JP2004039493A - Nonaqueous electrolyte battery - Google Patents

Nonaqueous electrolyte battery Download PDF

Info

Publication number
JP2004039493A
JP2004039493A JP2002196428A JP2002196428A JP2004039493A JP 2004039493 A JP2004039493 A JP 2004039493A JP 2002196428 A JP2002196428 A JP 2002196428A JP 2002196428 A JP2002196428 A JP 2002196428A JP 2004039493 A JP2004039493 A JP 2004039493A
Authority
JP
Japan
Prior art keywords
weight
battery
nonaqueous electrolyte
negative electrode
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002196428A
Other languages
Japanese (ja)
Inventor
Masaru Hashimoto
橋本 優
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo GS Soft Energy Co Ltd
Original Assignee
Sanyo GS Soft Energy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo GS Soft Energy Co Ltd filed Critical Sanyo GS Soft Energy Co Ltd
Priority to JP2002196428A priority Critical patent/JP2004039493A/en
Publication of JP2004039493A publication Critical patent/JP2004039493A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery in which a swelling is hard to occur even though it is left at a high temperatures, and charge-discharge characteristics such as low-temperature characteristics or the like are superior. <P>SOLUTION: In the nonaqueous electrolyte battery provided with a negative electrode, a positive electrode, and an electrolytic solution wherein a lithium salt is dissolved in a nonaqueous solvent, 0.5 to 1.5 wt% γ-butyrolactone (GBL) and 0.25 to 0.75 wt% vinylene carbonate (VC) are contained in the electrolytic solution. According to this nonaqueous electrolyte battery, the nonaqueous electrolyte battery in which swelling is small and the charge-discharge characteristics are superior, can be obtained. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、非水電解質電池に関する。
【0002】
【従来の技術】
近年、電子技術の進歩により携帯電話、ノートパソコン、ビデオカメラ等の電子機器の高性能化、小型化軽量化が進み、これら電子機器に使用できる高エネルギー密度の電池を求める要求が非常に強くなっている。このような要求を満たす代表的な電池は、非水電解質電池である。
【0003】
非水電解質電池は、例えば、リチウムイオンを吸蔵放出する炭素材料が集電体に保持されてなる負極板、リチウムコバルト複合酸化物のようなリチウムイオンを吸蔵放出するリチウム複合酸化物が集電体に保持されてなる正極板、非プロトン性の有機溶媒にLiClO、LiPF等のリチウム塩が溶解された電解液を保持するとともに、負極板と正極板との間に介在されて両極の短絡を防止するセパレータとからなっている。
【0004】
そして、これら正極板及び負極板は、薄いシートないし箔状に成形され、これらがセパレータを介して順に積層又は渦巻き状に巻回されて発電要素とされ、この発電要素が、ステンレス、ニッケルメッキを施した鉄、又はより軽量なアルミニウム製等の金属缶または、ラミネートフィルムからなる電池容器に収納された後、電解液が注液され、密封されて電池として組み立てられる。
【0005】
【発明が解決しようとする課題】
ところで近年では、安全性の見地から、例えば負極材料としては上述したように炭素材料が多く使用されており、溶媒として、エチレンカーボネート、ジメチルカーボネートやビニレンカーボネート等の炭酸エステルを用いる場合には、炭素材料の電気化学的特性を十分に発揮させることができることが知られている。しかしその反面、これらの溶媒を用いた場合には、溶媒がガス発生を伴なって分解し易く、高温放置時に電池に膨れが生じるという問題がある。
【0006】
そこで、溶媒にγ−ブチロラクトンを添加することにより、溶媒の分解反応を抑制してガス発生による電池の膨れを防止することが考えられている(特開平1−159972号公報参照)。しかし、γ−ブチロラクトンは充電時に負極活物質上で還元分解するため、不可逆容量が大きくなって電池容量の低下を招いたり、低温放電特性が悪化する等、電池の充放電特性が十分に得られないという問題がある。
【0007】
本発明は上記のような事情に基づいて完成されたものであって、電池の膨れが生じ難く、かつ充放電特性に優れる非水電解質二次電池を提供することを目的とするものである。
【0008】
【課題を解決するための手段および作用】
上記の目的を達成するための手段として、請求項1の発明は、負極と、正極と、非水溶媒にリチウム塩を溶解してなる電解液とを備えた非水電解質電池であって、前記電解液中に0.5〜1.5重量%のγ−ブチロラクトンおよび0.25〜0.75重量%のビニレンカーボネイトを含有しているところに特徴を有する。
【0009】
上記発明によれば、高温放置時の膨れが少なく、しかも充放電特性に優れた非水電解質電池を得ることができる。
【0010】
その理由については未だ明らかではないが、次のように推測される。すなわち、ビニレンカーボネイトは、γ−ブチロラクトンと比較して電解液中での還元分解電位が貴であるため、負極活物質表面でγ−ブチロラクトンに先立って還元分解が進行して皮膜(SEI)を形成する。この結果、負極上でのγ−ブチロラクトンの還元分解反応が概ね抑制されると考えられる。
【0011】
一方、ビニレンカーボネイトの反応生成物によって形成される皮膜(SEI)には、厚さムラや形成ムラが生じ易いという事情がある。このような厚さムラや形成ムラは、電極間の距離を不均一にするため、負極活物質の利用率が低下して電池の充放電特性が悪化する。ところが、電解液中にビニレンカーボネイトと併せてγ−ブチロラクトンが含有されている場合には、γ−ブチロラクトンの反応生成物があたかも被膜の厚さムラを埋め込むように形成され、その結果被膜の表面が滑らかに整えられる。このため、電極間の距離が均一となり、低温特性等の充放電特性が向上すると考えられる。
【0012】
さらに、この皮膜は高い安定性を示し、非水溶媒の還元分解反応を抑制する保護膜の役割を果たすため、高温下においてもガスが発生することが抑制され、内圧上昇による電池の膨れを抑制することができると考えられる。
【0013】
なお、これらの電解液中の含有量は、γ−ブチロラクトンが0.5〜1.5重量%、かつ、ビニレンカーボネイトが0.25〜0.75重量%の範囲内であることが好ましい。γ−ブチロラクトンの含有量が少なすぎる場合には、高温放置時の膨れの抑制効果が十分に得られず、逆に多すぎる場合には、不可逆容量が増大して電池容量が低下するとともに低温特性が低下する。また、ビニレンカーボネイトの含有量が少なすぎる場合には、被膜形成が不十分となって充放電特性が低下し、逆に多すぎる場合には高温放置時の膨れが大きくなって電池の使用上安全性の問題が起こる可能性があるため、上述した範囲内とすることが好ましい。
【0014】
【発明の実施の形態】
以下、本発明の一実施形態について、図面を参照しつつ説明する。図1は、本発明の一実施形態にかかる角形非水電解質電池1の概略断面図である。この角形非水電解質電池1は、正極3と、負極4とがセパレータ5を介して巻回された電極群2と、図示しない非水電解質とを電池ケースに収納してなるものである。
【0015】
そして、電池ケース6には、安全弁8を設けた電池蓋7がレーザー溶接によって取り付けられ、負極端子9は負極リード11を介して負極4と接続され、正極3は電池ケース6の内壁と正極リード10により電気的に接続されている。
【0016】
正極3は、例えばアルミニウム、ニッケル、又はステンレス製の正極集電体に、リチウムイオンを吸蔵・放出する物質を構成要素とする正極活物質層を設けた構造となっている。正極活物質としては、無機化合物としては組成式LiMO、Li、組成式NaMO(ただしMは1種類以上の遷移金属、0≦x≦1、0≦y≦2)で表される複合酸化物、トンネル構造または層状構造の金属カルコゲン化物または金属酸化物を用いることができる。
【0017】
その具体例としては、LiCoO、LiNiO、LiCoNi1−x、LiMn、LiMn、MnO、FeO、V、V13、TiOまたはTiS等が挙げられる。また、有機化合物としては、例えばポリアニリン等の導電性ポリマー等が挙げられる。さらに、無機化合物、有機化合物を問わず、上記各種活物質を混合して用いてもよい。
【0018】
負極4は、例えば銅、ニッケル、ステンレス製の負極集電体に、リチウムイオンを吸蔵・放出する負極活物質層を設けた構造となっている。負極活物質としては、グラファイト、カーボン、天然黒鉛、人造黒鉛、コークス、難黒鉛化炭素、熱分解樹脂等、リチウムを吸蔵放出可能な種々の炭素材料の他、Al、Si、Pb、Sn、Zn、Cd等とリチウムとの合金、LiFe、WO、MoO、SiO、CuO、SnO等の金属酸化物、Li(LiN)等のリチウム金属窒化物、オキシ水酸化錫等の金属水酸化物、金属リチウム等を用いることができ、これらは混合して用いることもできる。
【0019】
また、セパレータ5としては、織布、不織布、合成樹脂微多孔膜等を用いることができ、特に、合成樹脂微多孔膜が好適に用いることができる。中でもポリエチレン及びポリプロピレン製微多孔膜、またはこれらを複合した微多孔膜等のポリオレフィン系微多孔膜が、厚さ、膜強度、膜抵抗等の面で好適に用いられる。
【0020】
非水電解液を構成する非水溶媒としては、例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネイト、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート、スルホラン、ジメチルスルホキシド、アセトニトリル、ジメチルホルムアミド、ジメチルアセトアミド、1,2−ジメトキシエタン、1,2−ジエトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン、ジオキソラン、メチルアセテート、酢酸エステル化合物等の極性溶媒、もしくはこれらの混合物を使用してもよい。
【0021】
また、非水溶媒に溶解するリチウム塩としては、LiPF、LiClO、LiBF、LiAsF、LiCFCO、LiCF(CF、LiCF(C、LiCFSO、LiN(SOCF、LiN(SOCFCF、LiN(COCFおよびLiN(COCFCF、LiPF(CFCFなどの塩もしくはこれらの混合物でもよい。
【0022】
さらに高分子固体電解質等の固体電解質を電解液と併用することで、セパレータを兼ねさせることもできる。この場合、高分子固体電解質として有孔性高分子固体電解質膜等を使用すれば、固体電解質に電解液を含有させることができる。また、ゲル状の高分子固体電解質を用いる場合には、ゲルを構成する電解液と、細孔中等に含有されている電解液とは異なっていてもよい。また、合成樹脂微多孔膜と高分子固体電解質等を組み合わせて使用してもよい。
【0023】
以下、本発明を実施例に基づき詳細に説明する。なお、本発明は下記実施例により何ら限定されるものではなく、例えば非水溶媒やリチウム塩等を変更することも可能である。
【0024】
LiCoO94重量部と、導電剤のアセチレンブラック2重量部と、結着剤のポリフッ化ビニリデン4重量部とを混合し、N−メチル−2−ピロリドンを適宜加えて分散させ、スラリーを調製した。このスラリーを、厚さが20μmのアルミ製の正極集電体の両面に均一に塗布、乾燥させた後、ロールプレスで圧縮成形することにより正極4を作製した。
【0025】
黒鉛97.3重量部と、増粘剤のCMC(カルボキシメチルセルロース)1.2重量部、結着剤のジエン系ゴム分散液1.5重量部を分散させ、スラリーを調製した。このスラリーを厚さ10μmの銅製の負極集電体の両面に均一に塗布、乾燥させた後、ロールプレスで圧縮成形することにより負極3を作製した。
【0026】
セパレータ5には、厚さ20μmの微多孔性ポリエチレンフィルムを用いた。
【0027】
また、メチルエチルカーボネイト(MEC)とエチレンカーボネイト(EC)とを7:3(体積比)の割合で混合した非水溶媒を用意し、ここにLiBFを1.2mol/l溶解し、さらにγ−ブチロラクトン(GBL)および/或いはビニレンカーボネイト(VC)を下記の実施例1〜9および比較例1〜9に示す割合で添加して、電解液を調製した。
【0028】
これらの構成要素を用いて、実施例1〜9および比較例1〜9非水系二次電池を作製した。なお、添加剤の添加量は、電解液中の添加剤の重量比(重量%)で表した。
【0029】
(実施例1)
γ−ブチロラクトン(GBL)0.5重量%、および、ビニレンカーボネート(VC)0.25重量%を添加した。
【0030】
(実施例2)
GBL0.5重量%、およびVC0.5重量%を添加した。
【0031】
(実施例3)
GBL0.5重量%、およびVC0.75重量%を添加した。
【0032】
(実施例4)
GBL1.0重量%、およびVC0.25重量%を添加した。
【0033】
(実施例5)
GBL1.0重量%、およびVC0.5重量%を添加した。
【0034】
(実施例6)
GBL1.0重量%、およびVC1.75重量%を添加した。
【0035】
(実施例7)
GBL1.5重量%、およびVC0.25重量%を添加した。
【0036】
(実施例8)
GBL1.5重量%、およびVC0.5重量%を添加した。
【0037】
(実施例9)
GBL1.5重量%、およびVC0.75重量%を添加した。
【0038】
(比較例1)
添加剤を添加しなかった。
【0039】
(比較例2)
GBL0.5重量%を添加した。
【0040】
(比較例3)
GBL1.0重量%を添加した。
【0041】
(比較例4)
GBL1.5重量%を添加した。
【0042】
(比較例5)
GBL2.0重量%を添加した。
【0043】
(比較例6)
VC0.25重量%を添加した。
【0044】
(比較例7)
VC0.5重量%を添加した。
【0045】
(比較例8)
VC0.75重量%を添加した。
【0046】
(比較例9)
VC1.0重量%を添加した。
【0047】
以上のようにして作製した実施例1〜9および比較例1〜9の角形非水電解質電池(幅30mm、高さ48mm、厚さ4.2mm)の18種類について、高温放置後の電池厚みの増加、および充放電特性(放電容量)を調べた。
【0048】
高温放置後の電池の厚みの増加は、720mA定電流/4.20V定電圧×3時間(25℃)の条件で充電した電池を、85℃で3時間放置した直後の電池の厚みの増加を測定した。
【0049】
また、放電容量は、720mA定電流/4.20V定電圧×3時間(25℃)の条件で充電した電池を、720mA定電流、終止電圧2.75Vの条件で、それぞれ−20℃、−10℃、0℃、25℃の温度で放電したときの容量を測定し、添加剤を添加しなかった比較例1の電池の25℃における放電容量(これを100とする)に対する割合を計算した。
【0050】
上記測定結果を表1に示す。
【表1】

Figure 2004039493
【0051】
表1に示すように、γ−ブチロラクトンを0.5〜1.5重量%、かつ、ビニレンカーボネイトを0.25〜0.75重量%の範囲内で添加した実施例1〜9の電池では、高温放置後の電池の厚みの増加が、VCだけを添加した比較例6〜9のものと比較して少なかった。また、各温度における放電容量は、GBLだけを添加した比較例2〜5のものと比べて大きく、VCだけを添加した比較例6〜8と同等の放電容量が得られた。
【0052】
【発明の効果】
本発明の非水電解質電池によれば、電池の膨れが小さく、かつ、充放電特性に優れた非水電解質電池を得ることができる。
【図面の簡単な説明】
【図1】本発明の一実施形態の角形非水電解質電池の縦断面図
【符号の説明】
1...角形非水電解質電池
2...電極群
3...正極
4...負極
5...セパレータ
6...電池ケース
7...電池蓋
8...安全弁
9...負極端子
10...正極リード
11...負極リード[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a non-aqueous electrolyte battery.
[0002]
[Prior art]
In recent years, with the advance of electronic technology, the performance, size, and weight of electronic devices such as mobile phones, notebook computers, and video cameras have been improved, and the demand for batteries with a high energy density that can be used in these electronic devices has become extremely strong. ing. A typical battery satisfying such requirements is a non-aqueous electrolyte battery.
[0003]
Non-aqueous electrolyte batteries include, for example, a negative electrode plate in which a carbon material that stores and releases lithium ions is held by a current collector, and a lithium composite oxide that stores and releases lithium ions such as a lithium cobalt composite oxide. The positive electrode plate held in the electrode plate holds an electrolytic solution in which a lithium salt such as LiClO 4 or LiPF 6 is dissolved in an aprotic organic solvent, and is interposed between the negative electrode plate and the positive electrode plate to short-circuit both electrodes. And a separator that prevents the
[0004]
The positive electrode plate and the negative electrode plate are formed into a thin sheet or foil shape, and these are sequentially laminated or spirally wound through a separator to form a power generating element. The power generating element is made of stainless steel or nickel plating. After being housed in a metal can made of applied iron or a lighter aluminum or a battery container made of a laminated film, an electrolytic solution is injected, sealed, and assembled as a battery.
[0005]
[Problems to be solved by the invention]
By the way, in recent years, from the viewpoint of safety, for example, a carbon material is often used as a negative electrode material as described above, and when a carbonate such as ethylene carbonate, dimethyl carbonate or vinylene carbonate is used as a solvent, a carbonaceous material is used. It is known that the electrochemical properties of a material can be sufficiently exhibited. However, on the other hand, when these solvents are used, there is a problem that the solvent is easily decomposed with the generation of gas and the battery swells when left at a high temperature.
[0006]
Therefore, it has been considered that by adding γ-butyrolactone to the solvent, the decomposition reaction of the solvent is suppressed to prevent the battery from swelling due to gas generation (see Japanese Patent Application Laid-Open No. 1-159972). However, since γ-butyrolactone undergoes reductive decomposition on the negative electrode active material at the time of charging, the irreversible capacity becomes large, leading to a decrease in battery capacity, and the low-temperature discharge characteristics are deteriorated. There is no problem.
[0007]
The present invention has been completed based on the above circumstances, and has as its object to provide a non-aqueous electrolyte secondary battery in which battery swelling is unlikely to occur and which has excellent charge / discharge characteristics.
[0008]
Means and action for solving the problem
As means for achieving the above object, the invention according to claim 1 is a nonaqueous electrolyte battery including a negative electrode, a positive electrode, and an electrolyte obtained by dissolving a lithium salt in a nonaqueous solvent, It is characterized in that the electrolyte contains 0.5 to 1.5% by weight of γ-butyrolactone and 0.25 to 0.75% by weight of vinylene carbonate.
[0009]
According to the above invention, it is possible to obtain a nonaqueous electrolyte battery which has little swelling when left at high temperature and has excellent charge / discharge characteristics.
[0010]
The reason is not yet clear, but is presumed as follows. That is, since vinylene carbonate has a noble reductive decomposition potential in the electrolytic solution as compared with γ-butyrolactone, reductive decomposition proceeds on the surface of the negative electrode active material prior to γ-butyrolactone to form a film (SEI). I do. As a result, it is considered that the reductive decomposition reaction of γ-butyrolactone on the negative electrode is substantially suppressed.
[0011]
On the other hand, a film (SEI) formed by the reaction product of vinylene carbonate has a problem that thickness unevenness and formation unevenness are likely to occur. Such thickness unevenness and formation unevenness make the distance between the electrodes nonuniform, so that the utilization rate of the negative electrode active material is reduced and the charge / discharge characteristics of the battery are deteriorated. However, when γ-butyrolactone is contained in the electrolyte together with vinylene carbonate, the reaction product of γ-butyrolactone is formed so as to bury the thickness unevenness of the film, and as a result, the surface of the film is formed. Smoothly arranged. For this reason, it is considered that the distance between the electrodes becomes uniform, and the charge / discharge characteristics such as low-temperature characteristics are improved.
[0012]
Furthermore, since this film shows high stability and plays a role of a protective film that suppresses the reductive decomposition reaction of non-aqueous solvent, gas generation is suppressed even at high temperatures, and battery swelling due to internal pressure rise is suppressed. It is thought that it can be done.
[0013]
The content of these electrolytes is preferably in the range of 0.5 to 1.5% by weight of γ-butyrolactone and 0.25 to 0.75% by weight of vinylene carbonate. When the content of γ-butyrolactone is too small, the effect of suppressing swelling during high-temperature storage is not sufficiently obtained. On the other hand, when the content is too large, the irreversible capacity increases, the battery capacity decreases, and the low-temperature characteristics decrease. Decreases. Also, if the content of vinylene carbonate is too small, the film formation becomes insufficient and the charge / discharge characteristics decrease, and if it is too large, the swelling during high temperature storage becomes large and the battery is safe for use. Therefore, it is preferable that the content is within the above-mentioned range because there is a possibility that a problem may occur.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a schematic sectional view of a prismatic nonaqueous electrolyte battery 1 according to one embodiment of the present invention. The prismatic nonaqueous electrolyte battery 1 has a battery case containing a nonaqueous electrolyte (not shown) and an electrode group 2 in which a positive electrode 3, a negative electrode 4 are wound with a separator 5 interposed therebetween.
[0015]
A battery lid 7 provided with a safety valve 8 is attached to the battery case 6 by laser welding, the negative electrode terminal 9 is connected to the negative electrode 4 via a negative electrode lead 11, and the positive electrode 3 is connected to the inner wall of the battery case 6 and the positive electrode lead. 10 are electrically connected.
[0016]
The positive electrode 3 has a structure in which, for example, a positive electrode current collector made of aluminum, nickel, or stainless steel is provided with a positive electrode active material layer including a substance that absorbs and releases lithium ions as a constituent element. As the positive electrode active material, as the inorganic compound, the composition formulas Li x MO 2 , Li y M 2 O 4 , and the composition formula Na x MO 2 (where M is one or more transition metals, 0 ≦ x ≦ 1, 0 ≦ y ≦ 2), a metal chalcogenide or a metal oxide having a tunnel structure or a layer structure can be used.
[0017]
Specific examples, LiCoO 2, LiNiO 2, LiCo x Ni 1-x O 2, LiMn 2 O 4, Li 2 Mn 2 O 4, MnO 2, FeO 2, V 2 O 5, V 6 O 13, TiO 2, etc. 2 or TiS and the like. Examples of the organic compound include a conductive polymer such as polyaniline. Further, the above-mentioned various active materials may be mixed and used irrespective of an inorganic compound or an organic compound.
[0018]
The negative electrode 4 has a structure in which a negative electrode active material layer for absorbing and releasing lithium ions is provided on a negative electrode current collector made of, for example, copper, nickel, or stainless steel. Examples of the negative electrode active material include various carbon materials capable of inserting and extracting lithium, such as graphite, carbon, natural graphite, artificial graphite, coke, non-graphitizable carbon, and pyrolytic resin, as well as Al, Si, Pb, Sn, and Zn. , Cd or the like and lithium, a metal oxide such as LiFe 2 O 3 , WO 2 , MoO 2 , SiO, CuO or SnO, a lithium metal nitride such as Li 5 (Li 3 N), a tin oxyhydroxide or the like Metal hydroxide, lithium metal and the like can be used, and these can be used as a mixture.
[0019]
In addition, as the separator 5, a woven fabric, a nonwoven fabric, a synthetic resin microporous membrane, or the like can be used, and in particular, a synthetic resin microporous membrane can be suitably used. Above all, a polyolefin-based microporous membrane such as a polyethylene or polypropylene microporous membrane or a composite microporous membrane thereof is suitably used in terms of thickness, membrane strength, membrane resistance and the like.
[0020]
As the non-aqueous solvent constituting the non-aqueous electrolyte, for example, ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, sulfolane, dimethyl sulfoxide, acetonitrile, dimethylformamide, dimethylacetamide, 1,2 A polar solvent such as -dimethoxyethane, 1,2-diethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, dioxolan, methyl acetate, an acetate compound, or a mixture thereof may be used.
[0021]
Examples of the lithium salt dissolved in the non-aqueous solvent include LiPF 6 , LiClO 4 , LiBF 4 , LiAsF 6 , LiCF 3 CO 2 , LiCF 3 (CF 3 ) 3 , LiCF 3 (C 2 F 5 ) 3 , and LiCF 3. SO 3 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 CF 2 CF 3 ) 2 , LiN (COCF 3 ) 2 and LiN (COCF 2 CF 3 ) 2 , LiPF 3 (CF 2 CF 3 ) 3 It may be a salt or a mixture thereof.
[0022]
Further, by using a solid electrolyte such as a polymer solid electrolyte together with the electrolytic solution, the solid electrolyte can also serve as a separator. In this case, if a porous solid polymer electrolyte membrane or the like is used as the solid polymer electrolyte, the solid electrolyte can contain an electrolytic solution. When a gel-like polymer solid electrolyte is used, the electrolyte constituting the gel may be different from the electrolyte contained in pores or the like. Further, a microporous synthetic resin membrane and a solid polymer electrolyte may be used in combination.
[0023]
Hereinafter, the present invention will be described in detail based on examples. The present invention is not limited at all by the following examples. For example, a non-aqueous solvent, a lithium salt, or the like can be changed.
[0024]
94 parts by weight of LiCoO 2, 2 parts by weight of acetylene black as a conductive agent, and 4 parts by weight of polyvinylidene fluoride as a binder were mixed, and N-methyl-2-pyrrolidone was appropriately added and dispersed to prepare a slurry. . The slurry was uniformly applied to both surfaces of an aluminum positive electrode current collector having a thickness of 20 μm, dried, and then compression-molded by a roll press to produce a positive electrode 4.
[0025]
97.3 parts by weight of graphite, 1.2 parts by weight of CMC (carboxymethylcellulose) as a thickener, and 1.5 parts by weight of a diene rubber dispersion as a binder were dispersed to prepare a slurry. This slurry was uniformly applied to both surfaces of a 10 μm-thick copper negative electrode current collector, dried, and then compression-molded by a roll press to produce a negative electrode 3.
[0026]
As the separator 5, a microporous polyethylene film having a thickness of 20 μm was used.
[0027]
Further, a non-aqueous solvent prepared by mixing methyl ethyl carbonate (MEC) and ethylene carbonate (EC) at a ratio of 7: 3 (volume ratio) is prepared, and 1.2 mol / l of LiBF 6 is dissolved therein. -Butyrolactone (GBL) and / or vinylene carbonate (VC) were added in the proportions shown in Examples 1 to 9 and Comparative Examples 1 to 9 below to prepare an electrolytic solution.
[0028]
Using these constituent elements, non-aqueous secondary batteries of Examples 1 to 9 and Comparative Examples 1 to 9 were produced. In addition, the addition amount of the additive was represented by the weight ratio (% by weight) of the additive in the electrolytic solution.
[0029]
(Example 1)
0.5% by weight of γ-butyrolactone (GBL) and 0.25% by weight of vinylene carbonate (VC) were added.
[0030]
(Example 2)
0.5% by weight of GBL and 0.5% by weight of VC were added.
[0031]
(Example 3)
0.5% by weight of GBL and 0.75% by weight of VC were added.
[0032]
(Example 4)
1.0% by weight of GBL and 0.25% by weight of VC were added.
[0033]
(Example 5)
1.0% by weight of GBL and 0.5% by weight of VC were added.
[0034]
(Example 6)
1.0% by weight of GBL and 1.75% by weight of VC were added.
[0035]
(Example 7)
1.5% by weight of GBL and 0.25% by weight of VC were added.
[0036]
(Example 8)
1.5% by weight of GBL and 0.5% by weight of VC were added.
[0037]
(Example 9)
1.5% by weight of GBL and 0.75% by weight of VC were added.
[0038]
(Comparative Example 1)
No additives were added.
[0039]
(Comparative Example 2)
0.5% by weight of GBL was added.
[0040]
(Comparative Example 3)
1.0% by weight of GBL was added.
[0041]
(Comparative Example 4)
1.5% by weight of GBL was added.
[0042]
(Comparative Example 5)
2.0% by weight of GBL was added.
[0043]
(Comparative Example 6)
0.25% by weight of VC was added.
[0044]
(Comparative Example 7)
0.5% by weight of VC was added.
[0045]
(Comparative Example 8)
0.75% by weight of VC was added.
[0046]
(Comparative Example 9)
1.0% by weight of VC was added.
[0047]
Regarding the 18 types of the prismatic nonaqueous electrolyte batteries (30 mm in width, 48 mm in height, and 4.2 mm in thickness) of Examples 1 to 9 and Comparative Examples 1 to 9 manufactured as described above, The increase and the charge / discharge characteristics (discharge capacity) were examined.
[0048]
The increase in the thickness of the battery after being left at a high temperature is caused by the increase in the thickness of the battery immediately after leaving the battery charged under the condition of 720 mA constant current / 4.20 V constant voltage × 3 hours (25 ° C.) at 85 ° C. for 3 hours. It was measured.
[0049]
The discharge capacity was determined by charging a battery charged at 720 mA constant current / 4.20 V constant voltage × 3 hours (25 ° C.) at −20 ° C. and −10 ° C. at 720 mA constant current and a final voltage of 2.75 V, respectively. The capacity when discharged at a temperature of 0 ° C., 0 ° C., and 25 ° C. was measured, and the ratio to the discharge capacity at 25 ° C. of the battery of Comparative Example 1 to which no additive was added (this was set to 100) was calculated.
[0050]
Table 1 shows the measurement results.
[Table 1]
Figure 2004039493
[0051]
As shown in Table 1, in the batteries of Examples 1 to 9 in which γ-butyrolactone was added in the range of 0.5 to 1.5% by weight and vinylene carbonate in the range of 0.25 to 0.75% by weight, The increase in the thickness of the battery after standing at a high temperature was smaller than those in Comparative Examples 6 to 9 in which only VC was added. Further, the discharge capacity at each temperature was larger than those of Comparative Examples 2 to 5 in which only GBL was added, and the same discharge capacities as Comparative Examples 6 to 8 in which only VC was added were obtained.
[0052]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to the nonaqueous electrolyte battery of this invention, the swelling of a battery is small and a nonaqueous electrolyte battery excellent in charge / discharge characteristics can be obtained.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a prismatic nonaqueous electrolyte battery according to one embodiment of the present invention.
1. . . 1. Prismatic nonaqueous electrolyte battery . . 2. electrode group . . Positive electrode4. . . Negative electrode5. . . Separator 6. . . Battery case 7. . . Battery cover8. . . Safety valve9. . . Negative electrode terminal 10. . . Positive electrode lead 11. . . Negative electrode lead

Claims (1)

負極と、正極と、非水溶媒にリチウム塩を溶解してなる電解液とを備えた非水電解質電池において、前記電解液中に、0.5〜1.5重量%のγ−ブチロラクトンおよび0.25〜0.75重量%のビニレンカーボネイトを含有していることを特徴とする非水電解質電池。In a non-aqueous electrolyte battery including a negative electrode, a positive electrode, and an electrolyte obtained by dissolving a lithium salt in a non-aqueous solvent, 0.5 to 1.5% by weight of γ-butyrolactone and 0 A nonaqueous electrolyte battery containing vinylene carbonate in an amount of from 25 to 0.75% by weight.
JP2002196428A 2002-07-04 2002-07-04 Nonaqueous electrolyte battery Pending JP2004039493A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002196428A JP2004039493A (en) 2002-07-04 2002-07-04 Nonaqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002196428A JP2004039493A (en) 2002-07-04 2002-07-04 Nonaqueous electrolyte battery

Publications (1)

Publication Number Publication Date
JP2004039493A true JP2004039493A (en) 2004-02-05

Family

ID=31704520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002196428A Pending JP2004039493A (en) 2002-07-04 2002-07-04 Nonaqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JP2004039493A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005285492A (en) * 2004-03-29 2005-10-13 Central Glass Co Ltd Nonaqueous electrolyte solution and lithium secondary battery using it
WO2006088001A1 (en) * 2005-02-17 2006-08-24 Sony Corporation Electrolyte solution and battery
JP2011527090A (en) * 2008-07-03 2011-10-20 ボード オブ ガバナーズ フォー ハイヤー エデュケーション, ステート オブ ロード アイランド アンド プロヴィデンス プランテーションズ Inhibition of oxidation of lithium ion battery electrolytes by electrolyte additives
JP2018101493A (en) * 2016-12-19 2018-06-28 トヨタ自動車株式会社 Lithium ion secondary battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005285492A (en) * 2004-03-29 2005-10-13 Central Glass Co Ltd Nonaqueous electrolyte solution and lithium secondary battery using it
WO2006088001A1 (en) * 2005-02-17 2006-08-24 Sony Corporation Electrolyte solution and battery
JP2011527090A (en) * 2008-07-03 2011-10-20 ボード オブ ガバナーズ フォー ハイヤー エデュケーション, ステート オブ ロード アイランド アンド プロヴィデンス プランテーションズ Inhibition of oxidation of lithium ion battery electrolytes by electrolyte additives
JP2018101493A (en) * 2016-12-19 2018-06-28 トヨタ自動車株式会社 Lithium ion secondary battery

Similar Documents

Publication Publication Date Title
JP3797197B2 (en) Nonaqueous electrolyte secondary battery
JP4151060B2 (en) Non-aqueous secondary battery
EP2262037B1 (en) Lithium secondary battery using ionic liquid
JP3844733B2 (en) Nonaqueous electrolyte secondary battery
JP4042034B2 (en) Non-aqueous electrolyte battery
JP4092618B2 (en) Nonaqueous electrolyte secondary battery
JP4837614B2 (en) Lithium secondary battery
JP4035760B2 (en) Nonaqueous electrolyte secondary battery
JP2009048981A (en) Nonaqueous electrolyte secondary battery
JP4711639B2 (en) Nonaqueous electrolyte and lithium secondary battery using the same
JP4968225B2 (en) Non-aqueous electrolyte battery
JP2008097879A (en) Lithium ion secondary battery
KR20180041602A (en) Electrolyte for lithium secondary battery and lithium secondary battery comprising the same
JPH09147913A (en) Nonaqueous electrolyte battery
JP2001126765A (en) Nonaqueous electrolyte secondary battery
JP4560854B2 (en) Nonaqueous electrolyte secondary battery
JP2007172947A (en) Nonaqueous electrolyte secondary battery
US20020127476A1 (en) Non-aqueous electrolyte secondary battery
JP2004039493A (en) Nonaqueous electrolyte battery
JP2001185143A (en) Secondary battery using non-aqueous electrolyte and its battery pack
JP3448494B2 (en) Non-aqueous electrolyte secondary battery
JP3448544B2 (en) Non-aqueous electrolyte battery
JP3722462B2 (en) Nonaqueous electrolyte secondary battery separator and nonaqueous electrolyte secondary battery using the same
KR101264446B1 (en) Non-aqueous electrolytes and secondary battery using the same
JP2002203551A (en) Non-aqueous electrolyte battery