているほかに、前記した如く錫やリンの酸化物が微粒子の状態で浮遊している。かかる酸化物は、粒径が1〜20μm程度の微小の粒子で、洗浄を重ねるに従って含有量が増大する。この含有量が一定以上になると、銅イオンの電析効率を低下させるので、含有量が多い硫酸洗液の場合にはその含有濃度を下げた後に電解処理するのが好ましい。
【0014】
本発明において、前記金属溶解液は金属イオン濃度が低い希薄金属溶解液である。この金属イオン濃度の目安としては0.2モル/L以下であり、前記硫酸洗液における銅イオン濃度はこれより更に低く通常0.05モル/L以下である。この金属イオン濃度をめっき液の金属イオン濃度と比べると、めっき液より数段に低い。金属イオン濃度が0.2モル/Lを超えても、金属イオンの電解による回収は可能であるが、本発明は金属イオン濃度の低い金属溶解液から金属イオンを金属として回収する。
【0015】
このように金属イオン濃度が低い金属溶解液から金属イオンを平滑な金属として電析させるためには、金属イオンが電析する陰極部材つまり陰極界面に対して金属溶解液の流速を大きくすることが最も有効である。低い金属イオン濃度の金属溶解液を遅い流速で電解し平滑で緻密な金属を得るには、電流密度を著しく小さくしなければならない。例えば、硫酸銅で銅めっきする場合のように、銅イオン濃度が1モル/L前後であるときは、1〜4A/dmの電流密度でよいが、本発明のようにこの銅イオン濃度が低い場合には、前記電流密度の約1/10以下でないと、緻密で平滑な銅を得ることはできない。因みにこのように低濃度の銅イオンを高い電流密度で電析させると、陰極上に海綿状態(どろどろ状態)の銅として電析し、回収作業に多大な人力や装置が必要となる。電流密度を0.2〜0.5A/dmまで下げると、海綿状態は避けられるが、電析で得られる銅は粗なものとなるために、陰極の更新頻度が多くなることは避けられない。
【0016】
このように低濃度の金属イオンを電解処理で陰極に平滑な金属として電析させるためには、前記した如く陰極界面における金属溶解液の流速度を速くすることが有効である。この陰極界面における流速度としては、0.05m/s以上が好ましく、0.2m/s以上であれば更に好ましい。金属溶解液の前記流速度が0.05m/sより小さいと、前記したように平滑な金属として回収できないとともに、電流密度も上げられなくなるため、前記金属イオンを効率よく回収することが困難となる。なお、前記流速度の上限は限定されないが、流速度を極端に大きくすると、流速度を上げるための動力を大きくしなければならないとともに、電解槽も強化しなければならない。
【0017】
一方、陰極における電流密度は金属溶解液の陰極界面における流速度とも関連し画一的には決められないが、上記流速度に対しては0.3〜3A/dm程度が好ましい。電流密度が0.3A/dmより小さくなると、電解処理時間が長くなり、また3A/dmより大きくなると、平滑な金属を電析できなくなる。したがって、陰極上に金属イオンを平滑に電析でき、かつ電析効率が上げられる最大の電流密度をこの範囲内において選定するのが好ましい。
【0018】
本発明において陰極界面の金属溶解液の流速度を大きくする手段としては、陰極界面において金属溶解液に旋回流を付与する方法を好ましい。具体的には陰極と陽極を円筒状体と該円筒状体に挿通される管棒体の組み合わせで構成し、金属溶解液の導入管を円筒状体の中心から偏心しても設け、金属溶解液を該円筒状体の内部に円筒のほぼ接線方向から供給するだけで、所望の旋回流を得ることができる。したがって、この方法は、供給時の流速を利用して金属溶解液に旋回流を生ぜしめることができるので、他の方法より装置の構造が簡素で済みかつ動力エネルギーの面でも優れている。しかし、攪拌羽根を用いて金属溶解液に旋回流を発生させてもよい。さらに、陰極界面における金属溶解液に所定の流速度さえ得られれば、必ずしも旋回流でなくてもよい。
【0019】
本発明において電解槽内に設置する陰極としては、電析する金属すなわち金属溶解液中の金属イオンと同質材料のものが好ましい。例えば、銅を電析させるときに銅製の陰極を使用すると、陰極の交換は新規な銅製陰極と取り替えるだけで済み、かつ取り替えた陰極から銅を剥さずにそのまま銅として利用できる。しかし、銅イオンと異質の例えばチタン製の陰極を用いることもでき、この場合には電析された銅を陰極から剥すことにより繰り返し使用できる。陽極としては通常チタン製の電極外面に貴金属酸化物をコーティングしたものが使用するが、黒鉛電極でもよい。
【0020】
次に、本発明の実施態様を図面に基づいて具体的に説明する。図1は本発明に係る金属回収装置の一例を示し、銅イオンを含有する金属溶解液(以下単に金属溶解液ともいう)から銅イオンを回収する装置の断面概略図であり、図2は図1のA−A部における断面図である。図1に示すようにこの金属回収装置は、上方が開放した円筒状の電解槽1の内部に円筒状の陰極用銅管(以下、銅管とする)2を設置し、該銅管2に陽極用の管棒体3を挿通してほぼ同心的に配置し、該銅管2および管棒体3にそれぞれ陰極バー8および陽極バー9を取り付けて電流が印加されるように構成されている。ここで、電解槽1は、耐酸性が強い例えば塩化ビニール製の円筒状の容器であり、陽極用の管棒体3はチタン管の外面を例えば酸化ルテニウムでコーティングしたものを使用している。
【0021】
図示はしないが、本例の電解槽1の低部には銅管2の下端部が収まるように銅管2の外径とほぼ同寸法の切り込みが設けられており、銅管2の下端を該切り込みに嵌合するだけで、銅管2の内側と外側とを簡単に画定して電解処理における金属溶解液の流動を管理しやすい構造にできる。さらに、銅管2を電解槽1に固定せずに取り付けできるので、運転終了時に銅管2を簡単に取り外しし、新規銅管を取り付けできる。もちろん、陽極用の管棒体3も同じように容易に取り外し、取り付けができる構造になっている。なお、図1の4は電解槽1の上蓋である。
【0022】
前記電解槽1の下部には金属溶解液を電解槽内に送給するための導入管5と電解槽1から取り出す排出管6が設けられており、排出管6から取り出された金属溶解液をポンプ7によって再び導入管5から電解槽1に供給し、循環させるようになっている。前記導入管5は、図2に示す如く銅管2の中心から偏心して設けられており、金属溶解液は銅管2のほぼ接線方向から所定の流速で供給される。導入管5から供給された金属溶解液は旋回流を発生し、銅管2と管棒体3の間を旋回しながら上昇する。そして、電解槽1の上部において銅管2からオーバーフローして銅管2の外側に流動し、銅管2と電解槽1の間を下降し排出管6から取り出される。
【0023】
銅管2の内部を旋回しながら上昇する金属溶解液には、前記旋回流により銅管内面に対し速い流速度が得られる。本発明は、この状態で銅管2と管棒体3に電流を印加し、金属溶解液中の銅イオンを銅管2の内面に平滑な銅として電析させて回収するものである。一回の電解処理で電着される銅イオン量は、装置の電解能力に制約されるが、ポンプ7によって金属溶解液を循環させて電解処理することにより、金属溶解液中の銅イオンを連続的に電析させて回収し、銅イオン濃度を一定以下にすることができる。
【0024】
前記電解槽1には金属溶解液の原液を補給するための供給管10と、銅イオン濃度が一定以下に下げられた金属溶解液を取り出すための取出管11が設けられている。該供給管10は排出管6の近傍に設けるのが好ましく、また取出管11は電解槽1の金属溶解液面に合わせて設けられている。このような構造により、原液を供給管10から補給すると、充分に電解処理された金属溶解液を、補給された原液分だけ前記取出管11からオーバーフローさせて自動的に取り出すことができる。原液の補給は、例えば定量ポンプ(図示せず)で電解能力に応じて所定量づつ連続してあるいは間欠的に行うが、補給量を加減することにより電解処理後の銅イオン濃度を調整できる。また、原液を排出管6の近傍から補給することにより、原液は電解槽内の金属溶解液と混ざって銅管2に供給され電解処理を受けるので、銅イオン濃度の高い金属溶解液が取出管11から取り出されるのを防止できる。
【0025】
図3は本例の陰極と陽極の好ましい実施形態を示したものである。陰極用の銅管2の内部に、陽極用の管棒体3を挿入してなる電極構造において、陽極の電解有効長さを陰極より短くすることを特徴とする。前記電極構造ではどうしても陽極端部に対応する陰極側に電流が集中するために、この部分の電着量が他の部分より多くなる。そこで、陽極の両端部を電気絶縁体でマスキングし、陽極の電解有効長さを短縮し、改善を図るものである。これを図3に基づき具体的に説明すると、管棒体3の端部12を電気絶縁体でマスキングして電解有効長さaを銅管2より短くし、該電解有効長さaの端部が銅管2の端部よりbだけ内側になるようにする。
【0026】
このマスキング長さbは、極間距離(銅管に電着してないときの極間距離)をcとしたとき、cの1〜1.5倍が好ましい。bがcの1倍より短いと、銅管2の端部における電着量が依然として相対的に多くなって、金属溶解液の液流を妨げる恐れがある。また、bがcの1.5倍より長くなると、逆に銅管2の端部の電流密度が小さくなり過ぎ、電着効率が劣るので好ましくない。bをcの1〜1.5倍の範囲にすると、両端部分における電着面は中央部の電着量より若干少なくなり、テーパー状の電着状態が得られるため、金属溶解液の液流が妨げられるのを抑制できる。
【0027】
本例では、導入管5を電解槽1の下部に設けて金属溶解液を銅管2の下方から供給しているが、導入管5を電解槽1の上部に設けるとともに銅管2の下端から金属溶解液が抜けるようにして、金属溶解液を銅管2の上方から旋回させながら下降させてもよい。それに伴って、排出管6や供給管10等の取り付け位置も適宜変える。
【0028】
また、金属溶解液の旋回流によって銅管2の内面に大きい流速度を得るために、本例のように陰極用の銅管2を金属溶解液の旋回半径が大きい外側に配置し、陽極用の管棒体3は旋回半径が小さい銅管2の中心部分に設ける方が好ましい。しかし、陰極と陽極の配置を逆にして陰極となる銅管を円筒状の陽極の内部に配置して、銅管の外側に銅イオンを電析させることもできる。
【0029】
さらに、陰極界面における金属溶解液の流速度を速くする手段は、例示した導入管5を銅管2の中心から偏心させて金属溶解液を銅管2のほぼ接線方向に所定の流速で供給することによって旋回流を発生する方法が、装置の簡素化、運転管理の容易さ、運転コストの低廉などの点で優れている。しかし、金属溶解液の流速度を速くする手段はこれに限定されないで、図示はしないが金属溶解液を回転羽根で旋回させることによって、陰極界面における流速度を速くしてもよい。
【0030】
【実施例】
(実施例1)
リン青銅を洗浄した硫酸洗液(Cu++濃度:0.06モル/L(3.5g/L)、酸化錫等の微粒子:90mg/L、硫酸:180g/L)を濾過し、酸化錫等の微粒子を約5mg/Lまで精製した後、図1および図2の電解槽に4.56L/hの流量で供給した。電解槽の直径は130mm、陽極の直径は28mm、陰極用の銅管(以下、陰極管とする)の直径(内径)は60mm、陰極管の長さは300mmとした。導入管からの硫酸洗液の流速を0.83m/s、循環流量を600L/hにして、陰極管の内側に旋回流を発生させて硫酸洗液を旋回しながら上昇せしめ、陰極電流密度1.8A/dmの電流(10A)、極間電圧約1.6V、温度50〜60℃の運転条件で336時間(14日間)連続運転した。
【0031】
この電解処理した硫酸洗液を分析した結果、Cu++濃度は1.5g/L、硫酸は183g/L、酸化錫等の微粒子量は5mg/L以下であった。一方、陰極管の質量は運転前が910gであったものが、運転終了後は3977gであり、銅の電着量は3067gであった。また、陰極管の内面には銅が平滑に電析されており、当初1.5mm厚さのものが、約11mm厚さになっていることが判明した。なお、この電解処理の電流効率は77%であった。この結果から、硫酸洗液中のCu++は電解処理により、陰極管の内面に平滑な銅として電析し回収されるとともに、処理後の硫酸洗液はCu++が一定以下に除去されて再生硫酸液として再使用できることが分かった。
【0032】
(実施例2)
実施例1と同じ硫酸洗液を沈降処理し、酸化錫等の微粒子を35mg/Lまで精製した後、図1および図2の電解槽に3.26L/hの流量で供給し、実施例1と同一条件で、336時間(14日間)連続運転した。
【0033】
この電解処理した硫酸洗液を分析した結果、Cu++濃度は1.5g/L、硫酸は183g/L、酸化錫等の微粒子量はほとんど変わらず35mg/Lであった。一方、陰極管の質量は運転前が920gであったものが、運転終了後は3110gであり、2190gの電着量であった。また、陰極管の内面には銅が平滑に電析されており、当初1.5mm厚さのものが、約8mm厚さになっていることが判明した。なお、この電解処理の電流効率は55%であった。
【0034】
この結果から明らかのように、電解処理する硫酸洗液にある程度の酸化錫等の微粒子が含有されていても、Cu++を陰極管に電析させて回収できるが、実施例1より電流効率が低い。これは酸化錫等の微粒子が複数の電荷を持ち、溶解している錫も含めて錫成分の陽極での酸化、陰極での還元が繰り返されることが主因と考えられ、酸化錫等の不純物が含まれている硫酸洗液の場合には、一定以下に精製してから電解処理する方が好ましいことが分かった。
【0035】
【発明の効果】
本発明は以上説明したように、金属イオンを含有する金属溶解液から金属イオンを電解処理により陰極上に電析させて回収するので、金属イオン濃度が比較的低い金属溶解液からも、金属イオンを低コストで回収し除去できる。これにより、回収した金属を有効に使用できるとともに、金属イオン濃度が一定以下になった金属溶解液を再使用することができるので、従来産業廃棄物として処理していた、例えば伸銅品の硫酸洗液を産業廃棄物とせずに有効活用できる。
【0036】
さらに、陰極界面における、金属溶解液の流速を速くすることによって、前記したような金属イオン濃度が低い金属溶解液から、電解処理によって金属イオンを平滑な金属として陰極上に電析させて回収できる。特に、前記金属溶解液を電解槽に供給する導入管を円筒状の陰極の中心から偏心して設け、金属溶解液を該導入管から円筒のほぼ接線方向に所定の流速で供給して旋回流を発生させることにより、陰極界面における金属溶解液の流速度を容易に速くすることができ、金属イオンを高率よく電析できる。
【図面の簡単な説明】
【図1】本発明の好ましい実施形態の一部を切断した断面図。
【図2】図1のA−A部の断面図。
【図3】好ましい実施例の電極構造の断面説明図。
【符号の説明】
1:電解槽
2:陰極銅管
3:管棒体
4:上蓋
5:導入管
6:排出管
7:ポンプ
8:陰極バー
9:陽極バー
10:供給管
11:取出管
12:管棒体の端部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a metal recovery method from a diluted metal solution such as a metal solution, particularly a metal pickling solution, and an apparatus therefor.
[0002]
[Prior art]
Generally, copper products obtained by hot or cold working such as casting, rolling, drawing, and forging of copper and copper alloys are washed with a sulfuric acid solution, for example, for surface cleaning or surface improvement after processing. The washed sulfuric acid solution (hereinafter referred to as sulfuric acid washing solution) contains an additive metal or a metal oxide thereof in addition to copper ions. For example, in a phosphor bronze sulfuric acid washing solution, in addition to copper ions, an oxide of tin or phosphorus having a particle diameter of 1 to 20 μm floats as fine particles.
[0003]
Such fine oxides accumulate as impurities in the sulfuric acid washing solution, or if the amount of copper ions in the sulfuric acid washing solution increases beyond a certain level, the quality of the washed product is adversely affected. It is filtered and removed as appropriate using a spool cartridge. However, since the copper ions in the sulfuric acid washing solution cannot be removed by such filtration, when the amount of copper ions reaches a certain level, it is replaced with a new sulfuric acid solution, and most of the used solution is treated as industrial waste. Yes.
[0004]
On the other hand, in Japanese Patent Application Laid-Open No. 2001-20091 and Japanese Patent Publication No. 64-476, a swirl flow is generated in the plating solution to increase the relative speed between the object to be plated and the plating solution, thereby increasing the overall uniform plating film. It describes that it forms with plating efficiency. That is, in Japanese Patent Laid-Open No. 2001-20091, a substrate to be plated and an anode are provided facing each other in contact with a plating solution in a plating tank, and the plating solution supplied into the plating tank is eccentric from the center of the plating tank. By making it face, a swirling flow is generated in the plating solution between the substrate to be plated and the anode, and the relative speed of the plating solution with respect to the substrate to be plated is increased. In Japanese Examined Patent Publication No. 64-476, a swirling flow is generated by stirring a plating solution with a stirring blade inside a pipe end to be plated.
[0005]
However, in Japanese Patent Application Laid-Open No. 2001-20091, a rotating cathode (to-be-plated body) is installed at the center of the rotating plating solution, and the turning effect of the plating solution is on the outside with a large turning radius. In the plating solution, a sufficient turning effect cannot be obtained at the center of the cathode. In addition, since both the above-mentioned JP-A-2001-20091 and JP-B-64-476 are plating techniques, the concentration of the plating metal ions in the plating solution is more than the metal ion concentration in the sulfuric acid washing solution. It is several tens of times higher and the cathode material is always made of a metal different from the plating metal ions in the plating solution. Therefore, the technical idea is completely different from that for recovering and removing metal ions from a metal solution containing metal ions.
[0006]
[Problems to be solved by the invention]
The sulfuric acid washing solution generated when the processed copper products are washed with a sulfuric acid solution can be reused or continuously used without being treated as industrial waste if the amount of copper ions contained therein can be removed below a certain level. Furthermore, if the copper ions in the sulfuric acid washing solution can be recovered as copper, the recovered copper can be effectively utilized as a resource.
[0007]
However, a practical method for recovering and removing metal ions as metal from a dilute metal solution containing a relatively small amount of metal ions such as the sulfuric acid washing solution has not been known so far. Therefore, the actual situation is that the sulfuric acid washing solution whose copper ion content exceeds the limit must be handled as industrial waste as described above.
[0008]
In order to treat such a sulfuric acid washing solution as industrial waste, not only is there an environmental problem, but it also requires a large amount of expenses for the treatment, which is a cause of cost increase and has been used. There is a strong demand to recover and remove copper ions from the sulfuric acid wash as copper.
[0009]
It is an object of the present invention to provide a method and apparatus for recovering and removing metal ions as metal from a dilute metal solution containing metal ions that cannot be removed by filtration.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, the present invention has intensively studied a method for recovering and removing metal ions as metal from a dilute metal solution containing metal ions, and as a result, applied electrolytic technology to recovering and removing the metal ions. The present inventors have found that metal ions in a metal solution can be efficiently recovered and removed as metal by electrochemically depositing or electrodepositing metal ions on a cathode. From the following metal solutions, A metal recovery method and apparatus thereof are provided. That is,
1. A cathode and an anode are installed in an electrolytic cell into which a metal solution containing metal ions of 0.2 mol / L or less is introduced, and the flow rate of the metal solution at the cathode interface is increased, A method for recovering a metal from a metal solution, comprising applying a current to a cathode and an anode, and depositing and recovering metal ions in the metal solution on the cathode.
2. A cathode and an anode are placed in an electrolytic cell into which a metal solution containing metal ions of 0.2 mol / L or less is introduced, and one of the cathode and anode is cylindrical, and the other is the cylinder. While the tube rod body is inserted into the center portion of the cylindrical body, the metal dissolution liquid flows in the axial direction of the cylindrical body while swirling between the cylindrical body and the tube rod body. The method for recovering a metal from the metal solution according to 1 above, wherein a current is applied to the body and the tube rod body, and metal ions in the metal solution are electrodeposited on the cathode to recover.
3. 3. The method for recovering a metal from the metal dissolving solution according to 1 or 2 above, wherein metal ions in the metal dissolving solution are recovered while the metal dissolving solution is taken out from the electrolytic vessel and then returned to the electrolytic vessel and circulated.
4). 4. A method for recovering a metal from the metal solution of 1, 2 or 3, wherein the cathode is a cylindrical body, the anode is a tube rod body, and metal ions in the metal solution are electrodeposited on the inner surface of the cylindrical body.
5). The metal according to any one of 2 to 4 above, wherein a metal solution is supplied at a predetermined flow rate from a substantially tangential direction of the cylindrical body installed in the electrolytic cell, thereby generating a swirling flow in the metal solution in the cylindrical body. Method for recovering metal from the solution.
6). By replenishing the metal solution in the electrolytic cell with a predetermined amount of a stock solution of the metal solution to be treated, the metal solution after the metal ion recovery is overflowed and taken out from the electrolytic cell. Metal recovery method from metal solution.
7). The metal collection | recovery method from the metal solution of any one of said 1-6 whose metal solution is a sulfuric acid washing solution of a copper extended product.
8). It has an electrolytic cell, a cathode and an anode installed in the electrolytic cell, one of the cathode and the anode is a cylindrical body, and the other is a tube rod inserted through the central portion of the cylindrical body, The electrolytic cell includes an introduction pipe for introducing the metal solution into the cylindrical body and a discharge pipe for taking out the metal solution, and the discharge pipe and the introduction pipe form a circulation system through a pump. In addition, the introduction tube is provided eccentrically from the center of the cylindrical body, and a swirling flow is generated by supplying the metal solution from the introduction tube in a substantially tangential direction of the cylindrical body. While flowing between the cylindrical body and tube rod body, current is applied to the cathode and anode while flowing in the axial direction of the cylindrical body, and metal ions in the metal solution are electrodeposited on the cathode and collected. An apparatus for recovering a metal from a metal solution characterized by comprising:
9. The metal recovery apparatus according to 8 above, wherein the effective electrolytic length of the anode is shorter than that of the cathode, and the end of the effective length of the anode is located inside the end of the cathode.
10. The metal from the metal solution according to 9 above, wherein the end of the effective length of the anode is located inward of the end of the cathode by a length of 1 to 1.5 times the distance between the anode and the cathode. Recovery device.
11. The metal recovery device from the above-described 8, 9 or 10 metal solution, wherein the cylindrical body and the tube rod body are provided without being fixed to the electrolytic cell.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, as described above, the cathode and the anode are installed in the electrolytic cell containing the metal solution containing metal ions, and the liquid speed of the metal solution at the interface of the cathode is increased. It is required that the metal ions be electrodeposited on the cathode to be collected and removed by applying an electric current. That is, according to the present invention, metal ions in a metal solution are recovered as a metal by electrolytic treatment, and the metal ion concentration in the metal solution is lowered to a predetermined level or lower to regenerate the metal solution.
[0012]
In the present invention, the metal ion is a metal having a value worth recovering from a metal solution containing the metal ion and having a potential higher than the hydrogen generation potential in electrodeposition at the cathode. Examples include copper, silver, and gold. In particular, copper is most often applied because it is highly necessary to recover and remove copper ions as a treatment of a used acid cleaning solution in order to carry out acid cleaning in the manufacturing process of a rolled copper product.
[0013]
Further, the metal solution can be dissolved in the state that the metal is ionized, and the metal ions can be electrodeposited on the cathode by electrolysis, and is usually used as an acid cleaning solution for the metal or an alloy thereof. Such as sulfuric acid, hydrochloric acid, nitric acid. For example, for acid cleaning of phosphor bronze, a sulfuric acid solution of 14 to 25% is usually preferably used. If the sulfuric acid concentration is too low, the cleaning effect is inferior and efficient cleaning cannot be obtained. Conversely, if the sulfuric acid concentration is too high, a uniform surface state pickling effect cannot be obtained. When phosphor bronze is washed with a sulfuric acid solution, copper is dissolved as C ++ in the sulfuric acid washing solution, and tin and phosphorus oxides are suspended in the form of fine particles as described above. Such oxide is a fine particle having a particle diameter of about 1 to 20 μm, and the content increases as washing is repeated. If this content exceeds a certain level, the electrodeposition efficiency of copper ions is lowered. Therefore, in the case of a sulfuric acid washing solution having a large content, it is preferable to perform electrolytic treatment after reducing the content concentration.
[0014]
In the present invention, the metal solution is a diluted metal solution having a low metal ion concentration. The standard of the metal ion concentration is 0.2 mol / L or less, and the copper ion concentration in the sulfuric acid washing solution is lower than this and usually 0.05 mol / L or less. Compared to the metal ion concentration of the plating solution, this metal ion concentration is several steps lower than the plating solution. Even if the metal ion concentration exceeds 0.2 mol / L, it is possible to recover metal ions by electrolysis, but the present invention recovers metal ions as metal from a metal solution having a low metal ion concentration.
[0015]
In order to deposit metal ions from a metal solution having a low metal ion concentration as a smooth metal, it is necessary to increase the flow rate of the metal solution with respect to the cathode member where the metal ions are deposited, that is, the cathode interface. Most effective. In order to obtain a smooth and dense metal by electrolyzing a metal solution having a low metal ion concentration at a low flow rate, the current density must be remarkably reduced. For example, when the copper ion concentration is around 1 mol / L as in the case of copper plating with copper sulfate, the current density may be 1 to 4 A / dm 2 , but this copper ion concentration is as in the present invention. In the case of low density, it is impossible to obtain dense and smooth copper unless the current density is about 1/10 or less. In this connection, when low concentration copper ions are electrodeposited at a high current density in this way, they are electrodeposited on the cathode as copper in a spongy state (muddy state), and much manpower and equipment are required for the recovery operation. When the current density is lowered to 0.2 to 0.5 A / dm 2 , the sponge state can be avoided, but the copper obtained by electrodeposition is coarse, so that the cathode renewal frequency cannot be increased. Absent.
[0016]
In order to deposit a low concentration of metal ions as a smooth metal on the cathode by electrolytic treatment, it is effective to increase the flow rate of the metal solution at the cathode interface as described above. The flow velocity at the cathode interface is preferably 0.05 m / s or more, and more preferably 0.2 m / s or more. If the flow rate of the metal solution is less than 0.05 m / s, it cannot be recovered as a smooth metal as described above, and the current density cannot be increased, so that it is difficult to efficiently recover the metal ions. . The upper limit of the flow velocity is not limited, but if the flow velocity is extremely increased, the power for increasing the flow velocity must be increased and the electrolytic cell must be strengthened.
[0017]
On the other hand, although no current density determined in uniform relation with the flow velocity at the cathode surface of the metal solution at the cathode, it is preferably about 0.3~3A / dm 2 for the flow rate. When the current density is smaller than 0.3 A / dm 2 , the electrolytic treatment time becomes longer. When the current density is larger than 3 A / dm 2 , smooth metal cannot be electrodeposited. Therefore, it is preferable to select the maximum current density within this range that can smoothly deposit metal ions on the cathode and increase the deposition efficiency.
[0018]
In the present invention, as a means for increasing the flow rate of the metal solution at the cathode interface, a method of imparting a swirl flow to the metal solution at the cathode interface is preferable. Specifically, the cathode and the anode are constituted by a combination of a cylindrical body and a tube rod inserted into the cylindrical body, and the metal solution introduction pipe is provided even when eccentric from the center of the cylindrical body. The desired swirling flow can be obtained simply by supplying the inside of the cylindrical body from the substantially tangential direction of the cylinder. Therefore, this method can generate a swirling flow in the metal solution using the flow velocity at the time of supply, and therefore the structure of the apparatus is simpler than the other methods and is superior in terms of power energy. However, a swirl flow may be generated in the metal solution using a stirring blade. Furthermore, the swirl flow is not necessarily required as long as a predetermined flow velocity is obtained in the metal solution at the cathode interface.
[0019]
In the present invention, the cathode to be installed in the electrolytic cell is preferably made of the same material as the metal to be electrodeposited, that is, the metal ion in the metal solution. For example, when a copper cathode is used when copper is electrodeposited, the cathode can be replaced with a new copper cathode, and can be used as copper without peeling off the copper from the replaced cathode. However, it is also possible to use a cathode made of, for example, titanium which is different from copper ions. In this case, the electrodeposited copper can be repeatedly used by peeling it from the cathode. As the anode, a titanium electrode outer surface coated with a noble metal oxide is usually used, but a graphite electrode may be used.
[0020]
Next, embodiments of the present invention will be specifically described with reference to the drawings. FIG. 1 shows an example of a metal recovery apparatus according to the present invention, which is a schematic sectional view of an apparatus for recovering copper ions from a metal solution containing copper ions (hereinafter also simply referred to as a metal solution). It is sectional drawing in the AA part of 1. FIG. As shown in FIG. 1, this metal recovery apparatus is provided with a cylindrical cathode copper tube (hereinafter referred to as a copper tube) 2 in a cylindrical electrolytic cell 1 whose upper side is open. The anode tube rod body 3 is inserted and arranged substantially concentrically, and a cathode bar 8 and an anode bar 9 are respectively attached to the copper tube 2 and the tube rod body 3 so that a current is applied. . Here, the electrolytic cell 1 is a cylindrical container made of, for example, vinyl chloride having high acid resistance, and the tube rod body 3 for the anode uses a titanium tube whose outer surface is coated with, for example, ruthenium oxide.
[0021]
Although not shown, the lower part of the electrolytic cell 1 of this example is provided with a notch having the same dimension as the outer diameter of the copper tube 2 so that the lower end of the copper tube 2 can be accommodated. By simply fitting into the notch, the inner and outer sides of the copper tube 2 can be easily defined so that the flow of the metal solution in the electrolytic process can be easily managed. Furthermore, since the copper pipe 2 can be attached without being fixed to the electrolytic cell 1, the copper pipe 2 can be easily removed at the end of operation and a new copper pipe can be attached. Of course, the tube rod body 3 for the anode can be easily removed and attached in the same manner. Reference numeral 4 in FIG. 1 denotes an upper lid of the electrolytic cell 1.
[0022]
In the lower part of the electrolytic cell 1, there are provided an introduction pipe 5 for feeding the metal solution into the electrolytic cell and a discharge pipe 6 for taking out from the electrolytic cell 1, and the metal solution taken out from the discharge pipe 6 is supplied. The pump 7 is supplied again from the introduction pipe 5 to the electrolytic cell 1 and is circulated. As shown in FIG. 2, the introduction pipe 5 is provided eccentrically from the center of the copper pipe 2, and the metal solution is supplied from the substantially tangential direction of the copper pipe 2 at a predetermined flow rate. The metal solution supplied from the introduction pipe 5 generates a swirling flow and rises while swirling between the copper pipe 2 and the tube rod body 3. Then, it overflows from the copper tube 2 in the upper part of the electrolytic cell 1 and flows to the outside of the copper tube 2, descends between the copper tube 2 and the electrolytic cell 1, and is taken out from the discharge tube 6.
[0023]
The metal solution that rises while swirling inside the copper tube 2 has a high flow velocity with respect to the inner surface of the copper tube due to the swirl flow. In this state, the present invention applies an electric current to the copper tube 2 and the tube rod body 3, and deposits and collects copper ions in the metal solution as smooth copper on the inner surface of the copper tube 2. The amount of copper ions electrodeposited by one electrolytic treatment is limited by the electrolysis ability of the apparatus, but by circulating the metal solution with the pump 7 and performing the electrolytic treatment, the copper ions in the metal solution are continuously added. It can be electrodeposited and recovered to make the copper ion concentration below a certain level.
[0024]
The electrolytic cell 1 is provided with a supply pipe 10 for replenishing a stock solution of the metal solution and an extraction pipe 11 for taking out the metal solution having a copper ion concentration lowered to a certain level. The supply pipe 10 is preferably provided in the vicinity of the discharge pipe 6, and the take-out pipe 11 is provided in accordance with the metal solution surface of the electrolytic cell 1. With such a structure, when the stock solution is replenished from the supply pipe 10, the sufficiently electrolyzed metal solution can be automatically taken out from the take-out pipe 11 by overflowing the replenished stock solution. The stock solution is replenished continuously or intermittently by a predetermined amount according to the electrolysis capacity, for example, with a metering pump (not shown), but the copper ion concentration after the electrolytic treatment can be adjusted by adjusting the replenishment amount. Further, by replenishing the stock solution from the vicinity of the discharge pipe 6, the stock solution is mixed with the metal solution in the electrolytic tank and supplied to the copper tube 2 to undergo the electrolytic treatment, so that the metal solution having a high copper ion concentration is taken out. 11 can be prevented from being taken out.
[0025]
FIG. 3 shows a preferred embodiment of the cathode and anode of this example. In the electrode structure in which the anode tube rod 3 is inserted inside the cathode copper tube 2, the effective electrolytic length of the anode is shorter than that of the cathode. In the electrode structure, the current is inevitably concentrated on the cathode side corresponding to the end portion of the anode, so that the amount of electrodeposition in this portion is larger than that in the other portions. Therefore, the both ends of the anode are masked with an electrical insulator to shorten the effective electrolytic length of the anode for improvement. This will be described in detail with reference to FIG. 3. The end 12 of the tube rod 3 is masked with an electrical insulator so that the effective electrolytic length a is shorter than the copper tube 2. Is set to be inward by b from the end of the copper tube 2.
[0026]
This masking length b is preferably 1 to 1.5 times c, where c is the distance between electrodes (distance between electrodes when not being electrodeposited on a copper tube). If b is shorter than 1 times c, the amount of electrodeposition at the end of the copper tube 2 is still relatively large, which may hinder the flow of the metal solution. On the other hand, when b is longer than 1.5 times c, the current density at the end of the copper tube 2 becomes too small, and the electrodeposition efficiency is inferior. When b is in the range of 1 to 1.5 times c, the electrodeposition surfaces at both ends are slightly smaller than the electrodeposition amount at the center, and a tapered electrodeposition state is obtained. Can be prevented.
[0027]
In this example, the introduction tube 5 is provided in the lower part of the electrolytic cell 1 and the metal solution is supplied from below the copper tube 2, but the introduction tube 5 is provided in the upper part of the electrolytic cell 1 and from the lower end of the copper tube 2. The metal solution may be lowered while swirling from above the copper tube 2 so that the metal solution is removed. Accordingly, the attachment positions of the discharge pipe 6 and the supply pipe 10 are also changed as appropriate.
[0028]
Further, in order to obtain a large flow velocity on the inner surface of the copper tube 2 by the swirling flow of the metal solution, the cathode copper tube 2 is disposed outside the swirl radius of the metal solution as in this example, and the anode solution is used for the anode. The tube rod body 3 is preferably provided at the center of the copper tube 2 having a small turning radius. However, it is also possible to reverse the arrangement of the cathode and the anode and arrange a copper tube serving as the cathode inside the cylindrical anode so that copper ions are electrodeposited outside the copper tube.
[0029]
Further, the means for increasing the flow rate of the metal solution at the cathode interface is to decenter the illustrated introduction tube 5 from the center of the copper tube 2 and supply the metal solution at a predetermined flow rate substantially in the tangential direction of the copper tube 2. Therefore, the method for generating the swirl flow is superior in terms of simplification of the apparatus, ease of operation management, and low operation cost. However, the means for increasing the flow rate of the metal solution is not limited to this, and although not shown, the flow rate at the cathode interface may be increased by rotating the metal solution with a rotating blade.
[0030]
【Example】
(Example 1)
A sulfuric acid washing solution (Cu ++ concentration: 0.06 mol / L (3.5 g / L), tin oxide fine particles: 90 mg / L, sulfuric acid: 180 g / L) washed with phosphor bronze is filtered to obtain tin oxide, etc. After refine | purifying the microparticles | fine-particles to about 5 mg / L, it supplied with the flow volume of 4.56 L / h to the electrolytic cell of FIG. 1 and FIG. The diameter of the electrolytic cell was 130 mm, the diameter of the anode was 28 mm, the diameter (inner diameter) of the cathode copper tube (hereinafter referred to as the cathode tube) was 60 mm, and the length of the cathode tube was 300 mm. The flow rate of the sulfuric acid washing solution from the introduction tube is 0.83 m / s, the circulation flow rate is 600 L / h, a swirling flow is generated inside the cathode tube, and the sulfuric acid washing solution is raised while swirling, so that the cathode current density is 1 The battery was continuously operated for 336 hours (14 days) under operating conditions of a current of 10 A / dm 2 (10 A), an interelectrode voltage of about 1.6 V, and a temperature of 50-60 ° C.
[0031]
As a result of analyzing the electrolytically treated sulfuric acid washing solution, the Cu ++ concentration was 1.5 g / L, sulfuric acid was 183 g / L, and the amount of fine particles such as tin oxide was 5 mg / L or less. On the other hand, the mass of the cathode tube was 910 g before the operation, but was 3777 g after the operation was completed, and the electrodeposition amount of copper was 3067 g. Further, it was found that copper was electrodeposited smoothly on the inner surface of the cathode tube, and the initial thickness of 1.5 mm was about 11 mm. The current efficiency of this electrolytic treatment was 77%. From this result, Cu ++ in the sulfuric acid washing solution is electrodeposited and recovered as smooth copper on the inner surface of the cathode tube by electrolytic treatment, and the treated sulfuric acid washing solution is regenerated by removing Cu ++ below a certain level. It was found that it can be reused as a sulfuric acid solution.
[0032]
(Example 2)
The same sulfuric acid washing solution as in Example 1 was subjected to sedimentation treatment, and fine particles such as tin oxide were purified to 35 mg / L, and then supplied to the electrolytic cell in FIGS. 1 and 2 at a flow rate of 3.26 L / h. Were continuously operated for 336 hours (14 days).
[0033]
As a result of analyzing this electrolytically treated sulfuric acid washing solution, the Cu ++ concentration was 1.5 g / L, sulfuric acid was 183 g / L, and the amount of fine particles such as tin oxide was 35 mg / L with almost no change. On the other hand, the mass of the cathode tube was 920 g before the operation, but was 3110 g after the operation was finished, and the electrodeposition amount was 2190 g. Further, it was found that copper was electrodeposited smoothly on the inner surface of the cathode tube, and the initial thickness of 1.5 mm was about 8 mm. The current efficiency of this electrolytic treatment was 55%.
[0034]
As is clear from this result, even if the sulfuric acid washing solution to be subjected to electrolytic treatment contains a certain amount of fine particles such as tin oxide, Cu ++ can be collected by electrodeposition on the cathode tube, but the current efficiency is higher than that of Example 1. Low. The main reason for this is that fine particles such as tin oxide have multiple charges, and oxidation of tin components including dissolved tin at the anode and reduction at the cathode are repeated. In the case of the sulfuric acid washing solution contained, it was found that it is preferable to perform the electrolytic treatment after purification to a certain level or less.
[0035]
【The invention's effect】
As described above, the present invention recovers the metal ions from the metal solution containing metal ions by electrodeposition on the cathode by electrolytic treatment. Can be recovered and removed at low cost. As a result, the recovered metal can be used effectively, and the metal solution having a metal ion concentration below a certain level can be reused. The washing solution can be used effectively without making it industrial waste.
[0036]
Furthermore, by increasing the flow rate of the metal solution at the cathode interface, metal ions can be electrodeposited on the cathode as a smooth metal and recovered from the metal solution having a low metal ion concentration as described above. . In particular, an introduction tube for supplying the metal solution to the electrolytic cell is provided eccentric from the center of the cylindrical cathode, and the metal solution is supplied from the introduction tube at a predetermined flow rate in a substantially tangential direction of the cylinder to generate a swirling flow. By generating, the flow rate of the metal solution at the cathode interface can be easily increased, and metal ions can be electrodeposited at a high rate.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a part of a preferred embodiment of the present invention.
2 is a cross-sectional view taken along a line AA in FIG.
FIG. 3 is an explanatory sectional view of an electrode structure according to a preferred embodiment.
[Explanation of symbols]
1: Electrolytic cell 2: Cathode copper tube 3: Tube rod body 4: Upper lid 5: Introduction tube 6: Discharge tube 7: Pump 8: Cathode bar 9: Anode bar 10: Supply tube 11: Extraction tube 12: Tube rod body edge

Claims (11)

0.2モル/L以下の金属イオンを含有する金属溶解液が導入されている電解槽内に陰極と陽極を設置し、該陰極の界面における金属溶解液の流速を速くするとともに、該陰極と陽極に電流を印加し、金属溶解液中の金属イオンを前記陰極上に電析させて回収することを特徴とする金属溶解液からの金属回収方法。A cathode and an anode are installed in an electrolytic cell into which a metal solution containing 0.2 mol / L or less of metal ions is introduced, and the flow rate of the metal solution at the cathode interface is increased. A method for recovering a metal from a metal solution, comprising applying an electric current to the anode and depositing metal ions in the metal solution by electrodeposition on the cathode. 0.2モル/L以下の金属イオンを含有する金属溶解液が導入されている電解槽内に陰極と陽極を設置し、該陰極と陽極の一方を円筒状体とし、他方を該円筒状体の中心部分に挿通される管棒体にして、前記金属溶解液を該円筒状体と管棒体との間を旋回させながら円筒状体の軸方向に流動させる間に、該円筒状体と管棒体に電流を印加し、金属溶解液中の金属イオンを陰極上に電析させて回収する請求項1に記載の金属溶解液からの金属回収方法。A cathode and an anode are placed in an electrolytic cell into which a metal solution containing 0.2 mol / L or less of metal ions is introduced, and one of the cathode and anode is a cylindrical body, and the other is the cylindrical body. A tube rod inserted into the central portion of the cylindrical body, and while the metal solution flows in the axial direction of the cylindrical body while swirling between the cylindrical body and the tube rod body, The method for recovering a metal from a metal solution according to claim 1, wherein a current is applied to the tube rod body, and metal ions in the metal solution are electrodeposited on the cathode to recover. 前記金属溶解液を電解槽から取り出した後に再び電解槽に戻し循環させる間に、金属溶解液中の金属イオンを回収する請求項1または2に記載の金属溶解液からの金属回収方法。The method for recovering a metal from a metal solution according to claim 1 or 2, wherein metal ions in the metal solution are recovered while the metal solution is taken out from the electrolytic cell and then returned to the electrolytic cell and circulated. 陰極を円筒状体とし、陽極を管棒体として、金属溶解液中の金属イオンを円筒状体の内面に電析させる請求項1、2または3に記載の金属溶解液からの金属回収方法。4. The method for recovering a metal from a metal solution according to claim 1, wherein the cathode is a cylindrical body, the anode is a tube rod body, and metal ions in the metal solution are electrodeposited on the inner surface of the cylindrical body. 電解槽内に設置した円筒状体のほぼ接線方向から金属溶解液を所定の流速で供給することにより、円筒状体内の金属溶解液に旋回流を生ぜしめる請求項2〜4のいずれか一つに記載の金属溶解液からの金属回収方法。The swirl flow is generated in the metal solution in the cylindrical body by supplying the metal solution at a predetermined flow rate from a substantially tangential direction of the cylindrical body installed in the electrolytic cell. The metal recovery method from the metal solution as described in 1. 電解槽内の金属溶解液に処理すべき金属溶解液の原液を所定量づつ補充することにより、金属イオン回収後の金属溶解液をオーバーフローさせて電解槽から取り出す請求項1〜5のいずれか一つに記載の金属溶解液からの金属回収方法。The metal solution in the electrolytic cell is replenished with a predetermined amount of a stock solution of the metal solution to be treated, thereby overflowing the metal solution after the metal ion recovery and taking it out of the electrolytic cell. The metal recovery method from the metal solution as described in 1. 金属溶解液が伸銅製品の硫酸洗液である請求項1〜6のいずれか一つに記載の金属溶解液からの金属回収方法。The method for recovering a metal from a metal solution according to any one of claims 1 to 6, wherein the metal solution is a sulfuric acid washing solution of a drawn copper product. 電解槽と該電解槽内に設置した陰極と陽極とを有し、該陰極と陽極の一方は円筒状体であり、他方は該円筒状体の中心部分に挿通された管棒体であり、前記電解槽は金属溶解液を円筒状体に供給するための導入管と金属溶解液を取り出すための排出管を具備し、該排出管と導入管とはポンプを介在して循環系を形成しているとともに、導入管は円筒状体の中心から偏心して設けられており、金属溶解液を該導入管から円筒状体のほぼ接線方向に供給することにより旋回流を発生させて、金属溶解液を円筒状体と管棒体との間を旋回させながら円筒状体の軸方向に流動させる間に陰極と陽極に電流を印加し、金属溶解液中の金属イオンを陰極上に電析させ回収するように構成したことを特徴とする金属溶解液からの金属回収装置。It has an electrolytic cell, a cathode and an anode installed in the electrolytic cell, one of the cathode and the anode is a cylindrical body, and the other is a tube rod inserted through the central portion of the cylindrical body, The electrolytic cell includes an introduction pipe for supplying the metal solution to the cylindrical body and a discharge pipe for taking out the metal solution, and the discharge pipe and the introduction pipe form a circulation system through a pump. In addition, the introduction tube is provided eccentrically from the center of the cylindrical body, and a swirling flow is generated by supplying the metal solution from the introduction tube in a substantially tangential direction of the cylindrical body. While flowing between the cylindrical body and tube rod body, current is applied to the cathode and anode while flowing in the axial direction of the cylindrical body, and metal ions in the metal solution are electrodeposited on the cathode and collected. An apparatus for recovering a metal from a metal solution characterized by comprising: 陽極の電解有効長さが陰極より短く、かつ陽極の前記有効長さの端部が陰極の端部の内側に位置している請求項8に記載の金属溶解液からの金属回収装置。The metal recovery device from a metal solution according to claim 8, wherein the effective electrolytic length of the anode is shorter than that of the cathode, and the end of the effective length of the anode is located inside the end of the cathode. 陽極の前記有効長さの端部が、陽極と陰極との極間距離の1〜1.5倍の長さだけ陰極の端部より内側に位置している請求項9に記載の金属溶解液からの金属回収装置。The metal solution according to claim 9, wherein the end of the effective length of the anode is located on the inner side of the end of the cathode by a length of 1 to 1.5 times the distance between the anode and the cathode. Metal recovery equipment from. 前記円筒状体および管棒体が電解槽に固定されないで設けられている請求項8、9または10に記載の金属溶解液からの金属回収装置。The metal recovery device from a metal solution according to claim 8, 9 or 10, wherein the cylindrical body and the tube rod body are provided without being fixed to the electrolytic cell.
JP2002216216A 2002-07-25 2002-07-25 Method and apparatus for recovering metal from metal dissolution liquid Pending JP2004059948A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002216216A JP2004059948A (en) 2002-07-25 2002-07-25 Method and apparatus for recovering metal from metal dissolution liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002216216A JP2004059948A (en) 2002-07-25 2002-07-25 Method and apparatus for recovering metal from metal dissolution liquid

Publications (1)

Publication Number Publication Date
JP2004059948A true JP2004059948A (en) 2004-02-26

Family

ID=31938031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002216216A Pending JP2004059948A (en) 2002-07-25 2002-07-25 Method and apparatus for recovering metal from metal dissolution liquid

Country Status (1)

Country Link
JP (1) JP2004059948A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005123605A1 (en) * 2004-06-18 2005-12-29 Ebara Corporation Equipment and method for electrolytic deposition treatment
JP2010222654A (en) * 2009-03-24 2010-10-07 Nippon Steel Engineering Co Ltd Method of pickling copper-based stock
WO2014153441A1 (en) * 2013-03-21 2014-09-25 Basf Corporation Methods of preparing metal containing inorganic ion exchangers
JP2017172007A (en) * 2016-03-24 2017-09-28 田中貴金属工業株式会社 Metal recovery device
CN108486606A (en) * 2018-03-26 2018-09-04 江南大学 A kind of cyclone electrolytic cell step recycles the method and products thereof of copper, selenium and tellurium
CN111270265A (en) * 2018-12-04 2020-06-12 格林美(江苏)钴业股份有限公司 Method and device for purifying electrodeposited cobalt solution

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005123605A1 (en) * 2004-06-18 2005-12-29 Ebara Corporation Equipment and method for electrolytic deposition treatment
JP2010222654A (en) * 2009-03-24 2010-10-07 Nippon Steel Engineering Co Ltd Method of pickling copper-based stock
WO2014153441A1 (en) * 2013-03-21 2014-09-25 Basf Corporation Methods of preparing metal containing inorganic ion exchangers
CN105188929A (en) * 2013-03-21 2015-12-23 巴斯夫公司 Methods of preparing metal containing inorganic ion exchangers
JP2017172007A (en) * 2016-03-24 2017-09-28 田中貴金属工業株式会社 Metal recovery device
WO2017164271A1 (en) * 2016-03-24 2017-09-28 田中貴金属工業株式会社 Metal recovery device
CN108486606A (en) * 2018-03-26 2018-09-04 江南大学 A kind of cyclone electrolytic cell step recycles the method and products thereof of copper, selenium and tellurium
CN108486606B (en) * 2018-03-26 2020-09-25 江南大学 Method for recycling copper, selenium and tellurium in cyclone electrolysis step mode and product thereof
CN111270265A (en) * 2018-12-04 2020-06-12 格林美(江苏)钴业股份有限公司 Method and device for purifying electrodeposited cobalt solution

Similar Documents

Publication Publication Date Title
US4097342A (en) Electroplating aluminum stock
KR101410187B1 (en) Method for producing indium hydroxide or compound containing indium hydroxide
US4159235A (en) Method and apparatus for treating metal containing waste water
CN112663119A (en) Device and method for preventing conductive roller from being plated with copper
KR20170130408A (en) Method for producing copper and apparatus for producing copper
CN100413999C (en) Method for regenerating etching solutions containing iron for the use in etching or pickling copper or copper alloys and an apparatus for carrying out said method
US4906340A (en) Process for electroplating metals
US4123340A (en) Method and apparatus for treating metal containing waste water
JP2004059948A (en) Method and apparatus for recovering metal from metal dissolution liquid
CN213977940U (en) Auxiliary groove for preventing copper plating of conductive roller at lower side of coating film
CN106587459A (en) Online recycling method for electroplating washing wastewater
JP2004524443A (en) Method and apparatus for recovering metals by pulsed cathodic current combined with anodic co-production process
CN1153855C (en) Method and device for regulating concentration of substaces in electrolytes
CN213142198U (en) Preplating tank for acidic etching waste liquid electrolysis regeneration process
CN102817061A (en) Method for cleaning cathode tubes of electrolysis coloring troughs of aluminum profiles
US4302319A (en) Continuous electrolytic treatment of circulating washings in the plating process and an apparatus therefor
JP2002129399A (en) Metal-surface treating unit and metal-surface treating method therewith
CN220579105U (en) Processing equipment for electrolytic degreasing of nonferrous metal extract
JP2002327289A (en) Method for manufacturing copper fine powder
JPH1192985A (en) Noble metal electrolytic recovering apparatus
JP3909041B2 (en) Method and apparatus for removing iron-based sludge from soluble electrode for electroplating
US4238314A (en) Continuous electrolytic treatment of circulating washings in the plating process and an apparatus therefor
JP2022543601A (en) Metal recovery from lead-containing electrolytes
JP2003171788A (en) Equipment for fractional recovery of metallic base material from object to be plated and method for fractional recovery of the same
JPH0524238B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080311

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080701