JP2004059375A - Ceramic-metal member junction body - Google Patents

Ceramic-metal member junction body Download PDF

Info

Publication number
JP2004059375A
JP2004059375A JP2002220489A JP2002220489A JP2004059375A JP 2004059375 A JP2004059375 A JP 2004059375A JP 2002220489 A JP2002220489 A JP 2002220489A JP 2002220489 A JP2002220489 A JP 2002220489A JP 2004059375 A JP2004059375 A JP 2004059375A
Authority
JP
Japan
Prior art keywords
ceramic
brazing material
metal
active metal
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002220489A
Other languages
Japanese (ja)
Inventor
Isao Hashiguchi
橋口 功
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2002220489A priority Critical patent/JP2004059375A/en
Publication of JP2004059375A publication Critical patent/JP2004059375A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/1615Shape
    • H01L2924/16152Cap comprising a cavity for hosting the device, e.g. U-shaped cap

Abstract

<P>PROBLEM TO BE SOLVED: To provide a ceramic-metal member joined body in which the joining strength of ceramic to an Ag-Cu based brazing filler metal is secured and the joining strength of a metallic member containing at least one kind of iron, nickel or cobalt to ceramic is secured to attain excellent soldered state. <P>SOLUTION: The ceramic-metal member joining body has a 0.2-1 μm thick reaction layer of at least one kind of Ti, Zr or Hf of an active metal with the ceramic and a 1-15 μm thick alloy layer of an Ag-Cu based brazing filler metal and at least one kind of iron, nickel or cobalt of the metal member. As a result, the joining strength of the ceramic material to the brazing filler metal and the joining strength of the metal member to the ceramic material are secured without causing problems such as the deterioration of brazing filler metal wettability with the increase of the melting point of the brazing filler metal caused by the alloy layer or the lowering of the reliability caused by the occurrence of crack due to the stress concentration in the brazing filler metal. That is, the problems such as the deterioration of the brazing filler metal wettability or the lowering of the reliability by the occurrence of the crack when the metal member containing at least one kind of iron, nickel or cobalt is joined to the ceramic with the Au-Cu based brazing filler containing one kind of Ti, Zr or Hf as the active metal are prevented. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は半導体素子を収容するための半導体素子収納用パッケージや回路基板・電子回路モジュール等に使用される配線基板に関し、特に絶縁基体の表面に取着された外部リード端子・ボール端子等の端子部材や放熱部材・シール部材等の金属部材の接合信頼性を高めたセラミックス−金属部材接合体に関するものである。
【0002】
【従来の技術】
半導体集積回路素子等の半導体素子を収容するための半導体素子収納用パッケージや、高周波回路や電力回路等を構成する回路基板あるいは電子回路モジュール等には、絶縁基体の表面および/または内部に配線導体を有する配線基板が使用される。また、この配線基板には、外部リード端子・ボール端子等の端子部材や放熱板・放熱フィン等の放熱部材、あるいは配線基板と蓋体とから成る容器の内部に半導体素子を気密に収容するために金属製蓋体を取着するためのシールリング等のシール部材といった金属部材が、配線基板の表面のメタライズ配線導体やメタライズ層に、あるいは配線基板の絶縁基体に直接にろう材を介して取着される。
【0003】
例えば、半導体素子収納用パッケージの場合であれば、一般にアルミナセラミックス等の電気絶縁材料から成り、その上面の略中央部に半導体素子を収容するための凹部およびこの凹部周辺から外周端にかけて導出されたタングステン・モリブデン等の高融点金属粉末から成る複数のメタライズ配線導体を有する絶縁基体としての配線基板と、半導体素子を外部電気回路に電気的に接続するためにメタライズ配線導体にAgろう等のろう材を介して取着された外部リード端子・ボール端子等の端子部材と、蓋体とから構成され、また必要に応じて金属製放熱部材等が配線基板の表面に被着されたメタライズ層にろう材を介して取着されており、配線基板の凹部の底面に半導体素子をガラスや樹脂等から成る接着剤を介して接着固定し、半導体素子の各電極とメタライズ配線導体とをボンディングワイヤを介して電気的に接続させるとともに、配線基板の上面に蓋体をガラスや樹脂等の封止材を介して接合し、配線基板と蓋体とから成る容器の内部に半導体素子を気密に封止することによって半導体装置が構成される。
【0004】
しかしながら、アルミナセラミックス等のセラミックスにおいては、焼成時に焼結収縮を引き起こすため、焼成後の寸法精度が悪く、ろう付け工程において接合位置ずれを起こしやすい。このような接合位置ずれを起こすと、ろう付けしたメタライズ配線導体やメタライズ層の端部に破壊応力が集中し、セラミックスとメタライズ配線導体やメタライズ層との界面において剥がれが生じたり、セラミックスそのものがその破壊応力に屈して破壊したりして、接合信頼性が低下するという問題があった。
【0005】
そこで、活性金属としてTi,ZrまたはHfの少なくとも1種を含有するAg−Cu系ろう材を用いて、メタライズ配線導体やメタライズ層上にではなく、セラミックスに金属部材を直接接合する手法が提案された。
【0006】
この手法では、焼成後のセラミックスにろう材ペーストを印刷し、メタライズ層を介さずにセラミックスと金属部材に直接ろう付けを行なうため、セラミックスの焼結収縮ばらつきによるメタライズ層の位置ずれを気にせずに精度良くセラミックスと金属部材とを接合することができる。
【0007】
この活性金属を用いた接合法において、セラミックスが例えば酸化物系セラミックスの場合であれば、セラミックス中の酸素とろう材中の活性金属とが反応層を形成し、それによりセラミックスと金属部材とは強固な接合強度を得る。
【0008】
ここで、活性金属を含有するAg−Cu系ろう材とセラミックスとの接合強度は、活性金属とセラミックスとの反応層の厚みに依存するため、この反応層の厚みを適正な厚みに制御する必要がある。この反応層が薄すぎると、反応層を一様に形成することが困難となり、セラミックスとろう材との濡れが悪くなるため、接合強度が著しく低くなる。逆に厚すぎても、反応層内で破壊が始まり、接合強度が低くなる。例えば、窒化物系セラミックスに金属部材を接合する場合は、特開平5−148053号公報によれば、反応層の厚みとして4〜7μmが推奨されている。ただし、反応層が連続的に形成されて均一であれば、厚みが4μm未満であっても良いとされている。
【0009】
【発明が解決しようとする課題】
しかしながら、セラミックスから成る絶縁基体の表面に、鉄,ニッケルまたはコバルトの少なくとも1種を含有する金属部材を、活性金属としてTi,ZrまたはHfの少なくとも1種を含有するAg−Cu系ろう材を介して接合した場合には、活性金属とセラミックスとの反応層(例えばアルミナセラミックスの場合であればTiと酸素との反応層)が形成されるが、それとともに、ろう材中の活性金属に対して金属部材の成分である鉄,ニッケル,コバルトの拡散速度が速いため、活性金属と鉄,ニッケルまたはコバルトの少なくとも1種とが反応してその合金層が生成されることとなる。その結果、この合金層が生成されることにより、ろう材の融点が上昇し、ろう材の濡れの劣化や、ろう材内の応力集中によるクラックの発生により、信頼性の低下等の問題が発生していた。
【0010】
本発明は上記従来技術の問題点に鑑み案出されたものであり、その目的は、セラミックスとAg−Cu系ろう材との接合強度を確保し、かつ鉄,ニッケルまたはコバルトの少なくとも1種を含有する金属部材とセラミックスとの接合強度を確保して、良好なろう付け状態のセラミックス−金属部材接合体を提供することにある。
【0011】
【課題を解決するための手段】
本発明のセラミックス−金属部材接合体は、セラミックスから成る絶縁基体の表面に、鉄,ニッケルまたはコバルトの少なくとも1種を含有する金属部材を、活性金属としてTi,ZrまたはHfの少なくとも1種を含有するAg−Cu系ろう材を介して接合して成り、このろう材と前記絶縁基体との間に前記活性金属と前記セラミックスとの反応層が形成されているとともに前記ろう材と前記金属部材との間に前記ろう材と鉄,ニッケルまたはコバルトの少なくとも1種との合金層が形成されたセラミックス−金属部材接合体において、前記反応層の厚みが0.2〜1μmであり、前記合金層の厚みが1〜15μmであることを特徴とするものである。
【0012】
本発明のセラミックス−金属部材接合体によれば、ろう材と絶縁基体との間に形成される活性金属とセラミックスとの反応層の厚みを0.2〜1μmとし、ろう材と金属部材との間に形成されるろう材と鉄,ニッケルまたはコバルトの少なくとも1種との合金層の厚みを1〜15μmとしたことにより、活性金属とセラミックスとの反応層およびろう材と金属部材との合金層をそれぞれ一様に連続して形成することが可能となるため、セラミックスとろう材の活性金属との反応層の形成不十分によるろう材の濡れ不良の発生を防止し、かつ金属部材へのろう材の濡れ性を確保することができ、また、活性金属とセラミックスとの反応層は脆弱であるため、反応層の厚みを1μm以下にすることにより、反応層とろう材あるいはセラミックスとの熱膨張差による反応層内での破壊の発生を防止し、かつ合金層の厚みを15μm以下にすることにより、合金層が厚すぎることによるろう材融点の上昇に伴うろう材濡れの劣化や、ろう材内の応力集中によるクラックの発生による信頼性の低下等の問題を防止することができる。これにより、セラミックスとろう材との接合強度を確保し、かつ金属部材とセラミックスとの接合強度を確保した、良好なろう付け状態のセラミックス−金属部材接合体を提供することが可能となる。
【0013】
【発明の実施の形態】
以下、本発明のセラミックス−金属部材接合体について詳細に説明する。
【0014】
図1は本発明のセラミックス−金属部材接合体の実施の形態の一例を示す断面図であり、この例ではセラミックパッケージとリードピンとの接合に適用した例を示している。図1において、1は活性金属ろう材、2は金属部材としてのリードピン、3はセラミックパッケージ、4は半導体素子である。セラミックパッケージ3のセラミックスから成る絶縁基体5の上面中央部には、半導体素子4を搭載するための半導体素子搭載部7を有している。
【0015】
セラミックパッケージ3を構成するセラミックスから成る絶縁基体5は、酸化アルミニウム質焼結体・ムライト質焼結体・窒化珪素質焼結体・窒化アルミニウム質焼結体・ガラスセラミックス焼結体等の電気絶縁材料から成る例えば略四角形状の板体であり、その内部に配線導体6を有している。このようなセラミックパッケージ3は、例えば以下のようにして得られる。
【0016】
絶縁基体5が酸化アルミニウム質焼結体から成る場合であれば、まず酸化アルミニウム・窒化珪素・酸化マグネシウム・酸化カルシウム等の原料粉末に適当な有機溶剤・溶媒を添加混合して泥漿状となすとともに、これを従来周知のドクターブレード法やカレンダーロール法によりシート状に成形してセラミックグリーンシート(セラミック生シート)を得る。
【0017】
次に、このセラミックグリーンシートに、導体材料粉末をペースト化した導体ペーストをスクリーン印刷法やグラビア印刷法等により印刷するか、あるいは所定パターン形状の金属箔を転写する等の方法を用いて配線導体6を形成する。導体ペーストの導体材料としては、酸化アルミニウム質焼結体に対しては、WやMo等が一般に用いられる。なお、この配線導体6には、絶縁基体5中で上下に位置する導体パターン同士を接続するためのビア導体やスルーホール導体等といった貫通導体の部分も含まれる。これら貫通導体は、例えば、パンチング加工等によりセラミック・グリーンシートに形成した貫通孔に導体ペーストを充填することによって形成される。
【0018】
次に、この配線導体6を形成したセラミックグリーンシートを複数枚積層し、高温(酸化アルミニウムの場合であれば約1600℃)で焼成することによって、セラミックパッケージ3が製作される。
【0019】
そして、セラミックパッケージ3の表面の所定部位に活性金属としてTi,ZrまたはHfの少なくとも1種を含有するAg−Cu系ろう材である活性金属ろう材1をペースト化したものをスクリーン印刷法やグラビア印刷法等により印刷し、金属部材であるリードピン2とセラミックスであるセラミックパッケージ3の絶縁基体5との接合(ろう付け)を行なう。
【0020】
セラミックスから成る絶縁基体5の表面に直接、活性金属ろう材1を介して接合される金属部材としては、リードピン2の他にも配線基板やこれを用いた半導体素子収納用パッケージ・電子回路モジュール等の仕様に応じて種々のものが用いられ、例えば、電気回路を構成するための金属回路板・金属配線板等や、外部電気回路との接続用のリード端子・ボール状端子等や、配線基板から外部に熱を放散させるための放熱板・ヒートシンク・放熱フィン等や、配線基板に金属蓋体等を取着するためのシールリング等がある。
【0021】
これら金属部材の材質は、その用途等に応じて適切なものが用いられ、例えば、リード端子やリードピン2であればFe−Ni合金・Fe−Ni−Co合金・Ni・Ni−Cu合金等が、シールリングであればFe−Ni合金・Fe−Ni−Co合金・Fe系合金等が用いられる。
【0022】
活性金属ろう材1となるAg−Cu系ろう材は、BAg−8(72質量%Ag−28質量%Cu)ろう材を始めとして、Agが60〜80質量%でCuが20〜40質量%の組成のろう材が用いられる。また、金属部材をセラミックスから成る絶縁基体5の表面に接合する活性金属ろう材1には、このAg−Cu系ろう材に、活性金属であるTi,ZrまたはHfの少なくとも1種を金属または水素化物の状態で外添加で2〜10質量%添加して含有させたものが用いられる。
【0023】
この活性金属ろう材1を介して金属部材であるリードピン2をセラミックスから成る絶縁基体5に接合するには、例えば、この活性金属ろう材1の粉末に有機溶剤・バインダ・溶媒を合わせて5〜15質量%外添加で混合して得たろう材ペーストを、絶縁基体5の表面にスクリーン印刷法等によりリードピン2に対応した所定パターンに印刷し、これにリードピン2を載置して、これを真空中または中性雰囲気中もしくは還元雰囲気中で所定温度(約800℃)で加熱処理し、活性金属ろう材1を溶融させて、絶縁基体5とリードピン2とをろう付け接合する。
【0024】
このとき、活性金属ろう材1の融点およびろう付け後の接合部の外観や反応層および合金層の厚み等を考慮して、活性金属の含有量・ボリューム・ブレージング最高到達温度や活性金属ろう材1の融点以上の温度の保持時間等を決める必要がある。その一例として、72質量%Ag−28質量%CuのいわゆるBAg−8と呼ばれるろう材に活性金属としてTiHを3質量%添加した活性金属ろう材1を用いて絶縁基体5にピン径が0.3mm,ヘッド径が0.45mm,ヘッド厚みが0.2mmのリードピン2を接合する場合ならば、活性金属ろう材1を直径を0.88mmかつ厚みを60μmとして絶縁基体5の表面に印刷し、真空炉にて最高温度795℃から850℃で5分から1時間保持すれば、良好な接合状態が得られる。
【0025】
ここで、活性金属ろう材1中の活性金属とセラミックスとの反応層の厚みおよびろう材と金属部材の鉄,ニッケルまたはコバルトの少なくとも1種との合金層の厚みは、以下のような理由から、反応層の厚みを0.2〜1μm、合金層の厚みを1〜15μmの範囲としておくことが重要である。
【0026】
反応層の厚みが0.2μmより薄いときは、反応層を絶縁基体5上に一様に形成することが困難であり、まだら模様に反応層が形成されてしまう。一般的にAg−Cu系ろう材とセラミックスから成る絶縁基体5とは濡れないため、反応層の厚みが0.2μmより薄いときは、金属部材であるリードピン2およびセラミックスから成る絶縁基体5との活性金属ろう材1の濡れが悪くなる。それにより、特にリードピン2を接合した場合では、セラミックスから成る絶縁基体5とろう材1の反応層の界面において簡単に破壊してしまうこととなる。
【0027】
逆に反応層の厚みが1μmより厚いときは、反応層と活性金属ろう材1あるいは反応層と絶縁基体5との熱膨張差が起因となり、反応層内で破壊が生じてしまい、高強度の接合状態を保てなくなる。
【0028】
また、合金層の厚みが1μmより薄いときは、活性金属を含有しないAu−Cu系ろう材とリードピン2との濡れが悪いため、リードピン2とろう材との密着が悪く、リードピン2が活性金属ろう材1からすっぽ抜けるような破壊を示す。
【0029】
逆に、合金層の厚みが15μmよりも厚いときは、金属部材に熱応力や外部応力が生じたとき、合金層とろう材の硬度が異なることから、活性金属ろう材1中の合金層にその応力が集中し、その結果、合金層を基点として破壊が生じる。
【0030】
このような活性金属ろう材1中の反応層や合金層の厚みは、波長分散型X線マイクロアナライザ(EPMA)や走査電子顕微鏡(SEM)を用いることにより、測定することができる。上述の数値は、波長分散型X線マイクロアナライザを用いて、加速電圧15kV、プローブ電流0.5×10−7Aの測定条件において、1つの試料のそれぞれ10箇所の反応層および合金層の厚みを測定し、平均化して求めたものである。
【0031】
活性金属ろう材1中の反応層の厚みおよび合金層の厚みを変え、またその比率を変えるには、セラミックスから成る絶縁基体5に活性金属ろう材1を印刷し、その上に活性金属の含有量が異なる活性金属ろう材1を印刷することにより、活性金属ろう材1中の活性金属の濃度勾配を付けて、金属部材を接合する手法が効果的である。このように活性金属ろう材1中の活性金属の濃度勾配を付ける手法としては、この他に、セラミックスから成る絶縁基体5に活性金属ろう材1を印刷し、あらかじめ活性金属の含有量が異なる活性金属ろう材1をクラッドした金属部材を接合する手法もある。
【0032】
例えば、ガラスセラミックスから成る絶縁基体5の表面に、Ag:72質量%とCu:28質量%とから成るBAg−8組成のAu−Cu系ろう材に活性金属としてのTiHおよびバインダを10質量%外添加したペースト状の活性金属ろう材1を絶縁基体5上および絶縁基体5上に印刷したろう材上にそれぞれ30μmの厚みで印刷して、Fe−Ni−Co合金製リードピン2を接合する場合であれば、絶縁基体5上に印刷する活性金属ろう材1に添加するTiH量は2〜6質量%、その活性金属ろう材1上に印刷する活性金属ろう材1に添加するTiH量は0〜6質量%で含有量が異なるものにすれば良い。
【0033】
その他、セラミックスの材料を酸化アルミニウムセラミックス等の酸化物系セラミックスや窒化アルミニウムセラミックス等の窒化物系セラミックス等の材料に変更する場合、金属部材をFe−Ni合金等に変更する場合、あるいは活性金属の種類をTiからZrやHfに変更する場合には、活性金属ろう材1に添加する活性金属の量を上記の範囲を超えて調整するか、ブレージング最高到達温度や活性金属ろう材1の融点以上の温度の保持時間を変更することにより、反応層の厚みを0.1〜1μmに、合金層の厚みを1〜15μmにすることができる。
【0034】
以上のようにして、リードピン2と絶縁基体5とを接合することにより、絶縁基体5のセラミックスと活性金属ろう材1との接合強度を確保し、かつリードピン2と絶縁基体5との接合強度を確保して、良好なろう付け状態のセラミックス−金属部材接合体を提供することが可能となる。
【0035】
セラミックパッケージ3とリードピン2との接合前あるいは接合後に、絶縁基体5の表面に形成される配線導体6ならびにメタライズ層の露出する表面には、必要に応じて、耐蝕性に優れかつAg−Cu系ろう材との濡れ性が良好なNiやAu等の金属皮膜が1〜20μmの厚みでめっき法等により被着される。
【0036】
Niめっき層は、例えばPを4〜12質量%程度含有する無電解Ni−Pめっきから成る。このようなNiめっき層は、まず、配線導体6が形成された絶縁基体5を界面活性剤と塩酸水溶液とから成る温度が25〜50℃の酸性の洗浄液に1〜5分間浸漬して配線導体6の表面を清浄とし、次にこれを純水で洗浄した後、塩化パラジウム・水酸化カリウム・エチレンジアミンテトラアセティクアシッドから成る温度が25〜40℃のパラジウム活性液中に1〜5分間程度浸漬して配線導体6の表面にパラジウム触媒を付着させ、次にこれを純水で洗浄した後、硫酸ニッケル・クエン酸ナトリウム・酢酸ナトリウム・次亜リン酸ナトリウム・塩化アンモニウムから成る温度が50〜90℃の無電解Niめっき液中に2〜60分間浸漬することによって配線導体6の表面に被着される。
【0037】
なお、Niめっき層は、その厚みが1μm未満では、絶縁基体5の表面に形成された配線導体6、図1に示す例では電極パッド8となる部位の表面を良好に被覆することができずに、配線導体6の表面に酸化や変色をきたす傾向にあり、他方、20μmを超えると、Niめっき層の内部応力によりNiめっき層にクラックや剥がれが発生してしまいやすい。したがって、Niめっき層の厚みは1〜20μmの範囲が好ましい。
【0038】
また、Niめっき層を上述のように無電解Ni−Pめっきから形成する場合は、Niめっき層中のPの含有量が4質量%未満であると、配線導体6にNiめっき層を被着させる際にNiめっきの析出速度が遅くなり、所定の厚みのNiめっき層を得るために長時間を要することとなるので生産性が極めて悪くなり、他方、12質量%を超えると、Niめっき層上に被着させるAuめっき層との反応性が悪くなり、Niめっき層をAuめっき層で良好に被覆することが困難となる傾向にある。したがって、Niめっき層中のPの含有量は、4〜12質量%の範囲が好ましい。
【0039】
特に、絶縁基体5とリードピン2との接合後に無電解めっき法によりNi−Pめっきを施すときには、活性金属ろう材1の周りの絶縁基体5上にNiめっき層が広がってしまい、隣接する配線導体6が短絡してしまう場合がある。これを防止するには、活性金属ろう材ペースト中のバインダ量を少なくして、絶縁基体5のセラミックスの表面における炭素の残留を減らして絶縁基体5の表面にNiめっきがかかる要因を減らすか、めっきの前処理の段階でセラミックスの表面をエッチングすることにより、ろう付け時に溶融・気化して活性金属ろう材1の周りのセラミックスの表面に付着したAgやCuといったろう材成分を除去することによって回避することが可能である。ここで、活性金属ろう材ペースト中のバインダ量としては、以上のような理由と印刷性の観点から、8〜12質量%外添加するのが適当である。さらに無電解めっき時の耐熱変色性の悪さを改善するために、めっき後に400℃以上で加熱処理することにより、めっき皮膜を緻密化させることが効果的である。
【0040】
そして、半導体素子搭載部7上にエポキシ樹脂や銀エポキシ樹脂等を用いて半導体素子4を搭載し、この半導体素子4上の電極と絶縁基体5の半導体素子搭載部7の近傍に形成され、配線導体6の一部として形成された電極パッド8とを金・銅・アルミニウム等の金属細線で電気的に接続した後、銅やアルミニウム等から成る金属製または酸化アルミニウム質焼結体等から成るセラミック製の蓋体9をエポキシ等の樹脂やAuSn・AuGeといった金属ろう材等による封着または溶接によって封止することによって、セラミックパッケージ3を用いた半導体装置となる。
【0041】
【実施例】
次に、本発明のセラミックス−金属部材接合体について、具体例を説明する。
【0042】
まず、ガラスセラミックスから成る絶縁基体の表面に、Ag:72質量%とCu:28質量%とから成るBAg−8組成のAu−Cu系ろう材に活性金属としてのTiHおよびバインダを10質量%外添加した活性金属ろう材ペーストをスクリーン印刷して直径0.88mmのろう材パターンを形成し、これを介して金属部材としてピン径が0.3mm,ヘッド径が0.45mm,ヘッド厚みが0.2mmのFe−Ni−Co合金製リードピンを真空炉にて最高温度800℃で15分保持することにより接合した。
【0043】
その後、このリードピンの接合強度を45°方向に10mm/分の速度で引っ張る引っ張り試験により評価した。この形状のリードピンにおいては、接合強度が15N以上あればリードピンは折り曲げに耐えうるが、15N未満しか接合強度がない場合にはリードピンに外部から力が加わったときにリードピンが折れ曲がる前に破壊してしまうため、ソケット挿入時にリードピンが取れてしまうといった不具合が発生することとなる。これより、接合強度の判断基準としては、15N以上であれば実用上問題ないとした。
【0044】
そして、Ag:72質量%とCu:28質量%とから成るBAg−8組成のAu−Cu系ろう材にTiHを表1に示す実施例1〜5のそれぞれの添加量で添加した活性金属ろう材ペーストを、絶縁基体上および絶縁基体上に印刷したろう材上にそれぞれ30μmの厚みで印刷して、Fe−Ni−Co合金製リードピンを接合し、その断面状態を観察して、ろう材の活性金属とセラミックスとの反応層の厚みおよびろう材と金属部材の鉄,ニッケルまたはコバルトの少なくとも1種との合金層の厚みを調べるとともに、引っ張り試験によりリードピンの破壊強度を測定して接合強度を評価した。
【0045】
接合部の断面状態の代表例として、実施例2のリードピンの接合部の断面SEM写真を図2に、この断面について、Ti元素でEPMA分析した結果を示す分布状態図を図3に示す。
【0046】
図2および図3において、10はリードピン、11は活性金属ろう材、11aは合金層、11bは反応層、12は絶縁基体を示している。なお、図2の写真中には、10μmの長さが目安として白線で表示されている。
【0047】
これらの図から、この接合部では、ろう材11中において、リードピン10側にろう材11と鉄,ニッケル,コバルトとの合金層であるAg−Cu−Ti−Fe−Ni−Co合金層11aが6.2μmの厚みで、また絶縁基体12側に活性金属とセラミックスとの反応層であるTi−O反応層11bが0.55μmの厚みで形成されていることが分かる。
【0048】
また、同様にして実施例1,3〜5についても断面状態を観察して、それぞれ合金層および反応層の厚みを求めた。これらの結果を表1に示す。
【0049】
【表1】

Figure 2004059375
【0050】
表1に示す結果から分かるように、実施例1〜5では、反応層の厚みが0.37〜0.92μmで、かつ合金層の厚みが3.5〜15μmであり、リードピンの接合強度(破壊強度)が15N以上であった。
【0051】
次に、反応層の厚みと合金層の厚みとの比率を変えるため、実施例1〜5と同様にして、TiHを表1に示す実施例6〜13のそれぞれの添加量で添加した活性金属ろう材を用いてリードピンを接合し、同じく反応層の厚み,合金層の厚みおよび破壊強度を求めた。
【0052】
実施例6〜13では反応層の厚みは0.33〜0.54μmで、かつ合金層の厚みは1.3〜5.6μmであり、リードピンの接合強度(破壊強度)は15N以上であった。このように絶縁基体上のろう材とその上に印刷したろう材とのTiHの添加量を変えることで合金層の厚みを薄くしたことにより、リードピンの接合強度が安定し、さらにろう材融点が合金層の周りで著しく上昇することもなく、リードピンへのろう材濡れも良好になった。
【0053】
次に、比較例として、実施例1〜13と同様にして、TiHを表1に示す比較例1〜3のそれぞれの添加量で添加した活性金属ろう材を用いてリードピンを接合し、同じく反応層の厚み,合金層の厚みおよび破壊強度を求めた。
【0054】
比較例1・2では、反応層の厚みが0.15μm以下で、かつ合金層の厚みが2μm以下であり、リードピンの破壊強度が15N以下であって簡単に破壊してしまった。
【0055】
一方、比較例3では、反応層の厚みが1.07μmで、かつ合金層の厚みが18μmであり、リードピンの破壊強度が13Nであって絶縁基体のセラミックスを抉り取るように破壊してしまった。
【0056】
以上のように、ガラスセラミックスから成る絶縁基体の表面に、Ag:72質量%とCu:28質量%とから成るBAg−8組成のAu−Cu系ろう材に活性金属としてのTiHおよびバインダを10質量%外添加したペースト状の活性金属ろう材を絶縁基体上および絶縁基体上に印刷したろう材上にそれぞれ30μmの厚みで印刷して、Fe−Ni−Co合金製リードピンを接合する場合であれば、絶縁基体上に印刷する活性金属ろう材に添加するTiH量は2〜6質量%、その活性金属ろう材上に印刷する活性金属ろう材に添加するTiH量は0〜6質量%で含有量が異なるものにすれば良い。
【0057】
特に、反応層と合金層との厚みの比率を変えたいときは、活性金属ろう材中で活性金属の濃度勾配をつけて金属部材とセラミックスから成る絶縁基体とを接合すればよい。
【0058】
その他、セラミックスの材料をガラスセラミックス以外の材料、例えば酸化アルミニウムセラミックス等の酸化物系セラミックスや窒化アルミニウムセラミックス等の窒化物系セラミックスに変更する場合、金属部材をFe−Ni合金等に変更する場合、あるいは活性金属の種類をTiからZrやHfに変更する場合には、活性金属ろう材に添加する活性金属の量を上記の範囲を超えて調整するか、ブレージング最高到達温度や活性金属ろう材の融点以上の温度の保持時間を変更することにより、同様に反応層の厚みを0.1〜1μmに、合金層の厚みを1〜15μmにして良好な接合状態を得ることができた。
【0059】
なお、本発明は以上の実施の形態の例に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の変更を加えることは何ら差し支えない。
【0060】
【発明の効果】
本発明のセラミックス−金属部材接合体によれば、ろう材と絶縁基体との間に形成される活性金属とセラミックスとの反応層の厚みを0.2〜1μmとし、ろう材と金属部材との間に形成されるろう材と鉄,ニッケルまたはコバルトの少なくとも1種との合金層の厚みを1〜15μmとしたことにより、活性金属とセラミックスとの反応層およびろう材と金属部材との合金層をそれぞれ一様に連続して形成することが可能となるため、セラミックスとろう材の活性金属との反応層の形成不十分によるろう材の濡れ不良の発生を防止し、かつ金属部材へのろう材の濡れ性を確保することができ、また、活性金属とセラミックスとの反応層は脆弱であるため、反応層の厚みを1μm以下にすることにより、反応層とろう材あるいはセラミックスとの熱膨張差による反応層内での破壊の発生を防止することができ、かつ合金層厚みを15μm以下にすることにより、合金層が厚すぎることが原因となるろう材融点の上昇に伴うろう材濡れの劣化や、ろう材内の応力集中によるクラックの発生による、信頼性の低下等の問題を発生させることなく、セラミックスとAg−Cu系ろう材との接合強度を確保し、かつ鉄,ニッケルまたはコバルトの少なくとも1種を含有する金属部材とセラミックスとの接合強度を確保して、良好なろう付け状態のセラミックス−金属部材接合体を提供することができる。
【図面の簡単な説明】
【図1】本発明のセラミックス−金属部材接合体の実施の形態の一例を示す断面図である。
【図2】本発明のセラミックス−金属部材接合体における絶縁基体とろう材とリードピンとの接合部の断面状態の例を示す断面SEM写真である。
【図3】図2に示した断面についてTi元素をEPMA分析した結果を示す分布状態図である。
【符号の説明】
1・・・・活性金属ろう材
2・・・・リードピン
3・・・・セラミックパッケージ
4・・・・半導体素子
5・・・・絶縁基体
6・・・・配線導体
7・・・・半導体素子搭載部
10・・・・Fe−Ni−Co合金製リードピン
11・・・・Ag−Cu−Tiろう材
11a・・・・Ag−Cu−Ti−Fe−Ni−Co合金層
11b・・・・Ti−O反応層
12・・・・ガラスセラミックスから成る絶縁基体[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a semiconductor element housing package for housing a semiconductor element, a wiring board used for a circuit board, an electronic circuit module, and the like, and particularly to terminals such as external lead terminals and ball terminals attached to the surface of an insulating base. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ceramic-metal member joined body having improved joining reliability of a metal member such as a member, a heat radiating member and a seal member.
[0002]
[Prior art]
2. Description of the Related Art A semiconductor element housing package for housing a semiconductor element such as a semiconductor integrated circuit element, a circuit board or an electronic circuit module constituting a high-frequency circuit, a power circuit, or the like is provided with wiring conductors on the surface and / or inside of an insulating base. Is used. In addition, the wiring board is used to hermetically house the semiconductor element inside a terminal member such as an external lead terminal or a ball terminal, a heat radiating member such as a heat radiating plate or a heat radiating fin, or a container including a wiring board and a lid. A metal member such as a seal member such as a seal ring for attaching a metal lid to the metallized wiring conductor or metallized layer on the surface of the wiring board, or directly to the insulating base of the wiring board via a brazing material. Be worn.
[0003]
For example, in the case of a package for housing a semiconductor element, it is generally made of an electrically insulating material such as alumina ceramics, and is led out from the periphery of the recess to the outer peripheral end at a substantially central portion of the upper surface thereof for housing the semiconductor element. A wiring board as an insulating base having a plurality of metallized wiring conductors made of a refractory metal powder such as tungsten and molybdenum; and a brazing material such as Ag braze for the metallized wiring conductors for electrically connecting the semiconductor element to an external electric circuit A terminal member such as an external lead terminal or a ball terminal attached via a cover and a cover, and a metal heat radiating member or the like may be provided on the metallized layer attached to the surface of the wiring board as necessary. The semiconductor element is attached to the bottom of the concave portion of the wiring board with an adhesive made of glass, resin, or the like. Each electrode of the child and the metallized wiring conductor are electrically connected via a bonding wire, and a lid is joined to the upper surface of the wiring board via a sealing material such as glass or resin, so that the wiring board and the lid are connected to each other. A semiconductor device is formed by hermetically sealing a semiconductor element inside a container made of the following.
[0004]
However, since ceramics such as alumina ceramics cause sintering shrinkage during firing, the dimensional accuracy after firing is poor, and the bonding position is likely to shift during the brazing process. When such misalignment occurs, destructive stress concentrates on the ends of the brazed metallized wiring conductors and metallized layers, and peels off at the interface between the ceramic and the metallized wiring conductors or metallized layers, or the ceramics itself may be damaged. There has been a problem that the joint reliability is reduced due to the fracture due to the breaking stress.
[0005]
In view of this, a method has been proposed in which an Ag-Cu-based brazing material containing at least one of Ti, Zr, and Hf as an active metal is used to directly join a metal member to ceramics, not to a metallized wiring conductor or a metallized layer. Was.
[0006]
In this method, the brazing paste is printed on the ceramic after firing, and the brazing is performed directly on the ceramic and metal members without using a metallized layer. The ceramic and the metal member can be joined with high precision.
[0007]
In the joining method using the active metal, if the ceramic is, for example, an oxide ceramic, the oxygen in the ceramic and the active metal in the brazing material form a reaction layer, whereby the ceramic and the metal member are separated from each other. Obtain strong bonding strength.
[0008]
Here, since the bonding strength between the Ag-Cu brazing filler metal containing the active metal and the ceramic depends on the thickness of the reaction layer between the active metal and the ceramic, it is necessary to control the thickness of this reaction layer to an appropriate thickness. There is. If the reaction layer is too thin, it becomes difficult to form the reaction layer uniformly, and the wettability between the ceramic and the brazing material is deteriorated, so that the bonding strength is significantly reduced. Conversely, if it is too thick, breakage will start in the reaction layer, and the bonding strength will decrease. For example, when joining a metal member to a nitride ceramic, according to Japanese Patent Application Laid-Open No. 5-148053, a thickness of the reaction layer of 4 to 7 μm is recommended. However, if the reaction layer is formed continuously and is uniform, the thickness may be less than 4 μm.
[0009]
[Problems to be solved by the invention]
However, a metal member containing at least one of iron, nickel and cobalt is provided on the surface of an insulating base made of ceramics via an Ag-Cu-based brazing material containing at least one of Ti, Zr and Hf as an active metal. When bonded together, a reaction layer between the active metal and the ceramic (for example, in the case of alumina ceramics, a reaction layer between Ti and oxygen) is formed. Since the diffusion rate of iron, nickel, and cobalt as components of the metal member is high, the active metal reacts with at least one of iron, nickel, and cobalt to form an alloy layer thereof. As a result, the formation of this alloy layer raises the melting point of the brazing filler metal, causing problems such as deterioration of the wetting of the brazing filler metal and cracks due to stress concentration in the brazing filler metal. Was.
[0010]
The present invention has been devised in view of the above-mentioned problems of the prior art, and has as its object to secure the bonding strength between ceramics and an Ag-Cu-based brazing material and to use at least one of iron, nickel, and cobalt. An object of the present invention is to provide a ceramic-metal member joined body in a good brazed state by securing the joining strength between the contained metal member and the ceramic.
[0011]
[Means for Solving the Problems]
The ceramic-metal member joined body of the present invention includes a metal member containing at least one of iron, nickel and cobalt on a surface of an insulating base made of ceramics, and at least one of Ti, Zr and Hf as an active metal. And a reaction layer of the active metal and the ceramic is formed between the brazing material and the insulating base, and the brazing material and the metal member are joined together. Wherein the thickness of the reaction layer is 0.2 to 1 μm, wherein the alloy layer of the brazing material and at least one of iron, nickel and cobalt is formed between the alloy layers. The thickness is 1 to 15 μm.
[0012]
According to the joined body of ceramics and metal member of the present invention, the thickness of the reaction layer between the active metal and the ceramic formed between the brazing material and the insulating substrate is set to 0.2 to 1 μm, The thickness of the alloy layer between the brazing material and at least one of iron, nickel and cobalt is 1 to 15 μm, so that the reaction layer between the active metal and the ceramic and the alloy layer between the brazing material and the metal member are formed. Can be formed uniformly and continuously, thereby preventing the occurrence of poor wetting of the brazing material due to insufficient formation of a reaction layer between the ceramics and the active metal of the brazing material, and brazing to the metal member. Since the wettability of the material can be ensured, and the reaction layer between the active metal and the ceramic is brittle, the thickness of the reaction layer is set to 1 μm or less to make the reaction layer By preventing the occurrence of destruction in the reaction layer due to the difference in expansion and making the thickness of the alloy layer 15 μm or less, the deterioration of the brazing material wetting due to the increase in the melting point of the brazing material due to the excessively thick alloy layer, Problems such as a decrease in reliability due to cracks due to stress concentration in the material can be prevented. Accordingly, it is possible to provide a ceramic-metal member joined body in a good brazed state in which the joining strength between the ceramic and the brazing material is secured and the joining strength between the metal member and the ceramic is secured.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the ceramic-metal member joined body of the present invention will be described in detail.
[0014]
FIG. 1 is a cross-sectional view showing an example of an embodiment of a ceramic-metal member joined body of the present invention, and this example shows an example applied to joining of a ceramic package and a lead pin. In FIG. 1, 1 is an active metal brazing material, 2 is a lead pin as a metal member, 3 is a ceramic package, and 4 is a semiconductor element. A semiconductor element mounting portion 7 for mounting the semiconductor element 4 is provided at the center of the upper surface of the insulating base 5 made of ceramics of the ceramic package 3.
[0015]
The insulating base 5 made of ceramics constituting the ceramic package 3 is electrically insulated from a sintered body of aluminum oxide, a sintered body of mullite, a sintered body of silicon nitride, a sintered body of aluminum nitride, a sintered body of glass ceramic, or the like. It is, for example, a substantially rectangular plate made of a material, and has a wiring conductor 6 therein. Such a ceramic package 3 is obtained, for example, as follows.
[0016]
If the insulating substrate 5 is made of an aluminum oxide sintered body, first, an appropriate organic solvent / solvent is added to and mixed with a raw material powder such as aluminum oxide / silicon nitride / magnesium oxide / calcium oxide to form a slurry. This is formed into a sheet by a conventionally known doctor blade method or calendar roll method to obtain a ceramic green sheet (ceramic green sheet).
[0017]
Next, a conductor paste obtained by pasting a conductor material powder onto the ceramic green sheet is printed by a screen printing method, a gravure printing method, or the like, or a wiring conductor is transferred by using a method of transferring a metal foil having a predetermined pattern shape. 6 is formed. As the conductor material of the conductor paste, W or Mo is generally used for an aluminum oxide sintered body. The wiring conductor 6 includes a portion of a through conductor such as a via conductor or a through-hole conductor for connecting conductor patterns located above and below in the insulating base 5. These through conductors are formed, for example, by filling a through hole formed in a ceramic green sheet by punching or the like with a conductive paste.
[0018]
Next, a plurality of ceramic green sheets on which the wiring conductors 6 are formed are stacked and fired at a high temperature (about 1600 ° C. in the case of aluminum oxide), whereby the ceramic package 3 is manufactured.
[0019]
Then, an active metal brazing material 1 which is an Ag-Cu-based brazing material containing at least one of Ti, Zr and Hf as an active metal is pasted at a predetermined position on the surface of the ceramic package 3 and is screen-printed or gravure-processed. Printing is performed by a printing method or the like, and bonding (brazing) between the lead pins 2 as a metal member and the insulating base 5 of the ceramic package 3 as a ceramic is performed.
[0020]
Examples of the metal member directly bonded to the surface of the insulating base 5 made of ceramics via the active metal brazing material 1 include a wiring board, a semiconductor element housing package and an electronic circuit module using the same in addition to the lead pin 2. Various types are used in accordance with the specifications of, for example, a metal circuit board and a metal wiring board for forming an electric circuit, a lead terminal and a ball-shaped terminal for connection to an external electric circuit, and a wiring board. There are a radiator plate, a heat sink, a radiator fin, and the like for dissipating heat to the outside, and a seal ring for attaching a metal cover or the like to the wiring board.
[0021]
As the material of these metal members, an appropriate material is used according to the use or the like. For example, in the case of a lead terminal or a lead pin 2, an Fe-Ni alloy, an Fe-Ni-Co alloy, Ni, Ni-Cu alloy, or the like is used. For a seal ring, an Fe-Ni alloy, an Fe-Ni-Co alloy, an Fe-based alloy, or the like is used.
[0022]
Ag-Cu-based brazing material to be the active metal brazing material 1 includes BAg-8 (72% by mass Ag-28% by mass Cu) brazing material, Ag is 60 to 80% by mass, and Cu is 20 to 40% by mass. Is used. The active metal brazing material 1 that joins a metal member to the surface of the insulating base 5 made of ceramic includes, in addition to the Ag-Cu-based brazing material, at least one of the active metals Ti, Zr or Hf as a metal or hydrogen. What is added is 2 to 10% by mass of the compound in the form of a compound.
[0023]
In order to join the lead pin 2, which is a metal member, to the insulating base 5 made of ceramics via the active metal brazing material 1, for example, an organic solvent, a binder, and a solvent are added to the powder of the active metal brazing material 5 to form a joint. A brazing material paste obtained by mixing with an addition of 15% by mass is printed on the surface of the insulating substrate 5 in a predetermined pattern corresponding to the lead pins 2 by a screen printing method or the like. Heat treatment is performed at a predetermined temperature (about 800 ° C.) in a neutral or neutral atmosphere or a reducing atmosphere to melt the active metal brazing material 1 and braze and join the insulating base 5 and the lead pins 2.
[0024]
At this time, in consideration of the melting point of the active metal brazing material 1, the appearance of the joint after brazing, the thickness of the reaction layer and the alloy layer, etc., the content of the active metal, the maximum attained volume / brazing temperature, the active metal brazing material, It is necessary to determine a holding time at a temperature equal to or higher than the melting point of 1, for example. As an example, a brazing material called BAg-8 of 72 mass% Ag-28 mass% Cu has TiH as an active metal. 2 If the lead pin 2 having a pin diameter of 0.3 mm, a head diameter of 0.45 mm, and a head thickness of 0.2 mm is joined to the insulating base 5 using the active metal brazing material 1 to which 3% by mass of If the brazing material 1 is printed on the surface of the insulating substrate 5 with a diameter of 0.88 mm and a thickness of 60 μm and held in a vacuum furnace at a maximum temperature of 795 ° C. to 850 ° C. for 5 minutes to 1 hour, a good bonding state can be obtained. .
[0025]
Here, the thickness of the reaction layer between the active metal and the ceramic in the active metal brazing material 1 and the thickness of the alloy layer of the brazing material and at least one of iron, nickel and cobalt of the metal member are determined for the following reasons. It is important that the thickness of the reaction layer is in the range of 0.2 to 1 μm and the thickness of the alloy layer is in the range of 1 to 15 μm.
[0026]
When the thickness of the reaction layer is smaller than 0.2 μm, it is difficult to uniformly form the reaction layer on the insulating substrate 5, and the reaction layer is formed in a mottled pattern. In general, since the Ag-Cu brazing material and the insulating base 5 made of ceramics do not wet, when the thickness of the reaction layer is smaller than 0.2 μm, the contact between the lead pin 2 as a metal member and the insulating base 5 made of ceramics may occur. The wetting of the active metal brazing material 1 becomes worse. Thus, particularly when the lead pins 2 are joined, the lead pins 2 are easily broken at the interface between the insulating substrate 5 made of ceramics and the reaction layer of the brazing material 1.
[0027]
Conversely, when the thickness of the reaction layer is greater than 1 μm, a difference in thermal expansion between the reaction layer and the active metal brazing material 1 or between the reaction layer and the insulating substrate 5 causes breakage in the reaction layer, resulting in high strength. The bonded state cannot be maintained.
[0028]
When the thickness of the alloy layer is thinner than 1 μm, the Au—Cu-based brazing material containing no active metal and the lead pin 2 have poor wettability. This indicates a breakage that allows the brazing material 1 to slip through.
[0029]
Conversely, when the thickness of the alloy layer is greater than 15 μm, when thermal stress or external stress occurs in the metal member, the hardness of the alloy layer differs from that of the brazing material. The stress is concentrated, and as a result, a fracture starts from the alloy layer.
[0030]
The thickness of the reaction layer or the alloy layer in the active metal brazing material 1 can be measured by using a wavelength dispersive X-ray microanalyzer (EPMA) or a scanning electron microscope (SEM). The above values were obtained by using a wavelength-dispersive X-ray microanalyzer with an acceleration voltage of 15 kV and a probe current of 0.5 × 10 -7 Under the measurement conditions of A, the thicknesses of the reaction layer and the alloy layer at 10 points of one sample were measured and averaged.
[0031]
In order to change the thickness of the reaction layer and the thickness of the alloy layer in the active metal brazing material 1 and to change the ratio thereof, the active metal brazing material 1 is printed on an insulating substrate 5 made of ceramics, and the active metal brazing material is contained thereon. An effective method is to print the active metal brazing materials 1 having different amounts to give a concentration gradient of the active metal in the active metal brazing material 1 and join the metal members. As a method of giving the concentration gradient of the active metal in the active metal brazing material 1 as described above, besides this, the active metal brazing material 1 is printed on an insulating substrate 5 made of ceramics, and the active metal content is different in advance. There is also a method of joining metal members clad with the brazing metal 1.
[0032]
For example, on the surface of an insulating substrate 5 made of glass ceramic, an Au-Cu-based brazing material having a BAg-8 composition consisting of 72% by mass of Ag and 28% by mass of Cu is added to TiH as an active metal. 2 And a paste-like active metal brazing material 1 to which a binder is added by 10% by mass is printed on the insulating substrate 5 and the brazing material printed on the insulating substrate 5 with a thickness of 30 μm, respectively, and is made of an Fe—Ni—Co alloy. If the lead pins 2 are to be joined, TiH added to the active metal brazing material 1 to be printed on the insulating substrate 5 2 The amount is 2 to 6% by mass, and TiH added to the active metal brazing material 1 to be printed on the active metal brazing material 1 2 The amount may be 0 to 6% by mass and the content may be different.
[0033]
In addition, when the ceramic material is changed to a material such as an oxide ceramic such as an aluminum oxide ceramic or a nitride ceramic such as an aluminum nitride ceramic, a metal member is changed to an Fe-Ni alloy, or an active metal When the type is changed from Ti to Zr or Hf, the amount of the active metal to be added to the active metal brazing material 1 is adjusted to exceed the above range, or the maximum brazing ultimate temperature or the melting point of the active metal brazing material 1 is exceeded. By changing the temperature holding time, the thickness of the reaction layer can be set to 0.1 to 1 μm and the thickness of the alloy layer can be set to 1 to 15 μm.
[0034]
By joining the lead pin 2 and the insulating base 5 as described above, the bonding strength between the ceramic of the insulating base 5 and the active metal brazing material 1 is ensured, and the joining strength between the lead pin 2 and the insulating base 5 is improved. As a result, it is possible to provide a ceramic-metal member joined body in a good brazed state.
[0035]
Before or after joining of the ceramic package 3 and the lead pins 2, the exposed surfaces of the wiring conductor 6 and the metallized layer formed on the surface of the insulating base 5 are, if necessary, excellent in corrosion resistance and Ag-Cu based. A metal film such as Ni or Au having good wettability with the brazing material is applied in a thickness of 1 to 20 μm by plating or the like.
[0036]
The Ni plating layer is made of, for example, electroless Ni-P plating containing about 4 to 12% by mass of P. The Ni plating layer is formed by immersing the insulating substrate 5 on which the wiring conductor 6 is formed in an acidic cleaning solution comprising a surfactant and an aqueous hydrochloric acid solution at a temperature of 25 to 50 ° C. for 1 to 5 minutes. After the surface of No. 6 was cleaned and then washed with pure water, it was immersed in a palladium active solution consisting of palladium chloride, potassium hydroxide and ethylenediamine tetraacetate at a temperature of 25 to 40 ° C. for about 1 to 5 minutes. After the palladium catalyst is adhered to the surface of the wiring conductor 6 and then washed with pure water, the temperature of nickel sulfate / sodium citrate / sodium acetate / sodium hypophosphite / ammonium chloride is reduced to 50-90. The substrate is immersed in an electroless Ni plating solution at 2 ° C. for 2 to 60 minutes to be adhered to the surface of the wiring conductor 6.
[0037]
If the thickness of the Ni plating layer is less than 1 μm, the surface of the wiring conductor 6 formed on the surface of the insulating substrate 5 and the surface of the electrode pad 8 in the example shown in FIG. 1 cannot be satisfactorily covered. In addition, the surface of the wiring conductor 6 tends to be oxidized or discolored. On the other hand, if it exceeds 20 μm, cracks and peeling are likely to occur in the Ni plating layer due to internal stress of the Ni plating layer. Therefore, the thickness of the Ni plating layer is preferably in the range of 1 to 20 μm.
[0038]
When the Ni plating layer is formed by electroless Ni-P plating as described above, if the content of P in the Ni plating layer is less than 4% by mass, the Ni plating layer is adhered to the wiring conductor 6. At the time of deposition, the deposition rate of Ni plating becomes slow, and it takes a long time to obtain a Ni plating layer of a predetermined thickness, so that the productivity becomes extremely poor. The reactivity with the Au plating layer to be deposited thereon is deteriorated, and it tends to be difficult to satisfactorily cover the Ni plating layer with the Au plating layer. Therefore, the content of P in the Ni plating layer is preferably in the range of 4 to 12% by mass.
[0039]
In particular, when Ni-P plating is performed by electroless plating after joining the insulating base 5 and the lead pins 2, the Ni plating layer spreads on the insulating base 5 around the active metal brazing material 1, and the adjacent wiring conductor 6 may be short-circuited. To prevent this, reduce the amount of binder in the active metal brazing material paste to reduce the amount of carbon remaining on the surface of the ceramic of the insulating substrate 5 to reduce the factor of Ni plating on the surface of the insulating substrate 5, By etching the surface of the ceramic in the pre-treatment stage of plating, it removes the brazing material components such as Ag and Cu adhered to the surface of the ceramic around the active metal brazing material 1 by melting and vaporizing during brazing. It is possible to avoid. Here, as the amount of the binder in the active metal brazing material paste, it is appropriate to add outside the range of 8 to 12% by mass from the above reasons and the viewpoint of printability. Further, in order to improve the heat discoloration resistance during electroless plating, it is effective to make the plating film dense by performing a heat treatment at 400 ° C. or higher after plating.
[0040]
Then, the semiconductor element 4 is mounted on the semiconductor element mounting section 7 using an epoxy resin, a silver epoxy resin, or the like, and the electrodes on the semiconductor element 4 and the insulating base 5 are formed near the semiconductor element mounting section 7, and the wiring After electrically connecting the electrode pad 8 formed as a part of the conductor 6 with a thin metal wire such as gold, copper, or aluminum, a ceramic made of a metal made of copper or aluminum or a sintered body of aluminum oxide is used. The semiconductor device using the ceramic package 3 is obtained by sealing the lid 9 made of resin by sealing or welding with a resin such as epoxy or a metal brazing material such as AuSn / AuGe.
[0041]
【Example】
Next, a specific example of the ceramic-metal member joined body of the present invention will be described.
[0042]
First, on a surface of an insulating base made of glass ceramic, a Au-Cu-based brazing material having a BAg-8 composition consisting of 72% by mass of Ag and 28% by mass of Cu was added to TiH as an active metal. 2 And an active metal brazing paste to which a binder is added by 10% by mass is screen-printed to form a brazing filler metal pattern having a diameter of 0.88 mm. Through this, a metal member having a pin diameter of 0.3 mm and a head diameter of 0. A lead pin made of an Fe-Ni-Co alloy having a head thickness of 45 mm and a head thickness of 0.2 mm was joined by holding it at a maximum temperature of 800 ° C for 15 minutes in a vacuum furnace.
[0043]
Thereafter, the bonding strength of the lead pin was evaluated by a tensile test in which the lead pin was pulled in a 45 ° direction at a speed of 10 mm / min. In a lead pin of this shape, if the bonding strength is 15 N or more, the lead pin can withstand bending, but if the bonding strength is less than 15 N, the lead pin is broken before being bent when an external force is applied to the lead pin. Therefore, there occurs a problem that a lead pin is removed when the socket is inserted. From this, it was determined that there was no practical problem if the bonding strength was 15 N or more.
[0044]
Then, TiH is added to an Au-Cu-based brazing material having a BAg-8 composition consisting of 72% by mass of Ag and 28% by mass of Cu. 2 Was printed at a thickness of 30 μm on the insulating substrate and on the brazing material printed on the insulating substrate, respectively, to obtain Fe- A lead pin made of a Ni—Co alloy is joined, the cross-sectional state thereof is observed, and the thickness of a reaction layer between the active metal and the ceramic of the brazing material and the alloy of the brazing material and at least one of iron, nickel, and cobalt of the metal member. The thickness of the layer was examined, and the breaking strength of the lead pin was measured by a tensile test to evaluate the bonding strength.
[0045]
As a representative example of the cross-sectional state of the bonding portion, FIG. 2 shows a cross-sectional SEM photograph of the bonding portion of the lead pin of Example 2, and FIG. 3 shows a distribution diagram showing the result of EPMA analysis of this cross-section with the Ti element.
[0046]
2 and 3, reference numeral 10 denotes a lead pin, 11 denotes an active metal brazing material, 11a denotes an alloy layer, 11b denotes a reaction layer, and 12 denotes an insulating base. In the photograph of FIG. 2, the length of 10 μm is indicated by a white line as a guide.
[0047]
From these figures, at this joint, in the brazing material 11, an Ag—Cu—Ti—Fe—Ni—Co alloy layer 11a, which is an alloy layer of the brazing material 11 and iron, nickel, and cobalt, is provided on the lead pin 10 side. It can be seen that a Ti-O reaction layer 11b, which is a reaction layer between the active metal and the ceramics, is formed with a thickness of 6.2 μm and a thickness of 0.55 μm on the insulating base 12 side.
[0048]
Similarly, the cross-sectional states of Examples 1 and 3 to 5 were observed, and the thicknesses of the alloy layer and the reaction layer were determined. Table 1 shows the results.
[0049]
[Table 1]
Figure 2004059375
[0050]
As can be seen from the results shown in Table 1, in Examples 1 to 5, the thickness of the reaction layer was 0.37 to 0.92 μm, the thickness of the alloy layer was 3.5 to 15 μm, and the bonding strength of the lead pin ( Breaking strength) was 15 N or more.
[0051]
Next, in order to change the ratio between the thickness of the reaction layer and the thickness of the alloy layer, TiH 2 The lead pins were joined by using the active metal brazing materials added in the respective amounts of Examples 6 to 13 shown in Table 1, and the thickness of the reaction layer, the thickness of the alloy layer, and the breaking strength were similarly determined.
[0052]
In Examples 6 to 13, the thickness of the reaction layer was 0.33 to 0.54 μm, the thickness of the alloy layer was 1.3 to 5.6 μm, and the bonding strength (breaking strength) of the lead pin was 15 N or more. . Thus, the TiH of the brazing material on the insulating substrate and the brazing material printed on the 2 By reducing the thickness of the alloy layer by changing the amount of addition, the bonding strength of the lead pin is stabilized, the melting point of the brazing material does not rise significantly around the alloy layer, and the wettability of the brazing material to the lead pin is good. Became.
[0053]
Next, as a comparative example, TiH 2 The lead pins were joined using the active metal brazing materials added in the respective addition amounts of Comparative Examples 1 to 3 shown in Table 1, and the thickness of the reaction layer, the thickness of the alloy layer, and the breaking strength were similarly determined.
[0054]
In Comparative Examples 1 and 2, the thickness of the reaction layer was 0.15 μm or less, the thickness of the alloy layer was 2 μm or less, and the breaking strength of the lead pin was 15 N or less, so that they were easily broken.
[0055]
On the other hand, in Comparative Example 3, the thickness of the reaction layer was 1.07 μm, the thickness of the alloy layer was 18 μm, the breaking strength of the lead pin was 13 N, and the ceramic of the insulating substrate was broken like a gore. .
[0056]
As described above, the Au-Cu-based brazing filler metal of BAg-8 composed of 72% by mass of Ag and 28% by mass of Cu was added to the surface of the insulating base composed of glass ceramics by adding TiH as an active metal. 2 And a paste-like active metal brazing material to which a binder is added by 10% by mass is printed on the insulating substrate and the brazing material printed on the insulating substrate in a thickness of 30 μm each, and the Fe—Ni—Co alloy lead pin is joined. If so, TiH added to the active metal brazing material to be printed on the insulating substrate 2 The amount is 2 to 6% by mass, TiH added to the active metal brazing material to be printed on the active metal brazing material. 2 The amount may be 0 to 6% by mass and the content may be different.
[0057]
In particular, when it is desired to change the ratio of the thickness of the reaction layer to the thickness of the alloy layer, the metal member and the insulating base made of ceramics may be joined by providing a concentration gradient of the active metal in the active metal brazing material.
[0058]
In addition, when changing the ceramic material to a material other than glass ceramics, for example, oxide ceramics such as aluminum oxide ceramics or nitride ceramics such as aluminum nitride ceramics, when changing the metal member to an Fe-Ni alloy or the like, Alternatively, when the type of the active metal is changed from Ti to Zr or Hf, the amount of the active metal to be added to the active metal brazing material is adjusted to exceed the above range, or the maximum brazing ultimate temperature or the active metal brazing material is used. By changing the holding time at a temperature equal to or higher than the melting point, a favorable bonding state could be similarly obtained by setting the thickness of the reaction layer to 0.1 to 1 μm and the thickness of the alloy layer to 1 to 15 μm.
[0059]
It should be noted that the present invention is not limited to the above-described embodiments, and various changes may be made without departing from the spirit of the present invention.
[0060]
【The invention's effect】
According to the joined body of ceramics and metal member of the present invention, the thickness of the reaction layer between the active metal and the ceramic formed between the brazing material and the insulating substrate is set to 0.2 to 1 μm, The thickness of the alloy layer between the brazing material and at least one of iron, nickel and cobalt is 1 to 15 μm, so that the reaction layer between the active metal and the ceramic and the alloy layer between the brazing material and the metal member are formed. Can be formed uniformly and continuously, thereby preventing the occurrence of poor wetting of the brazing material due to insufficient formation of a reaction layer between the ceramics and the active metal of the brazing material, and brazing to the metal member. Since the wettability of the material can be ensured, and the reaction layer between the active metal and the ceramic is brittle, the thickness of the reaction layer is set to 1 μm or less to make the reaction layer The occurrence of destruction in the reaction layer due to the difference in expansion can be prevented, and the thickness of the alloy layer is set to 15 μm or less, so that the brazing material wets due to an increase in the melting point of the brazing material due to the alloy layer being too thick. The bonding strength between the ceramic and the Ag-Cu-based brazing material is ensured without causing problems such as deterioration of reliability and deterioration of reliability due to cracks caused by stress concentration in the brazing material, and iron, nickel or The joining strength between the metal member containing at least one type of cobalt and the ceramic is ensured, and a ceramic-metal member joined body in a good brazed state can be provided.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an example of an embodiment of a ceramic-metal member joined body of the present invention.
FIG. 2 is a cross-sectional SEM photograph showing an example of a cross-sectional state of a bonding portion between an insulating base, a brazing material, and a lead pin in a ceramic-metal member bonded body of the present invention.
FIG. 3 is a distribution diagram showing a result of EPMA analysis of a Ti element on the cross section shown in FIG. 2;
[Explanation of symbols]
1 ... Activated metal brazing filler metal
2. Lead pin
3. Ceramic package
4 ... Semiconductor element
5 ... Insulating substrate
6 Wiring conductor
7 ... Semiconductor element mounting part
10 ... Fe-Ni-Co alloy lead pin
11 ... Ag-Cu-Ti brazing material
11a ... Ag-Cu-Ti-Fe-Ni-Co alloy layer
11b ... Ti-O reaction layer
12 ... Insulating substrate made of glass ceramics

Claims (1)

セラミックスから成る絶縁基体の表面に、鉄,ニッケルまたはコバルトの少なくとも1種を含有する金属部材を、活性金属としてTi,ZrまたはHfの少なくとも1種を含有するAg−Cu系ろう材を介して接合して成り、該ろう材と前記絶縁基体との間に前記活性金属と前記セラミックスとの反応層が形成されているとともに前記ろう材と前記金属部材との間に前記ろう材と鉄,ニッケルまたはコバルトの少なくとも1種との合金層が形成されたセラミックス−金属部材接合体において、前記反応層の厚みが0.2〜1μmであり、前記合金層の厚みが1〜15μmであることを特徴とするセラミックス−金属部材接合体。A metal member containing at least one of iron, nickel and cobalt is joined to a surface of an insulating base made of ceramics via an Ag-Cu-based brazing material containing at least one of Ti, Zr or Hf as an active metal. A reaction layer of the active metal and the ceramic is formed between the brazing material and the insulating base, and the brazing material and iron, nickel, or the like are provided between the brazing material and the metal member. In the ceramic-metal member joined body in which an alloy layer with at least one type of cobalt is formed, the thickness of the reaction layer is 0.2 to 1 μm, and the thickness of the alloy layer is 1 to 15 μm. Ceramic-metal member joined body.
JP2002220489A 2002-07-29 2002-07-29 Ceramic-metal member junction body Pending JP2004059375A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002220489A JP2004059375A (en) 2002-07-29 2002-07-29 Ceramic-metal member junction body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002220489A JP2004059375A (en) 2002-07-29 2002-07-29 Ceramic-metal member junction body

Publications (1)

Publication Number Publication Date
JP2004059375A true JP2004059375A (en) 2004-02-26

Family

ID=31941063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002220489A Pending JP2004059375A (en) 2002-07-29 2002-07-29 Ceramic-metal member junction body

Country Status (1)

Country Link
JP (1) JP2004059375A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006100447A (en) * 2004-09-28 2006-04-13 Kyocera Corp Wiring board with lead pin
JP2007294601A (en) * 2006-04-24 2007-11-08 Kyocera Corp Wiring board
WO2015166789A1 (en) * 2014-04-30 2015-11-05 日本碍子株式会社 Assembly of ceramic member and metallic member, and method for producing same
CN106346098A (en) * 2016-08-19 2017-01-25 哈尔滨工业大学(威海) Connection method for gold-plated Al2O3 ceramic and gold-plated titanium ring in artificial retina
CN107887279A (en) * 2016-09-30 2018-04-06 英飞凌科技股份有限公司 For manufacturing the method and cermet substrate of cermet substrate
JP2018145047A (en) * 2017-03-03 2018-09-20 Dowaメタルテック株式会社 Method for producing metal/ceramic circuit board
JP2020083676A (en) * 2018-11-20 2020-06-04 富士電機株式会社 Joined body and manufacturing method of joined body

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006100447A (en) * 2004-09-28 2006-04-13 Kyocera Corp Wiring board with lead pin
JP2007294601A (en) * 2006-04-24 2007-11-08 Kyocera Corp Wiring board
WO2015166789A1 (en) * 2014-04-30 2015-11-05 日本碍子株式会社 Assembly of ceramic member and metallic member, and method for producing same
JPWO2015166789A1 (en) * 2014-04-30 2017-04-20 日本碍子株式会社 Bonded body of ceramic member and metal member and manufacturing method thereof
US10814436B2 (en) 2014-04-30 2020-10-27 Ngk Insulators, Ltd. Joined body including ceramic member and metallic member and method for manufacturing joined body
CN106346098A (en) * 2016-08-19 2017-01-25 哈尔滨工业大学(威海) Connection method for gold-plated Al2O3 ceramic and gold-plated titanium ring in artificial retina
CN107887279A (en) * 2016-09-30 2018-04-06 英飞凌科技股份有限公司 For manufacturing the method and cermet substrate of cermet substrate
US10759714B2 (en) 2016-09-30 2020-09-01 Infineon Technologies Ag Method for producing a metal-ceramic substrate
JP2018145047A (en) * 2017-03-03 2018-09-20 Dowaメタルテック株式会社 Method for producing metal/ceramic circuit board
JP2020083676A (en) * 2018-11-20 2020-06-04 富士電機株式会社 Joined body and manufacturing method of joined body
JP7379813B2 (en) 2018-11-20 2023-11-15 富士電機株式会社 Joined body and method for manufacturing the joined body

Similar Documents

Publication Publication Date Title
JP2004059375A (en) Ceramic-metal member junction body
JPH11103141A (en) Wiring board
JP2006140538A (en) Wiring board
JP4364033B2 (en) Wiring board with lead pins
JP4105928B2 (en) Wiring board with lead pins
JP3420424B2 (en) Wiring board
JP2006100447A (en) Wiring board with lead pin
JP3645744B2 (en) Ceramic wiring board
JPH07202356A (en) Circuit board
JP2003155593A (en) Wiring board
JP3537667B2 (en) Wiring board
JP2004127953A (en) Wiring board
JP2831182B2 (en) Electronic component having a gold conductive layer
JP3623686B2 (en) Wiring board manufacturing method
JP2685159B2 (en) Electronic component storage package
JP4109391B2 (en) Wiring board
JP3145614B2 (en) Ceramic wiring board
JPH1168260A (en) Wiring board
JP3583018B2 (en) Ceramic wiring board
JP2003037355A (en) Wiring board
JP2005285967A (en) Wiring board with lead pin
JP2001308498A (en) Circuit board
JP2006148000A (en) Glass ceramic wiring board
JP2006093571A (en) Wiring board with lead pin
JP2001210923A (en) Ceramic circuit board