JP2004040890A - 熱発電制御装置 - Google Patents

熱発電制御装置 Download PDF

Info

Publication number
JP2004040890A
JP2004040890A JP2002193515A JP2002193515A JP2004040890A JP 2004040890 A JP2004040890 A JP 2004040890A JP 2002193515 A JP2002193515 A JP 2002193515A JP 2002193515 A JP2002193515 A JP 2002193515A JP 2004040890 A JP2004040890 A JP 2004040890A
Authority
JP
Japan
Prior art keywords
power
burner
electromotive force
voltage
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002193515A
Other languages
English (en)
Inventor
Akihito Kito
鬼頭 昭仁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Paloma Kogyo KK
Original Assignee
Paloma Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Paloma Kogyo KK filed Critical Paloma Kogyo KK
Priority to JP2002193515A priority Critical patent/JP2004040890A/ja
Publication of JP2004040890A publication Critical patent/JP2004040890A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Landscapes

  • Direct Air Heating By Heater Or Combustion Gas (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

【課題】制御回路側へ必要以上の電圧が加わらないようにすると共に、アクチュエータに十分な電圧で電源供給することを目的とする。
【解決手段】電源回路36には、昇圧部36bへの電源供給を昇圧回路37からの電力にするか、乾電池34からの電力にするかを切替える切替部36aが形成され、切替部36aは、ダイオードD1とダイオードD2とを備える。昇圧回路37と切替部36aとの間には、昇圧回路37から供給される電圧(VCC2)を所定値(2.5V)以下に規制するレギュレーションIC36cが備えられる。これによって、マイコン35の過電圧による故障を防止できる。言いかえれば、直列型熱電対13からの電力を昇圧回路37でマイコン35の許容電圧以上に昇圧させることが可能となり、十分な電力を送風ファン8に供給できる。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、熱発電部からの電力をアクチュエータへ供給する熱発電制御装置に関する。
【0002】
【従来の技術】
従来から、バーナの燃焼熱で加熱された熱電対(熱発電部)の起電力を昇圧回路で昇圧させ、昇圧された出力電圧でモータ等のアクチュエータ(負荷)を駆動する熱発電制御装置が知られている。
こうした熱発電制御装置の赤外線ストーブへの適用の一例として、赤熱プレート式のガスバーナからの輻射熱に加え、熱発電により駆動する送風ファンによる温風によっても暖房を行うファン付赤外線ストーブが知られている。
また、このような熱発電制御装置の中には、バーナの燃焼を制御するマイコンを主要部とした燃焼制御回路へも昇圧回路からの電力を供給しているものもある。
【0003】
【発明が解決しようとする課題】
しかしながら、燃焼制御回路への入力電圧を高くしすぎると、次のような不具合を生じる。
▲1▼マイコン等の回路素子の使用電圧範囲を超えてしまう。
▲2▼A/D変換器の基準電圧がずれてしまい、各種センサからの信号が正しく読み込めない。
このため、昇圧回路で昇圧させる電圧を低く抑えざるを得ず、アクチュエータへ供給する電源電圧が不足してしまうことがあった。
本発明の熱発電制御装置は上記課題を解決し、制御回路側へ必要以上の電圧が加わらないようにすると共に、アクチュエータに十分な電圧で電源供給することを目的とする。
【0004】
【課題を解決するための手段】
上記課題を解決する本発明の請求項1記載の熱発電制御装置は、
バーナの燃焼熱により発電する熱発電部と、
上記熱発電部で発電した電力を昇圧する昇圧回路と、
上記昇圧された電力を電源として駆動するアクチュエータと、
上記昇圧された電力を電源とし、上記バーナの燃焼を制御する燃焼制御回路と
を備えた熱発電制御装置において、
上記昇圧回路の出力部と上記燃焼制御回路の電源入力部との間に、該燃焼制御回路に供給される電源電圧を所定値以下に規制する電圧規制装置を設けたことを要旨とする。
【0005】
上記構成を有する本発明の請求項1記載の熱発電制御装置は、昇圧回路が熱発電部で発生した電力を昇圧した後に、この電力をアクチュエータや燃焼制御回路に供給する。この際、電圧規制装置がアクチュエータへの電源電圧を規制することなく、燃焼制御回路へ供給される電源電圧のみを所定値以下に規制するため、燃焼制御回路の過電圧による故障を防止できる。
【0006】
【発明の実施の形態】
以上説明した本発明の構成・作用を一層明らかにするために、以下本発明の熱発電制御装置の好適な実施形態について説明する。
【0007】
図2は、熱発電制御装置を備えたファン付赤外線ストーブの断面概略図であり、図3は、そのシステム構成図である。
ファン付赤外線ストーブ1(以下、単にストーブ1と略称する)は、前面に輻射開口2が設けられた本体ケース3内に、この輻射開口2に対向させて赤熱プレート式のバーナ4を備える。
バーナ4は、燃料ガスと一次空気との混合室を形成するバーナ本体5と、バーナ本体5に装着される多数の炎孔が設けられたセラミックス製の燃焼プレート6とを備えた全一次空気式バーナである。バーナ本体5の基端には、燃料ガスと一次空気とが吸入される吸入口56が開口し、吸入口56に臨んでノズル44が設けられる(図3参照)。
このバーナ4では、ノズル44から噴出された燃料ガスと、その噴出に伴って吸入口56から吸入された一次空気とがバーナ本体5内で良好に混合され、その混合気が燃焼プレート6の炎孔から噴出して、燃焼プレート6上で表面燃焼する。
【0008】
また、バーナ本体5は、上バーナ本体5aと下バーナ本体5bとに上下二段に分割形成される。そして、燃焼プレート6は、上バーナ本体5aと下バーナ本体5bとにそれぞれ左右二枚ずつ設けられる構成であり、全面で燃焼する強火力設定と下バーナ本体5bに設けられた二面のみで燃焼する弱火力設定との二種類の火力切替が行える。
【0009】
本体ケース3内の底部には、バーナ4の燃焼ガスを本体ケース3前面下部に設けられた温風吹出口7から送出する送風ファン8が設けられる。バーナ4の後方には、バーナ4の上方近傍に温風吸込口9を有し、送風ファン8に燃焼ガスを導くファン給気筒10が設けられる。ファン給気筒10の後方上部には、複数の上段冷風吸込口11が設けられ、送出する燃焼ガスを火傷等の危険がない適切な温度にまで冷却するための空気が吸い込まれる。また、本体ケース3後面には、器具外部の空気を本体ケース3内に吸引するための複数の取込口12が設けられる。
ファン給気筒10内は途中まで仕切板46によって、温風吸込口9と連通した温風通路と上段冷風吸込口11と連通した冷風通路とに分割される。
ファン給気筒10の前方下部には、後述する直列型熱電対13の冷接点13aの近傍に中段冷風吸込口14を有した吸込筒15が連結され、吸込筒15の下方には下段冷風吸込口16が開口される。
また、送風ファン8と温風吹出口7とはファン排気筒17によって連通される。
【0010】
従って、送風ファン8を駆動すると、温風吸込口9から燃焼ガスが吸引されると共に、取込口12を介して器具内に吸引された外部空気が上段、中段、下段冷風吸込口11,14,16から吸引される。そして、これらの燃焼ガスと空気とが送風ファン8に吸込まれ均一に混合されて、温風として温風吹出口7から送出される。
【0011】
バーナ4の燃焼面の前面には、前後二列で配列された複数の熱電対素子を直列に接続した直列型熱電対13が対向して設けられ、この直列型熱電対13で発生した起電力が送風ファン8のモータ(DCモータ)8aや燃焼等を制御するコントローラ18(後述)の電源として用いられる。尚、送風ファン8のモータ8aが本発明におけるアクチュエータである。
また、器具正面には、向かって左側に点火レバー21が、右側にバーナ4の火力を切替える切替レバー22が設けられる。
【0012】
バーナ4へのガス流路には、図3に示すように、上流から順に、点火レバー21の操作力によって機械的に開弁され後述する第一熱電対23からの起電力によって開弁保持されるマグネット電磁弁24と、点火レバー21の操作力によって機械的に開閉されるメイン弁25と、切替レバー22の操作によって上下両バーナ本体5a,5bへのガス流路を開弁状態とする第一状態と下バーナ本体5bへのガス流路のみを開弁状態とする第二状態とを切替える切替弁26とが設けられる。
【0013】
また、バーナ4には、センシングバーナ27が併設され、センシングバーナ27の近傍には、マグネット電磁弁24のコイルと直列に接続された第一熱電対23が設けられる。第一熱電対23は、主にセンシングバーナ27の炎により直接加熱され、この際発生する起電力によってマグネット電磁弁24を開弁保持する。
マグネット電磁弁24は、常に閉弁方向に付勢するバネを備え、この付勢力に反して電磁石の吸着力で開弁保持されるが、室内の酸素濃度が低下してくるとセンシングバーナ27の炎がリフトし始めて、第一熱電対23の起電力が低下して吸着保持できなくなりガス流路を遮断する。従って、不完全燃焼を未然に防ぐことができる。
尚、センシングバーナ27へのガス流路は、メイン弁25と切替弁26との間のガス流路から分岐して形成される。
【0014】
バーナ4の近傍には、バーナ4へ点火するための点火用バーナ28が設けられ、点火用バーナ28の近傍には、点火用バーナ28へ点火するための点火電極29が設けられる。点火電極29は、イグナイタ30と接続される。
点火用バーナ28へのガス流路は、メイン弁25の下流から分岐して設けられ、点火レバー21を開操作している間のみ開状態となる点火弁55が設けられる。すなわち、点火用バーナ28には、点火操作時のみ炎が形成される。
【0015】
バーナ4の炎に直接熱せられる位置に直列型熱電対13と隣接して第二熱電対31が設けられる。この第二熱電対31からの起電力Vxを検出して判定起電力Vref と比較することによって、バーナ4の吸入口56が閉塞を起こした場合(以下、ダンパー閉塞と呼ぶ)の燃焼不良を判断する。ダンパー閉塞が生じて、燃焼用空気が足りなくなってくると、不完全燃焼し始めるため、第二熱電対31を正常な火炎で適切に加熱できなくなり、起電力は低下する。
また、この判定起電力Vref は、ガス種によって適正値が異なるため、器具背面に設けられたスライド式の切替スイッチ45により複数通りに設定できるようになっている。
尚、バーナ4とセンシングバーナ27との一次空気吸入口がそれぞれ異なるため、このようなダンパー閉塞による燃焼不良を、センシングバーナ27の火炎により加熱される第一熱電対23の起電力に基づいて検出することはできない。
【0016】
ストーブ1本体内には、上述したセンサ類からの信号を入力して各種のアクチュエータ類を駆動制御するコントローラ18が設けられる。
また、点火レバー21で点火操作しているときのみONする、つまり点火レバー21を押し下げている時のみONする点火スイッチ32と、点火レバー21での点火操作によりON保持され、消火操作(点火レバー21の持ち上げ操作)によりOFF状態に切り替わる電源スイッチ33とが設けられており、この点火スイッチ32及び電源スイッチ33からのON信号はコントローラ18へ入力される。
【0017】
コントローラ18は、図1に示すように、主制御部のマイクロコンピュータ35(以下、単にマイコン35と呼ぶ)と、マイコン35に電源を供給する電源回路36、直列型熱電対13からの起電力を昇圧させる昇圧回路37、送風ファン8のモータ8aを制御するモータ制御回路38、マグネット電磁弁24と第一熱電対23の直列接続を切断するMg回路39、第二熱電対31からの起電力を入力する炎検知回路40、ダンパー閉塞を検出するための判定起電力Vref を切替える判定値入力回路41、表示回路42、イグナイタスイッチ回路43等を備える。尚、図中の符号CNはコネクタを示す。
【0018】
昇圧回路37は、マイコンの出力ポートcからのパルス信号によりON/OFFするFET3(スイッチング素子)、FET3のON/OFFにより電圧を誘起するコイルL2、コイルL2の放電時のインピーダンスを小さくする電解コンデンサC3、電荷を蓄える電解コンデンサC4、昇圧後の電源から昇圧回路37側へ電流が流れることを防止するショットキーバリアーダイオードD3を備える。
こうした構成の昇圧回路37では、点火操作(電源スイッチ33のON動作)が行われると、マイコン35が、出力ポートcからパルス信号をFET3へ送信し、そのパルス信号によりFET3をON/OFF動作させ、これによりコイルL2に電圧を誘起させて直列型熱電対13からの入力電圧(約1V)を昇圧して電気エネルギーを蓄えさせる。
【0019】
FET3がONの時、直列型熱電対13の起電力により、コイルL2に電流が流れ、FET3をOFFすると、コイルL2の性質により電流を流し続けようとして電圧が上昇し、電源回路36およびモータ制御回路38へ通電される。そして、この電流は、モータ制御回路38からモータ8aのコイルへの電源として使われる。
このようにして、昇圧回路37は、直列型熱電対13で発生した約1Vの起電力をVCC2(3.5V)まで昇圧させる。マイコン35は、昇圧回路37の出力電圧VCC2を入力ポートdから検知する。尚、抵抗R4,R5(各抵抗値は等しい)により入力ポートdへの入力電圧を半分に分圧することによって、マイコン35の過電圧による故障を防止している。
【0020】
マイコン35は、基本的には、直列型熱電対13からの起電力を電源として駆動されるものであるが、点火開始時には、必要な電力が直列型熱電対13からは得られない。このため、その補助電源として、乾電池34(電圧VCC1は1.5V)が用いられる。そして、直列型熱電対13から十分な電力が得られるようになった後は、マイコン35への電源として直列型熱電対13からの電力を用いる。
尚、モータ8aへは、十分な電力が得られない点火初期から直列型熱電対13の起電力のみがそのまま電源として用いられる。
【0021】
乾電池34からの起電力VCC1(1.5V)は、電源回路36の昇圧部36bでVDD(3V)に昇圧され、マイコン35へ供給される。
昇圧部36bは、昇圧専用集積回路であるIC36dと、コイルL1と、電解コンデンサC2と、ダイオードD2と、トランジスタQ1等を備える。
このような昇圧部36bは、パルス信号によりトランジスタQ1をON/OFF動作させ、これによりコイルL1に電圧を誘起させて、点火初期において乾電池34からの入力電圧をVDD(3V)まで昇圧して、マイコン35の電源ポートeや表示回路42等へ電源として供給する。
【0022】
点火初期においては、この乾電池34の電力によりマイコン35が作動して昇圧回路37を駆動し、直列型熱電対13からの起電力を昇圧する(昇圧後の電圧VCC2)。この昇圧された電力は、モータ8aや電源回路36に導かれる。
電源回路36には、昇圧部36bへの電源供給を昇圧回路37からの電力にするか、乾電池34からの電力にするかを切替える切替部36aが形成され、切替部36aは、ダイオードD1とダイオードD2とを備える。すなわち、乾電池34の起電力VCC1の方が昇圧回路37からの起電力VCC2よりも大きい場合には、昇圧部36bへ供給される電源はダイオードD1を通る乾電池34からの電力となり、昇圧回路37からの起電力VCC2の方が大きくなると昇圧部36bへの供給電源はダイオードD2を通る昇圧回路37からの電力へと切替わる。このように、マイコン35への電力供給源を乾電池34から熱電対13に切り替えるため、乾電池34を無駄に消費することがなく、長期に渡って乾電池34を使用することができる。このため、乾電池交換を頻繁に行う必要もない。
【0023】
また、昇圧回路37と切替部36aとの間には、昇圧回路37から供給される電圧(VCC2)を所定値(2.5V)以下に規制するレギュレーションIC36cが備えられる。これに対して、モータ8aには、電圧規制されないVCC2が直接供給される。
これによって、マイコン35の過電圧による故障や誤動作を防止できる。言いかえれば、直列型熱電対13からの電力を昇圧回路37でマイコン35の許容電圧以上に昇圧させることが可能となり、高い電圧で送風ファン8に供給できる。このため、直列型熱電対13からの起電力だけで要求される風量を得ることが可能となる。
また、送風ファン8のモータ8aとして用いているDCモータは、高い電圧で供給されればされるほど回転数が上がる。このため、特に、本実施形態のような熱発電を利用して低電圧で動作させるシステムのように、モータ8aとしてDCモータを用いている場合、上述したようにしてモータ8aへ供給する電圧を高めると風量を増すことができ一層効果的である。
尚、レギュレーションIC36cによって、2.5Vまでに低下させられた電力は、昇圧部36bで再び、マイコン35への適切な印可電圧である3Vまで昇圧される。
【0024】
ところで、レギュレーションIC36c及び切替部36aを昇圧部36bの後に配置した回路も考えられる。尚、この場合にはレギュレーションIC36cとして電圧(VCC2)を3V以下に規制するものを用いる。しかしながら、こうした場合には、昇圧部36bからの電力とレギュレーションIC36cからの電力とを切替えるダイオードの特性が、各素子ごとにばらつきを含んでいるし、また温度等によってもばらつくためマイコン35に供給する電圧が一定しなくなってしまう。これに対して本実施形態の電源回路36では、各種条件により特性がばらついてしまうダイオードD1,D2の後に昇圧部36bを配置しているため、マイコン35へ供給する電圧を一定として、その動作を安定させることができる。
【0025】
Mg回路39は、直列に接続したマグネット電磁弁24と第一熱電対23との接続を遮断する回路である。
Mg回路39は、マグネット電磁弁24と第一熱電対23との接続を開閉するスイッチング素子としてのFET1、FET2と、FET1と接続されるトランジスタQ2、電解コンデンサC5、コンデンサC6等を備える。
トランジスタQ2は、マイコン35の出力ポートaからのパルス信号によりオンオフする。トランジスタQ2がオンしている時は、電源回路36からの出力電圧VDDがFET1に印可されてFET1もオンする。そして、トランジスタQ2がオフしても、電解コンデンサC5に電荷が溜まるまでは電流が流れるため、FET1には高い電圧が印可され一定時間FET1はオンする。つまり、FET1は、出力ポートaから所定周期の連続したパルス信号が出力されている間はオンし、パルス信号が出力されなくなるとコンデンサC6により直流信号が遮断されるためオフする。
FET2は、出力ポートbからのレベル信号がhighの場合にONし、lowの場合にOFFする。
【0026】
このような構成のMg回路は、第二熱電対31からの入力電圧に基づいて燃焼不良が生じていると判断される場合や、後述するように消火操作が行われた場合に、FET1及びFET2をオフする。これによって、マグネット電磁弁24と第一熱電対23との接続は遮断され、マグネット電磁弁24は瞬時に閉弁してガス流路を遮断する。
【0027】
FETを二つ備えているのは、万が一どちらか一つが故障しても確実にガス流路を遮断できるようにするためである。つまり、一つしか備えていない場合、ON故障が発生すると、不完全燃焼時でも燃料ガスの供給を遮断できなくなってしまうが、二つ備えていれば、一つが故障しても他方のFETで確実にマグネット電磁弁24と第一熱電対23との接続を遮断でき、安全性が向上する。
また、出力ポートaからFET1への回路の途中に、コンデンサC6とトランジスタQ2と電解コンデンサC5とを設けて、パルス信号の有無でFET1をON/OFFしている。このため、マイコンが故障してhighのレベル信号やlowのレベル信号になったまま切り換わらなくなってしまった場合にも確実にマグネット電磁弁24と第一熱電対23との接続を遮断することができる。
【0028】
炎検知回路40は、第二熱電対31からの起電力をオペアンプ41aで増幅してマイコン35の入力ポートfに入力する。そして、この第二熱電対31の起電力に基づいて、主にダンパー閉塞による不完全燃焼防止制御を行う。
モータ制御回路38は、マイコン35の出力ポートgからのhigh−lowのレベル信号によりON/OFFするFET4を備えており、このFET4をオンオフしてモータ8aのコイルへの電力の給断を切替える。例えば、第二熱電対31からの入力電圧に基づいて燃焼不良が生じていると判断した場合などに、レベル信号をhighからlowに切替えてモータを停止させる。
【0029】
判定値入力回路41は、固定抵抗R0と切替抵抗R1,R2,R3とを備え、切替スイッチ45を操作すると固定抵抗と切替抵抗との接続が切替わり、固定抵抗と切替抵抗との接続点Aの電位Vaが変化する構成である。
この電位Vaは、マイコン35の入力ポートhに入力される。そして、Vaに基づいて判定起電力Vref が設定される。
【0030】
次に点火動作について説明する。
点火レバー21を押し下げていくと、まずメイン弁25が開弁されると共に、電源スイッチ33がONして電源回路36に電源が供給される。次に、点火スイッチ32がONし、イグナイタ30を動作させて点火電極29を連続スパークさせる。更に、押し下げると順に、点火弁55、マグネット電磁弁24が開弁されバーナ4と点火用バーナ28とセンシングバーナ27へのガス流路が開放され、燃料ガスが供給される。
そして、点火用バーナ28に着火した炎が、バーナ4やセンシングバーナ27に火移りしていく。つまり、点火操作器である点火レバー21を操作していくと、メイン弁25の開弁→点火器としてのイグナイタ30の作動開始→点火弁55の開弁→マグネット電磁弁24の開弁の順に動作してバーナ4に点火するのである。
センシングバーナ27やバーナ4に点火されると、加熱される第一熱電対23から起電力が発生しマグネット電磁弁24を吸着保持する。そして、点火レバー21から手を離すと、マグネット電磁弁24は、閉弁可能状態となる。つまり、弁体を押しているスピンドル(図示略)が後退し、電磁力でのみ開弁が継続される状態となる。従って、第一熱電対23からの起電力が所定の吸着保持電圧値以下となるとマグネット電磁弁24は閉弁される。
尚、点火レバー21を離すと、点火弁55が閉弁して点火用バーナ28へのガス流路は閉じられる。
【0031】
ここで、従来のストーブにおけるホットスタート(急再点火動作)について述べる。
点火動作が消火後から短時間で行われた場合(第一熱電対23からの起電力が吸着保持電圧以下となる前)、マグネット電磁弁24が開弁状態になっているわけであるから点火動作によりメイン弁25が開弁されると、その開弁にあわせて燃料ガスは放出されてしまう。そして、その後にイグナイタ30が作動して点火用バーナ28を介して点火されるため、その間に燃焼プレート6の前面に溜まった燃料ガスへの急激な着火となり、着火音や火炎が大きくなってしまう。
これに対して、本実施形態では、消火と同時にFET1,2をオフしてマグネット電磁弁24を閉弁しているため、このような不都合は生じない。
【0032】
ここで、消火時にマイコン35が行うマグネット電磁弁24の強制閉弁制御について図4に示すフローチャートを用いて説明する。
点火レバー21を消火操作すると、メイン弁25が閉弁してバーナ4及びセンシングバーナ27へのガス流路が遮断されると共に、電源スイッチ33がOFFされる(S1)。
そして、電源スイッチ33がOFFされたことを検出すると(S2:YES)、出力ポートaから出力していたパルス信号を停止させてFET1をオフすると共に、出力ポートbからのレベル信号をlowにしてFET2をオフすることによって、マグネット電磁弁24を強制的に閉弁させる(S3)。
【0033】
このように、消火操作後には、第一熱電対23とマグネット電磁弁24との間の接続を強制的に切断しているため、第一熱電対23の起電力がマグネット電磁弁24の吸着保持電圧よりも大きい消火初期においても、マグネット電磁弁24が一時的に開弁状態となってしまうことはない。従って、点火時には、マグネット電磁弁24は常に閉弁しているので、ホットスタートを行っても、点火電極29からのスパーク放電が燃料ガスの放出よりも遅れてしまうことを防止できる。すなわち、大きな着火音や大きな火炎が生じる遅点火は起こり得ないので、快適に使用することができる。
また、マグネット電磁弁24と第一熱電対23との間の接続をオンオフするスイッチング素子として用いているFETには、機械的寿命がないため、故障する確率が減少し信頼性が向上する。更に、FETは導通時には極めて低抵抗であるため、そこでの電圧降下は非常に小さく、マグネット電磁弁24を開弁保持するのに十分なコイル電流が得られるので、マグネット電磁弁24を安定して動作させることができ、一層信頼性が増す。
【0034】
次に、マイコン35が行う燃焼不良検出の制御について図5に示すフローチャートを用いて説明する。第二熱電対31からの起電力Vxを判定起電力Vref と比較することによって、主にダンパー閉塞に基づく不完全燃焼を検出する。
【0035】
上述したような点火動作が終了すると(S1)、タイマーをスタートさせる(S2)。点火から4分経過するまでは、燃焼不良検出は行わずに待機する(S3:NO)。4分経過すると(S3:YES)、燃焼不良検出をし始めるわけであるが、経過時間Tによって判定起電力Vref を変化させる(S4〜S7)。
経過時間Tが4分から8分の間は、判定起電力Vref を10mVに設定する(S4)。そして、この判定起電力Vref と第二熱電対31からの起電力Vxを比較し、第二熱電対31からの起電力Vxの方が大きい場合には、燃焼状態が正常であると判断して、燃焼を継続させると共に、燃焼不良検出を継続する(S8:YES)。
これに対して、第二熱電対31の起電力Vxが小さい(Vxが10秒間以上、Vref 以下を継続した)場合には(S8:NO)、燃焼不良となっていると判断する(S9)。そして、燃焼不良と判断された場合には、出力ポートaからのパルス信号を止めて、FET1をオフすると共に、出力ポートbの出力レベルをlowにして、FET2をオフしてマグネット電磁弁24を強制的に閉弁させる。
ステップ4での経過時間Tが8分から12分の間は、判定起電力Vref を14mVに切替え(S6)、経過時間Tが12分を超えると、判定起電力Vref を16mVに切替えて(S7)、同様な制御を行う。
【0036】
経過時間Tと第二熱電対31からの起電力Vx及び判定起電力Vref との関係は、図6に示すグラフの様になる。
本実施形態のようなセラミックス製の赤熱プレート式のバーナ4は、点火後にプレート面の温度が上昇して安定するのに長い時間がかかるため、従来のように判定起電力Vref として、一つの基準(例えば、Vref =16mV)しか持たなかった場合には、燃焼不良を検出し始めるのに長い時間を待たねばならず、この待機時間における不完全燃焼が大きな問題となる可能性があった。
これに対して、本実施形態のストーブ1では、判定起電力Vref として複数の基準を持ち、点火初期ほど低い値を用いているので、第二熱電対31の起電力Vxが上昇中である点火初期段階からの燃焼不良検出が可能となり、安全性が向上する。そして、点火後、所定時間が経過した後には、判定起電力を従来と同じような大きなしきい値に切替えるので、燃焼不良を確実に検出できる。
【0037】
判定起電力Vref は、ガス種によって異なるものである。例えば、12分超過後の判定起電力Vref は、LPガスの場合は16mVであり、都市ガス(13A)の場合は13mVであり、その他ガス(6C)の場合は9mVである。このため、器具背面に設けられた切替スイッチ45を操作して判定起電力Vref を設定しなおすことを可能としている。
また、時間経過と共に変化する複数の判定起電力間の比率は、何れのガス種に対してもほぼ等しくなる。例えば、12分超過後の判定起電力をVref (1)、8分から12分の間の判定起電力をVref (2)、4分から8分の間の起電力Vref (3)とすると、その比は、
ref (1):Vref (2):Vref (3)=1:0.875:0.625
となる。このため、一つの判定起電力、例えば、12分超過後の判定起電力Vre f (1)を設定することによって、他の判定起電力Vref (2),Vref (3)は予め設定されているこの比率に応じて自動的に設定されるようする。
【0038】
ここで判定起電力Vref の設定方法について述べる。
切替スイッチ45を操作して、固定抵抗R0と切替抵抗R1,R2,R3との接続を切替えると、その接続点Aの電位Vaは変化する。電位Vaは、次式により求まる。
Va=VDD×rx/(r0+rx)
r0:固定抵抗R0の抵抗(Ω)
rx:切替抵抗Rx(x=1,2,3)の抵抗(Ω)
切替抵抗R1はLPガス用であり、切替抵抗R2は都市ガス(13A)用であり、切替抵抗R3はその他ガス(6C)用である。
マイコン35は、入力されるこの3種類の電位Vaに対する12分超過後の判定起電力Vref (1)を記憶しており、入力された電位Vaに応じて判定起電力Vref (1)を設定する。そして、Vref (2)とVref (3)は、Vref (1)との比率に応じて計算し設定する。尚、この比率(関係)は、マイコン35に備えられたメモリーに記憶されている。
従って、判定起電力を再設定する際には、全ての判定起電力を設定しなおす必要はなく、複数あるうちの一つの判定起電力の再設定をするだけでよいため使い勝手が良い。
【0039】
また、各ガス種毎に時間経過に応じたVref をそれぞれ記憶した場合、すなわち、各ガス種毎に(Vref (1),Vref (2),Vref (3))を記憶した場合と比べると、記憶するデータの数が少なくてすむ。つまり、各ガス種毎にVref をそれぞれ記憶した場合には、(ガス種数)×(各ガス種における判定起電力Vref 数)個のパラメータを記憶する必要があるのに対して、本実施形態の場合は、各時間ごとの比の値を固定的に記憶することと、ガス種数個のVref (1)のパラメータを設定できるようにするだけで良い。
【0040】
以上本発明の実施形態について説明したが、本発明はこうした実施形態に何等限定されるものではなく、本発明の要旨を逸脱しない範囲において、種々なる態様で実施し得ることは勿論である。
【0041】
【発明の効果】
以上詳述したように、本発明の請求項1記載の熱発電制御装置によれば、電圧規制装置が燃焼制御回路へ供給される電圧を所定値以下に規制して燃焼制御回路の過電圧を防止しているため、昇圧回路では電力を燃焼制御回路の許容電圧以上に昇圧させることが可能となり、十分高い電圧でアクチュエータを駆動できる。
【図面の簡単な説明】
【図1】本実施形態としてのコントローラの回路図である。
【図2】本実施形態としてのファン付赤外線ストーブの断面概略図である。
【図3】本実施形態としてのファン付赤外線ストーブのシステム構成図である。
【図4】マグネット電磁弁の強制閉弁制御を示したフローチャートである。
【図5】燃焼不良検出制御を示したフローチャートである。
【図6】点火開始からの経過時間と第二熱電対の起電力との関係を示すグラフである。
【符号の説明】
4…バーナ、8a…モータ、13…直列型熱電対、34…乾電池、35…マイコン、36…電源回路、36a…切替部、36c…レギュレーションIC、37…昇圧回路、38…モータ制御回路、D1,D2…ダイオード。

Claims (1)

  1. バーナの燃焼熱により発電する熱発電部と、
    上記熱発電部で発電した電力を昇圧する昇圧回路と、
    上記昇圧された電力を電源として駆動するアクチュエータと、
    上記昇圧された電力を電源とし、上記バーナの燃焼を制御する燃焼制御回路と
    を備えた熱発電制御装置において、
    上記昇圧回路の出力部と上記燃焼制御回路の電源入力部との間に、該燃焼制御回路に供給される電源電圧を所定値以下に規制する電圧規制装置を設けたことを特徴とする熱発電制御装置。
JP2002193515A 2002-07-02 2002-07-02 熱発電制御装置 Pending JP2004040890A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002193515A JP2004040890A (ja) 2002-07-02 2002-07-02 熱発電制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002193515A JP2004040890A (ja) 2002-07-02 2002-07-02 熱発電制御装置

Publications (1)

Publication Number Publication Date
JP2004040890A true JP2004040890A (ja) 2004-02-05

Family

ID=31702459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002193515A Pending JP2004040890A (ja) 2002-07-02 2002-07-02 熱発電制御装置

Country Status (1)

Country Link
JP (1) JP2004040890A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102457100A (zh) * 2010-10-25 2012-05-16 关隆股份有限公司 强攻型瓦斯器具的断电供电***及其方法
CN108036517A (zh) * 2018-01-02 2018-05-15 成都前锋电子有限责任公司 燃气快速热水器风机恒功率自动控制***及方法
CN109210733A (zh) * 2018-08-30 2019-01-15 青岛海信日立空调***有限公司 线控器以及空调器

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102457100A (zh) * 2010-10-25 2012-05-16 关隆股份有限公司 强攻型瓦斯器具的断电供电***及其方法
CN108036517A (zh) * 2018-01-02 2018-05-15 成都前锋电子有限责任公司 燃气快速热水器风机恒功率自动控制***及方法
CN108036517B (zh) * 2018-01-02 2023-10-03 成都前锋电子有限责任公司 燃气快速热水器风机恒功率自动控制***及方法
CN109210733A (zh) * 2018-08-30 2019-01-15 青岛海信日立空调***有限公司 线控器以及空调器
CN109210733B (zh) * 2018-08-30 2021-02-23 青岛海信日立空调***有限公司 线控器以及空调器

Similar Documents

Publication Publication Date Title
CA1273282A (en) Device for controlling fuel combustion in a heater
JP2004040890A (ja) 熱発電制御装置
JP3971964B2 (ja) ファン付赤外線ストーブ
JP3475091B2 (ja) 燃焼装置
JPH06278450A (ja) 車両用燃焼式ヒータ
JP4338169B2 (ja) 熱発電制御装置
JP2004036978A (ja) ガス燃焼器具
JP2004036977A (ja) ガス燃焼器具
JP3073423B2 (ja) 燃焼装置
JP3836960B2 (ja) 燃焼装置
JP3486047B2 (ja) 燃焼装置
JP3055734B2 (ja) 液体燃料燃焼装置
JP2881347B2 (ja) 気化式燃焼装置
JP4134750B2 (ja) 燃焼装置、並びに、湯水加熱装置
JP2624562B2 (ja) 湯沸器の制御装置
JP3704567B2 (ja) 熱発電制御装置
JP3539092B2 (ja) 燃焼装置
JP2675510B2 (ja) 電池電源式燃焼装置
JP2585699Y2 (ja) 燃焼器の制御装置
JPS61225548A (ja) 温風暖房機
JPS6387525A (ja) 石油気化式燃焼器の制御回路
JPS589066Y2 (ja) 強制給排気式液体燃料燃焼装置
JPS63127012A (ja) 燃焼器の制御装置
JPH09152127A (ja) ガス燃焼器
JPS6146726B2 (ja)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080513

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080709

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080819