JP4035760B2 - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP4035760B2
JP4035760B2 JP2001369220A JP2001369220A JP4035760B2 JP 4035760 B2 JP4035760 B2 JP 4035760B2 JP 2001369220 A JP2001369220 A JP 2001369220A JP 2001369220 A JP2001369220 A JP 2001369220A JP 4035760 B2 JP4035760 B2 JP 4035760B2
Authority
JP
Japan
Prior art keywords
negative electrode
secondary battery
electrolyte secondary
carbon
aqueous electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001369220A
Other languages
Japanese (ja)
Other versions
JP2003168426A (en
Inventor
徹 田渕
稔 手嶋
寿之 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa Corp
Original Assignee
GS Yuasa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa Corp filed Critical GS Yuasa Corp
Priority to JP2001369220A priority Critical patent/JP4035760B2/en
Publication of JP2003168426A publication Critical patent/JP2003168426A/en
Application granted granted Critical
Publication of JP4035760B2 publication Critical patent/JP4035760B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【発明の属する技術分野】
本発明は、放電容量の大きな非水電解質二次電池に関するものである。
【0002】
【従来の技術】
近年、民生用の携帯電話、ポータブル電子機器や携帯情報端末などの急速な小型軽量化・多様化に伴い、その電源である電池に対して、小型で軽量かつ高エネルギー密度で、さらに長期間繰り返し充放電が実現できる二次電池の開発が強く要求されている。
【0003】
中でも、水溶液系電解液を使用する鉛電池やニッケルカドミウム電池と比較して、これらの要求を満たす二次電池として、リチウムイオン二次電池などの非水電解質二次電池が実用化され、活発な研究がおこなわれている。
【0004】
このような非水電解質二次電池は、例えばリチウムイオンを吸蔵・放出する正極活物質が集電体に保持されてなる正極板、リチウムイオンを吸蔵・放出する負極活物質が集電体に保持されてなる負極板、非プロトン性の有機溶媒にLiBFやLiPFなどのリチウム塩が溶解された電解液を保持するとともに、正極板と負極板との間に介在して両極の短絡を防止するセパレータから構成されている。
【0005】
非水電解質二次電池の電解質には、一般的に、エチレンカーボネートやプロピレンカーボネートなどの高誘電率溶媒と、ジメチルカーボネートやジエチルカーボネートなどの低粘度溶媒との混合溶媒に、LiBFやLiPFなどの支持塩を溶解させたものが使用されている。
【0006】
非水電解質二次電池の正極活物質には、二硫化チタン、五酸化バナジウム、三酸化や、一般式LiMO(ただし、Mは一種以上の遷移金属)で表される種々の化合物が検討されている。
【0007】
中でも、リチウムコバルト複合酸化物、リチウムニッケル複合酸化物およびリチウムマンガン複合酸化物などは、4V(vs.Li/Li)以上の、極めて貴な電位で充放電をおこなうため、正極活物質として用いることで、高い放電電圧を有する非水電解質二次電池を実現することができる。
【0008】
非水電解質二次電池の負極活物質には、リチウムを含む合金をはじめとして、リチウムイオンの吸蔵・放出が可能な材料が研究されているが、中でも炭素材料を使用すると、サイクル寿命の長い非水電解質二次電池が得られ、かつ安全性が高いという利点があり、現在は実用化にいたっている。
【0009】
また最近では、リチウムの吸蔵量の多い金属、半金属や合金系の負極活物質として、特開平10−3920号や特開平2000−215887号などのような、金属、半金属粒子を炭素材料で被覆した形態の負極活物質を用いた非水電解質二次電池なども提案されている。
【0010】
【発明が解決しようとする課題】
負極活物質に炭素系材料を使用した場合、吸蔵・放出できるリチウムの理論容量に限界があり、より高容量および高エネルギー密度の非水電解質二次電池を得るための障害となっていた。そのため、炭素材料に代わる負極活物質として、珪素やその合金、酸化物を用いた非水電解質二次電池が検討されている。
【0011】
これらの負極活物質を使用した場合、活物質自体の理論容量は高いが、電池に使用した場合、充放電に伴う活物質の膨張収縮の影響が大きく、集電性の劣化が生じやすいことや、活物質そのものの電子伝導性が低いために、初回の充放電効率が低くなり、電池としては高いエネルギー密度が得られないという問題があった。最近では、特開2000−215887号や特開2000−285919号で、珪素の表面に炭素材料を被覆して集電性を高める手段も提案されているが、上記問題を解決するまでには至っていない。
【0012】
本発明は、珪素を負極活物質に使用した非水電解質二次電池における上記問題点を解決するためになされたもので、放電容量の大きい非水電解質二次電池を提供することを目的とする。
【0013】
【課題を解決するための手段】
請求項1の発明は、リチウムイオンを吸蔵・放出する物質からなる正極と、リチウムイオンを吸蔵・放出する物質からなる負極と、非水電解質とから構成される非水電解質二次電池において、 002 =0.34〜0.37nmの範囲の炭素材料で表面を被覆した繊維状珪素を負極材料として用いることを特徴とする。
【0014】
請求項1の発明によれば、 002 =0.34〜0.37nmの範囲の炭素材料で表面を被覆した繊維状珪素を負極材料として用いることで、炭素材料を被覆した球状や塊状の珪素を負極活物質に使用した場合よりも接触集電性が確保でき、放電容量の大きい非水電解質二次電池を得ることができる。
【0015】
請求項2の発明は、リチウムイオンを吸蔵・放出する物質からなる正極と、リチウムイオンを吸蔵・放出する物質からなる負極と、非水電解質とから構成される非水電解質二次電池において、 002 =0.34〜0.37nmの範囲の炭素材料で表面を被覆した繊維状珪素と炭素材料との混合物を負極材料として用いることを特徴とする。
【0016】
請求項2の発明によれば、負極に炭素材料が加わることにより、集電性がより高くなり、放電容量の大きい非水電解質二次電池を得ることができる。
【0017】
請求項3の発明は、請求項1または2記載の非水電解質二次電池における、表面を炭素材料で被覆した繊維状珪素において、珪素と炭素の合計重量に対する炭素被覆量が3〜60重量%であることを特徴とする。
【0018】
請求項3の発明によれば、負極活物質と集電体の密着性が良好な非水電解質二次電池を得ることができる。
【0019】
請求項4の発明は、請求項1、2または3記載の非水電解質二次電池において、表面を炭素材料で被覆した繊維状珪素の繊維径が0.01〜50μmであることを特徴とする。
【0020】
請求項4の発明によれば、負極活物質中でのリチウムの拡散が速く、分極の小さい、優れた充放電特性を示す非水電解質二次電池を得ることができる。
【0021】
【発明の実施の形態】
本発明は、リチウムイオンを吸蔵・放出する物質からなる正極と、リチウムイオンを吸蔵・放出する物質からなる負極と、非水電解質とから構成される非水電解質二次電池において、 002 =0.34〜0.37nmの範囲の炭素材料で表面を被覆した繊維状珪素を負極材料として用いることを特徴とする。
【0022】
負極活物質として、表面を炭素材料で被覆した塊状粉末状珪素よりも、d 002 =0.34〜0.37nmの範囲の炭素材料で表面を被覆した繊維状珪素を使用した方が、初回の充放電効率が向上し、放電容量の大きい非水電解質電池が得られる。この理由として、負極活物質の形状が繊維状であることで、集電性が十分に確保でき、また、被覆炭素が充放電時に伴う膨張収縮の程度を抑制することにより、集電劣化による充放電効率の低下が抑制されるものと考えられる。
【0023】
また、本発明の負極活物質は、天然黒鉛を負極活物質として使用していた従来の電池よりも、大きい放電容量が得られる。この理由として、負極のリチウムイオン吸蔵能力が、従来の黒鉛系負極よりも珪素と炭素の複合体を使用することで向上していることが挙げられる。
【0024】
なお、繊維状珪素材料としては、珪素単体もしくはその炭化物、酸化物などの珪素化合物を使用することができ、本発明を超えない範囲で異種元素を含有するものや、リチウムとの化合物であってもかまわない。
【0025】
また、被覆炭素の結晶性については、充分に電子伝導性が確保できる範囲であれば構わないが、なかでもd0020.34〜0.37nmの範囲の炭素材料を用いる
【0026】
繊維状珪素の表面を炭素材料で被覆する方法としては、化学的に炭素を蒸着させる方法、ピッチ、タール、フェノール樹脂、イミド樹脂、フラン樹脂、ポリアクリロニトリル、フルフリルアルコールなどを珪素表面に保持して焼成する方法、繊維状珪素と炭素材との間に機械的エネルギーを作用させて炭素材料を被覆する方法などを用いることができる。
【0027】
なお、炭素材料は、繊維状珪素の表面を完全に被覆していてもよいし、繊維状珪素の表面の一部を被覆し、珪素の一部が露出していてもよい。
【0028】
また、本発明は、リチウムイオンを吸蔵・放出する物質からなる正極と、リチウムイオンを吸蔵・放出する物質からなる負極と、非水電解質とから構成される非水電解質二次電池において、表面を炭素材料で被覆した繊維状珪素と炭素材料との混合物を負極材料として用いることを特徴とする。
【0029】
負極活物質としての表面を炭素材料で被覆した繊維状珪素に、炭素材料を混合することにより、集電性をより向上させることができる。この場合、混合する炭素材料は天然黒鉛、人造黒鉛、アセチレンブラック、ケッチェンブラック、気相成長炭素繊維からなる1種類もしくは混合系の炭素材料を用いることが好ましい。
【0030】
本発明の表面を炭素材料で被覆した繊維状珪素において、珪素と炭素の合計重量に対する炭素被覆量が3〜60重量%であることが好ましい。炭素材料の被覆量が60重量%よりも多いと、集電体との密着性が低下するためか充放電効率が劣り、容量低下が生じ、また、被覆炭素量が3重量%よりも少ないと充分に集電性を確保するまでには至らないものである。
【0031】
本発明の、 002 =0.34〜0.37nmの範囲の炭素材料で表面を被覆した繊維状珪素において、繊維径が0.01〜50μmの範囲であることが好ましい。繊維径が50μmよりも大きいと活物質内のリチウムイオンの拡散が遅くなり、分極が大きくなることで容量低下が生じるものと考えられる。また、繊維径が0.01μmよりも小さいと、取り扱いが困難になって、負極作製時の工程が複雑になる。
【0032】
本発明における非水電解質二次電池の正極活物質としては、LiMO、Li(ただし、Mは一種以上の遷移金属、0≦x≦1、0≦y≦2)で表わされる複合酸化物、トンネル構造または層状構造の金属カルコゲン化物、金属酸化物および金属硫化物を単独でまたは二種以上を混合して用いることができる。その具体例としては、LiCoO、LiCoNi1−x、LiMnO、LiMn、LiFePO、MnO、TiO、V、FeS、TiS、Li1+xNiO、LiNiMn2−xなどが挙げられる。特に、放電電圧の高さから、遷移金属MとしてCo、Ni、Mnを使用することが好ましい。また、有機化合物として例えばポリアニリンなどの導電性ポリマーや硫黄化合物等が挙げられる。
【0033】
非水電解質の溶媒には、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネート、トリフルオロプロピレンカーボネート、γ−ブチロラクトン、2−メチル−γ−ブチロラクトン、アセチル―γ―ブチロラクトン、γ−バレロラクトン、スルホラン、1,2−メトキシエタン、1,2−ジエトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン、ジメチルテトラヒドロフラン、3−メチル−1,3−ジオキソラン、酢酸メチル、酢酸エチル、プロピオン酸メチル、プロピオン酸エチル、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、ジプロピルカーボネート、メチルプロピルカーボネート、エチルイソプロピルカーボネート、ジブチルカーボネート、ジメチルホルムアミド、ジメチルアセトアミド、メチルアセテート、アセトニトリル等を単独でまたは二種以上を混合して使用することができる。特に酸化・還元に対する安定性から環状炭酸エステルと鎖状炭酸エステルの混合系が好ましい。
【0034】
電解質はこれらの非水溶媒に支持塩を溶解して使用する。支持塩としてLiClO、LiAsF、LiPF、LiBF、LiCFSO、LiCFCFSO、LiCFCFCFSO、LiN(CFSO、LiN(CSO、LiPF(CF、LiCFCO、LiCl、LiBr、LiSCN等のリチウム塩を単独でまたは二種以上を混合して使用することができる。支持塩としては中でもLiPFを用いるのが好ましい。
【0035】
また、このような液状の電解質の代わりにイオン伝導性ポリマー電解質と有機電解液とを組み合わせて使用することができる。イオン伝導性ポリマー電解質は、具体的にポリエチレンオキシド、ポリプロピレンオキシド等のポリエーテル、ポリエチレンやポリプロピレン等のポリオレフィン、ポリビニリデンフルオライド、ポリテトラフルオロエチレン、ポリビニルフルオライド、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリメチルメタクリレート、ポリメチルアクリレート、ポリビニルアルコール、ポリメタクリロニトリル、ポリビニルアセテート、ポリビニルピロリドン、ポリカーボネート、ポリエチレンテレフタレート、ポリヘキサメチレンアシパミド、ポリカプロラクタム、ポリウレタン、ポリエチレンイミン、ポリブタジエン、ポリスチレン、ポリイソプレンおよびこれらの誘導体を単独であるいは混合して用いることができる。
【0036】
また、上記ポリマーを構成する各種モノマーを含むポリマーを用いてもよい。また、ポリマー電解質以外に、無機固体電解質あるいは有機ポリマー電解質と無機固体電解質との混合材料、もしくは有機バインダーによって結着された無機固体粉末などを使用することができる。
【0037】
また、本発明の非水電解質二次電池はその構成として正極、負極およびセパレータと非水電解質との組み合わせからなっているが、セパレータとしては、織布、不織布、ポリエチレンやポリプロピレンなどのポリオレフィン系、ポリイミド、多孔性ポリフッ化ビニリデン膜などの多孔性ポリマー膜やイオン伝導性ポリマー電解質膜を単独または組み合わせで使用することができる。
【0038】
さらに電池の形状としては円筒形、角形、コイン型、ボタン型、ラミネート型などの種々の形状にすることができる。電池ケースの材質としてはステンレス、ニッケルメッキを施した鉄、アルミニウム、チタンもしくはこれらの合金およびメッキ加工のものを使用することができる。ラミネート樹脂フィルムの材質としては、アルミニウム、アルミニウム合金、チタン箔などを使用することができる。金属ラミネート樹脂フィルムの熱溶着部の材質としてはポリエチレン、ポリプロピレン、ポリエチレンテレフタレートなどの熱可塑性高分子材料であればどのような材質でもよい。また、金属ラミネート樹脂層や金属箔層はそれぞれ1層に限定されるものではなく2層以上であっても構わない。
【0039】
【実施例】
本発明を適用した具体的な実施例について説明するが、本実施例に限定されるものではなく、その主旨を超えない範囲において適宜変更して実施することが可能である。
【0040】
ここで使用した角形非水電解質二次電池の概略断面構造を図1に示す。図1において、1は非水電解質電池、2は発電要素、3は正極板、4は負極板、5はセパレータ、6は電池ケース、7は電池蓋、8は安全弁、9は正極端子、10は正極リードである。
【0041】
非水電解質二次電池1は厚みが5.0mmであり、アルミニウム製集電体に正極活物質を含む正極合剤を塗布してなる正極板3と、銅製集電体に負極活物質を含む負極合剤を塗布してなる負極板4とを、非水電解液を注入したセパレータ5を介して巻回した巻回型発電要素2を、鉄にニッケルメッキした電池ケース6に収納してなるものである。電池ケース6には、安全弁8を設けた電池蓋7をレーザー溶接することによって取り付けられ、正極端子9は正極リード10を介して正極板3と接続され、負極板4は電池ケース6の内壁と接触により接続されている。
【0042】
正極は、活物質としてLiCoO90重量%と、導電剤としてのアセチレンブラック5重量%と、結着剤としてのポリフッ化ビニリデン5重量%とを混合して正極合剤とし、N−メチル−2−ピロリドンに分散させることによりスラリーを調整した。このスラリーを厚さ20μmのアルミニウム製集電体に均一に塗布して、乾燥させた後、ロールプレスで圧縮成型して、厚み180μmにすることにより作製した。
【0043】
負極は、負極活物質90重量%と、結着剤としてのポリフッ化ビニリデン10重量%とを混合して負極合剤とし、N−メチル−2−ピロリドンに分散させることによりスラリーを調整した。このスラリーを厚さ10μmの銅製集電体に均一に塗布して、乾燥させた後、ロールプレスで圧縮成型して、厚み180μmにすることにより作製した。
【0044】
セパレータとしては、厚さ25μmの微多孔性ポリエチレンフィルムを用いた。また電解質には、エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)を体積比で1:1で混合し、リチウム塩としてLiPFを1.0mol/l溶解した電解液を使用して電池を作製した。
【0045】
作製した非水電解質二次電池を、25℃において1Cの電流で3.9Vまで定電流定電圧充電を3時間おこなって満充電状態とした。続いて1Cの電流で2.75Vまで放電させ、この1サイクル目の放電容量および充放電効率を測定した。
【0046】
[実施例1]
負極活物質として、つぎの3種類を使用した電池を作製し、その特性を比較した。1)繊維径5μmの珪素繊維の表面を、平均面間隔d002=0.34nmの炭素材料で被覆したもの。ただし、珪素と炭素の合計重量に対する炭素被覆量を30重量%とした。これを電池Aとした。2)平均粒子径が20μmの塊状粉末珪素の表面を平均面間隔d002=0.34nmの炭素材料で被覆したもの。ただし、珪素と炭素の合計重量に対する炭素被覆量を30重量%とした。これを電池Bとした。3)鱗片状天然黒鉛。これを電池Cとした。測定結果を表1に示した。
【0047】
【表1】

Figure 0004035760
【0048】
表1から、電池Cの充放電効率は電池AおよびBよりも大きかったが、放電容量は小さかった。電池Aは電池Bに比べて、放電容量および充放電効率ともかなり大きくなった。このように、本発明の、表面を炭素材料で被覆した繊維状珪素を負極材料として用いることにより、放電容量の大きい非水電解質二次電池が得られることがわかった。
【0049】
[実施例2]
負極活物質として、繊維径5μmの珪素繊維の表面を、平均面間隔d002=0.34nmの炭素材料で被覆したものを使用し、珪素と炭素の合計重量に対する炭素被覆量を0〜70重量%の間で変化させた7種類の電池(電池D〜電池J)を作製し、1サイクル目の充放電特性を測定した。測定結果を表2に示した。
【0050】
【表2】
Figure 0004035760
【0051】
表2から、表面を炭素材料で被覆した繊維状珪素を負極活物質に用いた非水電解質二次電池において、珪素と炭素の合計重量に対する炭素被覆量が3〜60重量%である、本発明の電池E〜電池Iでは、放電容量が大きく、充放電効率も80%以上であったのに対し、炭素被覆量が本発明の範囲外である電池Dおよび電池Jでは、放電容量および充放電効率ともに小さくなることがわかった。
【0052】
[実施例3]
負極活物質として、珪素繊維の表面を平均面間隔d002=0.34nmの炭素材料で被覆したものを使用し、珪素と炭素の合計重量に対する炭素被覆量を30重量%とし、珪素繊維の繊維径を0.005〜70μmの間で変化させた6種類の電池(電池K〜電池P)を作製し、1サイクル目の充放電特性を測定した。測定結果を表3に示した。
【0053】
【表3】
Figure 0004035760
【0054】
表3から、表面を炭素材料で被覆した繊維状珪素を負極活物質に用いた非水電解質二次電池において、珪素繊維の繊維径が0.01〜50μmである、本発明の電池L〜電池Oでは、放電容量が大きく、充放電効率も80%以上であったのに対し、珪素繊維の繊維径が本発明の範囲外である電池Kおよび電池Pでは、放電容量および充放電効率ともに小さくなることがわかった。
【0055】
[実施例4]
繊維径5μmの珪素繊維の表面を、平均面間隔d002=0.34nmの炭素材料で被覆し、珪素と炭素の合計重量に対する炭素被覆量を30重量%としたものをXとする。そして、Xと炭素材料とを混合した負極活物質を使用した非水電解質二次電池を作製した。
【0056】
炭素材料として鱗片状人造黒鉛を使用し、合計重量に対するXの比率を90重量%、80重量%および60重量%とした負極活物質を使用した非水電解質二次電池と、炭素材料としてアセチレンブラックとを混合し、合計重量に対するXの比率を90重量%とした負極活物質を使用した非水電解質二次電池を作製し、1サイクル目の充放電特性を測定した。測定結果を表4に示した。
【0057】
【表4】
Figure 0004035760
【0058】
表4から、電池Q〜電池Tの放電容量はほぼ同じであり、充放電効率は炭素材料の添加量が多くなるにしたがって、わずかではあるが改善されることがわかった。
【0059】
【発明の効果】
本発明になる非水電解質二次電池は、リチウムイオンを吸蔵・放出する物質からなる正極と、リチウムイオンを吸蔵・放出する物質からなる負極と、非水電解質とから構成される非水電解質二次電池において、 002 =0.34〜0.37nmの範囲の炭素材料で表面を被覆した繊維状珪素を負極材料として用いることを特徴とするものである。
【0060】
負極活物質として、 002 =0.34〜0.37nmの範囲の炭素材料で表面を被覆した繊維状珪素を使用した場合、負極活物質の形状が繊維状であることで、集電性が十分に確保でき、また、被覆炭素が充放電時に伴う膨張収縮の程度を抑制することにより、集電劣化による充放電効率の低下が抑制されるため、初回の充放電効率が向上し、放電容量の大きい非水電解質電池が得られるものである。
【図面の簡単な説明】
【図1】角形非水電解質二次電池の概略断面構造を図1に示す図。
【符号の説明】
1 非水電解質二次電池
2 発電要素
3 正極板
4 負極板
5 セパレータ
6 電池ケース
7 電池蓋
8 安全弁
9 正極端子
10 正極リード[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a non-aqueous electrolyte secondary battery having a large discharge capacity.
[0002]
[Prior art]
In recent years, with the rapid miniaturization and diversification of consumer mobile phones, portable electronic devices and personal digital assistants, etc., the batteries that are power supplies are small, lightweight, high energy density, and repeated for a long time. There is a strong demand for the development of secondary batteries that can be charged and discharged.
[0003]
Above all, non-aqueous electrolyte secondary batteries such as lithium ion secondary batteries have been put into practical use as active batteries as secondary batteries that meet these requirements compared to lead batteries and nickel cadmium batteries that use aqueous electrolytes. Research is being conducted.
[0004]
Such a non-aqueous electrolyte secondary battery includes, for example, a positive electrode plate in which a positive electrode active material that absorbs and releases lithium ions is held in a current collector, and a negative electrode active material that stores and releases lithium ions in a current collector. The negative electrode plate is made of an electrolyte containing a lithium salt such as LiBF 4 or LiPF 6 dissolved in an aprotic organic solvent, and is interposed between the positive electrode plate and the negative electrode plate to prevent a short circuit between both electrodes. It is made up of separators.
[0005]
The electrolyte of a non-aqueous electrolyte secondary battery generally includes a mixed solvent of a high dielectric constant solvent such as ethylene carbonate or propylene carbonate and a low viscosity solvent such as dimethyl carbonate or diethyl carbonate, LiBF 4 or LiPF 6 or the like. A solution in which the supporting salt is dissolved is used.
[0006]
Examples of the positive electrode active material of the non-aqueous electrolyte secondary battery include titanium disulfide, vanadium pentoxide, trioxide, and various compounds represented by the general formula Li x MO 2 (where M is one or more transition metals). It is being considered.
[0007]
Among them, lithium cobalt composite oxide, lithium nickel composite oxide, lithium manganese composite oxide, and the like are used as positive electrode active materials because they are charged and discharged at an extremely noble potential of 4 V (vs. Li / Li + ) or higher. Thus, a nonaqueous electrolyte secondary battery having a high discharge voltage can be realized.
[0008]
Materials that can occlude and release lithium ions, including lithium-containing alloys, have been studied as negative electrode active materials for nonaqueous electrolyte secondary batteries. There is an advantage that a water electrolyte secondary battery can be obtained and safety is high, and it is now in practical use.
[0009]
Recently, metal, metalloid, and metalloid metals having a large amount of occlusion of lithium, such as Japanese Patent Laid-Open No. 10-3920 and Japanese Patent Laid-Open No. 2000-215887, are made of carbon materials. A nonaqueous electrolyte secondary battery using a coated negative electrode active material has also been proposed.
[0010]
[Problems to be solved by the invention]
When a carbon-based material is used for the negative electrode active material, there is a limit to the theoretical capacity of lithium that can be occluded / released, which has been an obstacle to obtaining a non-aqueous electrolyte secondary battery with higher capacity and higher energy density. Therefore, a nonaqueous electrolyte secondary battery using silicon, an alloy thereof, or an oxide as a negative electrode active material replacing a carbon material has been studied.
[0011]
When these negative electrode active materials are used, the theoretical capacity of the active material itself is high. However, when used for batteries, the influence of expansion and contraction of the active material accompanying charge / discharge is large, and current collection is likely to deteriorate. However, since the electronic conductivity of the active material itself is low, the initial charge / discharge efficiency is low, and the battery has a problem that a high energy density cannot be obtained. Recently, Japanese Patent Laid-Open No. 2000-215887 and Japanese Patent Laid-Open No. 2000-285919 have also proposed means for increasing the current collecting property by coating a carbon material on the surface of silicon. Not in.
[0012]
The present invention has been made to solve the above-mentioned problems in non-aqueous electrolyte secondary batteries using silicon as a negative electrode active material, and an object thereof is to provide a non-aqueous electrolyte secondary battery having a large discharge capacity. .
[0013]
[Means for Solving the Problems]
The invention according to claim 1, a positive electrode comprising a lithium ion from a material capable of absorbing and desorbing, a negative electrode comprising a lithium ion from a material absorbing and releasing, in a non-aqueous electrolyte secondary battery composed of a non-aqueous electrolyte, d Fibrous silicon whose surface is coated with a carbon material in the range of 002 = 0.34 to 0.37 nm is used as the negative electrode material.
[0014]
According to the invention of claim 1, spherical silicon or lump silicon coated with a carbon material is used by using fibrous silicon whose surface is coated with a carbon material in the range of d 002 = 0.34 to 0.37 nm as a negative electrode material. As compared with the case where is used for the negative electrode active material, the contact current collecting property can be secured, and a non-aqueous electrolyte secondary battery having a large discharge capacity can be obtained.
[0015]
According to a second aspect of the invention, a positive electrode comprising a lithium ion from a material capable of absorbing and desorbing, a negative electrode comprising a lithium ion from a material absorbing and releasing, in a non-aqueous electrolyte secondary battery composed of a non-aqueous electrolyte, d A mixture of fibrous silicon having a surface coated with a carbon material in the range of 002 = 0.34 to 0.37 nm and a carbon material is used as the negative electrode material.
[0016]
According to the invention of claim 2, by adding a carbon material to the negative electrode, it is possible to obtain a non-aqueous electrolyte secondary battery having higher current collecting performance and a large discharge capacity.
[0017]
According to a third aspect of the present invention, in the non-aqueous electrolyte secondary battery according to the first or second aspect, in the fibrous silicon whose surface is coated with a carbon material, the carbon coating amount with respect to the total weight of silicon and carbon is 3 to 60% by weight. It is characterized by being.
[0018]
According to the invention of claim 3, a non-aqueous electrolyte secondary battery having good adhesion between the negative electrode active material and the current collector can be obtained.
[0019]
The invention of claim 4 is the nonaqueous electrolyte secondary battery according to claim 1, 2, or 3, wherein the fiber diameter of the fibrous silicon whose surface is coated with a carbon material is 0.01 to 50 μm. .
[0020]
According to the invention of claim 4, it is possible to obtain a non-aqueous electrolyte secondary battery exhibiting excellent charge / discharge characteristics with quick diffusion of lithium in the negative electrode active material and small polarization.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
The present invention relates to a non-aqueous electrolyte secondary battery comprising a positive electrode made of a material that occludes / releases lithium ions, a negative electrode made of a material that occludes / releases lithium ions, and a non-aqueous electrolyte. D 002 = 0 A fibrous silicon whose surface is coated with a carbon material in the range of .34 to 0.37 nm is used as the negative electrode material.
[0022]
As the negative electrode active material, the use of fibrous silicon whose surface is coated with a carbon material in the range of d 002 = 0.34 to 0.37 nm is more effective than the bulk powdery silicon whose surface is coated with a carbon material . The charge / discharge efficiency is improved, and a nonaqueous electrolyte battery having a large discharge capacity is obtained. The reason for this is that the negative electrode active material is in the form of a fiber, so that the current collecting property can be sufficiently secured, and the coated carbon suppresses the degree of expansion and contraction associated with charging / discharging, so that charging due to current collection deterioration can be achieved. It is considered that the decrease in discharge efficiency is suppressed.
[0023]
In addition, the negative electrode active material of the present invention can provide a larger discharge capacity than conventional batteries that use natural graphite as the negative electrode active material. This is because the lithium ion storage capacity of the negative electrode is improved by using a composite of silicon and carbon as compared with the conventional graphite negative electrode.
[0024]
As the fibrous silicon material, a silicon compound such as silicon alone or a carbide or oxide thereof can be used, which contains a different element within a range not exceeding the present invention, or a compound with lithium. It doesn't matter.
[0025]
Further, the crystallinity of the coated carbon is not particularly limited as long as sufficient electron conductivity can be ensured, and among these, a carbon material having a range of d 002 = 0.34 to 0.37 nm is used .
[0026]
As a method of coating the surface of fibrous silicon with a carbon material, a method of chemically depositing carbon, pitch, tar, phenol resin, imide resin, furan resin, polyacrylonitrile, furfuryl alcohol, etc. are held on the silicon surface. And a method of coating the carbon material by applying mechanical energy between the fibrous silicon and the carbon material.
[0027]
The carbon material may completely cover the surface of the fibrous silicon, or may cover a part of the surface of the fibrous silicon so that a part of the silicon is exposed.
[0028]
The present invention also provides a nonaqueous electrolyte secondary battery comprising a positive electrode made of a material that occludes and releases lithium ions, a negative electrode made of a material that occludes and releases lithium ions, and a nonaqueous electrolyte. A mixture of fibrous silicon coated with a carbon material and a carbon material is used as a negative electrode material.
[0029]
By mixing the carbon material with fibrous silicon whose surface as the negative electrode active material is coated with the carbon material, the current collecting property can be further improved. In this case, the carbon material to be mixed is preferably one or a mixture of carbon materials made of natural graphite, artificial graphite, acetylene black, ketjen black, or vapor grown carbon fiber.
[0030]
In the fibrous silicon in which the surface of the present invention is coated with a carbon material, the carbon coating amount with respect to the total weight of silicon and carbon is preferably 3 to 60% by weight. If the coating amount of the carbon material is more than 60% by weight, the charge / discharge efficiency is inferior because of poor adhesion to the current collector, the capacity is reduced, and the coating carbon amount is less than 3% by weight. This is not enough to ensure sufficient current collection.
[0031]
In the fibrous silicon of the present invention whose surface is coated with a carbon material in the range of d 002 = 0.34 to 0.37 nm, the fiber diameter is preferably in the range of 0.01 to 50 μm. When the fiber diameter is larger than 50 μm, it is considered that the diffusion of lithium ions in the active material is slowed down, and the capacity is reduced by increasing the polarization. On the other hand, if the fiber diameter is smaller than 0.01 μm, handling becomes difficult and the process for producing the negative electrode becomes complicated.
[0032]
As the positive electrode active material of the nonaqueous electrolyte secondary battery in the present invention, Li x MO 2 , Li y M 2 O 4 (where M is one or more transition metals, 0 ≦ x ≦ 1, 0 ≦ y ≦ 2) Or a metal chalcogenide having a tunnel structure or a layered structure, a metal oxide and a metal sulfide can be used alone or in admixture of two or more. Specific examples thereof include LiCoO 2 , LiCo x Ni 1-x O 2 , L x iMnO 4 , LiMn 2 O 4 , LiFePO 4 , MnO 2 , TiO 2 , V 2 O 5 , FeS 2 , TiS 2 , Li 1 + x such as NiO 2, LiNi x Mn 2- x O 4 and the like. In particular, it is preferable to use Co, Ni, or Mn as the transition metal M because of the high discharge voltage. Examples of the organic compound include conductive polymers such as polyaniline and sulfur compounds.
[0033]
Nonaqueous electrolyte solvents include ethylene carbonate, propylene carbonate, butylene carbonate, vinylene carbonate, trifluoropropylene carbonate, γ-butyrolactone, 2-methyl-γ-butyrolactone, acetyl-γ-butyrolactone, γ-valerolactone, sulfolane, 1,2-methoxyethane, 1,2-diethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, dimethyltetrahydrofuran, 3-methyl-1,3-dioxolane, methyl acetate, ethyl acetate, methyl propionate, ethyl propionate, dimethyl Carbonate, diethyl carbonate, ethyl methyl carbonate, dipropyl carbonate, methyl propyl carbonate, ethyl isopropyl carbonate, dibutyl carbonate, dimethyl carbonate Le formamide, dimethyl acetamide, can be used singly or as a mixture of two or more of methyl acetate, acetonitrile. In particular, a mixed system of a cyclic carbonate and a chain carbonate is preferable from the viewpoint of stability to oxidation and reduction.
[0034]
The electrolyte is used by dissolving the supporting salt in these nonaqueous solvents. LiClO 4 , LiAsF 6 , LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiCF 3 CF 2 SO 3 , LiCF 3 CF 2 CF 2 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F) 5 SO 2 ) 2 , LiPF 3 (CF 3 ) 3 , LiCF 3 CO 2 , LiCl, LiBr, LiSCN, or other lithium salts can be used alone or in admixture of two or more. Among them, LiPF 6 is preferably used as the supporting salt.
[0035]
Further, instead of such a liquid electrolyte, an ion conductive polymer electrolyte and an organic electrolyte can be used in combination. Specific examples of the ion conductive polymer electrolyte include polyethers such as polyethylene oxide and polypropylene oxide, polyolefins such as polyethylene and polypropylene, polyvinylidene fluoride, polytetrafluoroethylene, polyvinyl fluoride, polyvinyl chloride, polyvinylidene chloride, poly Methyl methacrylate, polymethyl acrylate, polyvinyl alcohol, polymethacrylonitrile, polyvinyl acetate, polyvinyl pyrrolidone, polycarbonate, polyethylene terephthalate, polyhexamethylene aipamide, polycaprolactam, polyurethane, polyethyleneimine, polybutadiene, polystyrene, polyisoprene and their Derivatives can be used alone or in combination.
[0036]
Moreover, you may use the polymer containing the various monomers which comprise the said polymer. In addition to the polymer electrolyte, an inorganic solid electrolyte, a mixed material of an organic polymer electrolyte and an inorganic solid electrolyte, an inorganic solid powder bound by an organic binder, or the like can be used.
[0037]
Further, the nonaqueous electrolyte secondary battery of the present invention is composed of a combination of a positive electrode, a negative electrode, and a separator and a nonaqueous electrolyte as its configuration, but as a separator, a woven fabric, a nonwoven fabric, a polyolefin type such as polyethylene or polypropylene, Porous polymer films such as polyimide and porous polyvinylidene fluoride films and ion conductive polymer electrolyte films can be used alone or in combination.
[0038]
Furthermore, the shape of the battery can be various shapes such as a cylindrical shape, a square shape, a coin shape, a button shape, and a laminate shape. As the material of the battery case, stainless steel, nickel-plated iron, aluminum, titanium, or an alloy thereof and a plated material can be used. As the material of the laminate resin film, aluminum, aluminum alloy, titanium foil, or the like can be used. The material of the heat-welded portion of the metal laminate resin film may be any material as long as it is a thermoplastic polymer material such as polyethylene, polypropylene, polyethylene terephthalate. Further, the metal laminate resin layer and the metal foil layer are not limited to one layer, but may be two or more layers.
[0039]
【Example】
Specific examples to which the present invention is applied will be described. However, the present invention is not limited to these examples, and can be appropriately modified and implemented within a range not exceeding the gist thereof.
[0040]
A schematic cross-sectional structure of the rectangular non-aqueous electrolyte secondary battery used here is shown in FIG. In FIG. 1, 1 is a nonaqueous electrolyte battery, 2 is a power generation element, 3 is a positive electrode plate, 4 is a negative electrode plate, 5 is a separator, 6 is a battery case, 7 is a battery lid, 8 is a safety valve, 9 is a positive electrode terminal, 10 Is a positive electrode lead.
[0041]
The nonaqueous electrolyte secondary battery 1 has a thickness of 5.0 mm, and includes a positive electrode plate 3 formed by applying a positive electrode mixture containing a positive electrode active material to an aluminum current collector, and a negative electrode active material in a copper current collector. A wound power generation element 2 in which a negative electrode plate 4 formed by applying a negative electrode mixture is wound through a separator 5 into which a nonaqueous electrolytic solution is injected is housed in a battery case 6 that is nickel-plated on iron. Is. A battery lid 7 provided with a safety valve 8 is attached to the battery case 6 by laser welding, the positive electrode terminal 9 is connected to the positive electrode plate 3 via the positive electrode lead 10, and the negative electrode plate 4 is connected to the inner wall of the battery case 6. Connected by contact.
[0042]
The positive electrode was prepared by mixing 90% by weight of LiCoO 2 as an active material, 5% by weight of acetylene black as a conductive agent, and 5% by weight of polyvinylidene fluoride as a binder to form a positive electrode mixture, and N-methyl-2 -The slurry was prepared by dispersing in pyrrolidone. The slurry was uniformly applied to an aluminum current collector having a thickness of 20 μm, dried, and then compression-molded with a roll press to a thickness of 180 μm.
[0043]
For the negative electrode, a slurry was prepared by mixing 90% by weight of the negative electrode active material and 10% by weight of polyvinylidene fluoride as a binder to form a negative electrode mixture and dispersing it in N-methyl-2-pyrrolidone. This slurry was uniformly applied to a copper current collector having a thickness of 10 μm, dried, and then compression-molded with a roll press to obtain a thickness of 180 μm.
[0044]
As the separator, a microporous polyethylene film having a thickness of 25 μm was used. In addition, as the electrolyte, a battery is manufactured by using an electrolytic solution in which ethylene carbonate (EC) and ethyl methyl carbonate (EMC) are mixed at a volume ratio of 1: 1 and LiPF 6 is dissolved at 1.0 mol / l as a lithium salt. did.
[0045]
The produced nonaqueous electrolyte secondary battery was charged at a constant current and a constant voltage up to 3.9 V at a current of 1 C at 25 ° C. for 3 hours to obtain a fully charged state. Subsequently, the battery was discharged at a current of 1 C to 2.75 V, and the discharge capacity and charge / discharge efficiency in the first cycle were measured.
[0046]
[Example 1]
Batteries using the following three types as negative electrode active materials were produced and their characteristics were compared. 1) The surface of a silicon fiber having a fiber diameter of 5 μm is coated with a carbon material having an average interplanar spacing d 002 = 0.34 nm. However, the carbon coating amount relative to the total weight of silicon and carbon was 30% by weight. This was designated as Battery A. 2) The surface of bulk powder silicon having an average particle diameter of 20 μm is coated with a carbon material having an average interplanar spacing d 002 = 0.34 nm. However, the carbon coating amount relative to the total weight of silicon and carbon was 30% by weight. This was designated as Battery B. 3) Scaly natural graphite. This was designated as Battery C. The measurement results are shown in Table 1.
[0047]
[Table 1]
Figure 0004035760
[0048]
From Table 1, the charge / discharge efficiency of battery C was larger than batteries A and B, but the discharge capacity was small. Battery A has a considerably larger discharge capacity and charge / discharge efficiency than battery B. As described above, it was found that a non-aqueous electrolyte secondary battery having a large discharge capacity can be obtained by using fibrous silicon of which the surface is coated with a carbon material as a negative electrode material.
[0049]
[Example 2]
As a negative electrode active material, a surface of a silicon fiber having a fiber diameter of 5 μm is coated with a carbon material having an average interplanar spacing d 002 = 0.34 nm, and the carbon coating amount with respect to the total weight of silicon and carbon is 0 to 70 wt. 7 batteries (battery D to battery J) varied between% and charge / discharge characteristics at the first cycle were measured. The measurement results are shown in Table 2.
[0050]
[Table 2]
Figure 0004035760
[0051]
From Table 2, in the nonaqueous electrolyte secondary battery using fibrous silicon whose surface is coated with a carbon material as a negative electrode active material, the carbon coating amount with respect to the total weight of silicon and carbon is 3 to 60% by weight. In the batteries E to I, the discharge capacity was large and the charge / discharge efficiency was 80% or more, whereas in the batteries D and J in which the carbon coating amount was outside the scope of the present invention, the discharge capacity and charge / discharge It turned out that both efficiency became small.
[0052]
[Example 3]
As the negative electrode active material, a material in which the surface of silicon fiber is coated with a carbon material having an average interplanar spacing d 002 = 0.34 nm is used, and the carbon coating amount with respect to the total weight of silicon and carbon is 30% by weight. Six types of batteries (battery K to battery P) with diameters varied between 0.005 and 70 μm were prepared, and charge / discharge characteristics at the first cycle were measured. The measurement results are shown in Table 3.
[0053]
[Table 3]
Figure 0004035760
[0054]
From Table 3, in the nonaqueous electrolyte secondary battery using fibrous silicon whose surface is coated with a carbon material as the negative electrode active material, the fiber L of the present invention, in which the fiber diameter of the silicon fiber is 0.01 to 50 μm In O, the discharge capacity was large and the charge / discharge efficiency was 80% or more, whereas in the batteries K and P where the fiber diameter of the silicon fiber was outside the scope of the present invention, both the discharge capacity and the charge / discharge efficiency were small. I found out that
[0055]
[Example 4]
The surface of silicon fiber having a fiber diameter of 5 μm is coated with a carbon material having an average interplanar spacing d 002 = 0.34 nm, and X is defined as 30% by weight of carbon with respect to the total weight of silicon and carbon. And the non-aqueous electrolyte secondary battery using the negative electrode active material which mixed X and the carbon material was produced.
[0056]
Non-aqueous electrolyte secondary battery using negative electrode active material using flaky artificial graphite as carbon material and ratio of X to total weight being 90%, 80% and 60% by weight, and acetylene black as carbon material And a non-aqueous electrolyte secondary battery using a negative electrode active material in which the ratio of X to the total weight was 90% by weight was produced, and charge / discharge characteristics at the first cycle were measured. The measurement results are shown in Table 4.
[0057]
[Table 4]
Figure 0004035760
[0058]
From Table 4, it was found that the discharge capacities of the batteries Q to T were almost the same, and the charging / discharging efficiency was slightly improved as the amount of carbon material added increased.
[0059]
【The invention's effect】
A non-aqueous electrolyte secondary battery according to the present invention includes a non-aqueous electrolyte battery composed of a positive electrode made of a material that absorbs and releases lithium ions, a negative electrode made of a material that absorbs and releases lithium ions, and a non-aqueous electrolyte. In the secondary battery, fibrous silicon whose surface is coated with a carbon material in the range of d 002 = 0.34 to 0.37 nm is used as the negative electrode material.
[0060]
When fibrous silicon whose surface is coated with a carbon material in the range of d 002 = 0.34 to 0.37 nm is used as the negative electrode active material, the shape of the negative electrode active material is fibrous, so that the current collecting property is Sufficiently secured, and by suppressing the degree of expansion and contraction of the coated carbon during charging and discharging, the decrease in charging and discharging efficiency due to current collection deterioration is suppressed, so the initial charging and discharging efficiency is improved, and the discharge capacity A large non-aqueous electrolyte battery can be obtained.
[Brief description of the drawings]
FIG. 1 is a diagram showing a schematic cross-sectional structure of a prismatic nonaqueous electrolyte secondary battery in FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Nonaqueous electrolyte secondary battery 2 Power generation element 3 Positive electrode plate 4 Negative electrode plate 5 Separator 6 Battery case 7 Battery cover 8 Safety valve 9 Positive electrode terminal 10 Positive electrode lead

Claims (4)

リチウムイオンを吸蔵・放出する物質からなる正極と、リチウムイオンを吸蔵・放出する物質からなる負極と、非水電解質とから構成される非水電解質二次電池において、 002 =0.34〜0.37nmの範囲の炭素材料で表面を被覆した繊維状珪素を負極材料として用いることを特徴とする非水電解質二次電池。In a non-aqueous electrolyte secondary battery including a positive electrode made of a material that occludes / releases lithium ions, a negative electrode made of a material that occludes / releases lithium ions, and a non-aqueous electrolyte, d 002 = 0.34-0 A non-aqueous electrolyte secondary battery using, as a negative electrode material, fibrous silicon whose surface is coated with a carbon material in the range of 37 nm . リチウムイオンを吸蔵・放出する物質からなる正極と、リチウムイオンを吸蔵・放出する物質からなる負極と、非水電解質とから構成される非水電解質二次電池において、 002 =0.34〜0.37nmの範囲の炭素材料で表面を被覆した繊維状珪素と炭素材料との混合物を負極材料として用いることを特徴とする非水電解質二次電池。In a non-aqueous electrolyte secondary battery including a positive electrode made of a material that occludes / releases lithium ions, a negative electrode made of a material that occludes / releases lithium ions, and a non-aqueous electrolyte, d 002 = 0.34-0 A non-aqueous electrolyte secondary battery using, as a negative electrode material, a mixture of fibrous silicon having a surface coated with a carbon material in the range of 37 nm and a carbon material. 表面を炭素材料で被覆した繊維状珪素において、珪素と炭素の合計重量に対する炭素被覆量が3〜60重量%であることを特徴とする請求項1または2記載の非水電解質二次電池。3. The nonaqueous electrolyte secondary battery according to claim 1 or 2, wherein the fibrous silicon whose surface is coated with a carbon material has a carbon coating amount of 3 to 60% by weight relative to the total weight of silicon and carbon. 表面を炭素材料で被覆した繊維状珪素の繊維径が0.01〜50μmであることを特徴とする請求項1、2または3記載の非水電解質二次電池。4. The nonaqueous electrolyte secondary battery according to claim 1, wherein the fiber diameter of the fibrous silicon whose surface is coated with a carbon material is 0.01 to 50 [mu] m.
JP2001369220A 2001-12-03 2001-12-03 Nonaqueous electrolyte secondary battery Expired - Fee Related JP4035760B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001369220A JP4035760B2 (en) 2001-12-03 2001-12-03 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001369220A JP4035760B2 (en) 2001-12-03 2001-12-03 Nonaqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2003168426A JP2003168426A (en) 2003-06-13
JP4035760B2 true JP4035760B2 (en) 2008-01-23

Family

ID=19178652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001369220A Expired - Fee Related JP4035760B2 (en) 2001-12-03 2001-12-03 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP4035760B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2378597A1 (en) 2005-11-21 2011-10-19 Nanosys, Inc. Nanowire structures comprising carbon
WO2012028857A1 (en) 2010-09-03 2012-03-08 Nexeon Limited Porous electroactive material

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2395059B (en) 2002-11-05 2005-03-16 Imp College Innovations Ltd Structured silicon anode
US8278011B2 (en) 2004-12-09 2012-10-02 Nanosys, Inc. Nanostructured catalyst supports
GB0601318D0 (en) 2006-01-23 2006-03-01 Imp Innovations Ltd Method of etching a silicon-based material
GB0601319D0 (en) 2006-01-23 2006-03-01 Imp Innovations Ltd A method of fabricating pillars composed of silicon-based material
GB0709165D0 (en) 2007-05-11 2007-06-20 Nexeon Ltd A silicon anode for a rechargeable battery
GB0713895D0 (en) * 2007-07-17 2007-08-29 Nexeon Ltd Production
GB0713898D0 (en) 2007-07-17 2007-08-29 Nexeon Ltd A method of fabricating structured particles composed of silcon or a silicon-based material and their use in lithium rechargeable batteries
GB0713896D0 (en) * 2007-07-17 2007-08-29 Nexeon Ltd Method
JP2009164104A (en) 2007-09-06 2009-07-23 Canon Inc Electrode material for negative electrode, its manufacturing method, electrode structure using the same material, and electricity storage device
JP4865673B2 (en) * 2007-10-23 2012-02-01 パナソニック株式会社 Lithium secondary battery
JP4844849B2 (en) 2008-04-23 2011-12-28 ソニー株式会社 Negative electrode for lithium ion secondary battery and lithium ion secondary battery
GB2464157B (en) 2008-10-10 2010-09-01 Nexeon Ltd A method of fabricating structured particles composed of silicon or a silicon-based material
GB2464158B (en) 2008-10-10 2011-04-20 Nexeon Ltd A method of fabricating structured particles composed of silicon or a silicon-based material and their use in lithium rechargeable batteries
JP2010262752A (en) * 2009-04-30 2010-11-18 Furukawa Electric Co Ltd:The Negative electrode for lithium ion secondary battery, lithium ion secondary battery using the same, and method of manufacturing negative electrode for lithium ion secondary battery
GB2470056B (en) 2009-05-07 2013-09-11 Nexeon Ltd A method of making silicon anode material for rechargeable cells
GB0908089D0 (en) * 2009-05-11 2009-06-24 Nexeon Ltd A binder for lithium ion rechargaable battery cells
GB2470190B (en) 2009-05-11 2011-07-13 Nexeon Ltd A binder for lithium ion rechargeable battery cells
US9853292B2 (en) 2009-05-11 2017-12-26 Nexeon Limited Electrode composition for a secondary battery cell
CN102428763A (en) * 2009-05-19 2012-04-25 纳米***公司 Nanostructured materials for battery applications
US8450012B2 (en) 2009-05-27 2013-05-28 Amprius, Inc. Interconnected hollow nanostructures containing high capacity active materials for use in rechargeable batteries
US9780365B2 (en) 2010-03-03 2017-10-03 Amprius, Inc. High-capacity electrodes with active material coatings on multilayered nanostructured templates
US20110229761A1 (en) * 2010-03-22 2011-09-22 Amprius, Inc. Interconnecting electrochemically active material nanostructures
GB201005979D0 (en) 2010-04-09 2010-05-26 Nexeon Ltd A method of fabricating structured particles composed of silicon or a silicon-based material and their use in lithium rechargeable batteries
GB201009519D0 (en) 2010-06-07 2010-07-21 Nexeon Ltd An additive for lithium ion rechargeable battery cells
GB201014707D0 (en) 2010-09-03 2010-10-20 Nexeon Ltd Electroactive material
JP6127817B2 (en) * 2013-08-01 2017-05-17 株式会社Gsユアサ Non-aqueous electrolyte secondary battery electrode and non-aqueous electrolyte secondary battery using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2378597A1 (en) 2005-11-21 2011-10-19 Nanosys, Inc. Nanowire structures comprising carbon
WO2012028857A1 (en) 2010-09-03 2012-03-08 Nexeon Limited Porous electroactive material

Also Published As

Publication number Publication date
JP2003168426A (en) 2003-06-13

Similar Documents

Publication Publication Date Title
JP4035760B2 (en) Nonaqueous electrolyte secondary battery
JP3702318B2 (en) Non-aqueous electrolyte battery electrode and non-aqueous electrolyte battery using the electrode
JP3619125B2 (en) Nonaqueous electrolyte secondary battery
US6528212B1 (en) Lithium battery
JP3385516B2 (en) Non-aqueous polymer battery and method for producing polymer film for non-aqueous polymer battery
JP4961654B2 (en) Nonaqueous electrolyte secondary battery
US20070248884A1 (en) Negative electrode and secondary battery
JP2003142152A (en) Non-aqueous electrolyte secondary battery
JP2004296256A (en) Nonaqueous electrolyte secondary battery
JP2001110447A (en) Lithium secondary battery
KR20090080909A (en) Battery
JP2004134207A (en) Positive electrode active material and non-aqueous electrolyte secondary battery
US20030068555A1 (en) Non-aqueous electrolyte secondary battery
JP2002237292A (en) Nonaqueous electrolyte secondary battery
JP2009134970A (en) Nonaqueous electrolytic battery
JP4106856B2 (en) Non-aqueous electrolyte secondary battery
JP4560854B2 (en) Nonaqueous electrolyte secondary battery
JP3968772B2 (en) Non-aqueous electrolyte battery
JP2004259485A (en) Nonaqueous electrolyte secondary battery
JP2002175836A (en) Nonaqueous electrolyte battery
JP2002313416A (en) Non-aqueous electrolyte secondary battery
US8372541B2 (en) Non-aqueous electrolyte secondary battery
KR20020055572A (en) Non-aqueous electrolyte secondary battery
JP4264209B2 (en) Nonaqueous electrolyte secondary battery
JP2004193139A (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041118

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070627

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071017

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111109

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121109

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131109

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees