JP5067746B1 - Siphon type binary power generator - Google Patents

Siphon type binary power generator Download PDF

Info

Publication number
JP5067746B1
JP5067746B1 JP2012020812A JP2012020812A JP5067746B1 JP 5067746 B1 JP5067746 B1 JP 5067746B1 JP 2012020812 A JP2012020812 A JP 2012020812A JP 2012020812 A JP2012020812 A JP 2012020812A JP 5067746 B1 JP5067746 B1 JP 5067746B1
Authority
JP
Japan
Prior art keywords
pipe
tank
power generation
upper tank
lower tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012020812A
Other languages
Japanese (ja)
Other versions
JP2013160082A (en
Inventor
岡本應守
Original Assignee
岡本 應守
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 岡本 應守 filed Critical 岡本 應守
Priority to JP2012020812A priority Critical patent/JP5067746B1/en
Application granted granted Critical
Publication of JP5067746B1 publication Critical patent/JP5067746B1/en
Publication of JP2013160082A publication Critical patent/JP2013160082A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

【課題】
本発明は、従来の発電装置とは異なり、新たな再生可能エネルギー源の一つとして温度差を利用して発電を行うサイフォン型バイナリー発電装置を提供する。

【解決手段】
真空状態にした上部タンクと、上部が真空状態で低沸点作動媒体を収容した下部タンクと、前記上部タンク全体を収容し冷暖房を行う第一容器と、前記下部タンク全体を収容し冷暖房を行い、前記上部タンク全体を収容し冷暖房を行う前記第一容器とは基本的に正反対の役割をする第二容器とを少なくとも備えたことを特徴とし、熱力学的サイクルを利用したサイフォン型バイナリー発電装置を構成した。

【選択図】 図1
【Task】
The present invention provides a siphon-type binary power generation device that generates power using a temperature difference as one of new renewable energy sources, unlike a conventional power generation device.

[Solution]
An upper tank in a vacuum state, a lower tank in which the upper part is in a vacuum state and contains a low-boiling working medium, a first container that contains the entire upper tank and cools and cools it, and accommodates and cools and cools the entire lower tank, A siphon-type binary power generator using a thermodynamic cycle, comprising at least a second container that accommodates the entire upper tank and that performs a role opposite to that of the first container that performs cooling and heating. Configured.

[Selection] Figure 1

Description

本発明は、温度差を利用して発電を行うサイフォン型バイナリー発電装置に関するものである。
The present invention relates to a siphon-type binary power generation device that generates power using a temperature difference.

東日本大震災のときに発生した福島原子力発電所の事故により、日本全国の原子力発電所が順次停止に至っている昨今、太陽光発電装置(特許文献1、特許文献2に開示)、風力発電装置等の再生可能エネルギーが再度注目を浴びている。
Due to the accident at the Fukushima nuclear power plant that occurred at the time of the Great East Japan Earthquake, nuclear power plants all over Japan have been shut down one after another. Solar power generation devices (disclosed in Patent Document 1 and Patent Document 2), wind power generators, etc. Renewable energy is attracting attention again.

(0002)により、太陽光発電装置は、太陽電池モジュールに太陽光が注いでいる時間帯には発電し、太陽電池モジュールに太陽光が注がない夜などの時間帯には停止している。また風力発電装置も同様に、風が吹いて発電ブレードが回転している時間帯には発電し、発電ブレードが回転していない時間帯には停止している。
According to (0002), the solar power generation apparatus generates power during a time zone in which sunlight is poured into the solar cell module, and stops in a time zone such as a night when sunlight is not poured into the solar cell module. Similarly, the wind turbine generator generates power during a time period when the wind blows and the power generation blade rotates, and stops during a time period when the power generation blade does not rotate.

しかしながら、特許文献1や特許文献2に開示された内容では、天候や時間等に左右されて電力の安定供給が不安定であるという問題点がある。
本発明は、その問題点を解決するためのものである。
However, the contents disclosed in Patent Document 1 and Patent Document 2 have a problem that the stable supply of power is unstable depending on the weather, time, and the like.
The present invention is to solve the problem.

特開2003−315362号公報JP 2003-315362 A 特開2000−314752号公報JP 2000-314752 A

本発明は、上述の点に鑑みてなされたものである。サイフォン型バイナリー発電装置を稼働するエネルギー源は、基本的に立地する周辺環境の熱源と冷源である。熱源は低沸点作動媒体を熱交換により液体の状態で発電用水車へ導くために、冷源は気化熱や温度差を拡大するのに利用する。従来の発電装置とは異なり、天候や時間等に左右されにくく、電力の安定供給が不安定であるという問題点が軽減されるサイフォン型バイナリー発電装置を提供することを目的とする。
The present invention has been made in view of the above points. The energy source that operates the siphon type binary power generator is basically the heat source and cold source of the surrounding environment. The heat source guides the low boiling point working medium to the power generation turbine in a liquid state by heat exchange, and the cold source is used to expand the heat of vaporization and the temperature difference. An object of the present invention is to provide a siphon type binary power generation device that is unlikely to be influenced by weather, time, etc. unlike conventional power generation devices, and in which the problem of unstable power supply is unstable.

本発明は課題を解決するために、真空状態にした上部タンクと、上部が真空状態であるとともに低沸点作 動媒体を収容した下部タンクと、前記上部タンクと前記下部タンクを連結する第一配管と、全長は異なるが両タンクを連結する第二配管と、前記第一配管に設けられた第一発電用水車と、前記第一発電用水車により発電される第一発電機と、前記第一配管における前記第一発電用水車と前記下部タンクの間に設けられた第一開閉バルブと、前記第二配管に設けられた第二発電用水車と、前記第二発電用水車により発電される第二発電機と、前記第二配管における前記第二発電用水車と前記上部タンクの間に設けられて、前記第一配管側に設けられた前記第一開閉バルブとは基本的に正反対の動きになる第二開閉バルブと、前記上部タンク全体を収容し冷暖房を行う第一容器と、前記下部タンク全体を収容し冷暖房を行い、前記上部タンク全体を収容し冷暖房を行う前記第一容器とは基本的に正反対の役割をする第二容器とを少なくとも備えたサイフォン型バイナリー発電装置であって、前記下部タンク内の加熱された前記低沸点作動媒体が前記上部タンクへ流動後、次に前記上部タンク内の加熱された前記低沸点作動媒体を前記下部タンクへ滑らかに流動させるため、前記上部タンクの天井部付近から前記下部タンクの底辺部付近までを前記第一配管で繋げ、前記上部タンクの底辺部から前記下部タンクの天井部を前記第二配管で繋げており、前記上部タンク内及び前記下部タンク内を交互に加熱及び冷却する熱源及び冷源自体も交互に変化するために、それに適応した前記第一容器及び前記第二容器を備えており、前記第一開閉バルブを開放状態に、前記第二開閉バルブを閉鎖状態にして、前記下部タンク内の加熱による加圧と、前記上部タンク内の冷却による減圧からタンク間の圧力差を生じさせることにより、前記低沸点作動媒体が前記第一配管を通じて上昇による流動が起こり、前記低沸点作動媒体が前記上部タンクへ流動終了後、前記第一開閉バルブを閉鎖状態に戻し、前記第二開閉バルブを開放状態にして、次に前記上部タンク内の加熱による加圧と、前記下部タンク内の冷却による減圧からタンク間の圧力差を生じさせることにより、前記低沸点作動媒体が前記第二配管を通じて下降による流動が起こり、前記低沸点作動媒体が前記下部タンクへ流動終了後、前記第二開閉バルブを閉鎖状態に戻し、前記第一開閉バルブを開放状態にする動きをすることを特徴とするサイフォン型バイナリー発電装置で、熱交換の元になる熱源と気化熱や温度差を拡大させる元になる冷源を利用して、前記低沸点作動媒体を液体の状態で前記下部タンクから前記上部タンクへ、前記上部タンクから前記下部タンクへ流動させる際、前記第一配管に設けられた前記第一発電用水車、前記第二配管に設けられた前記第二発電用水車が回転運動を起こして前記第一発電機、前記第二発電機で発電する装置を特徴とするものである。
In order to solve the problems, the present invention provides an upper tank in a vacuum state, a lower tank in which the upper portion is in a vacuum state and contains a low boiling point working medium, and a first pipe connecting the upper tank and the lower tank. A second pipe connecting the two tanks with different lengths, a first water turbine for power generation provided in the first pipe, a first generator generated by the first power turbine, and the first A first on-off valve provided between the first power generation turbine and the lower tank in the pipe, a second power generation turbine provided in the second pipe, and a second power generation by the second power generation turbine. The two generators and the first open / close valve provided on the first pipe side, which are provided between the second power generation turbine and the upper tank in the second pipe, are basically opposite to each other. A second open / close valve and the upper tank A first container that accommodates the whole and cools and heats it, and a second container that accommodates the entire lower tank and cools and heats, and that basically serves as the opposite of the first container that accommodates the entire upper tank and cools and heats The low-boiling working medium heated in the upper tank after the heated low-boiling working medium in the lower tank flows to the upper tank In order to smoothly flow to the lower tank, the first pipe is connected from the vicinity of the ceiling of the upper tank to the vicinity of the bottom of the lower tank, and the ceiling of the lower tank is connected from the bottom of the upper tank to the bottom tank. Since the second pipe is connected, and the heat source for alternately heating and cooling the inside of the upper tank and the inside of the lower tank and the cooling source itself also change alternately, A container and the second container, wherein the first opening / closing valve is in an open state, the second opening / closing valve is in a closed state, and heating is applied by heating in the lower tank and cooling in the upper tank. By causing a pressure difference between the tanks from the reduced pressure, the low-boiling point working medium flows through the first pipe, and after the low-boiling point working medium finishes flowing to the upper tank, the first open / close valve is opened. Returning to the closed state, opening the second open / close valve, and then generating a pressure difference between the tanks from pressurization by heating in the upper tank and depressurization by cooling in the lower tank, After the low boiling point working medium flows through the second pipe, the low boiling point working medium ends flowing to the lower tank, and then the second on-off valve is returned to the closed state. In siphon-type binary power generation apparatus, characterized by the movement of the first on-off valve in an open state, by using a cold source underlying to enlarge the heat source and heat of vaporization and the temperature difference underlying the heat exchanger, When the low-boiling working medium flows in a liquid state from the lower tank to the upper tank and from the upper tank to the lower tank, the first power generation turbine provided in the first pipe, the second pipe The second power generation water turbine provided in the first generator and the second power generator generate a rotational motion to generate electric power.

本発明の効果は、真空状態にした上部タンク1と、上部が真空状態であるとともに低沸点作動媒体14を収容した下部タンク2と、前記上部タンク1と前記下部タンク2を連結する第一配管3と、前記第一配管3と同じく前記上部タンク1と前記下部タンク2を連結しているが前記第一配管3とは全長が異なる第二配管4と、前記第一配管3に設けられた第一発電用水車5と、前記第一発電用水車5により発電される第一発電機6と、前記第一配管3における前記第一発電用水車5と前記下部タンク2の間に設けられた第一開閉バルブ7と、前記第二配管4に設けられた第二発電用水車8と、前記第二発電用水車8により発電される第二発電機9と、前記第二配管4における前記第二発電用水車8と前記上部タンク1の間に設けられて前記第一配管3側に設けられた前記第一開閉バルブ7とは基本的に正反対の動きになる第二開閉バルブ10と、前記上部タンク1全体を収容し冷暖房を行う第一容器11と、前記下部タンク2全体を収容し冷暖房を行い、前記上部タンク1全体を収容し冷暖房を行う第一容器11とは基本的に正反対の役割をする第二容器12とを少なくとも備えたサイフォン型バイナリー発電装置であって、前記下部タンク2内の加熱された前記低沸点作動媒体14が前記上部タンク1へ流動後、次に前記上部タンク1内の加熱された前記低沸点作動媒体14を前記下部タンク2へ滑らかに流動させるため、前記上部タンク1の天井部付近から前記下部タンク2の底辺部付近までを前記第一配管3で繋げ、前記上部タンク1の底辺部から前記下部タンク2の天井部を前記第二配管4で繋げており、前記上部タンク1内及び前記下部タンク2内を交互に加熱及び冷却する熱源及び冷源自体も交互に変化するために、それに適応した前記第一容器11及び前記第二容器12を備えており、前記第一開閉バルブ7を開放状態に、前記第二開閉バルブ10を閉鎖状態にして、前記下部タンク2内の加熱による加圧と、前記上部タンク1内の冷却による減圧からタンク間の圧力差を生じさせることにより、前記低沸点作動媒体14が前記第一配管3を通じて上昇による流動が起こり、前記低沸点作動媒体14が前記上部タンク1へ流動終了後、前記第一開閉バルブ7を閉鎖状態に戻し、前記第二開閉バルブ10を開放状態にして、次に前記上部タンク1内の加熱による加圧と、前記下部タンク2内の冷却による減圧からタンク間の圧力差を生じさせることにより、前記低沸点作動媒体14が前記第二配管4を通じて下降による流動が起こり、前記低沸点作動媒体14が前記下部タンク2へ流動終了後、前記第二開閉バルブ10を閉鎖状態に戻し、前記第一開閉バルブ7を開放状態にする動きをすることを特徴とするサイフォン型バイナリー発電装置で、熱交換の元になる熱源と気化熱や温度差を拡大させる元になる冷源を利用して、前記低沸点作動媒体14を液体の状態で前記下部タンク2から前記上部タンク1へ、前記上部タンク1から前記下部タンク2へ流動させる際、前記第一配管3に設けられた前記第一発電用水車5、前記第二配管4に設けられた前記第二発電用水車8が回転運動を起こして前記第一発電機6、前記第二発電機9で発電するものであるので、天候や時間等に左右されることなく発電できるという効果を奏する。 The effect of the present invention is that the upper tank 1 in a vacuum state, the lower tank 2 in which the upper portion is in a vacuum state and contains a low boiling point working medium 14, and the first pipe connecting the upper tank 1 and the lower tank 2 are connected. 3 is connected to the upper tank 1 and the lower tank 2 in the same manner as the first pipe 3 but is provided in the first pipe 3 and the second pipe 4 having a different total length from the first pipe 3. Provided between the first power generation turbine 5, the first generator 6 generated by the first power generation turbine 5, and the first power generation turbine 5 and the lower tank 2 in the first pipe 3. A first open / close valve 7, a second power generation turbine 8 provided in the second pipe 4, a second generator 9 generated by the second power generation turbine 8, and the second generator 4 in the second pipe 4. Provided between the two power generation turbines 8 and the upper tank 1. A second opening / closing valve 10 that is basically opposite to the first opening / closing valve 7 provided on the pipe 3 side, a first container 11 that houses the entire upper tank 1 and performs cooling and heating, and the lower tank 2 is a siphon-type binary power generation apparatus that includes at least a second container 12 that basically performs a role opposite to that of the first container 11 that accommodates the entire upper tank 1 and performs air conditioning. After the heated low boiling point working medium 14 in the lower tank 2 flows to the upper tank 1, the heated low boiling point working medium 14 in the upper tank 1 is then smoothly moved to the lower tank 2. The first pipe 3 connects the vicinity of the ceiling of the upper tank 1 to the vicinity of the bottom of the lower tank 2, and the ceiling of the lower tank 2 from the bottom of the upper tank 1. Since the heat source that is connected by the second pipe 4 and alternately heats and cools the inside of the upper tank 1 and the inside of the lower tank 2 and the cold source itself change alternately, the first container 11 and The second container 12 is provided, the first open / close valve 7 is opened, the second open / close valve 10 is closed, pressurization by heating in the lower tank 2, and the inside of the upper tank 1 By causing a pressure difference between the tanks from the reduced pressure due to the cooling of the low-boiling point, the low-boiling point working medium 14 flows due to ascending through the first pipe 3, and after the low-boiling point working medium 14 has finished flowing into the upper tank 1 The first opening / closing valve 7 is returned to the closed state, the second opening / closing valve 10 is opened, and then the pressure in the upper tank 1 is increased by heating and the pressure in the lower tank 2 is decreased. The low-boiling working medium 14 is caused to flow through the second pipe 4 by causing a pressure difference between the tanks, and after the low-boiling working medium 14 finishes flowing to the lower tank 2, A siphon-type binary power generator that returns the on-off valve 10 to the closed state and moves the first on-off valve 7 to the open state. When the low-boiling working medium 14 is caused to flow in the liquid state from the lower tank 2 to the upper tank 1 and from the upper tank 1 to the lower tank 2 by using a cold source to be generated, the first The first power generation turbine 5 provided in the pipe 3 and the second power generation turbine 8 provided in the second pipe 4 cause a rotational movement so that the first generator 6 and the second generator 9 To generate electricity Runode an effect that power can be generated without being affected by the weather and time or the like.

また、従来廃棄されていた熱源と冷源が、本発明によりエネルギーとして回収することができるという効果を奏する。
In addition, the heat source and the cold source, which have been conventionally discarded, can be recovered as energy according to the present invention.

さらに、低温・低級の熱源と冷源は、殆ど有効に活用されなかったが、本発明により有効にエネルギーとして回収することができるという効果を奏する。
Furthermore, although the low-temperature and low-temperature heat source and the cold source were hardly used effectively, the present invention has an effect that it can be effectively recovered as energy.

上部タンク1、下部タンク2、第一配管3、第二配管4、第一発電用水車5、第二発電用水車8の材質は、低沸点作動媒体14の種類によって長期間利用した場合、光や酸素により酸化分解されることもあるので、遮光する材質を使用する。また温度差の利用する関係で前記上部タンク1.前記下部タンク2の材質は、出来るだけ熱伝導率の高い材質を使用する。
The materials of the upper tank 1, the lower tank 2, the first pipe 3, the second pipe 4, the first power generation water turbine 5, and the second power generation water turbine 8 are light when used for a long time depending on the type of the low boiling point working medium 14. Since it may be oxidatively decomposed by oxygen or oxygen, a light shielding material is used. Further, the upper tank 1. The material of the lower tank 2 is as high as possible.

上部タンク1と下部タンク2を連結する第一配管3の長さは、少なくとも前記上部タンク1の天井部付近の位置3aまで達し、前記下部タンク2の底辺部付近の位置3bまで達する長さで、同じく前記上部タンク1と前記下部タンク2を連結する第二配管4の長さは、前記上部タンク1の底辺部の位置4aまで達し、前記下部タンク2の天井部の位置4bまで達する長さとする。
The length of the first pipe 3 connecting the upper tank 1 and the lower tank 2 is such that it reaches at least the position 3a near the ceiling of the upper tank 1 and reaches the position 3b near the bottom of the lower tank 2. Similarly, the length of the second pipe 4 that connects the upper tank 1 and the lower tank 2 reaches the position 4a at the bottom of the upper tank 1 and reaches the position 4b at the ceiling of the lower tank 2. To do.

また、第一配管3の上部タンク1側の配管口の位置3aが前記上部タンク1の天井部付近で、第二配管4の下部タンク2側の配管口の位置4bが前記下部タンク2の天井部であるため、両配管口より下の位置に低沸点作動媒体14の液面がある。
Further, the position 3a of the piping port on the upper tank 1 side of the first piping 3 is near the ceiling portion of the upper tank 1, and the position 4b of the piping port on the lower tank 2 side of the second piping 4 is the ceiling of the lower tank 2. Therefore, the liquid surface of the low boiling point working medium 14 is at a position below both the piping ports.

上部タンク1と下部タンク2の形状については、両タンク内を低沸点作動媒体14が流動するために、特に第一配管3の前記下部タンク側の配管口3bの底辺部付近や第二配管4の前記上部タンク側の配管口4aの底辺部は、低沸点作動媒体14が溜まりやすいように出来るだけ逆三角錐のような形状とする。
Regarding the shapes of the upper tank 1 and the lower tank 2, since the low boiling point working medium 14 flows in both tanks, particularly the vicinity of the bottom of the pipe port 3 b on the lower tank side of the first pipe 3 and the second pipe 4. The bottom side of the upper tank side piping port 4a is shaped like an inverted triangular pyramid as much as possible so that the low-boiling working medium 14 can easily collect.

発電用水車は、クロスフロー水車 図4(A)、フランシス水車 図4(B)、ぺルトン水車
図4(C)、その他多数の発電用水車があるが、サイフォン型バイナリー発電装置の規模に適したものを使用するのが望ましい。例えば、規模が小さく、上部タンク1と下部タンク2の間の高さが低く、第一配管3や第二配管4を流れる流量が少ないのであれば、前記クロスフロー水車
図4(A)の使用が基本的に望ましい。前記クロスフロー水車 図4(A)の大きさによっても異なりますが、数mの高さで少ない流量でも回転する。逆に、規模が大きく、上部タンク1と下部タンク2の間の高さが高く、第一配管3や第二配管4を流れる流量が多いのであれば、前記フランシス水車
図4(B)やぺルトン水車 図4(C)の使用が基本的に望ましい。
There are many types of power generation turbines, including cross-flow turbines (Figure 4 (A)), Francis turbines (Figure 4 (B)), Pelton turbines (Figure 4 (C)), and many other generation turbines. It is desirable to use For example, if the scale is small, the height between the upper tank 1 and the lower tank 2 is low, and the flow rate flowing through the first pipe 3 and the second pipe 4 is small, use of the cross flow turbine FIG. Is basically desirable. Although the cross-flow turbine is different depending on the size of FIG. 4 (A), it rotates at a small flow rate at a height of several meters. On the other hand, if the scale is large, the height between the upper tank 1 and the lower tank 2 is high, and the flow rate flowing through the first pipe 3 and the second pipe 4 is large, the Francis turbine FIG. Luton turbine Figure 4 (C) is basically desirable.

第一配管3と第二配管4の中を流動する低沸点作動媒体14が正反対の方向に流動するので、前記低沸点作動媒体14の流動する力を回転力に変えるため、取りこぼしのない発電用水車を使用するのが望ましい。特に前記第二配管4の流動方向は、下部タンク2から上部タンク1へ流動するので、前記第二配管4と第二発電用水車8の羽根車(ランナー)33の隙間は出来るだけ無く、前記低沸点作動媒体14の流動する力を取りこぼしなく前記羽根車(ランナー)33に直接当てて回転させる発電用水車を使用する。
Since the low-boiling point working medium 14 flowing in the first pipe 3 and the second pipe 4 flows in the opposite direction, the power for flowing the low-boiling point working medium 14 is changed to rotational force. It is desirable to use a car. In particular, since the flow direction of the second pipe 4 flows from the lower tank 2 to the upper tank 1, there is as little gap as possible between the second pipe 4 and the impeller (runner) 33 of the second power generation water turbine 8. A power generation turbine that rotates by directly applying to the impeller (runner) 33 without losing the flowing force of the low boiling point working medium 14 is used.

低沸点作動媒体14として塩化メチレン(沸点約40℃)を使用しているが、他にペンタン、イソペンタン、ヘキサン、アセトン、ジエチルエーテル等を使用することもある。
Methylene chloride (boiling point: about 40 ° C.) is used as the low boiling point working medium 14, but pentane, isopentane, hexane, acetone, diethyl ether, etc. may be used in addition.

請求項2に記載の発明は、従来廃棄されていた熱源と冷源や、それ以下の低温・低級の熱源と冷源を有効活用するために真空ポンプで真空状態にする。
According to the second aspect of the present invention, a vacuum pump is used to make a vacuum state in order to effectively utilize a heat source and a cold source that have been conventionally discarded, and a lower temperature / lower heat source and a cold source.

(0018)により、低沸点作動媒体14は、通常より沸点が下がり低温・低級の熱源と冷源を使用しても流動させることができるので、稼働率を更に上げるために上部タンク1内と下部タンク2内に各々計測器27(液面計、温度計、圧力計、真空計)を設置する。
According to (0018), the low boiling point working medium 14 has a lower boiling point than usual and can be made to flow even when a low temperature / low temperature heat source and a cold source are used. Measuring devices 27 (a liquid level gauge, a thermometer, a pressure gauge, and a vacuum gauge) are installed in the tank 2.

サイフォン型バイナリー発電装置が単体では、第一発電用水車5が停止状態に入ってから第二発電用水車8が稼働状態に入るまでに時間差が発生するので、両発電用水車の停止時間を短縮するために計測器27(液面計、温度計、圧力計、真空計)を利用したセンサー等による自動切り替え設備を備えたものとする。自動切り替え設備は、サイフォン型バイナリー発電装置全体を効率良く動かすために、上部タンク1内と下部タンク2内に各々計測器27を利用した各センサー(液面センサー、温度センサー、圧力センサー、真空センサー)の信号を受けて、熱源と冷源の投入及び排出、真空ポンプ13の稼働、第一開閉バルブ7及び第二開閉バルブ10の切り替え作業を自動的に行うものとする。
When the siphon type binary power generation device is a single unit, a time difference occurs between the time when the first power generation water turbine 5 enters the stop state and the time when the second power generation water turbine 8 enters the operation state, thereby shortening the stop time of both power generation water turbines. In order to do this, it is assumed that an automatic switching facility with a sensor using a measuring instrument 27 (a liquid level gauge, a thermometer, a pressure gauge, a vacuum gauge) is provided. In order to move the entire siphon type binary power generator efficiently, the automatic switching equipment uses each sensor (liquid level sensor, temperature sensor, pressure sensor, vacuum sensor) in the upper tank 1 and the lower tank 2 respectively. ), The switching operation of the first on-off valve 7 and the second on-off valve 10 is automatically performed.

(0020)により、サイフォン型バイナリー発電装置の発電用水車の停止時間を補完するために、単体を複数体に変更若しくは補完設備を備えるのが望ましい。
[0020] According to (0020), in order to supplement the stop time of the power generation turbine of the siphon type binary power generation device, it is desirable to change the single unit into a plurality of units or provide supplementary equipment.

第一配管3における第一発電用水車5と下部タンク2の間に設けられた第一開閉バルブ7と、第二配管4における第二発電用水車8と上部タンク1の間に設けられて、前記第一配管3側に設けられた前記第一開閉バルブ7とは基本的に正反対の動きになる第二開閉バルブ10は、気密性の高い開閉バルブを使用する。
A first open / close valve 7 provided between the first power generation turbine 5 and the lower tank 2 in the first pipe 3, and a second power generation turbine 8 and the upper tank 1 in the second pipe 4, The second on-off valve 10 that moves in the opposite direction to the first on-off valve 7 provided on the first pipe 3 side uses a highly airtight on-off valve.

サイフォン型バイナリー発電装置を稼働する本質的なエネルギー源は、基本的に立地する周辺環境の熱源であるので熱源と冷源の確保が重要である。その熱源を基本的に液体で補うのであれば、太陽光や太陽熱、地熱等を利用した温水、気体で補うのであれば、蓄熱による熱気、その他施設や設備から発生する蒸気や排熱を利用する。また冷源を基本的に液体で補うのであれば用水、気体で補うのであれば外気を利用する。
Since an essential energy source for operating a siphon type binary power generation device is basically a heat source of the surrounding environment, it is important to secure a heat source and a cold source. If the heat source is basically supplemented with liquid, hot water using sunlight, solar heat, geothermal heat, etc., and if supplemented with gas, use heat generated by heat storage, steam or exhaust heat generated from other facilities and equipment. . If the cold source is basically supplemented with liquid, water is used, and if it is supplemented with gas, outside air is used.

低沸点作動媒体14が液体の状態で上部タンク1または下部タンク2に流動するのと同様に、熱源と冷源も上部タンク全体を収容し冷暖房を行う第一容器11と下部タンク全体を収容し冷暖房を行う第二容器12へ交互に入れ替わるようにしている。
Just as the low boiling point working medium 14 flows into the upper tank 1 or the lower tank 2 in a liquid state, the heat source and the cold source accommodate the entire upper tank and the first container 11 for cooling and heating and the entire lower tank. It is made to replace with the 2nd container 12 which performs air conditioning.

サイフォン型バイナリー発電装置の規模によって、上部タンク1と下部タンク2を連結する第一配管3、前記上部タンク1と前記下部タンク2を連結する第二配管4の配管数や配管に設けられた付属機械並びに部品は、複数を備えても構わないものである。
Depending on the size of the siphon type binary power generation device, the number of pipes and the number of pipes of the first pipe 3 connecting the upper tank 1 and the lower tank 2 and the second pipe 4 connecting the upper tank 1 and the lower tank 2 are provided. There may be a plurality of machines and parts.

本発明の稼働に必要な熱源と冷源の確保は、大気や水以外でも対応は可能であるが、再生可能エネルギー源の一つを目指すためにも出来るだけ自然界に優しいもので対応する。

(発明を実施するための動作説明)
The heat source and the cold source necessary for the operation of the present invention can be dealt with other than air and water. However, in order to aim at one of the renewable energy sources, it should be as friendly as possible to the natural world.

(Description of operation for carrying out the invention)

下部タンク2内に低沸点作動媒体14(例えば塩化メチレン)を収容する。
A low-boiling working medium 14 (for example, methylene chloride) is accommodated in the lower tank 2.

第一配管3に設けられた第一開閉バルブ7を閉鎖して、第二配管4に設けられた第二開閉バルブ10は開放する。
The first on-off valve 7 provided on the first pipe 3 is closed, and the second on-off valve 10 provided on the second pipe 4 is opened.

上部タンク1、下部タンク2、両タンクの間を連結する第一配管3、第二配管4の内は真空ポンプ13を使用して、真空状態とする。本発明の真空状態とは、完全真空を意味するものではなく、大気圧以下のことをいう。
The upper tank 1, the lower tank 2, the first pipe 3 connecting the two tanks, and the second pipe 4 are evacuated using a vacuum pump 13. The vacuum state of the present invention does not mean a complete vacuum, but means an atmospheric pressure or less.

第一配管3に設けられた第一開閉バルブ7を開放して、第二配管4に設けられた第二開閉バルブ10は閉鎖する。
The first on-off valve 7 provided on the first pipe 3 is opened, and the second on-off valve 10 provided on the second pipe 4 is closed.

上部タンク1全体を収容し冷暖房を行う第一容器11に冷源
を冷源投入口31より投入し、下部タンク2全体を収容し冷暖房を行う第二容器12に熱源を熱源投入口29より投入する。(図1)の状態。
A cold source is introduced from the cold source inlet 31 into the first container 11 that accommodates the entire upper tank 1 and performs cooling and heating, and a heat source is introduced from the heat source inlet 29 to the second container 12 that accommodates the entire lower tank 2 and performs cooling and heating. To do. (FIG. 1) state.

上部タンク1内の温度計と圧力計が下降とともに下部タンク2内の温度計と圧力計が上昇するために、低沸点作動媒体14(例えば塩化メチレン)が液体の状態で第一配管3を通じて第一発電用水車5が回転して、上部タンク1に流入する。第一発電用水車5が回転運動を起こして第一発電機6で発電する。
Since the thermometer and pressure gauge in the upper tank 1 are lowered and the thermometer and pressure gauge in the lower tank 2 are raised, the low-boiling working medium 14 (for example, methylene chloride) is in a liquid state through the first pipe 3. One power generation water turbine 5 rotates and flows into the upper tank 1. The first power generation water turbine 5 generates a rotational motion and the first generator 6 generates power.

下部タンク2内の低沸点作動媒体14(例えば塩化メチレン)が液体の状態で上部タンク1内に全て吸い上げられたら、第一配管3に設けられた第一開閉バルブ7を閉鎖し、第二配管4に設けられた第二開閉バルブ10は開放する。
When the low-boiling working medium 14 (for example, methylene chloride) in the lower tank 2 is completely sucked into the upper tank 1 in a liquid state, the first on-off valve 7 provided in the first pipe 3 is closed, and the second pipe The second on-off valve 10 provided at 4 is opened.

上部タンク1全体を収容し冷暖房を行う第一容器11の冷源を冷源排出口32より外部に排出する。出来るだけ下部タンク2全体を収容し冷暖房を行う第二容器12で再利用する。


The cold source of the first container 11 that accommodates the entire upper tank 1 and performs cooling and heating is discharged from the cold source discharge port 32 to the outside. As much as possible, the entire lower tank 2 is accommodated and reused in the second container 12 for cooling and heating.


下部タンク2全体を収容し冷暖房を行う第二容器12の熱源を熱源排出口30より外部に排出する。出来るだけ上部タンク1全体を収容し冷暖房を行う第一容器11で再利用する。

The heat source of the second container 12 that accommodates the entire lower tank 2 and performs cooling and heating is discharged from the heat source discharge port 30 to the outside. The entire upper tank 1 is accommodated as much as possible and reused in the first container 11 for cooling and heating.

上部タンク1全体を収容し冷暖房を行う第一容器11に熱源を熱源投入口29より投入し、下部タンク2全体を収容し冷暖房を行う第二容器12に冷源
を冷源投入口31より投入する。(図2)の状態。
A heat source is introduced from the heat source inlet 29 into the first container 11 that accommodates the entire upper tank 1 and performs cooling and heating, and a cold source is introduced from the cold source inlet 31 to the second container 12 that accommodates the entire lower tank 2 and performs cooling and heating. To do. State of (Fig. 2).

下部タンク2内の温度計と圧力計が下降とともに上部タンク1内の温度計と圧力計が上昇するために、低沸点作動媒体14(例えば塩化メチレン)が液体の状態で第二配管4を通じて第二発電用水車8が回転して、下部タンク2に流入する。第二発電用水車8が回転運動を起こして第二発電機9で発電する。
Since the thermometer and pressure gauge in the lower tank 2 are lowered and the thermometer and pressure gauge in the upper tank 1 are raised, the low-boiling working medium 14 (for example, methylene chloride) is in a liquid state through the second pipe 4. The double power generation water turbine 8 rotates and flows into the lower tank 2. The second power generation water turbine 8 causes a rotational motion to generate power with the second generator 9.

上部タンク1内の低沸点作動媒体14(例えば塩化メチレン)が液体の状態で下部タンク2内に全て吸い下げられたら、第二配管4に設けられた開閉バルブ10を閉鎖し、第一配管3に設けられた第一開閉バルブ7は開放する。
When the low-boiling working medium 14 (for example, methylene chloride) in the upper tank 1 is completely sucked into the lower tank 2 in a liquid state, the on-off valve 10 provided in the second pipe 4 is closed, and the first pipe 3 The first opening / closing valve 7 provided in is opened.

上部タンク1全体を収容し冷暖房を行う第一容器11の熱源を熱源排出口30より外部に排出する。出来るだけ下部タンク2全体を収容し冷暖房を行う第二容器12で再利用する。

The heat source of the first container 11 that accommodates the entire upper tank 1 and performs air conditioning is discharged from the heat source discharge port 30 to the outside. As much as possible, the entire lower tank 2 is accommodated and reused in the second container 12 for cooling and heating.

下部タンク2全体を収容し冷暖房を行う第二容器12に冷源を冷源排出口32より外部に排出する。出来るだけ下部タンク1全体を収容し冷暖房を行う第一容器11で再利用する。
A cold source is discharged from the cold source discharge port 32 to the second container 12 that houses the entire lower tank 2 and performs cooling and heating. The entire lower tank 1 is accommodated as much as possible and reused in the first container 11 for cooling and heating.

以下、図1〜図4は本発明に係るサイフォン型バイナリー発電装置の構成例を示す図である。

本発明に係るサイフォン型バイナリー発電装置の構成例を示す正面図。第二容器12に熱源を、第一容器11に冷源を投入している状態。 本発明に係るサイフォン型バイナリー発電装置の構成例を示す正面図。第一容器11に熱源を、第二容器12に冷源を投入している状態。 本発明に係るサイフォン型バイナリー発電装置の構成例を示す正面図。 (A)本発明に係る発電用水車の構成例を示すクロスフロー水車の断面図(B)本発明に係る発電用水車の構成例を示すフランシス水車の断面図(C)本発明に係る発電用水車の構成例を示すぺルトン水車の断面図
1 to 4 are diagrams showing a configuration example of a siphon type binary power generator according to the present invention.

The front view which shows the structural example of the siphon type | mold binary electric power generating apparatus which concerns on this invention. A state in which a heat source is supplied to the second container 12 and a cold source is supplied to the first container 11. The front view which shows the structural example of the siphon type | mold binary electric power generating apparatus which concerns on this invention. A state in which a heat source is input to the first container 11 and a cold source is input to the second container 12. The front view which shows the structural example of the siphon type | mold binary electric power generating apparatus which concerns on this invention. (A) Cross-sectional view of a cross-flow turbine showing a configuration example of a power generation turbine according to the present invention (B) Cross-sectional view of a Francis turbine showing a configuration example of a power generation turbine according to the present invention (C) Power generation water according to the present invention Cross section of a Pelton turbine showing an example of the configuration of a car

1 : 上部タンク
2 : 下部タンク
3 : 第一配管
4 : 第二配管
5 : 第一発電用水車(稼働状態)
6 : 第一発電機(発電状態)
7 : 第一開閉バルブ(開放状態)
8 : 第二発電用水車(停止状態)
9 : 第二発電機(停止状態)
10 : 第二開閉バルブ(閉鎖状態)
11 : 上部タンク用冷暖房第一容器(冷源投入中)
12 : 下部タンク用冷暖房第二容器(熱源投入中)
13 : 真空ポンプ
14 : 低沸点作動媒体
15 : 下部タンクの液面
16 : 上部タンクの液面
17 : 低沸点作動媒体の流れの動き
18 : 第一発電用水車(停止状態)
19 : 第一発電機(停止状態)
20 : 第一開閉バルブ(閉鎖状態)
21 : 第二発電用水車(稼働状態)
22 : 第二発電機(発電状態)
23 : 第二開閉バルブ(開放状態)
24 : 上部タンク用冷暖房第一容器(熱源投入中)
25 : 下部タンク用冷暖房第二容器(冷源投入中)
26 : 下部タンクの液面
27 : 上部タンクの液面
28 : 計測器(液面計、温度計、圧力計、真空計)


29 : 熱源投入口
30 : 熱源排出口
31 : 冷源投入口
32 : 冷源排出口
33 : 羽根車(ランナー)
34 : 軸
35 : カバー
36 : 案内羽根(ガイドベーン)
37 : ケーシング
38 : 案内羽根(ガイドベーン)


39 : 羽根車(ランナー)
40 : ケーシング
41 : 羽根車(ランナー)
42 : ニードル弁
43 : ノズル




1: Upper tank 2: Lower tank 3: First piping 4: Second piping 5: First power turbine (operating state)
6: First generator (power generation state)
7: First open / close valve (open state)
8: Second power turbine (stopped)
9: Second generator (stopped)
10: Second open / close valve (closed state)
11: First tank air-conditioning / cooling container (during cooling source)
12: Air conditioning second container for lower tank (while heat source is being charged)
13: Vacuum pump 14: Low boiling working medium 15: Lower tank liquid level 16: Upper tank liquid level 17: Low boiling working medium flow movement 18: First power generation turbine (stopped)
19: First generator (stopped)
20: First open / close valve (closed state)
21: Second power generation turbine (in operation)
22: Second generator (power generation state)
23: Second on-off valve (open state)
24: First tank air-conditioning / heating container (while heat source is being charged)
25: Second tank air-conditioning / heating container (while cooling source is being turned on)
26: Liquid level of lower tank 27: Liquid level of upper tank 28: Measuring instrument (liquid level gauge, thermometer, pressure gauge, vacuum gauge)


29: Heat source inlet 30: Heat source outlet 31: Cold source inlet 32: Cold source outlet 33: Impeller (runner)
34: Shaft 35: Cover 36: Guide vane (guide vane)
37: Casing 38: Guide vane (guide vane)


39: Impeller (runner)
40: Casing 41: Impeller (runner)
42: Needle valve 43: Nozzle




Claims (2)

真空状態にした上部タンクと、上部が真空状態であるとともに低沸点作 動媒体を収容した下部タンクと、前記上部タンクと前記下部タンクを連結する第一配管と、全長は異なるが両タンクを連結する第二配管と、前記第一配管に設けられた第一発電用水車と、前記第一発電用水車により発電される第一発電機と、前記第一配管における前記第一発電用水車と前記下部タンクの間に設けられた第一開閉バルブと、前記第二配管に設けられた第二発電用水車と、前記第二発電用水車により発電される第二発電機と、前記第二配管における前記第二発電用水車と前記上部タンクの間に設けられて、前記第一配管側に設けられた前記第一開閉バルブとは基本的に正反対の動きになる第二開閉バルブと、前記上部タンク全体を収容し冷暖房を行う第一容器と、前記下部タンク全体を収容し冷暖房を行い、前記上部タンク全体を収容し冷暖房を行う前記第一容器とは基本的に正反対の役割をする第二容器とを少なくとも備えたサイフォン型バイナリー発電装置であって、前記下部タンク内の加熱された前記低沸点作動媒体が前記上部タンクへ流動後、次に前記上部タンク内の加熱された前記低沸点作動媒体を前記下部タンクへ滑らかに流動させるため、前記上部タンクの天井部付近から前記下部タンクの底辺部付近までを前記第一配管で繋げ、前記上部タンクの底辺部から前記下部タンクの天井部を前記第二配管で繋げており、前記上部タンク内及び前記下部タンク内を交互に加熱及び冷却する熱源及び冷源自体も交互に変化するために、それに適応した前記第一容器及び前記第二容器を備えており、前記第一開閉バルブを開放状態に、前記第二開閉バルブを閉鎖状態にして、前記下部タンク内の加熱による加圧と、前記上部タンク内の冷却による減圧からタンク間の圧力差を生じさせることにより、前記低沸点作動媒体が前記第一配管を通じて上昇による流動が起こり、前記低沸点作動媒体が前記上部タンクへ流動終了後、前記第一開閉バルブを閉鎖状態に戻し、前記第二開閉バルブを開放状態にして、次に前記上部タンク内の加熱による加圧と、前記下部タンク内の冷却による減圧からタンク間の圧力差を生じさせることにより、前記低沸点作動媒体が前記第二配管を通じて下降による流動が起こり、前記低沸点作動媒体が前記下部タンクへ流動終了後、前記第二開閉バルブを閉鎖状態に戻し、前記第一開閉バルブを開放状態にする動きをすることを特徴とするサイフォン型バイナリー発電装置。
The upper tank in a vacuum state, the lower tank in which the upper part is in a vacuum state and contains a low-boiling working medium, and the first pipe that connects the upper tank and the lower tank are connected to each other although the total length is different. A second power generation pipe, a first power generation turbine provided in the first pipe, a first generator generated by the first power generation turbine, the first power generation turbine in the first pipe, and the A first open / close valve provided between the lower tanks, a second power generation turbine provided in the second pipe, a second generator generated by the second power generation turbine, and the second pipe A second opening / closing valve provided between the second power generation water turbine and the upper tank, which is basically opposite to the first opening / closing valve provided on the first piping side; and the upper tank The first room that accommodates the whole and heats and cools Siphon type binary power generation comprising at least a container and a second container that accommodates the entire lower tank and performs cooling and heating, and a second container that functions as a diametrically opposite function to the first container that accommodates the entire upper tank and performs cooling and heating In the apparatus, after the heated low boiling point working medium in the lower tank flows to the upper tank, the heated low boiling point working medium in the upper tank is then smoothly flowed to the lower tank. Therefore, the first pipe connects the vicinity of the ceiling of the upper tank to the vicinity of the bottom of the lower tank, and the ceiling of the lower tank is connected by the second pipe from the bottom of the upper tank, Since the heat source for alternately heating and cooling the inside of the upper tank and the inside of the lower tank and the cold source itself are also changed alternately, the first container and the second container adapted to it are provided. The first open / close valve is opened, the second open / close valve is closed, and a pressure difference between the tanks is generated from the pressurization by heating in the lower tank and the depressurization by cooling in the upper tank. By causing the low boiling point working medium to flow through the first pipe, the low boiling point working medium returns to the closed state after the low boiling point working medium has finished flowing to the upper tank, and the second opening and closing The low-boiling working medium is made to flow into the second pipe by opening a valve and then creating a pressure difference between the tanks from pressurization by heating in the upper tank and depressurization by cooling in the lower tank. After the flow of the low boiling point working medium has finished flowing into the lower tank, the second opening / closing valve is returned to the closed state and the first opening / closing valve is opened. Siphon binary power generation apparatus, characterized by the movement.
上部タンクと下部タンクと第一配管と第二配管内真空状態にする真空ポンプを設けた請求項1記載のサイフォン型バイナリー発電装置。
Siphon binary power generation apparatus according to claim 1, wherein is provided a vacuum pump to vacuum the upper tank and a lower tank and a first pipe and the second inner pipe.
JP2012020812A 2012-02-02 2012-02-02 Siphon type binary power generator Expired - Fee Related JP5067746B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012020812A JP5067746B1 (en) 2012-02-02 2012-02-02 Siphon type binary power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012020812A JP5067746B1 (en) 2012-02-02 2012-02-02 Siphon type binary power generator

Publications (2)

Publication Number Publication Date
JP5067746B1 true JP5067746B1 (en) 2012-11-07
JP2013160082A JP2013160082A (en) 2013-08-19

Family

ID=47277787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012020812A Expired - Fee Related JP5067746B1 (en) 2012-02-02 2012-02-02 Siphon type binary power generator

Country Status (1)

Country Link
JP (1) JP5067746B1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4882240A (en) * 1972-01-20 1973-11-02
US3932995A (en) * 1971-04-17 1976-01-20 Milan Pecar System for producing work using a small temperature differential
JPS5410848A (en) * 1977-06-27 1979-01-26 Hideo Mochizuki Water power engine which utilizes steam pressure
JPS6365805U (en) * 1986-10-17 1988-04-30
JP2001323870A (en) * 2000-05-16 2001-11-22 Nkk Design & Engineering Corp Teermosiphon power generating method and device thereof
JP2002272152A (en) * 2000-12-15 2002-09-20 Komatsu Ltd Thermoelectric power generator and vaporization device therefor
JP2004044455A (en) * 2002-07-10 2004-02-12 Toshiba Corp Temperature stratification resolving system
JP2006316649A (en) * 2005-05-11 2006-11-24 Yasuo Ueno External combustion engine
JP2010169364A (en) * 2009-01-26 2010-08-05 Sumitomo Precision Prod Co Ltd Thermosiphon type steam generator
JP3171896U (en) * 2011-07-29 2011-11-24 完 森田 Hybrid power generation system

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3932995A (en) * 1971-04-17 1976-01-20 Milan Pecar System for producing work using a small temperature differential
JPS4882240A (en) * 1972-01-20 1973-11-02
JPS5410848A (en) * 1977-06-27 1979-01-26 Hideo Mochizuki Water power engine which utilizes steam pressure
JPS6365805U (en) * 1986-10-17 1988-04-30
JP2001323870A (en) * 2000-05-16 2001-11-22 Nkk Design & Engineering Corp Teermosiphon power generating method and device thereof
JP2002272152A (en) * 2000-12-15 2002-09-20 Komatsu Ltd Thermoelectric power generator and vaporization device therefor
JP2004044455A (en) * 2002-07-10 2004-02-12 Toshiba Corp Temperature stratification resolving system
JP2006316649A (en) * 2005-05-11 2006-11-24 Yasuo Ueno External combustion engine
JP2010169364A (en) * 2009-01-26 2010-08-05 Sumitomo Precision Prod Co Ltd Thermosiphon type steam generator
JP3171896U (en) * 2011-07-29 2011-11-24 完 森田 Hybrid power generation system

Also Published As

Publication number Publication date
JP2013160082A (en) 2013-08-19

Similar Documents

Publication Publication Date Title
US8127542B1 (en) Portable hydroelectric generating system
Andika et al. Techno-economic assessment of technological improvements in thermal energy storage of concentrated solar power
CA3125182A1 (en) Advanced gravity-moment-hydro power system
Ismaeel et al. Performance evaluation of updraft air tower power plant integrated with double skin solar air heater
JP5067746B1 (en) Siphon type binary power generator
CN100447904C (en) Nuclear energy-wind energy natural-circulation cogeneration system
JP5190662B1 (en) Siphon type binary power generator
Koonsrisuk et al. Theoretical turbine power yield in solar chimney power plants
San et al. Design of cross flow turbine and analysis of runner's dimensions on various head and flow rate
CN105649883A (en) Wind power coupling balanced power generating method and system assisted by heat energy wind generation
CN105464885A (en) Riverway river water flow speed increasing system
Papageorgiou Floating solar chimney versus concrete solar chimney power plants
Kavurmaci et al. Design of an experimental test stand for Francis type hydraulic turbines
Seifi et al. Experimental study of self-starting torque required to operate darriues the vertical axis wind turbine
KR20130026797A (en) Hydro power generator system using water wheel and buoyancy
JP5585858B1 (en) Seesaw type temperature difference power generator
CN203822393U (en) Air generator set
KR20120008866A (en) Power plant in vacuum state
CN107905947A (en) A kind of solar wind force composite type power generator
CN202325979U (en) Spiral power output device
CN102852748A (en) Low-temperature difference air heat power generation method
CN204026633U (en) High pressure steam boiler
JP2023156958A (en) Hydroelectric power generation
CN105298721A (en) Ball-type solar power generation device
Mugisidi et al. Analysis and Modeling of Wheel-Based Floating Energy Generation Technology

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120731

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120806

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150824

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees