JP4105928B2 - Wiring board with lead pins - Google Patents

Wiring board with lead pins Download PDF

Info

Publication number
JP4105928B2
JP4105928B2 JP2002304724A JP2002304724A JP4105928B2 JP 4105928 B2 JP4105928 B2 JP 4105928B2 JP 2002304724 A JP2002304724 A JP 2002304724A JP 2002304724 A JP2002304724 A JP 2002304724A JP 4105928 B2 JP4105928 B2 JP 4105928B2
Authority
JP
Japan
Prior art keywords
lead pin
brazing material
insulating base
pin
wiring board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002304724A
Other languages
Japanese (ja)
Other versions
JP2004140249A (en
Inventor
功 橋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2002304724A priority Critical patent/JP4105928B2/en
Publication of JP2004140249A publication Critical patent/JP2004140249A/en
Application granted granted Critical
Publication of JP4105928B2 publication Critical patent/JP4105928B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15312Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a pin array, e.g. PGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/1615Shape
    • H01L2924/16152Cap comprising a cavity for hosting the device, e.g. U-shaped cap

Landscapes

  • Connections Effected By Soldering, Adhesion, Or Permanent Deformation (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は半導体素子を収容するための半導体素子収納用パッケージや回路基板・電子回路モジュール等に使用される、入出力端子用のリードピンが立設されたいわゆるピングリッドアレイ(PGA)型のリードピン付き配線基板に関するものである。
【0002】
【従来の技術】
従来より、半導体集積回路素子等の半導体素子を収容するための半導体素子収納用パッケージや、高周波回路や電力回路等を構成する回路基板あるいは電子回路モジュール等には、セラミックスから成る絶縁基体の表面および/または内部に配線導体を有する配線基板が使用される。また、この配線基板には、リードピン・ボール端子等の端子部材や放熱板・放熱フィン等の放熱部材、あるいは配線基板と蓋体とから成る容器の内部に半導体素子を気密に収容するために金属製蓋体を取着するためのシールリング等のシール部材といった金属部材が、配線基板の表面のメタライズ配線導体やメタライズ層に、あるいは配線基板の絶縁基体に直接にろう材を介して接合される。
【0003】
例えば、半導体素子収納用パッケージの場合であれば、一般にアルミナセラミックス等の電気絶縁材料から成り、その上面の略中央部に半導体素子を収容するための凹部およびこの凹部周辺から外周端にかけて導出されたW・Mo等の高融点金属粉末から成る複数のメタライズ配線導体を有する絶縁基体としての配線基板と、半導体素子を外部電気回路に電気的に接続するために配線基板の下面に形成されたパッドと呼ばれるメタライズ配線導体に、Agろう等のろう材を介して接合されたリードピン端子を有する形態(ピングリッドアレイ型)で構成され、また必要に応じて金属製放熱部材等が取着されている。そして、配線基板の凹部の底面に半導体素子をガラスや樹脂等から成る接着剤を介して接着固定し、半導体素子の各電極とメタライズ配線導体とをボンディングワイヤ等を介して電気的に接続するとともに、配線基板の上面に蓋体をガラスや樹脂等の封止材を介して接合し、配線基板と蓋体とから成る容器の内部に半導体素子を気密に封止することによって半導体装置が構成される。
【0004】
なお、このような半導体装置の端子部材のリードピンは、一般に、ろう材との接合面積を大きくしてパッドとの接合強度を上げるために、リード線の一方の端部を塑性加工することにより、外部電気回路のソケットに挿入されるピン部と、配線基板のパッドと接合されるヘッド部とを有するネイルヘッド型となっている。
【0005】
一方、近年の高度情報化時代を迎え、信号に使用される周波数帯域はますます高周波帯に移行しつつある。このような高周波の信号の伝送を行なう高周波用の配線基板においては、高周波信号を高速で伝送する上で、配線層を形成する導体の抵抗が低いことが要求され、絶縁基板にもより低い誘電率が要求される。そこで、誘電率が低く高周波用絶縁基体として好適であるガラスセラミックスをセラミックスから成る絶縁基体に用い、Cu・Ag・Au等の低抵抗金属をメタライズ配線導体とした配線基板が多用されている。
【0006】
しかしながら、このような高周波用の配線基板においては、低誘電率のガラスセラミックスはガラス成分を多量に含有することから、その磁器強度は従来のアルミナセラミックス等に比べて低く、また、低抵抗金属は融点が低いことから低温で焼成する必要があるため、メタライズ配線導体のセラミックスへの接合強度も低いものとなっている。
【0007】
このため、このような配線基板のパッドにろう材を介してリードピンを接合しピングリッドアレイ型のリードピン付き配線基板とした場合においては、外部電気回路に配線基板を装着するためにリードピンを外部電気回路のソケットに差し込んだり、あるいは外部電気回路に配線基板を装着後に故障や交換等のメンテナンス等が必要となりリードピンを引き抜いたりした際に、リードピンに垂直方向や斜め方向からの外力が働くと、絶縁基体であるセラミックスとメタライズ配線導体であるパッドとの界面に破壊応力が発生し剥がれが生じたり、セラミックスそのものがその破壊応力に屈して破壊したりして、接合信頼性が低下するという問題があった。
【0008】
そこで、セラミックスとパッドと間の界面における破壊を回避する手法として、活性金属としてTi・ZrまたはHfの少なくとも1種を含有するAg−Cu系ろう材を用いて、リードピン接合用のパッドを配線基板に形成せずに、配線基板の内部から下面に導出された貫通導体(ビア導体)が露出した部分を含む絶縁基体の表面領域にリードピンを直接接合する手法が提案されている。
【0009】
この手法では、パッドを介さずに、配線基板の内部配線の一部である貫通導体(ビア導体)とリードピンとをろう材を介して直接接続することによって電気的接続を行ない、また、貫通導体(ビア導体)の露出部は直径が約100μm以下と小さなことから、リードピンは実質的には絶縁基体であるセラミックスとろう材を介して接合されることになるため、パッドとセラミックスとの接合強度に依存することなくリードピンを接合することができ、セラミックスとパッドと間の界面における破壊を回避することができる。
【0010】
【特許文献1】
特開平8−162563号公報
【特許文献2】
特開平8−298381号公報
【特許文献3】
特開平9−18144号公報
【0011】
【発明が解決しようとする課題】
しかしながら、このような手法においても、リードピンに斜め方向の外力に対してセラミックスの磁器強度以上の破壊応力がセラミックスから成る絶縁基体とろう材との接合面の周端部に集中して作用した場合には、絶縁基体そのものがその破壊応力に屈して破壊しやすくなり、この部分を起点として絶縁基体の内部にクラック等が進行し接合信頼性の低下を引き起こす等の問題は残されたままになっていた。
【0012】
また、パッドとリードピンとの界面が剥離してしまうという従来の問題に代わって、ろう材およびリードピンの剥離がセラミックスから成る絶縁基体とリードピンとの接合信頼性に大きな影響を与えるという問題が新たに発生してしまうことになっていた。
【0013】
本発明は以上のような従来の技術における問題点を解決するために案出されたものであり、その目的は、リードピンに斜め方向の外力が生じても実用上耐えうるレベルのリードピンとセラミックスから成る絶縁基体との接合強度を確保できる、高信頼性のリードピン付き配線基板を提供することにある。
【0014】
【課題を解決するための手段】
本発明者は、上記問題点について鋭意研究した結果、リード付き配線基板においてリードピンに斜め方向に外力が生じた場合のリードピンとセラミックスから成る絶縁基体との接合強度について、リードピンのヘッド部の形状と、ピン部の剛性とを適切な状態に設定することによって、リードピンと絶縁基体との接合強度が大きく改善されることを見出し、本発明を完成するに至った。
【0015】
すなわち、本発明のリードピン付き配線基板は、3点曲げ強度が350MPa以下のセラミックスから成る絶縁基体と、該絶縁基体の表面および内部に形成された配線導体と、前記配線導体の前記絶縁基体の下面に露出した領域に接合されたろう材と、該ろう材に接合されたリードピンと、から成るリードピン付き配線基板であって、前記リードピンは、ヘッド部の直径が0.4mm以上であるとともに厚みが0.10〜0.24mmであり、かつピン部のヤング率が50〜150GPaであり、前記ろう材は、活性金属としてTiZrおよびHfのうち少なくとも1種を含有するAg−Cu系ろう材であり、前記ろう材は、前記配線導体の露出した領域及び該領域の周囲の絶縁基体に、直に接合されていることを特徴とする。
【0016】
本発明のリード付き配線基板によれば、リードピンのヘッド部の直径を0.4mm以上としたことから、リードピンとろう材との接合面積が十分に確保され接合強度を高いものとすることができるため、リードピンに斜め方向から大きな外力が生じても、リードピンとろう材との界面で剥離が生じることを抑制することができる。また、ヘッド部の厚みを0.10〜0.24mmとしたことから、リードピンに斜め方向から外力が生じた際にセラミックスの破壊の起点となるろう材と絶縁基体との接合面の周端部への応力の集中を低減することができるため、3点曲げ強度が350MPa以下と磁器強度が低いセラミックスを絶縁基体として用いても絶縁基体にクラック等の破壊が発生することを防止することができる。さらに、ピン部のヤング率を50〜150GPaとしたことから、リードピンに斜め方向の外力が生じた際に発生する応力の作用点を、ろう材と絶縁基体との接合界面からヘッドピンのピン部側に移動させることができ、ろう材と絶縁基体との接合面の周端部に作用する応力を分散し低減することができる。
【0017】
これにより、ろう材を介して3点曲げ強度が350MPa以下と低いセラミックスから成る絶縁基体とリードピンとを強固に接合することが可能となり、斜め方向に応力が発生した場合においても高い接合信頼性を有するリードピン付き配線基板を提供することができる。
【0018】
【発明の実施の形態】
以下、本発明のリードピン付き配線基板について詳細に説明する。
【0019】
図1は本発明のリードピン付き配線基板を半導体素子を収容する半導体素子収納用パッケージに適用した場合の実施の形態の一例を示す断面図であり、1はろう材、2はリードピン、3は配線基板、4は半導体素子である。配線基板3のセラミックスから成る絶縁基体5は、上面中央部に半導体素子4を搭載するための半導体素子搭載部7を有している。
【0020】
配線基板3を構成する絶縁基体5は、ムライト質焼結体・ガラスセラミックス焼結体等のセラミックスから成る例えば略四角形状の板状体であり、その表面および/または内部に配線導体6を有している。
【0021】
なお、このようなセラミックスから成る絶縁基体5の磁器強度は、JIS−R1601−1995「ファインセラミックスの曲げ強さ試験方法」に規定された方法で求められる3点曲げ強度等で表わすことができる。
【0022】
このような配線基板3は、例えば以下のようにして製作される。
【0023】
絶縁基体5がガラスセラミックス焼結体から成る場合であれば、例えば、ガラス成分としてSiO2−B23系・SiO2−B23−Al23系・SiO2−B23−Al23−MO系(但し、MはCa・Sr・Mg・BaまたはZnを示す)・SiO2−Al23−M1O−M2O系(但し、M1およびM2は同一または異なってCa・Sr・Mg・BaまたはZnを示す)・SiO2−B23−Al23−M1O−M2O系(但し、M1およびM2は前記と同じである)・SiO2−B23−M3 2O系(但し、M3はLi・NaまたはKを示す)・SiO2−B23−Al23−M3 2O系(但し、M3は前記と同じである)・PB系ガラス・Bi系ガラス等から成るガラス粉末と、例えば、Al23・SiO2・ZrO2とアルカリ土類金属酸化物との複合酸化物、TiO2とアルカリ土類金属酸化物との複合酸化物、Al23およびSiO2から選ばれる少なくとも1種を含む複合酸化物(例えばスピネル・ムライト・コージェライト)等のフィラー粉末とを質量比で40:60〜99:1の割合で混合し、さらに適当な有機溶剤・溶媒を添加混合して泥漿状となすとともに、これを従来周知のドクターブレード法やカレンダーロール法によりシート状に成形してセラミックグリーンシート(セラミック生シート)を得る。
【0024】
次に、このセラミックグリーンシートに、導体材料粉末をペースト化した導体ペーストをスクリーン印刷法やグラビア印刷法等により印刷するか、あるいは所定パターン形状の金属箔を転写する等の方法を用いて配線導体6を形成する。導体ペーストの導体材料としては、ガラスセラミックス焼結体に対しては、Cu・Ag・Ag−Pt・Ag−Pd・Au等が一般に用いられる。
【0025】
なお、この配線導体6には、絶縁基体5の上面と下面に位置する導体パターン同士を絶縁基体5の内部で接続するためのビア導体やスルーホール導体等といった貫通導体の部分も含まれる。ここで、図1においてこの貫通導体は、説明のために実際のスケールよりも強調して図示している。これら貫通導体は、例えば、パンチング加工等によりセラミックグリーンシートに形成した貫通孔に導体ペーストを充填することによって形成される。
【0026】
次に、この配線導体6を形成したセラミックグリーンシートを複数枚積層し、所定の温度(ガラスセラミックスの場合であれば約900℃)で焼成することによって、配線基板3が製作される。
【0027】
そして、配線基板3の下面の、所定部位に位置する内部および表面の導体パターン同士を接続するための貫通導体(配線導体6)が絶縁基体5の表面に露出した部位を含む領域に、例えば、活性金属としてTiZrおよびHfのうち少なくとも1種を含有するAg−Cu系ろう材であるろう材1をペースト化したものをスクリーン印刷法やグラビア印刷法等により印刷し、リードピン2と配線基板3の絶縁基体5とのろう材1を介しての接合(ろう付け)を行なう。
【0028】
リードピン2を絶縁基体5の表面に露出した貫通導体を含む領域に接合するためのろう材1には、BAg−8(72質量%Ag−28質量%Cu)ろう材を始めとして、Agが60〜80質量%でCuが20〜40質量%の組成から成るAg−Cu系ろう材に、活性金属であるTiZrおよびHfのうち少なくとも1種を金属または水素化物の状態で外添加で2〜10質量%添加して含有させたものが用いられる。
【0029】
このろう材1を介してリードピン2を絶縁基体5に接合するには、例えば、このろう材1の粉末に有機溶剤・バインダおよび溶媒を合わせて5〜15質量%を外添加で混合して得たろう材ペーストを、絶縁基体5の表面にスクリーン印刷法等によりリードピン2を立設する部位に対応した所定パターンに印刷し、これにリードピン2のヘッド部2aを載置して、これを真空中または中性雰囲気中もしくは還元雰囲気中で所定温度(約800℃)で加熱処理し、ろう材1を溶融させて、絶縁基体5とリードピン2とをろう付け接合する。
【0030】
このとき、ろう材1の融点およびろう付け後の接合部の外観や反応層および合金層の厚み等を考慮して、ろう材1の活性金属の含有量・ボリューム(体積)・ブレージング最高到達温度や、ろう材1の融点以上の温度の保持時間等を決める必要がある。
【0031】
その一例として、72質量%Ag−28質量%CuのいわゆるBAg−8と呼ばれるろう材に活性金属としてTiH2を3質量%添加したろう材1を用いて、絶縁基体5にピン径が0.3mm、ヘッド部2aの直径が0.45mm、ヘッド部2aの厚みが0.2mmのリードピン2を接合する場合であれば、ろう材1を直径を0.88mmかつ厚みを60μmとして絶縁基体5の表面に印刷し、リードピン2のヘッド部2aを当接した状態で、真空炉にて最高温度795℃から850℃で5分から1時間保持すれば、良好な接合状態が得られる。
【0032】
ここで、3点曲げ強度が350MPa以下のセラミックスから成る絶縁基体5の表面に、リードピン2をろう材1を介して接合するときは、リードピン2のヘッド部2aの直径が0.4mm以上であることが必要である。
【0033】
ヘッド部2aの直径が0.4mmよりも小さいと、ろう材1とリードピン2との絶対的な接合面積が不足して、リードピン2に斜め方向から大きな外力が生じた際に、リードピン2とろう材1との界面で剥離やクラック等が発生しやすくなり、ろう材1の活性金属の含有量・ボリューム(体積)・ブレージング最高到達温度やろう材1の融点以上の温度の保持時間等をどのように調整しても、ろう材1を介してのリードピン2と絶縁基体5との接合強度が低下してしまい、例えば、リードピン2を45°方向へ10mm/分の速度で引っ張る45°引張り試験等において測定される引張り強度が15N未満と実使用に耐えられない程度まで低下してしまう。従って、ヘッド部2aの直径は0.4mm以上が必要であり、ヘッド部2aの直径が大きくなるほどろう材1とリードピン2の接合面積が増加し、ろう材1を介してのリードピン2と絶縁基体5との接合強度も向上する。
【0034】
なお、上述の通り、ヘッド部2aの直径は0.4mm以上が必要であるが、その直径の上限は、絶縁基体5の外形寸法や、絶縁基体5の下面に複数のリードピン2を立設する部分の面積や、リードピン2の数やリードピン2の配列方法等によって任意に設定することができる。例えば、半導体素子4搭載用の半導体素子収納用パッケージに適用する場合には、一般的に、リードピン2のヘッド部2aの直径として0.4〜1.5mm程度の範囲が選択される。
【0035】
また、リードピン2のヘッド部2aの直径を0.4mm以上とした場合には、ヘッド部2aの厚みを0.10〜0.24mmとすることが重要である。ヘッド部2aの厚みが0.10mmよりも薄いときは、ろう材1がヘッド部2aの上部、すなわちピン部の付け根付近まで這い上がりやすくなり、ろう材1と絶縁基体5との接合部の周端部における絶縁基体5に対するろう材1の接触角が大きくなってしまう。このように絶縁基体5に対するろう材1の接触角が大きくなった場合は、ろう材1と絶縁基体5との接合部の周端部におけるろう材1のボリューム(体積)が大きくなり、これに伴ってリードピン2と絶縁基体5とをろう材1を介して接合する際にろう材1の周端部に発生する残留応力が高いものとなってしまう。その結果、リードピン2に斜め方向から外力が生じた際に、ろう材1と絶縁基体5との接合界面には、外力により発生した応力とろう材1の内部の残留応力とがあいまった大きな破壊応力が作用することとなり、絶縁基体5にクラック等の破壊が発生しやすくなってしまう。
【0036】
一方、ヘッド部2aの厚みが0.24mmよりも厚いときには、リードピン2に斜め方向に外力が加わったときに、力の支点となるピン部のヘッド部2aへの付け根の部分から作用点であるろう材1と絶縁基体5との接合部の周端部までの距離が長くなることによって、加わった外力と同じ方向の周端部側ではヘッド部2aが絶縁基体5に押し付けられる(圧縮)方向の応力が、また、加わった外力と反対方向の周端部側では引き剥がされる(引っ張り)方向の応力が、それぞれが小さな外力であっても両者があいまって大きな応力となってしまい、特に、加わった外力と反対方向の周端部側では容易に絶縁基体5が破壊しやすくなってしまう。
【0037】
さらに、リードピン2のピン部のヤング率は50〜150GPaであることが望ましい。このピン部のヤング率は、リードピン2に斜め方向から外力が加えられた際に、ピン部が変形することによってろう材1と絶縁基体5との接合界面に作用する応力を緩和するという観点では低い方が好ましいが、50GPaより小さいと、リードピン2に斜め方向から外力が加えられた際に容易に伸びてしまったり折れ曲がったりしてしまい実用に耐え得ないものとなる傾向がある。他方、150GPaを超えて大きくなると、ピン部が剛直になり過ぎて、リードピン2のピン部や、ピン部のヘッド部2aへの付け根の部分等における応力緩和作用が小さくなり、加えられた外力が直接にろう材1と絶縁基体5との接合界面に作用してしまい、絶縁基体5の破壊を助長してしまう傾向がある。
【0038】
リードピン2の材質は、上述の通り、ピン部のヤング率が50〜150GPaであればその用途等に応じて任意に選択することができる。例えば、半導体素子収納用パッケージに適用するリードピン2であれば、Cu合金・Ni合金・Al合金・Cu−Ni合金・純Fe・Fe−Ni合金・Fe−Ni−Co合金等を用いることができる。また、ピン部のヤング率が150GPaを超えた材質のリードピン2に熱処理(アニール)を施すことによって、ピン部のヤング率を50〜150GPaの範囲に調整する等の方法によって得たリードピン2を用いても良い。
【0039】
なお、本発明のリードピン付き配線基板に用いられるリードピン2のヘッド部2aの直径および厚み以外の各部の寸法は、外部電気回路のソケットの形状や接続方法等に応じて任意に選択が可能であり、例えば、半導体素子収納用パッケージに適用するリードピン2であれば、一般に、ピン部の直径としては0.1〜1.0mm(ただし、リードピン2はネイルヘッド型であるため、ピン部の直径がヘッド部2aの直径よりも大きくなることはない。)、ピン部の長さとしては1〜6mm程度の範囲で使用される。
【0040】
以上のようにして、リードピン2と絶縁基体5とを接合することにより、斜め方向からリードピン2に外力が生じても、絶縁基体5とリードピン2とのろう材1を介した接合部の接合強度を確保して、良好なろう付け状態のリードピン付き配線基板を得ることが可能となる。
【0041】
なお、このような配線基板3においては、絶縁基体5の表面に形成されるリードピン2が接合されない配線導体6、ならびにリードピン2が接合されない貫通導体の露出する表面には、必要に応じて、絶縁基体5とリードピン2との接合前あるいは接合後に、耐蝕性に優れ、かつ、Ag−Cu系ろう材との濡れ性が良好なNiやAu等の金属皮膜が1〜20μmの厚みでめっき法等により被着される。
【0042】
Niめっき層は、例えばPを4〜12質量%程度含有する無電解Ni−Pめっきから成る。このようなNiめっき層は、まず、配線導体6が形成された絶縁基体5を界面活性剤と塩酸水溶液とから成る温度が25〜50℃の酸性の洗浄液に1〜5分間浸漬して配線導体6の露出した表面を清浄とし、次にこれを純水で洗浄した後、塩化パラジウム・水酸化カリウム・エチレンジアミンテトラアセティクアシッドから成る温度が25〜40℃のパラジウム活性液中に1〜5分間程度浸漬して配線導体6の表面にパラジウム触媒を付着させ、次にこれを純水で洗浄した後、硫酸ニッケル・クエン酸ナトリウム・酢酸ナトリウム・次亜リン酸ナトリウム・塩化アンモニウムから成る温度が50〜90℃の無電解Niめっき液中に2〜60分間浸漬することによって配線導体6の露出した表面に被着される。
【0043】
なお、Niめっき層は、その厚みが1μm未満では、絶縁基体5の表面に形成された配線導体6、図1に示す例では半導体素子4と配線基板3を接続するための電極パッド8となる部位の表面を良好に被覆することができずに、配線導体6の露出した表面に酸化や変色をきたす傾向にある。他方、20μmを超えると、Niめっき層の内部応力によりNiめっき層にクラックや剥がれが発生してしまいやすい。したがって、Niめっき層の厚みは1〜20μmの範囲が好ましい。
【0044】
また、Niめっき層を上述のように無電解Ni−Pめっきから形成する場合は、Niめっき層中のPの含有量が4質量%未満であると、配線導体6の露出した表面にNiめっき層を被着させる際にNiめっきの析出速度が遅くなり、所定の厚みのNiめっき層を得るために長時間を要することとなるので生産性が極めて悪くなる。他方、12質量%を超えると、Niめっき層上に被着させるAuめっき層との反応性が悪くなり、Niめっき層をAuめっき層で良好に被覆することが困難となる傾向にある。したがって、Niめっき層中のPの含有量は、4〜12質量%の範囲が好ましい。
【0045】
特に、絶縁基体5とリードピン2との接合後に無電解めっき法によりNi−Pめっきを施すときには、ろう材1の周りの絶縁基体5上にNiめっきが析出してしまい、隣接する配線導体6同士が短絡してしまう場合がある。これを防止するには、ろう材1ペースト中のバインダ量を少なくして、絶縁基体5の表面における炭素の残留を減らして絶縁基体5の表面にNiめっきが被着する要因を減らすか、めっきの前処理の段階で絶縁基体5の表面をエッチングすることにより、ろう付け時に溶融・気化してろう材1の周りの絶縁基体5の表面に付着したAgやCuといったろう材成分を除去するか、といった対策を採用すればよい。ここで、ろう材1ペースト中のバインダ量としては、以上のような理由と印刷性の観点から、8〜12質量%の割合で外添加するのが適当である。さらに、無電解めっきによるめっき層の耐熱変色性の低下を改善するためには、めっき後に400℃以上で加熱処理することにより、めっき皮膜を緻密化させることが効果的である。
【0046】
そして、半導体素子搭載部7上にエポキシ樹脂やAgエポキシ樹脂等を用いて半導体素子4を搭載し、この半導体素子4上の電極と絶縁基体5の半導体素子搭載部7の近傍に配線導体6の一部として形成された電極パッド8とをAu・Cu・Al等の金属細線で電気的に接続した後、CuやAl等から成る金属製または酸化アルミニウム質焼結体等から成るセラミック製の蓋体9をエポキシ等の樹脂やAu−Sn・Au−Geといった金属ろう材等による封着または溶接によって封止することによって半導体装置となる。
【0047】
【実施例】
次に、本発明のリード付き配線基板について、具体例を説明する。
【0048】
まず、3点曲げ強度が200MPaのガラスセラミックスから成る絶縁基体の表面に、Ag:72質量%とCu:28質量%とから成るBAg−8組成のAu−Cu系ろう材に活性金属としてのTiH2を3質量%およびバインダを10質量%の割合で外添加した活性金属ろう材ペーストを、一つのパッド当たり0.2mgのろう材量になるようにスクリーン印刷して直径0.88mmのろう材パターンを形成し、これを介してピン部の直径が0.3mm、ヘッド部の直径が0.45mm、ヘッド部の厚みが0.08mmから0.25mmまでの8種類(表1に示す実施例1〜6および比較例1・2に対応する)のFe−Ni−Co合金製リードピン(ヤング率120〜130GPa)を、真空炉にて最高温度800℃で15分保持することにより接合した。
【0049】
その後、このリードピンの接合強度(45°引っ張り強度)を、45°方向に10mm/分の速度で引っ張る引っ張り試験により評価した。
【0050】
なお、この形状のリードピンにおいては、45°引っ張り強度が15N以上あればリードピンは折り曲げに耐えうるが、15N未満しか45°引っ張り強度がない場合には、リードピンに外部から力が加わったときにリードピンが折れ曲がる前にガラスセラミックスから成る絶縁基体が破壊してしまうため、ソケット挿入時にリードピンが取れてしまうといった不具合が発生することとなる。これより、接合強度の判断基準としては、45°引っ張り強度が15N以上であれば実用上問題ないとした。
【0051】
これらの結果を表1に示すとともに、図2に線図で示す。なお、図2において、横軸はリードピンのヘッド部の厚み(単位:mm)を、縦軸は45°引っ張り強度(単位:N)を表わし、黒丸はヘッド部のそれぞれの厚みにおける45°引っ張り強度の平均値を、その上側の線は測定最大値を、下側の線は測定最小値を示し、測定値のばらつき範囲を平均値と同時に示している。
【0052】
【表1】

Figure 0004105928
【0053】
表1および図2に示す結果から分かるように、本発明の実施例1〜6では、リードピンの45°引っ張り強度(破壊強度)が最小値でも15N以上であった。一方、比較例1・2では、リードピンの45°引っ張り強度の最小値が15N未満であった。
【0054】
次に、セラミックスの材質を変えて、3点曲げ強度が350MPaのガラスセラミックスおよび400MPaのアルミナセラミックスにおいても、同様にヘッド厚みの異なる8種類のリードピンを接合し、同様の評価を行なった(表1に示す実施例7〜18および比較例3〜6に対応する)。これらの結果を表1に示すとともに、図3および図4にそれぞれ図2と同様の線図で示す。なお、図3は絶縁基体に3点曲げ強度が350MPaのガラスセラミックスを用いた場合の結果であり、図4は3点曲げ強度が400MPaのアルミナセラミックスを用いた場合の結果である。
【0055】
これらの結果から分かるように、3点曲げ強度が350MPaのガラスセラミックスから成る絶縁基体を用いた場合では、45°引っ張り強度の値が異なるものの、3点曲げ強度が200MPaのガラスセラミックスから成る絶縁基体を用いた場合と同様の傾向であったのに対して、400MPaのアルミナセラミックスから成る絶縁基体を用いた場合では、今回評価したヘッド部の厚みの範囲では、リードピン切れが発生し、あるいは15N以上の大きな45°引っ張り強度で絶縁基体と活性金属ろう材との界面が破壊し、本発明のリードピン付き配線基板におけるリードピンのヘッド部の直径および厚みによるリードピンと絶縁基体との接合強度への影響は認められなかった。
【0056】
次に、リードピンの形状を変えて、同様の評価を行なった。これらの結果を表1に併せて示す。
【0057】
ピン部の直径が0.3mm、ヘッド部の直径が0.40mmで、ヘッド部の厚みが0.10mmおよび0.24mmの2種類(表1に示す実施例19および20に対応する)のFe−Ni−Co合金製リードピンを、3点曲げ強度が200MPaのガラスセラミックスから成る絶縁基体に接合し、45°引っ張り強度を評価したところ、15N以上の45°引っ張り強度で破壊した。
【0058】
また、ピン部の直径が0.3mm、ヘッド部の直径が0.35mmで、ヘッド部の厚みが0.10mmおよび0.24mmの2種類(表1に示す比較例7および8に対応する)のFe−Ni−Co合金製リードピンを、3点曲げ強度が200MPaのガラスセラミックスから成る絶縁基体に接合し、45°引っ張り強度を評価したところ、リードピンの45°引っ張り強度の最小値が15N未満であった。
【0059】
さらに、ピン部の直径が0.3mm、ヘッド部の直径が0.55mmおよび0.65mmで、ヘッド部の厚みが0.15mmの2種類(表1に示す実施例21および22に対応する)のFe−Ni−Co合金製リードピンを、3点曲げ強度が200MPaのガラスセラミックスから成る絶縁基体に接合し、45°引っ張り強度を評価したところ、30N以上の45°引っ張り強度でリードピン切れが発生した。
【0060】
以上のように、3点曲げ強度が350MPa以下のセラミックスから成る絶縁基体の表面に、リードピンをろう材を介して接合する場合には、リードピンのヘッド部の直径を0.4mm以上とし、かつヘッド部の厚みを0.10mm以上0.24mm以下にすることにより、実用上問題ない接合強度を得ることができ、斜め方向に応力が発生した場合においても高い接合信頼性を有するリードピン付き配線基板を提供することができた。
【0061】
次に、ピン部のヤング率がリードピンとガラスセラミックスから成る絶縁基体との接合強度に及ぼす影響について評価を行なうために、3点曲げ強度が200MPaのガラスセラミックスから成る絶縁基体に、ピン部の直径が0.3mm、ヘッド部の直径が0.45mmでヘッド部の厚みが0.17mm(表1に示す実施例3に対応する)のリードピンを、ヤング率が120〜130GPaのFe−Ni−Co合金製のものと、ヤング率が65〜75GPaのAlに熱処理(アニール)を施すことによってヤング率を40〜45GPaに調整したAl製のものと、ヤング率が190〜200GPaのFeに熱処理(アニール)を施すことによってヤング率を155〜160GPaに調整したFe製のものとの3種類の材質によるリードピンを用いて接合し、それぞれの45°引っ張り強度を評価した。
【0062】
その結果、本発明の実施例に対応するヤング率が120〜130GPaのFe−Ni−Co合金製のリードピンにおいては、最小値でも15N以上の45°引っ張り強度を示し実用上問題のない接合強度が得られた。これに対して、ヤング率が40〜45GPaのAl製のリードピンおよびヤング率が155〜160GPaのFe製のリードピンにおいては、最小値が15N以下の値を示すようになり、場合によっては数Nという小さな45°引っ張り強度でリードピン切れや、絶縁基体とろう材の界面の破壊等が発生し、実用上の接合信頼性において不具合が発生する危険性が高いという結果が得られた。
【0063】
これにより、リードピンのヘッド部の直径が0.4mm以上であるとともに厚みが0.10〜0.24mmであり、かつピン部のヤング率が50〜150GPaであることによって、斜め方向に応力が発生した場合においても高い接合信頼性を有するリードピン付き配線基板を提供することができることを確認できた。
【0064】
なお、本発明は以上の実施の形態の例に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の変更を加えることは何ら差し支えない。例えば、リードピンのヘッド部の下部、すなわち絶縁基体と接合する側の底面について、その周縁を面取りしたり丸みを付けたりしたような形状として使用してもよい。また、以上の実施の形態の例では、本発明のリード付き配線基板を半導体素子収納用パッケージに適用したが、混成集積回路基板等の他の用途に適用してもよい。
【0065】
【発明の効果】
本発明のリード付き配線基板によれば、リードピンのヘッド部の直径を0.4mm以上としたことから、リードピンとろう材との接合面積が十分に確保され接合強度を高いものとすることができるため、リードピンに斜め方向から大きな外力が生じても、リードピンとろう材との界面で剥離が生じることを抑制することができる。また、ヘッド部の厚みを0.10〜0.24mmとしたことから、リードピンに斜め方向から外力が生じた際にセラミックスの破壊の起点となるろう材と絶縁基体との接合面の周端部への応力の集中を低減することができるため、3点曲げ強度が350MPa以下と磁器強度が低いセラミックスを絶縁基体として用いても、絶縁基体にクラック等の破壊が発生することを防止することができる。さらに、ピン部のヤング率を50〜150GPaとしたことから、ヘッドピンに斜め方向の外力が生じた際に発生する応力の作用点を、ろう材と絶縁基体との接合界面からヘッドピンのピン部側に移動させることができ、ろう材と絶縁基体との接合面の周端部に作用する応力を分散し低減することができる。
【0066】
以上により、本発明によれば、ろう材を介して3点曲げ強度が350MPa以下と低いセラミックスから成る絶縁基体とリードピンとを強固に接合することが可能となり、斜め方向に応力が発生した場合においても高い接合信頼性を有するリードピン付き配線基板を提供することができた。
【図面の簡単な説明】
【図1】本発明のリードピン付き配線基板の実施の形態の一例を示す断面図である。
【図2】リードピン付き配線基板において、3点曲げ強度200MPaのガラスセラミックスから成る絶縁基体にリードピンを接合したときの、リードピンのヘッド部の厚みと45°引っ張り強度との関係を示す線図である。
【図3】リードピン付き配線基板において、3点曲げ強度350MPaのガラスセラミックスから成る絶縁基体にリードピンを接合したときの、リードピンのヘッド部の厚みと45°引っ張り強度との関係を示す線図である。
【図4】リードピン付き配線基板において、3点曲げ強度400MPaのアルミナセラミックスから成る絶縁基体にリードピンを接合したときの、リードピンのヘッド部の厚みと45°引っ張り強度との関係を示す線図である。
【符号の説明】
1・・・・ろう材
2・・・・リードピン
2a・・・・ヘッド部
3・・・・配線基板
4・・・・半導体素子
5・・・・絶縁基体
6・・・・配線導体
7・・・・半導体素子搭載部
8・・・・電極パッド[0001]
BACKGROUND OF THE INVENTION
The present invention has a so-called pin grid array (PGA) type lead pin in which lead pins for input / output terminals are erected, which are used in a package for housing a semiconductor element for housing a semiconductor element, a circuit board, an electronic circuit module, or the like. The present invention relates to a wiring board.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, a semiconductor element housing package for housing a semiconductor element such as a semiconductor integrated circuit element, a circuit board or an electronic circuit module constituting a high frequency circuit, a power circuit, and the like have a surface of an insulating base made of ceramics and A wiring board having a wiring conductor inside is used. In addition, the wiring board is made of a metal member for hermetically accommodating the semiconductor element in a terminal member such as a lead pin and a ball terminal, a heat radiating member such as a heat radiating plate and a heat radiating fin, or a container made of the wiring board and a lid. A metal member such as a seal member such as a seal ring for attaching the lid is bonded to the metallized wiring conductor or metallized layer on the surface of the wiring board or directly to the insulating substrate of the wiring board via a brazing material. .
[0003]
For example, in the case of a package for housing a semiconductor element, it is generally made of an electrically insulating material such as alumina ceramics, and is led out from the concave portion for housing the semiconductor element to the substantially central portion of the upper surface thereof and from the periphery of the concave portion to the outer peripheral end. A wiring board as an insulating substrate having a plurality of metallized wiring conductors made of a refractory metal powder such as W / Mo, and a pad formed on the lower surface of the wiring board to electrically connect the semiconductor element to an external electric circuit; The metallized wiring conductor is configured in a form (pin grid array type) having lead pin terminals joined via a brazing material such as Ag brazing, and a metal heat dissipating member or the like is attached as necessary. Then, the semiconductor element is bonded and fixed to the bottom surface of the concave portion of the wiring board via an adhesive made of glass, resin, etc., and each electrode of the semiconductor element and the metallized wiring conductor are electrically connected via a bonding wire or the like. A semiconductor device is configured by bonding a lid to the upper surface of the wiring board via a sealing material such as glass or resin and hermetically sealing the semiconductor element inside a container composed of the wiring board and the lid. The
[0004]
In addition, the lead pin of the terminal member of such a semiconductor device is generally formed by plastic working one end of the lead wire in order to increase the bonding area with the brazing material and increase the bonding strength with the pad. It is a nail head type having a pin portion inserted into a socket of an external electric circuit and a head portion joined to a pad of a wiring board.
[0005]
On the other hand, in the recent advanced information age, the frequency band used for signals is increasingly shifting to the high frequency band. In a high-frequency wiring board that transmits such a high-frequency signal, the resistance of the conductor forming the wiring layer is required to be low in order to transmit the high-frequency signal at high speed. A rate is required. Therefore, a wiring board using a glass ceramic having a low dielectric constant and suitable as an insulating base for high frequency as an insulating base made of ceramics and using a low resistance metal such as Cu, Ag, Au, etc. as a metallized wiring conductor is widely used.
[0006]
However, in such a high-frequency wiring board, glass ceramics with a low dielectric constant contain a large amount of glass components. Therefore, their ceramic strength is lower than that of conventional alumina ceramics, etc. Since the melting point is low, it is necessary to fire at a low temperature, so that the bonding strength of the metallized wiring conductor to the ceramic is also low.
[0007]
For this reason, in the case where a lead pin is joined to a pad of such a wiring board via a brazing material to make a wiring board with a pin grid array type lead pin, the lead pin is connected to the external electric circuit in order to mount the wiring board on the external electric circuit. If external force is applied to the lead pin from the vertical or diagonal direction when it is inserted into the circuit socket or when the lead pin is pulled out due to failure or replacement after the wiring board is mounted on the external electric circuit, insulation Breaking stress is generated at the interface between the ceramic substrate and the pad that is the metallized wiring conductor, causing peeling, or the ceramic itself yields to the breaking stress and breaks down, resulting in a decrease in bonding reliability. It was.
[0008]
Therefore, as a technique for avoiding breakage at the interface between the ceramic and the pad, a lead pin bonding pad is formed using an Ag—Cu brazing material containing at least one of Ti · Zr or Hf as an active metal. There has been proposed a method in which a lead pin is directly joined to a surface region of an insulating substrate including a portion where a through conductor (via conductor) led out from the inside of the wiring board to the lower surface is exposed without being formed in the wiring substrate.
[0009]
In this method, electrical connection is made by directly connecting a through conductor (via conductor), which is a part of the internal wiring of the wiring board, and a lead pin through a brazing material without using a pad. Since the exposed part of (via conductor) has a small diameter of about 100 μm or less, the lead pin is actually bonded via ceramic and brazing material, which is an insulating base, and the bonding strength between the pad and ceramic The lead pin can be joined without depending on the above, and the breakage at the interface between the ceramic and the pad can be avoided.
[0010]
[Patent Document 1]
JP-A-8-162563
[Patent Document 2]
JP-A-8-298381
[Patent Document 3]
Japanese Patent Laid-Open No. 9-18144
[0011]
[Problems to be solved by the invention]
However, even in such a method, when the external stress in the oblique direction is concentrated on the peripheral edge of the joint surface between the insulating base made of ceramic and the brazing material, the lead pin acts on the lead pin in an oblique direction. However, the insulating substrate itself tends to break due to its breaking stress, and problems such as cracks proceeding inside the insulating substrate starting from this point and causing deterioration in bonding reliability remain. It was.
[0012]
Also, in place of the conventional problem that the interface between the pad and the lead pin is peeled off, a new problem is that the peeling of the brazing material and the lead pin greatly affects the bonding reliability between the insulating base made of ceramics and the lead pin. It was supposed to occur.
[0013]
The present invention has been devised in order to solve the above-described problems in the prior art, and the purpose of the present invention is to provide a lead pin and ceramics that can withstand practical use even when an external force in an oblique direction is generated on the lead pin. It is an object of the present invention to provide a highly reliable wiring board with lead pins that can secure bonding strength with an insulating base.
[0014]
[Means for Solving the Problems]
As a result of earnest research on the above problems, the present inventor has found that the lead pin and the shape of the head portion of the lead pin and the bonding strength between the insulating base made of ceramics when an external force is generated on the lead pin in an oblique direction in the lead board. The inventors have found that the bonding strength between the lead pin and the insulating base is greatly improved by setting the rigidity of the pin portion to an appropriate state, and the present invention has been completed.
[0015]
  That is, the wiring board with lead pins of the present invention comprises an insulating base made of ceramics having a three-point bending strength of 350 MPa or less, and the surface of the insulating base andInsideA wiring board with lead pins, comprising: a wiring conductor formed in a portion; a brazing material joined to a region exposed on a lower surface of the insulating base of the wiring conductor; and a lead pin joined to the brazing material, The lead pin has a head portion with a diameter of 0.4 mm or more, a thickness of 0.10 to 0.24 mm, and a pin portion with a Young's modulus of 50 to 150 GPa.,Ti,It is an Ag—Cu-based brazing material containing at least one of Zr and Hf, and the brazing material is directly bonded to an exposed region of the wiring conductor and an insulating base around the region. Features.
[0016]
According to the leaded wiring board of the present invention, since the diameter of the head portion of the lead pin is set to 0.4 mm or more, the bonding area between the lead pin and the brazing material can be sufficiently secured and the bonding strength can be increased. Even if a large external force is generated on the lead pin from an oblique direction, it is possible to suppress the occurrence of peeling at the interface between the lead pin and the brazing material. In addition, since the thickness of the head portion is set to 0.10 to 0.24 mm, the stress on the peripheral end portion of the joint surface between the brazing material and the insulating base, which becomes the starting point of ceramic destruction when an external force is generated on the lead pin from an oblique direction. Therefore, even when a ceramic having a low three-point bending strength of 350 MPa or less and a low ceramic strength is used as the insulating base, it is possible to prevent breakage such as cracks in the insulating base. Further, since the Young's modulus of the pin portion is 50 to 150 GPa, the point of action of the stress generated when an external force in the oblique direction is generated on the lead pin is determined from the bonding interface between the brazing material and the insulating base to the pin portion side of the head pin. The stress acting on the peripheral end portion of the joint surface between the brazing material and the insulating base can be dispersed and reduced.
[0017]
As a result, it is possible to firmly bond the insulating base made of ceramic with a low three-point bending strength of 350 MPa or less and the lead pin through the brazing material, and high bonding reliability even when stress is generated in an oblique direction. A wiring board with lead pins can be provided.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the wiring board with lead pins of the present invention will be described in detail.
[0019]
FIG. 1 is a cross-sectional view showing an example of an embodiment in which the wiring board with lead pins of the present invention is applied to a package for housing a semiconductor element, wherein 1 is a brazing material, 2 is a lead pin, and 3 is a wiring. The substrate 4 is a semiconductor element. The insulating base 5 made of ceramics of the wiring board 3 has a semiconductor element mounting portion 7 for mounting the semiconductor element 4 at the center of the upper surface.
[0020]
The insulating substrate 5 constituting the wiring board 3 is, for example, a substantially rectangular plate-like body made of ceramics such as a mullite sintered body and a glass ceramic sintered body, and has a wiring conductor 6 on the surface and / or inside thereof. is doing.
[0021]
The porcelain strength of the insulating substrate 5 made of such ceramics can be expressed by the three-point bending strength obtained by the method defined in JIS-R1601-1995 “Bending strength test method of fine ceramics”.
[0022]
Such a wiring board 3 is manufactured as follows, for example.
[0023]
If the insulating substrate 5 is made of a sintered glass ceramic, for example, SiO as the glass component2-B20ThreeSeries ・ SiO2-B2OThree-Al2OThreeSeries ・ SiO2-B2OThree-Al2OThree-MO system (where M represents Ca, Sr, Mg, Ba or Zn), SiO2-Al2OThree-M1OM2O system (however, M1And M2Are the same or different and indicate Ca, Sr, Mg, Ba or Zn).2-B2OThree-Al2OThree-M1OM2O system (however, M1And M2Is the same as above) · SiO2-B2OThree-MThree 2O system (however, MThreeRepresents Li.Na or K) .SiO2-B2OThree-Al2OThree-MThree 2O system (however, MThreeIs the same as above) Glass powder made of PB glass, Bi glass, etc., for example, Al2OThree・ SiO2・ ZrO2And TiO, a complex oxide of alkaline earth metal oxides2Al oxide of alkaline earth metal oxide, Al2OThreeAnd SiO2A filler powder such as a composite oxide containing at least one selected from (for example, spinel, mullite, cordierite) is mixed at a mass ratio of 40:60 to 99: 1, and an appropriate organic solvent / solvent is further added. The mixture is added and mixed to form a slurry, and this is formed into a sheet by a conventionally known doctor blade method or calendar roll method to obtain a ceramic green sheet (ceramic green sheet).
[0024]
Next, a conductive paste obtained by pasting the conductive material powder into the ceramic green sheet is printed by a screen printing method, a gravure printing method, or the like, or a metal foil having a predetermined pattern shape is transferred to the wiring conductor. 6 is formed. As a conductive material of the conductive paste, Cu, Ag, Ag-Pt, Ag-Pd, Au, or the like is generally used for a glass ceramic sintered body.
[0025]
The wiring conductor 6 includes a through conductor portion such as a via conductor or a through-hole conductor for connecting the conductor patterns located on the upper surface and the lower surface of the insulating substrate 5 inside the insulating substrate 5. Here, in FIG. 1, this through conductor is illustrated with emphasis over an actual scale for the sake of explanation. These through conductors are formed by, for example, filling a through hole formed in a ceramic green sheet by punching or the like with a conductor paste.
[0026]
Next, a plurality of ceramic green sheets on which the wiring conductors 6 are formed are stacked and fired at a predetermined temperature (about 900 ° C. in the case of glass ceramics), whereby the wiring substrate 3 is manufactured.
[0027]
  Then, the inner surface and the lower surface of the wiring board 3 located at a predetermined portion are arranged.TableIn a region including a portion where the through conductor (wiring conductor 6) for connecting the conductor patterns on the surfaces is exposed on the surface of the insulating base 5, for example, as an active metal,Ti,A paste obtained by pasting a brazing material 1, which is an Ag—Cu-based brazing material containing at least one of Zr and Hf, is printed by a screen printing method, a gravure printing method, etc. Bonding (brazing) through the brazing material 1 is performed.
[0028]
  The brazing material 1 for joining the lead pin 2 to the region including the through conductor exposed on the surface of the insulating substrate 5 includes a BAg-8 (72 mass% Ag-28 mass% Cu) brazing material, and an Ag of 60 Ti—the active metal is added to an Ag—Cu brazing material having a composition of ˜80 mass% and Cu of 20 to 40 mass%.,A material in which at least one of Zr and Hf is added in the form of metal or hydride and added in an amount of 2 to 10% by mass is used.
[0029]
In order to join the lead pin 2 to the insulating substrate 5 through the brazing material 1, for example, the powder of the brazing material 1 is combined with an organic solvent / binder and a solvent, and 5 to 15% by mass is added and added. The solder paste is printed on the surface of the insulating substrate 5 in a predetermined pattern corresponding to the portion where the lead pins 2 are erected by screen printing or the like, and the head portion 2a of the lead pins 2 is placed on this, and this is vacuum-treated. Alternatively, heat treatment is performed at a predetermined temperature (about 800 ° C.) in a neutral atmosphere or a reducing atmosphere, the brazing material 1 is melted, and the insulating base 5 and the lead pins 2 are brazed and joined.
[0030]
At this time, taking into consideration the melting point of the brazing material 1 and the appearance of the joint after brazing, the thickness of the reaction layer and the alloy layer, the content, volume (volume), and maximum brazing temperature of the brazing material 1 In addition, it is necessary to determine a holding time at a temperature equal to or higher than the melting point of the brazing material 1.
[0031]
As an example, a so-called BAg-8 brazing material of 72 mass% Ag-28 mass% Cu is used as an active metal TiH.2If the lead pin 2 having a pin diameter of 0.3 mm, a head portion 2a diameter of 0.45 mm, and a head portion 2a thickness of 0.2 mm is joined to the insulating base 5 using the brazing filler metal 1 containing 3% by mass of The brazing material 1 is printed on the surface of the insulating base 5 with a diameter of 0.88 mm and a thickness of 60 μm, and the head portion 2a of the lead pin 2 is in contact with the maximum temperature from 795 ° C. to 850 ° C. for 5 minutes. If held for 1 hour, a good bonding state can be obtained.
[0032]
Here, when the lead pin 2 is joined to the surface of the insulating base 5 made of ceramics having a three-point bending strength of 350 MPa or less via the brazing material 1, the diameter of the head portion 2a of the lead pin 2 is 0.4 mm or more. is required.
[0033]
If the diameter of the head portion 2a is smaller than 0.4 mm, the absolute joining area between the brazing material 1 and the lead pin 2 is insufficient, and when a large external force is generated in the lead pin 2 from an oblique direction, the lead pin 2 and the brazing material Peeling and cracking etc. are likely to occur at the interface with 1 and how to maintain the active metal content, volume (volume), brazing maximum reached temperature of brazing filler metal 1 and the temperature above the melting point of brazing filler metal 1 etc. Even if adjusted, the bonding strength between the lead pin 2 and the insulating base 5 through the brazing material 1 is lowered, for example, a 45 ° tensile test in which the lead pin 2 is pulled in the 45 ° direction at a speed of 10 mm / min. When the tensile strength measured at 1 is less than 15 N, it is lowered to the extent that it cannot withstand actual use. Accordingly, the diameter of the head portion 2a is required to be 0.4 mm or more. As the diameter of the head portion 2a is increased, the bonding area between the brazing material 1 and the lead pin 2 is increased, and the lead pin 2 and the insulating substrate 5 through the brazing material 1 are increased. The bonding strength with the material is also improved.
[0034]
As described above, the diameter of the head portion 2a is required to be 0.4 mm or more, and the upper limit of the diameter is a portion where the plurality of lead pins 2 are erected on the outer dimension of the insulating base 5 or the lower surface of the insulating base 5. The number of lead pins 2, the number of lead pins 2, the arrangement method of the lead pins 2, and the like can be arbitrarily set. For example, when applied to a semiconductor element storage package for mounting the semiconductor element 4, a range of about 0.4 to 1.5 mm is generally selected as the diameter of the head portion 2 a of the lead pin 2.
[0035]
Further, when the diameter of the head portion 2a of the lead pin 2 is 0.4 mm or more, it is important that the thickness of the head portion 2a is 0.10 to 0.24 mm. When the thickness of the head portion 2a is less than 0.10 mm, the brazing material 1 tends to creep up to the upper portion of the head portion 2a, that is, near the base of the pin portion, and the peripheral edge of the joint portion between the brazing material 1 and the insulating base 5 The contact angle of the brazing material 1 with respect to the insulating base 5 at the portion becomes large. Thus, when the contact angle of the brazing material 1 with respect to the insulating base 5 increases, the volume (volume) of the brazing material 1 at the peripheral end of the joint between the brazing material 1 and the insulating base 5 increases. Accordingly, when the lead pin 2 and the insulating base 5 are joined via the brazing material 1, the residual stress generated at the peripheral end portion of the brazing material 1 becomes high. As a result, when an external force is generated in the lead pin 2 from an oblique direction, a large fracture is caused by a stress generated by the external force and a residual stress inside the brazing material 1 at the joint interface between the brazing material 1 and the insulating base 5. Stress acts, and the insulating base 5 is likely to be broken such as cracks.
[0036]
On the other hand, when the thickness of the head portion 2a is thicker than 0.24 mm, when an external force is applied to the lead pin 2 in an oblique direction, it will be the point of action from the root portion of the pin portion serving as a fulcrum for the head portion 2a. By increasing the distance to the peripheral end of the joint between the material 1 and the insulating base 5, the head portion 2a is pressed against the insulating base 5 in the same direction as the applied external force (in the compression direction). The stress in the direction of peeling (pull) in the direction opposite to the external force applied to the external force is a large stress, even if each is a small external force. The insulating base 5 is easily broken on the peripheral end side in the direction opposite to the external force.
[0037]
Further, the Young's modulus of the pin portion of the lead pin 2 is desirably 50 to 150 GPa. The Young's modulus of this pin portion is from the viewpoint of relieving the stress acting on the bonding interface between the brazing filler metal 1 and the insulating base 5 by deforming the pin portion when an external force is applied to the lead pin 2 from an oblique direction. The lower one is preferable, but if it is less than 50 GPa, when an external force is applied to the lead pin 2 from an oblique direction, the lead pin 2 tends to be easily stretched or bent and cannot be put into practical use. On the other hand, if it exceeds 150 GPa, the pin portion becomes too rigid, and the stress relaxation action at the pin portion of the lead pin 2 or the root portion of the pin portion to the head portion 2a is reduced, and the applied external force is reduced. It directly acts on the bonding interface between the brazing filler metal 1 and the insulating base 5 and tends to promote the destruction of the insulating base 5.
[0038]
As described above, the material of the lead pin 2 can be arbitrarily selected according to its use or the like if the Young's modulus of the pin portion is 50 to 150 GPa. For example, if the lead pin 2 is applied to a package for housing a semiconductor element, a Cu alloy, Ni alloy, Al alloy, Cu-Ni alloy, pure Fe, Fe-Ni alloy, Fe-Ni-Co alloy, or the like can be used. . In addition, the lead pin 2 obtained by a method such as adjusting the Young's modulus of the pin part to a range of 50 to 150 GPa by applying heat treatment (annealing) to the lead pin 2 made of a material having a Young's modulus of the pin part exceeding 150 GPa is used. May be.
[0039]
The dimensions of each part other than the diameter and thickness of the head part 2a of the lead pin 2 used in the wiring board with lead pins of the present invention can be arbitrarily selected according to the shape of the socket of the external electric circuit, the connection method, and the like. For example, in the case of a lead pin 2 applied to a package for housing a semiconductor element, the diameter of the pin portion is generally 0.1 to 1.0 mm (however, since the lead pin 2 is a nail head type, the diameter of the pin portion is the head portion 2a). The diameter of the pin portion is used in the range of about 1 to 6 mm.
[0040]
By joining the lead pin 2 and the insulating base 5 as described above, even if an external force is generated on the lead pin 2 from an oblique direction, the joint strength of the joint portion between the insulating base 5 and the lead pin 2 via the brazing material 1 is obtained. Thus, it is possible to obtain a wiring board with lead pins in a good brazed state.
[0041]
In such a wiring board 3, the wiring conductor 6 to which the lead pin 2 formed on the surface of the insulating base 5 is not joined and the exposed surface of the through conductor to which the lead pin 2 is not joined are insulated as necessary. Before or after joining the substrate 5 and the lead pin 2, a metal film such as Ni or Au having excellent corrosion resistance and good wettability with the Ag—Cu brazing material is plated with a thickness of 1 to 20 μm. It is attached by.
[0042]
The Ni plating layer is made of, for example, electroless Ni—P plating containing about 4 to 12% by mass of P. Such a Ni plating layer is obtained by first immersing the insulating substrate 5 on which the wiring conductor 6 is formed in an acidic cleaning solution having a temperature of 25 to 50 ° C. composed of a surfactant and an aqueous hydrochloric acid solution for 1 to 5 minutes. 6. The exposed surface of 6 was cleaned, then washed with pure water, and then placed in a palladium active solution composed of palladium chloride, potassium hydroxide, ethylenediaminetetraacetic acid at a temperature of 25 to 40 ° C. for 1 to 5 minutes. The palladium catalyst is adhered to the surface of the wiring conductor 6 by immersing it to the extent that it is then washed with pure water, and the temperature of nickel sulfate, sodium citrate, sodium acetate, sodium hypophosphite, and ammonium chloride is 50. It is deposited on the exposed surface of the wiring conductor 6 by dipping in an electroless Ni plating solution at ˜90 ° C. for 2 to 60 minutes.
[0043]
When the Ni plating layer has a thickness of less than 1 μm, it becomes a wiring conductor 6 formed on the surface of the insulating base 5, and in the example shown in FIG. 1, it becomes an electrode pad 8 for connecting the semiconductor element 4 and the wiring substrate 3. The surface of the part cannot be satisfactorily covered, and the exposed surface of the wiring conductor 6 tends to be oxidized or discolored. On the other hand, when the thickness exceeds 20 μm, the Ni plating layer is likely to be cracked or peeled off due to the internal stress of the Ni plating layer. Therefore, the thickness of the Ni plating layer is preferably in the range of 1 to 20 μm.
[0044]
Further, when the Ni plating layer is formed from electroless Ni—P plating as described above, if the P content in the Ni plating layer is less than 4% by mass, the exposed surface of the wiring conductor 6 is plated with Ni. When depositing the layer, the deposition rate of the Ni plating becomes slow, and it takes a long time to obtain the Ni plating layer having a predetermined thickness, so the productivity becomes extremely poor. On the other hand, if it exceeds 12% by mass, the reactivity with the Au plating layer deposited on the Ni plating layer becomes poor, and it tends to be difficult to satisfactorily coat the Ni plating layer with the Au plating layer. Therefore, the content of P in the Ni plating layer is preferably in the range of 4 to 12% by mass.
[0045]
In particular, when Ni-P plating is performed by an electroless plating method after joining the insulating base 5 and the lead pin 2, Ni plating is deposited on the insulating base 5 around the brazing material 1, and the adjacent wiring conductors 6 are connected to each other. May be short-circuited. In order to prevent this, the amount of the binder in the brazing material 1 paste is reduced to reduce the carbon residue on the surface of the insulating base 5 to reduce the factor that the Ni plating adheres to the surface of the insulating base 5, or the plating By etching the surface of the insulating base 5 in the pre-treatment stage, the brazing filler metal components such as Ag and Cu which are melted and vaporized at the time of brazing and adhere to the surface of the insulating base 5 around the brazing filler metal 1 are removed. Measures such as these may be adopted. Here, as the amount of the binder in the brazing material 1 paste, it is appropriate to externally add at a rate of 8 to 12% by mass from the above reasons and from the viewpoint of printability. Further, in order to improve the decrease in heat discoloration of the plating layer due to electroless plating, it is effective to densify the plating film by heat treatment at 400 ° C. or higher after plating.
[0046]
Then, the semiconductor element 4 is mounted on the semiconductor element mounting portion 7 using epoxy resin, Ag epoxy resin or the like, and the wiring conductor 6 is disposed in the vicinity of the electrode on the semiconductor element 4 and the semiconductor element mounting portion 7 of the insulating base 5. After electrically connecting the electrode pad 8 formed as a part with fine metal wires such as Au, Cu, and Al, a lid made of a metal made of Cu or Al or a ceramic made of an aluminum oxide sintered body or the like By sealing the body 9 by sealing or welding with a resin such as epoxy or a metal brazing material such as Au—Sn · Au—Ge, a semiconductor device is obtained.
[0047]
【Example】
Next, specific examples of the leaded wiring board of the present invention will be described.
[0048]
First, on the surface of an insulating base made of glass ceramics having a three-point bending strength of 200 MPa, an Au—Cu brazing material having a composition of Ag: 72 mass% and Cu: 28 mass% and having a composition of Ag: 72 mass% and TiH as an active metal.2The active metal brazing paste with 3% by weight of the binder and 10% by weight of the binder added externally is screen-printed so that the amount of the brazing material is 0.2 mg per pad to form a brazing material pattern with a diameter of 0.88 mm. Through this, the pin portion diameter is 0.3 mm, the head portion diameter is 0.45 mm, and the head portion thickness is 0.08 mm to 0.25 mm (Examples 1 to 6 and Comparative Example 1 shown in Table 1). A lead pin made of Fe—Ni—Co alloy (corresponding to 2) (Young's modulus 120-130 GPa) was joined for 15 minutes at a maximum temperature of 800 ° C. in a vacuum furnace.
[0049]
Thereafter, the bonding strength (45 ° tensile strength) of the lead pin was evaluated by a tensile test in which the lead pin was pulled at a speed of 10 mm / min in the 45 ° direction.
[0050]
In this shape of lead pin, if the 45 ° tensile strength is 15N or more, the lead pin can withstand bending, but if it is less than 15N and has 45 ° tensile strength, the lead pin can be used when external force is applied to the lead pin. Since the insulating base made of glass ceramics is broken before the wire is bent, there is a problem in that the lead pin can be removed when the socket is inserted. As a result, the criterion for determining the bonding strength is that there is no practical problem if the 45 ° tensile strength is 15 N or more.
[0051]
These results are shown in Table 1 and shown in a diagram in FIG. In FIG. 2, the horizontal axis represents the thickness (unit: mm) of the head portion of the lead pin, the vertical axis represents 45 ° tensile strength (unit: N), and the black circle represents 45 ° tensile strength at each thickness of the head portion. The upper line indicates the measurement maximum value, the lower line indicates the measurement minimum value, and the variation range of the measurement value is shown simultaneously with the average value.
[0052]
[Table 1]
Figure 0004105928
[0053]
As can be seen from the results shown in Table 1 and FIG. 2, in Examples 1 to 6 of the present invention, the 45 ° tensile strength (breaking strength) of the lead pin was 15 N or more even at the minimum. On the other hand, in Comparative Examples 1 and 2, the minimum 45 ° tensile strength of the lead pins was less than 15N.
[0054]
Next, by changing the material of the ceramic, 8 types of lead pins having different head thicknesses were similarly joined to the glass ceramic having a three-point bending strength of 350 MPa and the alumina ceramic having a pressure of 400 MPa, and the same evaluation was performed (Table 1). Corresponding to Examples 7 to 18 and Comparative Examples 3 to 6). These results are shown in Table 1, and shown in FIGS. 3 and 4 in the same diagram as FIG. FIG. 3 shows the results when glass ceramics having a three-point bending strength of 350 MPa are used for the insulating substrate, and FIG. 4 shows the results when alumina ceramics having a three-point bending strength of 400 MPa are used.
[0055]
As can be seen from these results, when an insulating substrate made of glass ceramics having a three-point bending strength of 350 MPa is used, an insulating substrate made of glass ceramics having a three-point bending strength of 200 MPa, although the 45 ° tensile strength value is different. In the case of using an insulating substrate made of 400 MPa alumina ceramic, lead pin breakage occurred in the range of the thickness of the head portion evaluated this time, or 15 N or more. The interface between the insulating base and the active metal brazing material is broken by a large 45 ° tensile strength, and the influence of the diameter and thickness of the head portion of the lead pin on the wiring board with the lead pin of the present invention affects the bonding strength between the lead pin and the insulating base. I was not able to admit.
[0056]
Next, the same evaluation was performed by changing the shape of the lead pin. These results are also shown in Table 1.
[0057]
Two types of Fe—Ni—Co (corresponding to Examples 19 and 20 shown in Table 1) with a pin portion diameter of 0.3 mm, a head portion diameter of 0.40 mm, and a head portion thickness of 0.10 mm and 0.24 mm. The alloy lead pin was bonded to an insulating base made of glass ceramics having a three-point bending strength of 200 MPa, and the 45 ° tensile strength was evaluated. The alloy was broken at a 45 ° tensile strength of 15 N or more.
[0058]
Further, two types of Fe—Ni (corresponding to Comparative Examples 7 and 8 shown in Table 1) having a pin portion diameter of 0.3 mm, a head portion diameter of 0.35 mm, and a head portion thickness of 0.10 mm and 0.24 mm are provided. The lead pin made of a Co alloy was joined to an insulating substrate made of glass ceramics having a three-point bending strength of 200 MPa, and the 45 ° tensile strength was evaluated. As a result, the minimum 45 ° tensile strength of the lead pin was less than 15N.
[0059]
Further, there are two types of Fe—Ni (corresponding to Examples 21 and 22 shown in Table 1) with a pin portion diameter of 0.3 mm, a head portion diameter of 0.55 mm and 0.65 mm, and a head portion thickness of 0.15 mm. When a lead pin made of a Co alloy was joined to an insulating substrate made of glass ceramics having a three-point bending strength of 200 MPa and the 45 ° tensile strength was evaluated, the lead pin was broken at a 45 ° tensile strength of 30 N or more.
[0060]
As described above, when the lead pin is bonded to the surface of the insulating base made of ceramics having a three-point bending strength of 350 MPa or less via the brazing material, the diameter of the head portion of the lead pin is set to 0.4 mm or more, and the head portion By providing a thickness of 0.10 mm or more and 0.24 mm or less, it is possible to obtain a bonding strength having no practical problem, and to provide a wiring board with lead pins having high bonding reliability even when stress is generated in an oblique direction. I was able to.
[0061]
Next, in order to evaluate the influence of the Young's modulus of the pin portion on the bonding strength between the lead pin and the insulating substrate made of glass ceramics, the diameter of the pin portion was set on the insulating substrate made of glass ceramics having a three-point bending strength of 200 MPa. Is 0.3 mm, the diameter of the head is 0.45 mm, and the thickness of the head is 0.17 mm (corresponding to Example 3 shown in Table 1). The lead pin is made of an Fe—Ni—Co alloy with a Young's modulus of 120 to 130 GPa. Heat treatment (annealing) of Al with a Young's modulus adjusted to 40-45 GPa by heat-treating (annealing) Al with a Young's modulus of 65-75 GPa and Fe with a Young's modulus of 190-200 GPa This was joined using lead pins made of three kinds of materials such as those made of Fe whose Young's modulus was adjusted to 155 to 160 GPa, and each 45 ° tensile strength was evaluated.
[0062]
As a result, a lead pin made of an Fe-Ni-Co alloy having a Young's modulus of 120 to 130 GPa corresponding to the embodiment of the present invention exhibits a 45 ° tensile strength of 15 N or more even at a minimum value and has a practically no problem. Obtained. On the other hand, in the lead pin made of Al having a Young's modulus of 40 to 45 GPa and the lead pin made of Fe having a Young's modulus of 155 to 160 GPa, the minimum value is 15 N or less, and in some cases, it is several N The results showed that there was a high risk of failure in practical joint reliability due to breakage of the lead pin and breakage of the interface between the insulating base and the brazing material with a small 45 ° tensile strength.
[0063]
As a result, even when stress occurs in an oblique direction due to the diameter of the head portion of the lead pin being 0.4 mm or more, the thickness being 0.10 to 0.24 mm, and the Young's modulus of the pin portion being 50 to 150 GPa. It was confirmed that a wiring board with lead pins having high bonding reliability can be provided.
[0064]
In addition, this invention is not limited to the example of the above embodiment, A various change may be added in the range which does not deviate from the summary of this invention. For example, the lower portion of the head portion of the lead pin, that is, the bottom surface on the side to be bonded to the insulating base, may be used as a shape in which the periphery is chamfered or rounded. In the example of the above embodiment, the leaded wiring board of the present invention is applied to a package for housing a semiconductor element, but may be applied to other uses such as a hybrid integrated circuit board.
[0065]
【The invention's effect】
According to the leaded wiring board of the present invention, since the diameter of the head portion of the lead pin is set to 0.4 mm or more, the bonding area between the lead pin and the brazing material can be sufficiently secured and the bonding strength can be increased. Even if a large external force is generated on the lead pin from an oblique direction, it is possible to suppress the occurrence of peeling at the interface between the lead pin and the brazing material. In addition, since the thickness of the head portion is set to 0.10 to 0.24 mm, the stress on the peripheral end portion of the joint surface between the brazing material and the insulating base, which becomes the starting point of ceramic destruction when an external force is generated on the lead pin from an oblique direction. Therefore, even when ceramics having a three-point bending strength of 350 MPa or less and low porcelain strength are used as the insulating base, it is possible to prevent the insulating base from being broken such as cracks. Further, since the Young's modulus of the pin portion is 50 to 150 GPa, the point of action of the stress generated when an external force in the oblique direction is generated on the head pin is determined from the bonding interface between the brazing material and the insulating base to the pin portion side of the head pin. The stress acting on the peripheral end portion of the joint surface between the brazing material and the insulating base can be dispersed and reduced.
[0066]
As described above, according to the present invention, it is possible to firmly bond an insulating base made of ceramic with a low three-point bending strength of 350 MPa or less and a lead pin through a brazing material, and when stress is generated in an oblique direction. In addition, it was possible to provide a wiring board with lead pins having high bonding reliability.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an example of an embodiment of a wiring board with lead pins of the present invention.
FIG. 2 is a diagram showing the relationship between the thickness of the head portion of the lead pin and the 45 ° tensile strength when the lead pin is joined to an insulating base made of glass ceramics having a three-point bending strength of 200 MPa in a wiring board with a lead pin. .
FIG. 3 is a diagram showing the relationship between the thickness of the head portion of the lead pin and the 45 ° tensile strength when the lead pin is joined to an insulating substrate made of glass ceramics having a three-point bending strength of 350 MPa in a wiring board with a lead pin. .
FIG. 4 is a diagram showing the relationship between the lead pin head portion thickness and 45 ° tensile strength when a lead pin is joined to an insulating substrate made of alumina ceramic having a three-point bending strength of 400 MPa in a wiring board with lead pins. .
[Explanation of symbols]
1. Brazing material
2 ... Lead pin
2a ... Head part
3 ... Wiring board
4 ... Semiconductor element
5. Insulating substrate
6. Wiring conductor
7 ... Semiconductor element mounting part
8 .... Electrode pad

Claims (1)

3点曲げ強度が350MPa以下のセラミックスから成る絶縁基体と、
該絶縁基体の表面および内部に形成された配線導体と、
前記配線導体の前記絶縁基体の下面に露出した領域に接合されたろう材と、
該ろう材に接合されたリードピンと、から成るリードピン付き配線基板であって、
前記リードピンは、ヘッド部の直径が0.4mm以上であるとともに厚みが0.10〜0.24mmであり、かつピン部のヤング率が50〜150GPaであり、
前記ろう材は、活性金属としてTiZrおよびHfのうち少なくとも1種を含有するAg−Cu系ろう材であり、
前記ろう材は、前記配線導体の露出した領域及び該領域の周囲の絶縁基体に、直に接合されていることを特徴とするリードピン付き配線基板。
An insulating base made of ceramics having a three-point bending strength of 350 MPa or less;
A wiring conductor formed on the surface and inside portion of the insulating substrate,
A brazing material bonded to a region exposed on the lower surface of the insulating base of the wiring conductor;
A lead pin joined to the brazing material, and a wiring board with lead pins,
The lead pin has a head portion with a diameter of 0.4 mm or more and a thickness of 0.10 to 0.24 mm, and a Young's modulus of the pin portion of 50 to 150 GPa,
The brazing material, as the active metal, Ti, an Ag-Cu-based brazing material containing at least one of Zr and Hf,
A wiring board with lead pins, wherein the brazing material is directly bonded to an exposed region of the wiring conductor and an insulating base around the region.
JP2002304724A 2002-10-18 2002-10-18 Wiring board with lead pins Expired - Fee Related JP4105928B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002304724A JP4105928B2 (en) 2002-10-18 2002-10-18 Wiring board with lead pins

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002304724A JP4105928B2 (en) 2002-10-18 2002-10-18 Wiring board with lead pins

Publications (2)

Publication Number Publication Date
JP2004140249A JP2004140249A (en) 2004-05-13
JP4105928B2 true JP4105928B2 (en) 2008-06-25

Family

ID=32452066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002304724A Expired - Fee Related JP4105928B2 (en) 2002-10-18 2002-10-18 Wiring board with lead pins

Country Status (1)

Country Link
JP (1) JP4105928B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4637505B2 (en) * 2004-05-26 2011-02-23 京セラ株式会社 Magnetic sensor device
JP4828998B2 (en) * 2006-04-24 2011-11-30 京セラ株式会社 Wiring board

Also Published As

Publication number Publication date
JP2004140249A (en) 2004-05-13

Similar Documents

Publication Publication Date Title
JP2009224651A (en) Wiring board and manufacturing process therefor
JP4105928B2 (en) Wiring board with lead pins
JP2004059375A (en) Ceramic-metal member junction body
JP2006121034A (en) Wiring board with lead pin
JP4364033B2 (en) Wiring board with lead pins
JP2000286353A (en) Semiconductor device housing package
JP4688314B2 (en) Wiring board manufacturing method
JP3495773B2 (en) Circuit board
JP2627509B2 (en) Electronic component having conductive layer
JP2005285967A (en) Wiring board with lead pin
JP2004289092A (en) Wiring board with lead pin
JP4034912B2 (en) Manufacturing method of semiconductor device storage package
JP3645744B2 (en) Ceramic wiring board
JP3784221B2 (en) Wiring board and manufacturing method thereof
JP2006148000A (en) Glass ceramic wiring board
JP3583018B2 (en) Ceramic wiring board
JP2005236213A (en) Wiring board with lead pin
JP2006100447A (en) Wiring board with lead pin
JP2006093571A (en) Wiring board with lead pin
JP2006066653A (en) Wiring substrate with lead pin
JP2004095735A (en) Semiconductor device
JP3393784B2 (en) Electronic component storage package
JP3323010B2 (en) Package for storing semiconductor elements
JP3537667B2 (en) Wiring board
JP2008177334A (en) Electronic component mounting board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051007

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080328

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120404

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140404

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees