JP2004056724A - 誤り訂正復号化方法 - Google Patents

誤り訂正復号化方法 Download PDF

Info

Publication number
JP2004056724A
JP2004056724A JP2002215126A JP2002215126A JP2004056724A JP 2004056724 A JP2004056724 A JP 2004056724A JP 2002215126 A JP2002215126 A JP 2002215126A JP 2002215126 A JP2002215126 A JP 2002215126A JP 2004056724 A JP2004056724 A JP 2004056724A
Authority
JP
Japan
Prior art keywords
metric
bit
coded data
data
state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002215126A
Other languages
English (en)
Inventor
Toshio Arai
新井 利男
Yoshinori Matsuzawa
松澤 義範
Motoki Maruyama
丸山 元樹
Yoshifumi Nishiyama
西山 良文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takaoka Toko Co Ltd
Tokyo Electric Power Co Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Toko Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc, Toko Electric Corp filed Critical Tokyo Electric Power Co Inc
Priority to JP2002215126A priority Critical patent/JP2004056724A/ja
Publication of JP2004056724A publication Critical patent/JP2004056724A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Detection And Prevention Of Errors In Transmission (AREA)
  • Error Detection And Correction (AREA)

Abstract

【課題】誤り訂正復号化における誤訂正を防止して信頼性及び伝送品質の向上を可能にする。
【解決手段】畳み込み符号器の状態遷移に従って送信される符号化データを受信側でビタビ復号化する際に、推定した状態遷移に従って出力されるべき符号化データと実際の受信符号データとの不一致を検出して受信符号データの誤りを訂正するようにした誤り訂正復号化方法であって、各ビットごとに符号化データと受信符号データとを比較して両者の一致不一致により所定のメトリックを演算し、このメトリックの累積値に基づいて前記状態遷移を推定する誤り訂正復号化方法に関する。受信符号データの各ビットのうち伝送路の外乱により受信符号データに誤りを生じる可能性が高いビットのメトリックの重みを他のビットのメトリックの重みと異ならせる。
【選択図】 図3

Description

【0001】
【発明の属する技術分野】
本発明は、例えば直交周波数分割多重(OFDM:Orthogonal Frequency Division Multiplexing)のようなマルチキャリア変復調方式において、畳み込み符号を用いて誤り訂正復号化を行うための復号化方法に関するものである。
【0002】
【従来の技術】
近年、配電線を利用して各種電気量や温湿度等の情報を収集する配電線搬送技術が盛んに研究されている。特に、10kHz以下の周波数帯域では電波法等による出力、搬送周波数、伝送速度等の制約が比較的緩やかであり、信号の減衰も少ないことから、低周波帯域を利用した配電線搬送技術が注目されてきている。
【0003】
一方、マルチキャリア変復調方式の一種であるOFDMは、周波数間隔を(1/有効シンボルの時間間隔)として各キャリア間を直交させ、符号間干渉がないようにした多数のサブキャリアを使用して各搬送波に低ビットレートの信号を割り当て、全体として所望のビットレートを得るようにしたものであり、
1)有効シンボル(変調信号の一度の変化によって送ることができるデータ)長を長くできる、
2)ガードインターバル(信号の一部を繰り返し伝送する期間)を設けることで遅延波の影響(ゴースト)を低減できる、
3)周波数利用率が高い、
等の利点を有している。
このため、最近では、配電線搬送においても情報データの変復調方式としてOFDMを適用することが多くなっている。
【0004】
ここで、図4は送信側から伝送される符号列(伝送するべき情報データを符号化した符号化データ)、OFDM信号の周波数スペクトル、受信側による復調後の復号(受信符号データ)の関係を示している。
OFDMのようなマルチキャリア変復調方式では、単一雑音(CW雑音)が存在すると、その雑音周波数付近のサブキャリアの伝送品質が劣化する。CW雑音は配電線の負荷が掃除機等のモータ負荷である場合に発生しやすく、そのスペクトルも幅を持つ。また、OFDMのようにサブキャリアの周波数間隔が極めて狭い場合には、CW雑音によって数本のサブキャリアの伝送品質が劣化することとなる。
【0005】
図4では、符号化データを構成する有効シンボルの各ビットがa1,a2,……,a10、b1,b2,……,b10、c1,c2,……,c10であり、これらがそれぞれ10本のサブキャリアに対応して変調され、復調後の受信符号データのうちa5に対応するA5,b5に対応するB5、c5に対応するC5が何れもCW雑音によって誤りの確率が高くなることを示している。
【0006】
ここで、伝送誤りを訂正するための周知の誤り訂正符号化及び復号化技術について述べる。
図5は、送信側において、Mビットの情報データに冗長ビットを付加してNビットの符号化データを生成するM/N畳み込み符号器の構成を示すもので、具体的には符号化率R(=M/N)を1/2とした1/2畳み込み符号器の例である。
図において、Xは入力される情報データ、Xは伝送路に出力される符号化データ、D,Dは遅延器、21,22,23は排他的論理和(EX−OR)回路、31はパラレル/シリアル変換器、Xi1,Xi2はそれぞれ排他的論理和回路21,23の出力データである。
【0007】
遅延器D,Dの状態がそれぞれ(0,0),(1,0),(0,1),(1,1)のとき(例えば(0,0)は遅延器Dが“0”、遅延器Dが“0”の状態を示す)、各状態をS,S,S,Sとする。
図6はこれらの状態遷移図であり、情報データの入力によってある状態からある状態へ遷移する場合に排他的論理和回路21,23から出力されるデータXi1,Xi2を示している。例えば、初期状態SにおいてX=0が入力された場合には、遅延器D,Dの状態は依然として(0,0)であり(状態Sは変わらない)、データXi1,Xi2は{00}が出力され、初期状態SにおいてX=1が入力された場合には、遅延器D,Dの状態は(1,0)に変化する(状態Sから状態Sに遷移する)ので、その際にデータXi1,Xi2としては{11}が出力される。
【0008】
このため、図5の1/2畳み込み符号器に情報データとしてX={0,1,0,0,1,1,1}が逐次入力されると、状態はS→S→S→S→S→S→Sと遷移し、データXi1,Xi2は、{00}→{11}→{10}→ {11}→{11}→{01}→{10}と変化するので、パラレル/シリアル変換器31を経た符号化データはX={00,11,10,11,11,01,10}となる。
【0009】
一方、受信側で行われる復号化では、受信符号データと畳み込み符号器が発生し得る符号化データとを比較して、送信したであろう符号を推定する誤り訂正復号化、いわゆるビタビ復号化が実行される。
図7は、トレリス線図によるビタビ復号化の原理を説明するためのものであり、時刻1〜8において受信した受信符号データXが、例えば{00,11,10,00,01,01,11,11}であるときに、これらを畳み込み符号器が発生し得る符号化データと逐次比較して、両者が一致したときは“1”、不一致のときは“0”という得点を与える。この得点を状態判定要素(メトリック)と言うものとし、メトリックの累積値が大きい方の状態のルートを確定していくことで送信したであろう符号を推定し、受信符号データの誤りを訂正するものである。
【0010】
図8は、図7の一部拡大図である。復号側では符号器の初期状態がSであることが判っているとすると、前述のように状態SからはSまたはSにしか遷移し得ないため、その時の出力データは{00}または{11}である。
これらの出力データを時刻1における受信符号データと各ビットごとに比較すると、SからSに遷移する時は出力データ{00}と受信符号データ{00}とが2ビットとも一致するので、メトリック(の累積値)として「2」を与える。また、SからSに遷移する時は出力データ{11}と受信符号データ{00}とが一致するビットは0であるから、メトリック(の累積値)として「0」を与える。
【0011】
この場合、メトリックの累積値は、SからSに遷移した時の「2」がSからSに遷移した時の「0」より大きいため、時刻1における状態遷移としてはSからSへの遷移が選択され、確定する。図8では、この様子を太い矢印で示してある。
【0012】
次に、時刻2における受信符号データが{11}であるとすると、前記同様にSからSに遷移した時の出力データ{00}及びSからSに遷移した時の出力データ{11}が受信符号データ{11}とそれぞれ比較される。その結果、SからSに遷移する時は出力データ{00}と受信符号データ{11}とが一致するビットは0であるから、メトリックの累積値は従来通り「2」であり、SからSに遷移する時は出力データ{11}と受信符号データ{11}とが2ビットとも一致するので、メトリックの累積値は「4(=2+2)」となる。
このため、メトリックの累積値は、SからSに遷移した時の「4」がSからSに遷移した時の「2」より大きいため、時刻2における状態遷移としてはSからSへの遷移が選択され、確定する。
【0013】
次いで、時刻3における受信符号データが{10}であるとすると、SからSに遷移する時は出力データ{10}と受信符号データ{10}とが一致するビットは2であるから、メトリックの累積値は「6(=4+2)」となり、SからSに遷移する時は出力データ{01}と受信符号データ{10}とが一致するビットは0であるから、メトリックの累積値は従来通り「4」である。
このため、メトリックの累積値は、SからSに遷移した時の「6」がSからSに遷移した時の「4」より大きいため、時刻3における状態遷移としてはSからSへの遷移が選択され、確定する。
【0014】
これにより、時刻1〜3では、S→S→S→Sという状態遷移が推定され、その間に畳み込み符号器から出力された符号化データは{001110}であることが判る。従って、この例では、時刻1,2,3の受信符号データ{001110}に誤りはないことになる。
前述した図7は、このようにして畳み込み符号器における状態遷移のすべての可能性について、状態遷移に伴って出力されるデータ及びメトリックの累積値を時刻1〜8にわたって推定したものである。
【0015】
この図7において、大小の黒丸は各状態を示し、大きい黒丸は確定した状態、小さい黒丸は未確定の状態である。また、各状態の黒丸間を結ぶ太い実線矢印、細い実線矢印、破線矢印は状態遷移として考えられるすべての可能性を示しており、その中で、太い実線矢印は確定した状態遷移、細い実線は未確定の状態遷移を示し、更に、破線矢印は、他にメトリック累積値が大きくて一層確からしい状態遷移が存在するため、排除しても差し支えない状態遷移を示している。
【0016】
また、黒丸で示した各状態の上下に記されたメトリックの累積値は、その状態に遷移する元の状態が二つある場合に、それぞれのルートについてメトリックの累積値を示したものであり、特にゴシック体で示した数字は上下の累積値のうち大きい方を示している(つまり、ゴシック体の累積値に至った状態遷移の方が他方の状態遷移よりも確からしいことを示す)。なお、上下の累積値が等しい場合には、例えば上の累積値に至った状態遷移のルートを選択するものと予め決めておく。
【0017】
【発明が解決しようとする課題】
さて、前述したように伝送路上でCW雑音等の影響を受けた符号は誤る確率が高いため、前記トレリス線図による誤り訂正の必要が大きいものであるが、符号誤りの確率が高い分だけ誤訂正する確率も高くなり、その結果、復号化の信頼性や伝送品質が低下することになる。
【0018】
ここで、図9〜図11は、畳み込み符号器から出力された符号化データが{00,11,10,00,01,01,11,11}であったにも関わらず、CW雑音等の外乱によって受信符号データが{00,11,0,00,01,01,11,1}となり、5ビット目及び15ビット目の符号が誤っている(アンダーラインを付してある)場合のトレリス線図を示している。図9は時刻6までの状態、図10は時刻7までの状態、図11は時刻8までの状態である。
なお、状態遷移が確定した場合には、その状態のメトリックの累積値を強制的に0としている。例えば、図10において状態S13のメトリック累積値は「2」であるが、図11では「0」としてある。
【0019】
いま、図11に示すように、時刻9においてS→S→Sという状態遷移が確定しているとすると、時刻8から時刻9への状態遷移として候補となるものはS,S,S,Sである。このときの遷移元の状態を図示のようにS08,S18,S38とする。
この場合、時刻3の状態S(S13)からは時刻4におけるS(S24)及びS(S34)への遷移が考えられ、その際の出力データはそれぞれ{10},{01}であって、遷移後のメトリック累積値は何れも「1」である。また、時刻8において前述の状態S08,S18,S38に至るための時刻4の状態としては、S(S24)及びS(S34)の何れも可能性がある(S24またはS34の何れかから、S08,S18,S38の何れかに至る実線のルートが存在する)。
【0020】
つまり、時刻3の受信符号{0}を訂正するとしても、状態S13からS24への遷移による出力データ{10}に従って訂正するか、あるいは、状態S13からS34への遷移による出力データ{01}に従って訂正するかの二通りがあるため、訂正方法が一意的に定まらず、結果的に時刻3の受信符号{0}を誤訂正してしまうおそれがあった。
【0021】
そこで本発明は、このような誤り訂正復号化における誤訂正を防止して信頼性及び伝送品質の向上を可能にした誤り訂正復号化方法を提供しようとするものである。
【0022】
【課題を解決するための手段】
上記課題を解決するため、請求項1の発明は、畳み込み符号器の状態遷移に従って送信される符号化データを受信側でビタビ復号化する際に、推定した状態遷移に従って出力されるべき符号化データと実際の受信符号データとの不一致を検出して受信符号データの誤りを訂正するようにした誤り訂正復号化方法であって、各ビットごとに符号化データと受信符号データとを比較して両者の一致不一致により所定のメトリックを演算し、このメトリックの累積値に基づいて前記状態遷移を推定する誤り訂正復号化方法において、
受信符号データの各ビットのうち伝送路の外乱により受信符号データに誤りを生じる可能性が高いビットのメトリックの重みを他のビットのメトリックの重みと異ならせるものである。
【0023】
【発明の実施の形態】
以下、図に沿って本発明の実施形態を説明する。
まず、本実施形態は、図4に示したように、CW雑音等による符号の誤り、ひいてはその誤りの誤訂正が特定のサブキャリアで発生すること、言い換えれば受信符号化データの特定ビットで発生することに着目したものである。すなわち、図4の例ではa1,a2,……,a10,b1,b2,……,b10,c1,c2,……,c10からなる符号列の5ビット目、15ビット目、25ビット目に符号の誤りがある確率が高く、前述した従来の誤り訂正復号化ではこれらの各ビットで誤訂正が行われる確率が高い。
【0024】
そこで、本実施形態では、上述したような受信符号データ中の誤りを生じやすい特定のビットのメトリック(当該ビットに対応する状態遷移の出力データのメトリック)に重み付けをすることとした。そして、その重み付けに当たっては、メトリックの累積値が最終的に小さくなるように小さい重みW(W<1)を設定するようにした。
すなわち、状態遷移による出力データと受信符号データとが一致する場合に、従来ではメトリックとして“1”を与えていたのに対し、この実施形態ではメトリックを“0”(重みW=0)に設定している。なお、重みWの数値は0に限るものではなく、1以下の任意の数値で良い。
【0025】
ここで、図1〜図3は、図9〜図11と同様に、畳み込み符号器から出力された符号化データが{00,11,10,00,01,01,11,11}であったにも関わらず、CW雑音等の外乱によって受信符号データが{00,11,0,00,01,01,11,1}となった場合のトレリス線図である。
図1は時刻6までの状態、図2は時刻7までの状態、図3は時刻8までの状態である。
【0026】
この場合においても、受信符号データ全体の5ビット目及び15ビット目の符号が誤っている可能性が高いため、状態遷移の出力データの当該ビットのメトリックを重み付けにより“0”にすれば、それ以後のメトリックの累積値は小さくなる。従って、最終的にその状態を経由するルートが選択される可能性は小さくなり、結果として誤りを誤訂正する可能性も小さくすることができる。
【0027】
例えば、本実施形態における図2から図3への変化は、前述した図10から図11への変化に相当するが、この実施形態では5ビット目及び15ビット目のメトリックを「0」としている(図2及び図3では5ビット目及び15ビット目の出力データを□で囲んである)。
このため、図3の時刻3における状態S13からS24,S34への遷移に当たり、それぞれの出力データ(5ビット目,6ビット目に相当する)は{10},{01}であるが、5ビット目のメトリックを“0”としたので、6ビット目に相当する{0},{1}だけを受信符号データの6ビット目の{0}とそれぞれ比較することになる。
【0028】
よって、状態S13からS24へ至るルートでは、6ビット目の出力データ{0}と受信符号データの6ビット目の{0}とが一致するので、メトリックの累積値として「1」が与えられる。なお、遷移元である状態S13のメトリックは図11と同様に0としている。また、状態S13からS34へ至るルートでは、6ビット目の出力データ{1}と受信符号データの6ビット目の{0}とが一致しないので、メトリックの累積値として「0」が与えられる。
【0029】
このため、遷移後のメトリックが大きい状態遷移、すなわちS13からS24へ至るルートが選択されることになり、畳み込み符号器の出力データは{10}であると推定される。従って、時刻3における受信符号データ{0}を{10}へ一意的に訂正することができ、受信符号データ全体の5ビット目の{0}が{1}に訂正されることになる。
これに対し、図11の例では状態S13からS24へ至るルートと状態S13からS34へ至るルートの何れも選択される可能性があり、各ルートに対応する出力データ{10},{01}に応じて時刻3の受信符号データの訂正内容が異なるため、誤り訂正も一意的に定まらず、誤訂正の原因となるものであるが、本実施形態ではそのような不都合を生じるおそれがない。
【0030】
なお、CW雑音等が解消すれば符号の誤りもなくなってくるので、復号の過程で符号の誤りがなくなってきたら、5ビット目、15ビット目などのメトリックの重みを大きくすれば(例えば、重みW=1とすれば)良い。
また、雑音周波数の前後についても符号が誤っている可能性がある場合には、連続する複数ビットのメトリックの重みを他のビットより小さくすることが有効である。
更に、最終的にメトリックの累積値が小さい方のルートを選択して状態遷移を推定する場合には、符号の誤りが生じる可能性のあるビットのメトリックの重みを他のビットよりも大きくすれば良い。
【0031】
【発明の効果】
以上のように本発明によれば、例えば配電線搬送にOFDMのようなマルチキャリア変復調方式を用いる場合に、CW雑音等の外乱に起因する符号の誤訂正を防止することができ、信頼性の向上並びに伝送品質の向上を達成することができる。
【図面の簡単な説明】
【図1】本発明の実施形態におけるトレリス線図によるビタビ復号化の説明図である。
【図2】本発明の実施形態におけるトレリス線図によるビタビ復号化の説明図である。
【図3】本発明の実施形態におけるトレリス線図によるビタビ復号化の説明図である。
【図4】OFDM変復調方式において、伝送するべき符号列、OFDM信号の周波数スペクトル及び復号の関係を示す図である。
【図5】1/2畳み込み符号器の構成図である。
【図6】図5における状態遷移図である。
【図7】トレリス線図によるビタビ復号化の説明図である。
【図8】図7の一部拡大図である。
【図9】メトリックに重み付けがない場合のトレリス線図によるビタビ復号化の説明図である。
【図10】メトリックに重み付けがない場合のトレリス線図によるビタビ復号化の説明図である。
【図11】メトリックに重み付けがない場合のトレリス線図によるビタビ復号化の説明図である。
【符号の説明】
21〜23 排他的論理和回路
31 パラレル/シリアル変換器

Claims (1)

  1. 畳み込み符号器の状態遷移に従って送信される符号化データを受信側でビタビ復号化する際に、推定した状態遷移に従って出力されるべき符号化データと実際の受信符号データとの不一致を検出して受信符号データの誤りを訂正するようにした誤り訂正復号化方法であって、各ビットごとに符号化データと受信符号データとを比較して両者の一致不一致により所定のメトリックを演算し、このメトリックの累積値に基づいて前記状態遷移を推定する誤り訂正復号化方法において、受信符号データの各ビットのうち伝送路の外乱により受信符号データに誤りを生じる可能性が高いビットのメトリックの重みを他のビットのメトリックの重みと異ならせることを特徴とする誤り訂正復号化方法。
JP2002215126A 2002-07-24 2002-07-24 誤り訂正復号化方法 Pending JP2004056724A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002215126A JP2004056724A (ja) 2002-07-24 2002-07-24 誤り訂正復号化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002215126A JP2004056724A (ja) 2002-07-24 2002-07-24 誤り訂正復号化方法

Publications (1)

Publication Number Publication Date
JP2004056724A true JP2004056724A (ja) 2004-02-19

Family

ID=31937236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002215126A Pending JP2004056724A (ja) 2002-07-24 2002-07-24 誤り訂正復号化方法

Country Status (1)

Country Link
JP (1) JP2004056724A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019522437A (ja) * 2016-07-22 2019-08-08 シェンチェン スーパー データ リンク テクノロジー リミテッド OvXDMシステムに適用される一種類のファストデコード方法、装置及びOvXDMシステム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019522437A (ja) * 2016-07-22 2019-08-08 シェンチェン スーパー データ リンク テクノロジー リミテッド OvXDMシステムに適用される一種類のファストデコード方法、装置及びOvXDMシステム

Similar Documents

Publication Publication Date Title
CN100355201C (zh) 缩减的软输出信息分组的选择
US5606569A (en) Error correcting decoder and decoding method for receivers in digital cellular communication systems
KR100554322B1 (ko) 복수의 코딩 버스트내에 배치된 crc 비트에 의해 종료 상태가결정되는 컨벌루셔널 디코딩
US6108811A (en) Error-correcting decoder continuously adding flag signals to locations preceding a first location at which a difference between path metrics is lower than the threshold
CA2710773C (en) Decoding scheme using multiple hypotheses about transmitted messages
US7802165B2 (en) Decoder system for data encoded with interleaving and redundancy coding
FI106416B (fi) Menetelmä ja laite dekoodatun symbolisarjan luotettavuuden määrittämiseksi
US5457705A (en) Method of and system for data transmission employing trellis coded modulation
JP2000515341A (ja) 不均一エラー保護を有する通信信号の検出方法および手段
CN112335208B (zh) 解码器辅助的迭代信道估计
JP5764670B2 (ja) デコード方法およびデコーダ
CN1306367A (zh) 带宽有效的级联格码调制解码器及其解码方法
US7743313B2 (en) System for impulse noise and radio frequency interference detection
CA2189723C (en) Process for transmitting a sequence of information bits with selective protection against transmission errors, coding and correction processes which can be implemented in such a transmission process
US8156397B2 (en) Method and system for feedback of decoded data characteristics to a decoder in stored data access and decoding operations to assist in additional decoding operations
US20030018941A1 (en) Method and apparatus for demodulation
JP2004056724A (ja) 誤り訂正復号化方法
JP5489786B2 (ja) 復号装置
US8045651B2 (en) Method and system for redundancy-based decoding in 8-PSK GSM systems
JP3237864B2 (ja) 軟判定ビタビ復号方法
JP3414335B2 (ja) 多レベル復号方法及び回路
JP2710696B2 (ja) 軟判定ビタビ復号方法
WO2020234185A1 (en) A method of marking bits, a method of decoding bits, a bit marking device, a decoder, a receiver and a chip
JP4025226B2 (ja) 誤り訂正伝送装置
Freudenberger et al. An algorithm for detecting unreliable code sequence segments and its applications

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060726

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061116