JP2004035908A - Electrode for electrochemical treatment, and electrochemical treatment apparatus - Google Patents

Electrode for electrochemical treatment, and electrochemical treatment apparatus Download PDF

Info

Publication number
JP2004035908A
JP2004035908A JP2002190604A JP2002190604A JP2004035908A JP 2004035908 A JP2004035908 A JP 2004035908A JP 2002190604 A JP2002190604 A JP 2002190604A JP 2002190604 A JP2002190604 A JP 2002190604A JP 2004035908 A JP2004035908 A JP 2004035908A
Authority
JP
Japan
Prior art keywords
electrode
diamond layer
conductive diamond
electrochemical treatment
metal particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002190604A
Other languages
Japanese (ja)
Other versions
JP4121322B2 (en
Inventor
Takeshi Tachibana
橘 武史
Nobuyuki Kawakami
川上 信之
Kazuyuki Hayashi
林 和志
Yoshihiro Yokota
横田 嘉宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2002190604A priority Critical patent/JP4121322B2/en
Publication of JP2004035908A publication Critical patent/JP2004035908A/en
Application granted granted Critical
Publication of JP4121322B2 publication Critical patent/JP4121322B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrode for electrochemical treatment, which effectively decomposes a hardly-electrolyzable hazardous material into a final reacted product having a safe low molecular weight, and to provide an apparatus for electrochemical treatment. <P>SOLUTION: This electrode has an impurity-dosed electroconductive diamond layer 2 formed on a substrate 1, and catalyst metallic particles 3 dispersedly supported in the electroconductive diamond layer 2. The electroconductive diamond layer 2 transmits a visible light or an ultraviolet light. The above catalyst metal particle 3 is a metal selected from the group consisting of platinum, iridium, ruthenium, rhodium, palladium, gold, silver, copper, nickel, cobalt, iron, molybdenum and tantalum, or an alloy containing two or more elements selected from the above group, has particle diameters of 1 μm or less, and is contained in the electroconductive diamond layer 2 at a volume density of 10<SP>5</SP>cm<SP>-3</SP>or higher. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、環境汚染物質を含む溶液及びガスを無害な低分子量の物質に分解するというような電気化学的な処理に使用される電気化学的処理用電極及び電気化学的処理装置に関し、特に、ダイオキシン等の電気分解が困難な物質を、効率良く電気分解することを可能とする電気化学的処理用電極及び電気化学的処理装置に関する。
【0002】
【従来の技術】
産業廃棄物及び生活廃棄物に起因する大気汚染並びに河川及び湖沼の水質悪化等により環境及び人体への影響が憂慮され、その問題解決のための技術的な対策が急務になっている。例えば、飲料水の処理、下水処理及び排水処理において、その脱色、化学的酸素要求量(COD:Chemical Oxygen Demand)の低減及び殺菌を目的として塩素等の薬剤が水中に投入されている。しかし、塩素注入による新たな危険物質、例えば環境ホルモン(外因性分泌攪乱物質)及び発ガン性物質等が発生するため、このような塩素注入は禁止される方向にある。また、廃棄物の焼却処理では、燃焼条件によっては廃ガス中に発ガン性物質(ダイオキシン類)が発生することから、生態系へ影響を与える可能性がある。これらのことから、安全性への懸念を払拭できる新たな処理方法が検討されている。
【0003】
廃水処理の方法の1つに電気分解法がある。この電気分解法は、汚染が少ない電気エネルギを利用し、電極表面での化学反応を制御することによって、被処理物質の電極への吸着による直接電気分解のみならず、水素、酸素、オゾン又は過酸化水素等の副生成物による被処理物質の間接的分解をも可能とする。分解生成物は、最終的には二酸化炭素、水、水素、酸素、窒素、アンモニア又は塩化物イオン等の低分子量の安全な物質となることが好ましい。しかし、分解過程にある中間生成物が、かえって危険性を有する場合もあることが知られている。
【0004】
そこで、危険性を有する中間生成物を残すことがなく、被処理物質を効率良く分解して安全な物質にする電気分解法が求められている。このような電気分解法として、電極材料に不純物をドープした導電性ダイヤモンドを使用する方法が提案されている。導電性ダイヤモンドを用いた電極は、水の電気分解に対しては不活性であることから、酸化反応では酸素以外にオゾン又は過酸化水素を生成する(特開平9−268395号公報)。過酸化水素及びオゾンは、より酸化力が高いOHラジカル等の発生原料であり、それらの共存下では、ラジカルが容易に生成する。従って、導電性ダイヤモンド電極を使用した電気分解処理では、一般的な金属電極又は金属酸化物電極を使用した場合と比較して、分解効率の向上を期待することができる。
【0005】
しかしながら、ダイオキシン等の有害物質の中には、水の酸化還元反応と比較して、より高い電位でなければ分解反応が促進されないものもある。そのような有害物質の電気分解処理においては、導電性ダイヤモンド電極を使用するだけでは、充分な分解効率を得ることができない。
【0006】
このような問題点を解決するための手段として、不純物含有量が極めて小さいダイヤモンド層で表面を被覆した導電性ダイヤモンド電極を用いた電気化学的処理方法が考えられる(出願番号:2001−262287)。高純度ダイヤモンド層で被覆した導電性ダイヤモンド電極では、導電性ダイヤモンド層との界面から高純度ダイヤモンド層に電荷が注入される。注入された電荷は、エネルギー・ギャップの広い高純度ダイヤモンド層内で加速されながら電極外表面まで輸送され、被処理物質の分解反応を促進する。このように、広いエネルギー・ギャップを有するという高純度ダイヤモンドの性質を利用することで、より高い電極電位を得ることが可能となる。よって、ダイオキシン等の電気分解が困難な物質に対しても、その分解効率の向上を期待することができる。
【0007】
【発明が解決しようとする課題】
しかしながら、不純物をドープした導電性ダイヤモンド電極表面を高純度ダイヤモンド層で被覆して用いた場合、より高い電極電位が得られるが、その一方で、電流密度の低下が起きる。このため、有害な中間生成物から最終生成物への分解反応は、必ずしも効率的に進むとはいえず、有害な中間生成物が処理後に残留する可能性がある。よって、上述の従来技術では、ダイオキシン等の電気分解が困難な物質を低分子量の安全な最終生成物に効率的に分解するという課題を解決できたとはいえない。
【0008】
本発明はかかる問題点に鑑みてなされたものであって、電気分解が困難な有害物質を、安全な低分子量の最終反応生成物にまで極めて効率的に分解することができる電気化学的処理用電極及び電気化学的処理用装置を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明に係る電気化学的処理用電極は、基体と、この基体の上に形成され不純物が導入された導電性ダイヤモンド層と、この導電性ダイヤモンド層中に分散して担持された触媒金属粒子とを有し、前記導電性ダイヤモンド層は可視光又は紫外光を透過することを特徴とする。
【0010】
本発明においては、導電性ダイヤモンド層中に分散して担持された触媒金属粒子が、電極表面での被処理物質の化学反応を促進する。このため、従来の導電性ダイヤモンド電極では分解するのが難しかったダイオキシン等のような有害物質を、極めて効率良く処理することができる。また、処理中に生成する有害な中間生成物の分解率を向上することができるため、有害な被処理物質を安全な低分子量の最終生成物とすることが容易である。また、電極基材として用いる導電性ダイヤモンドは、陽極での酸化能力及び陰極での還元能力が極めて高いだけではなく、機械的及び化学的な耐性も高い。そのため、上記の金属粒子による触媒作用を含む高い電気化学的処理能力が劣化し難いという効果も得られる。
【0011】
前記触媒金属粒子は、白金、イリジウム、ルテニウム、ロジウム、パラジウム、金、銀、銅、ニッケル、コバルト、鉄、モリブデン及びタンタルからなる群から選択された金属又は前記群から選択された2種以上の元素を含む合金であることを特徴とする。
【0012】
本発明においては、これらの群から選択された金属のいずれか1種類を導電性ダイヤモンド層中に触媒金属粒子として担持させても良い。また、これらの群から選択された金属のいずれか2種類以上で触媒金属粒子を構成し、導電性ダイヤモンド層中に担持させても効果がある。
【0013】
本発明においては、導電性ダイヤモンド層中に担持される金属粒子は直径1μm以下の粒径であることが望ましい。また、この金属粒子は、10cm−3以上の体積密度で導電性ダイヤモンド層中に存在することが好適である。粒径及び体積密度を前記範囲に調整すると、触媒反応に関与する体積比表面積を増大させることになるため、金属粒子の触媒作用が高まり非処理物質の分解効率が高くなる。
【0014】
更に、本発明においては、この金属粒子と導電性ダイヤモンド層との界面にグラファイト等の非ダイヤモンド炭素成分が介在せず、この金属粒子と導電性ダイヤモンドとが直に接触していることが望ましい。金属粒子と導電性ダイヤモンドとの界面に中間介在物が存在する場合、基材である導電性ダイヤモンド層から金属粒子が離脱し易くなる。その結果、電極性能が劣化したり、電極寿命が短くなったりする。さらに、光を透過しない中間介在物の存在は、導電性ダイヤモンドの光導電効果による電気化学反応の促進効果を阻害する要因ともなる。
【0015】
本発明に係る電気化学的処理用装置は、基体と、この基体の上に形成され不純物が導入された導電性ダイヤモンド層と、この導電性ダイヤモンド層中に分散して担持された触媒金属粒子とを有し、前記導電性ダイヤモンド層は可視光又は紫外光を透過する電極を、陽極及び陰極の少なくともいずれかとして使用し、前記電極により被処理物質をそれよりも分子量の低い物質に電気化学的に分解するものであることを特徴とする。
【0016】
また、本発明に係る電気化学的処理用装置は、波長が180nm乃至750nmの光を電極表面に照射する光源を有することを特徴とする。
【0017】
本発明に係る電気化学的処理用装置は、上述の本発明に係る電気化学的処理用電極を用いているので、ダイオキシン等の電気分解が困難な有害物質を、安全な低分子量の最終反応生成物にまで、極めて効率的に分解することができる。また、紫外光から可視光に至る波長領域の光を電極表面に照射する光源を備えることにより、導電性ダイヤモンドの光導電効果による電気化学反応の促進効果を得ることが可能である。
【0018】
【発明の実施の形態】
以下、本発明の実施形態に係る電気化学的処理用電極について、添付の図面を参照して具体的に説明する。図1は本発明の実施形態に係る電気化学的処理用電極の構造を示す模式的断面図である。
【0019】
本実施形態においては、導電性基体1の表面が導電性ダイヤモンド層2により覆われており、この導電性ダイヤモンド層中に触媒金属粒子3が分散して担持されている。導電性基体1は、例えばシリコン、モリブデン、プラチナ、タングステン、コバルト、ニッケル、チタン、タンタル又はニオブ等の1種類の金属製又はこれらの金属から選択された2種以上の元素からなる合金製である。導電性ダイヤモンド層2は、ダイヤモンドに5×1019cm−3以上の濃度でリン、窒素、硫黄又はリチウム等の不純物原子を導入することにより構成されている。また、触媒金属粒子3は、白金、イリジウム、ルテニウム、ロジウム、パラジウム、金、銀、銅、ニッケル、コバルト、鉄、モリブデン及びタンタルからなる群から選択された金属、又はこの群から選択された2種以上の元素をを含有する合金で形成された金属粒子である。また、この触媒金属粒子3は、その粒径が直径1μm以下で、体積密度が10cm−3以上で導電性ダイヤモンド層中に存在することを特徴とする。
【0020】
このように構成した電極では、従来の導電性ダイヤモンド電極を使用する場合と比較して、導電性ダイヤモンド層2中の触媒金属粒子3が電極表面での被処理物質の化学反応を促進するため、電気分解効率が飛躍的に向上する。よって、従来は電気分解が困難だったダイオキシン等のような有害物質を、効率良く処理することができる。また、例えば、クロロフェノール及びクロロベンゼン等のような有害な中間生成物をも極めて効率良く安全な低分子量の物質とすることできる。
【0021】
本実施形態においては、触媒金属粒子3は、直径1μm以下の粒径で、10cm−3以上の体積密度で導電性ダイヤモンド層2中に分散して存在する。このように、触媒金属粒子3の粒径を直径で1μm以下と小さくすることによって、触媒反応に関与する体積比表面積を増大させ、触媒金属粒子3の持つ触媒効果を高めることができる。また、触媒金属3の体積密度を10cm−3以上に調整することにより、触媒金属粒子3の持つ触媒機能を充分に活かすことができる。
【0022】
また、本実施形態においては、触媒金属粒子3と導電性ダイヤモンド層2との界面には、グラファイト等の非ダイヤモンド炭素成分は介在せずに直接接触している。触媒金属粒子3と導電性ダイヤモンドとの界面に中間介在物が存在すると、基材である導電性ダイヤモンド層2からの触媒金属粒子3の離脱が起きやすくなる。これは、電極性能の劣化及び電極寿命の短縮等の原因となり好ましくない。さらに、光を透過しない中間介在物の存在は、導電性ダイヤモンドの光導電効果による電気化学反応の促進効果を阻害する。
【0023】
触媒作用を有する金属粒子を導電性ダイヤモンド層2中に分散して担持させて触媒金属粒子3を形成するには、例えば、次のような方法がある。はじめに、公知の気相合成技術、例えばマイクロ波プラズマCVD(Chemical Vapor Deposition:化学的気相成長)法及び熱フィラメントCVD法等を採用し、メタン又は一酸化炭素等の炭素含有ガスと水素ガスとの混合ガスに、所望の不純物を導入するために適当な不純物添加ガスを加えた原料ガスを用いて、導電性ダイヤモンド薄層を形成する。次に、公知の気相合成技術、例えばスパッタ法等を採用し、触媒作用を有する所望の金属を、上記の導電性ダイヤモンド薄層表面に蒸着する。この表面に導電性ダイヤモンド薄層を前述と同様の気相合成技術を用いて積層することで、触媒金属粒子を直径1μm以下の粒径で導電性ダイヤモンド粒子間に取り込むことができる。さらに、同様の方法によって、金属の蒸着と導電性ダイヤモンド薄層の積層工程を繰り返すことで、触媒金属粒子3を取り込んだ導電性ダイヤモンド層2の厚さを増すことが可能である。
【0024】
図2は、上述の方法により作成した本実施形態に係る電気化学的処理用電極の表面の状態を示す電子顕微鏡写真である。触媒金属粒子が導電性ダイヤモンド粒子間に均一に分散している。なお、導電性ダイヤモンド層を形成するための工程では、非ダイヤモンド炭素成分等の生成を抑制するに充分な量の水素ガスを供給することが重要である。また、電極自体の形状は特に限定されるものではなく、棒状、板状、網目状又は円筒状等であってもよい。
【0025】
【実施例】
以下、本発明の実施例について、具体的に説明する。
【0026】
試験例1
厚さが1mm、1辺の長さが1cmの正方形のモリブデンからなる導電性基体1の表面に、熱フィラメントCVD法により2×1020cm−3のボロン原子を含有する導電性ダイヤモンド薄層を1μmの厚さで形成した。次に、この表面に、スパッタ法により5体積%のルテニウムを含有する白金を平均0.1μmの厚さで蒸着した。更に、マイクロ波プラズマCVD法によりダイヤモンド薄層を0.3μmの厚さで成膜することにより、本実施例の電極を作成した。この電極を陽極とし、陰極との極間隔を3mmとし、硫酸第一水銀電極を参照電極として組み込んだ電気分解装置を作成した。この装置に100ppmのパラクロロフェノールを含有する硫酸水溶液を満たし、本実施例に係る電極を3mA/cmの電流密度で通電したまま5時間保持した。この処理の後、液体クロマトグラフィーにより溶液中のパラクロロフェノールの濃度を測定したところ、5ppmに低下していた。よって、本実施例の電極により、ダイオキシン等の分解反応で生成する有害化学物質であるパラクロロフェノールを、高い分解率で処理することができた。
【0027】
試験例2
試験例1と同様の方法により、触媒金属粒子3のみが異なる電極を多種類作成し、触媒金属粒子3の成分、平均粒径及び導電性ダイヤモンドに対する体積密度が、パラクロロフェノールの分解率に与える影響を調べた。下記表1は、本試験に用いた電極中の触媒金属粒子3の構成成分、平均粒径及び体積密度並びにクロロフェノール分解率の測定結果を示したものである。表1中の全ての実験条件において、高いクロロフェノール分解率を得た。特に、90%以上の極めて高い分解率を得たのは、触媒金属粒子3の平均粒径が1μm以下で、かつ体積密度が1×10/cm以上の場合であった。
【0028】
【表1】

Figure 2004035908
【0029】
試験例3
試験例1と同様の方法で作成した電気分解装置に、ピーク波長が254nmである紫外光ランプを取り付け、本実施例の電極表面に紫外光を照射するようにした。この電気分解装置を用いて試験例1と同じ条件、即ち、電極への通電量を3mA/cmの電流密度とした条件において、100ppmのパラクロロフェノールを含有する硫酸水溶液を処理したところ、その濃度が5ppmに低減するのに要する時間を1時間に短縮できた。
【0030】
【発明の効果】
以上に詳述したように、本発明によれば、導電性ダイヤモンド層中に分散して担持された触媒金属粒子が、電極表面での被処理物質の化学反応を促進する。このため、従来の導電性ダイヤモンド電極では分解するのが難しかったダイオキシン等のような有害物質を極めて効率良く処理することができる。また、処理中に生成する有害な中間生成物の分解率を向上することができるため、有害な被処理物質を安全な低分子量の最終生成物とすることが容易である。更に、可視光から紫外光に至る波長領域の光を電極表面に照射する光源を備えることにより、電極表面での被処理物質の分解効果を飛躍的に向上することができる。
【図面の簡単な説明】
【図1】本発明の実施形態に係る電気化学的処理用電極の構造を示す断面図である。
【図2】本発明の実施形態に係る電気化学的処理用電極表面の状態を示す電子顕微鏡写真である。
【符号の説明】
1;導電性基体
2;導電性ダイヤモンド層
3;触媒金属粒子[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an electrode for electrochemical processing and an electrochemical processing apparatus used for electrochemical processing such as decomposing a solution and a gas containing environmental pollutants into a harmless low molecular weight substance, and in particular, The present invention relates to an electrode for electrochemical processing and an electrochemical processing apparatus capable of efficiently electrolyzing substances such as dioxin which are difficult to electrolyze.
[0002]
[Prior art]
There are concerns about the effects on the environment and the human body due to air pollution caused by industrial waste and domestic waste, and deterioration of water quality in rivers and lakes, and technical measures for solving the problems are urgently needed. For example, in the treatment of drinking water, sewage treatment, and wastewater treatment, a chemical such as chlorine is put into water for the purpose of decolorization, reduction of chemical oxygen demand (COD), and sterilization. However, since new dangerous substances such as environmental hormones (exogenous secretory disrupting substances) and carcinogenic substances are generated by chlorine injection, such chlorine injection tends to be prohibited. In the incineration of waste, carcinogenic substances (dioxins) are generated in waste gas depending on combustion conditions, which may affect the ecosystem. For these reasons, new treatment methods that can eliminate safety concerns are being studied.
[0003]
One of the methods of wastewater treatment is an electrolysis method. This electrolysis method uses not only direct electrolysis by adsorption of the substance to be treated on the electrode but also hydrogen, oxygen, ozone or permeation by controlling the chemical reaction on the electrode surface by using electric energy with little contamination. Indirect decomposition of the substance to be treated by a by-product such as hydrogen oxide is also enabled. Preferably, the decomposition products eventually become low molecular weight safe substances such as carbon dioxide, water, hydrogen, oxygen, nitrogen, ammonia or chloride ions. However, it is known that intermediate products in the course of decomposition may be rather dangerous.
[0004]
Therefore, there is a demand for an electrolysis method in which a substance to be treated is efficiently decomposed into a safe substance without leaving a dangerous intermediate product. As such an electrolysis method, a method of using conductive diamond in which an electrode material is doped with impurities has been proposed. Since an electrode using conductive diamond is inactive against electrolysis of water, an oxidation reaction produces ozone or hydrogen peroxide in addition to oxygen (Japanese Patent Application Laid-Open No. 9-268395). Hydrogen peroxide and ozone are raw materials for generating OH radicals and the like having higher oxidizing power, and radicals are easily generated when they coexist. Therefore, in the electrolysis treatment using the conductive diamond electrode, improvement in the decomposition efficiency can be expected as compared with the case where a general metal electrode or metal oxide electrode is used.
[0005]
However, some harmful substances such as dioxin cannot accelerate the decomposition reaction unless the potential is higher than the oxidation-reduction reaction of water. In the electrolysis treatment of such a harmful substance, a sufficient decomposition efficiency cannot be obtained only by using a conductive diamond electrode.
[0006]
As a means for solving such a problem, an electrochemical treatment method using a conductive diamond electrode whose surface is covered with a diamond layer having an extremely small impurity content can be considered (application number: 2001-262287). In a conductive diamond electrode covered with a high-purity diamond layer, charges are injected into the high-purity diamond layer from the interface with the conductive diamond layer. The injected charges are transported to the outer surface of the electrode while being accelerated in the high-purity diamond layer having a wide energy gap, and accelerate the decomposition reaction of the substance to be treated. As described above, by utilizing the property of high-purity diamond having a wide energy gap, a higher electrode potential can be obtained. Therefore, improvement of the decomposition efficiency can be expected even for substances that are difficult to electrolyze such as dioxin.
[0007]
[Problems to be solved by the invention]
However, when the surface of the conductive diamond electrode doped with impurities is coated with a high-purity diamond layer and used, a higher electrode potential can be obtained, but on the other hand, the current density decreases. For this reason, the decomposition reaction from the harmful intermediate product to the final product does not always proceed efficiently, and the harmful intermediate product may remain after the treatment. Therefore, it cannot be said that the above-mentioned conventional technology has solved the problem of efficiently decomposing a substance such as dioxin which is difficult to electrolyze into a low-molecular-weight safe end product.
[0008]
The present invention has been made in view of the above problems, and is intended for an electrochemical treatment capable of extremely efficiently decomposing a harmful substance that is difficult to electrolyze into a safe low-molecular-weight final reaction product. It is an object to provide an electrode and a device for electrochemical treatment.
[0009]
[Means for Solving the Problems]
The electrode for electrochemical treatment according to the present invention includes a base, a conductive diamond layer formed on the base and doped with impurities, and catalytic metal particles dispersed and supported in the conductive diamond layer. And the conductive diamond layer transmits visible light or ultraviolet light.
[0010]
In the present invention, the catalytic metal particles dispersed and supported in the conductive diamond layer promote the chemical reaction of the substance to be treated on the electrode surface. For this reason, harmful substances, such as dioxin, which are difficult to decompose with the conventional conductive diamond electrode, can be treated extremely efficiently. Further, since the decomposition rate of harmful intermediate products generated during the treatment can be improved, it is easy to convert harmful substances to be processed into safe low-molecular-weight final products. In addition, the conductive diamond used as the electrode substrate has not only a very high oxidizing ability at the anode and a very high reducing ability at the cathode, but also a high mechanical and chemical resistance. Therefore, the effect that the high electrochemical treatment capacity including the catalytic action by the metal particles is hardly deteriorated is also obtained.
[0011]
The catalyst metal particles are platinum, iridium, ruthenium, rhodium, palladium, gold, silver, copper, nickel, cobalt, iron, molybdenum and tantalum, or two or more metals selected from the group. It is an alloy containing an element.
[0012]
In the present invention, any one of the metals selected from these groups may be supported as catalytic metal particles in the conductive diamond layer. It is also effective to form the catalytic metal particles with two or more kinds of metals selected from these groups and to carry them in the conductive diamond layer.
[0013]
In the present invention, it is desirable that the metal particles carried in the conductive diamond layer have a diameter of 1 μm or less. The metal particles are preferably present in the conductive diamond layer at a volume density of 10 5 cm −3 or more. When the particle size and the volume density are adjusted to the above ranges, the volume specific surface area involved in the catalytic reaction is increased, so that the catalytic action of the metal particles is increased, and the decomposition efficiency of the non-treated substance is increased.
[0014]
Furthermore, in the present invention, it is desirable that non-diamond carbon components such as graphite do not intervene at the interface between the metal particles and the conductive diamond layer, and that the metal particles and the conductive diamond are in direct contact. When an intermediate is present at the interface between the metal particles and the conductive diamond, the metal particles are easily separated from the conductive diamond layer as the base material. As a result, the electrode performance deteriorates and the electrode life is shortened. In addition, the presence of intermediate inclusions that do not transmit light is a factor that hinders the effect of promoting the electrochemical reaction due to the photoconductive effect of the conductive diamond.
[0015]
An apparatus for electrochemical treatment according to the present invention includes a substrate, a conductive diamond layer formed on the substrate and doped with impurities, and catalytic metal particles dispersed and supported in the conductive diamond layer. Having an electrode that transmits visible light or ultraviolet light, the conductive diamond layer is used as at least one of an anode and a cathode, and the electrode electrochemically converts a substance to be treated into a substance having a lower molecular weight than the electrode. It is characterized by being decomposed into.
[0016]
Further, the electrochemical treatment apparatus according to the present invention is characterized in that it has a light source for irradiating light having a wavelength of 180 nm to 750 nm to the electrode surface.
[0017]
Since the electrochemical treatment apparatus according to the present invention uses the above-described electrode for electrochemical treatment according to the present invention, harmful substances such as dioxin, which are difficult to electrolyze, can be safely converted into a low-molecular-weight final reaction product. Can be decomposed very efficiently. In addition, by providing a light source that irradiates the electrode surface with light in a wavelength range from ultraviolet light to visible light, it is possible to obtain an effect of promoting an electrochemical reaction due to the photoconductive effect of conductive diamond.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an electrode for electrochemical treatment according to an embodiment of the present invention will be specifically described with reference to the accompanying drawings. FIG. 1 is a schematic sectional view showing a structure of an electrode for electrochemical treatment according to an embodiment of the present invention.
[0019]
In the present embodiment, the surface of the conductive substrate 1 is covered with the conductive diamond layer 2, and the catalyst metal particles 3 are dispersed and supported in the conductive diamond layer. The conductive substrate 1 is made of one kind of metal such as silicon, molybdenum, platinum, tungsten, cobalt, nickel, titanium, tantalum or niobium or an alloy made of two or more elements selected from these metals. . The conductive diamond layer 2 is formed by introducing impurity atoms such as phosphorus, nitrogen, sulfur or lithium into diamond at a concentration of 5 × 10 19 cm −3 or more. Further, the catalyst metal particles 3 are a metal selected from the group consisting of platinum, iridium, ruthenium, rhodium, palladium, gold, silver, copper, nickel, cobalt, iron, molybdenum and tantalum, or a metal selected from the group consisting of Metal particles formed of an alloy containing more than one kind of element. The catalyst metal particles 3 have a diameter of 1 μm or less and a volume density of 10 5 cm −3 or more and are present in the conductive diamond layer.
[0020]
In the electrode configured in this way, the catalyst metal particles 3 in the conductive diamond layer 2 promote the chemical reaction of the substance to be treated on the electrode surface, as compared with the case where a conventional conductive diamond electrode is used. The electrolysis efficiency is dramatically improved. Therefore, harmful substances such as dioxin and the like, which were conventionally difficult to electrolyze, can be efficiently treated. Further, for example, harmful intermediate products such as chlorophenol and chlorobenzene can be extremely efficiently and safely converted into low molecular weight substances.
[0021]
In the present embodiment, the catalytic metal particles 3 are dispersed in the conductive diamond layer 2 with a particle diameter of 1 μm or less and a volume density of 10 5 cm −3 or more. Thus, by reducing the particle diameter of the catalyst metal particles 3 to 1 μm or less in diameter, the volume specific surface area involved in the catalytic reaction can be increased, and the catalytic effect of the catalyst metal particles 3 can be enhanced. In addition, by adjusting the volume density of the catalyst metal 3 to 10 5 cm −3 or more, the catalyst function of the catalyst metal particles 3 can be sufficiently utilized.
[0022]
In the present embodiment, the interface between the catalytic metal particles 3 and the conductive diamond layer 2 is in direct contact with a non-diamond carbon component such as graphite without intervening. When an intermediate inclusion exists at the interface between the catalytic metal particles 3 and the conductive diamond, the catalytic metal particles 3 are easily separated from the conductive diamond layer 2 as a base material. This is undesirable because it causes deterioration of electrode performance and shortening of electrode life. Furthermore, the presence of an intermediate that does not transmit light impairs the effect of promoting the electrochemical reaction due to the photoconductive effect of the conductive diamond.
[0023]
In order to form catalytic metal particles 3 by dispersing and supporting catalytic metal particles in conductive diamond layer 2, for example, the following method is available. First, a known gas-phase synthesis technique, for example, a microwave plasma CVD (Chemical Vapor Deposition) method and a hot filament CVD method are adopted, and a carbon-containing gas such as methane or carbon monoxide and a hydrogen gas are used. A conductive diamond thin layer is formed by using a raw material gas obtained by adding an appropriate impurity-added gas for introducing a desired impurity to the mixed gas described above. Next, using a known gas phase synthesis technique, for example, a sputtering method, a desired metal having a catalytic action is deposited on the surface of the conductive diamond thin layer. By laminating a conductive diamond thin layer on this surface by using the same gas phase synthesis technique as described above, catalytic metal particles having a diameter of 1 μm or less can be taken between the conductive diamond particles. Further, the thickness of the conductive diamond layer 2 incorporating the catalytic metal particles 3 can be increased by repeating the steps of metal deposition and lamination of the conductive diamond thin layer by the same method.
[0024]
FIG. 2 is an electron micrograph showing the state of the surface of the electrode for electrochemical processing according to the present embodiment created by the method described above. The catalytic metal particles are uniformly dispersed between the conductive diamond particles. In the process for forming the conductive diamond layer, it is important to supply a sufficient amount of hydrogen gas to suppress generation of non-diamond carbon components and the like. Further, the shape of the electrode itself is not particularly limited, and may be a rod shape, a plate shape, a mesh shape, a cylindrical shape, or the like.
[0025]
【Example】
Hereinafter, examples of the present invention will be specifically described.
[0026]
Test example 1
A conductive diamond thin layer containing boron atoms of 2 × 10 20 cm −3 was formed on a surface of a conductive substrate 1 made of molybdenum square having a thickness of 1 mm and a side length of 1 cm by a hot filament CVD method. It was formed with a thickness of 1 μm. Next, on this surface, platinum containing 5% by volume of ruthenium was deposited by sputtering to an average thickness of 0.1 μm. Further, an electrode of this example was formed by forming a thin diamond layer with a thickness of 0.3 μm by microwave plasma CVD. This electrode was used as an anode, the distance between the cathode and the cathode was set to 3 mm, and an electrolysis apparatus was prepared in which a mercurous sulfate electrode was incorporated as a reference electrode. This device was filled with a sulfuric acid aqueous solution containing 100 ppm of parachlorophenol, and the electrode according to the present example was maintained at a current density of 3 mA / cm 2 for 5 hours while energized. After this treatment, the concentration of parachlorophenol in the solution was measured by liquid chromatography and found to be 5 ppm. Therefore, the electrode of the present example was able to treat parachlorophenol, which is a harmful chemical substance generated by a decomposition reaction such as dioxin, at a high decomposition rate.
[0027]
Test example 2
In the same manner as in Test Example 1, many types of electrodes were prepared in which only the catalyst metal particles 3 were different, and the components, the average particle diameter, and the volume density of the conductive metal particles 3 with respect to the conductive diamond gave the decomposition rate of parachlorophenol. The effects were investigated. Table 1 below shows the measurement results of the constituent components, the average particle diameter, the volume density, and the chlorophenol decomposition rate of the catalytic metal particles 3 in the electrode used in this test. Under all the experimental conditions in Table 1, a high chlorophenol decomposition rate was obtained. In particular, an extremely high decomposition rate of 90% or more was obtained when the average particle size of the catalytic metal particles 3 was 1 μm or less and the volume density was 1 × 10 5 / cm 3 or more.
[0028]
[Table 1]
Figure 2004035908
[0029]
Test example 3
An ultraviolet lamp having a peak wavelength of 254 nm was attached to the electrolyzer prepared in the same manner as in Test Example 1, and the electrode surface of this example was irradiated with ultraviolet light. Using this electrolyzer, a sulfuric acid aqueous solution containing 100 ppm of parachlorophenol was treated under the same conditions as in Test Example 1, that is, under the conditions where the amount of current supplied to the electrode was set to a current density of 3 mA / cm 2. The time required to reduce the concentration to 5 ppm could be reduced to one hour.
[0030]
【The invention's effect】
As described in detail above, according to the present invention, the catalytic metal particles dispersed and supported in the conductive diamond layer promote the chemical reaction of the substance to be treated on the electrode surface. For this reason, harmful substances, such as dioxin, which were difficult to decompose with the conventional conductive diamond electrode, can be treated extremely efficiently. In addition, since the decomposition rate of harmful intermediate products generated during the treatment can be improved, it is easy to convert harmful substances to be processed into safe low-molecular-weight final products. Furthermore, by providing a light source for irradiating the electrode surface with light in a wavelength range from visible light to ultraviolet light, the decomposition effect of the substance to be treated on the electrode surface can be significantly improved.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view illustrating a structure of an electrode for electrochemical treatment according to an embodiment of the present invention.
FIG. 2 is an electron micrograph showing a state of an electrode for electrochemical treatment according to an embodiment of the present invention.
[Explanation of symbols]
1; conductive substrate 2; conductive diamond layer 3; catalytic metal particles

Claims (5)

基体と、この基体の上に形成され不純物が導入された導電性ダイヤモンド層と、この導電性ダイヤモンド層中に分散して担持された触媒金属粒子とを有し、前記導電性ダイヤモンド層は可視光又は紫外光を透過することを特徴とする電気化学的処理用電極。A substrate, a conductive diamond layer formed on the substrate and doped with impurities, and catalytic metal particles dispersed and supported in the conductive diamond layer, wherein the conductive diamond layer is formed of visible light. Alternatively, an electrode for electrochemical treatment, which transmits ultraviolet light. 前記触媒金属粒子は、白金、イリジウム、ルテニウム、ロジウム、パラジウム、金、銀、銅、ニッケル、コバルト、鉄、モリブデン及びタンタルからなる群から選択された金属又は前記群から選択された2種以上の元素を含む合金であることを特徴とする請求項1に記載の電気化学的処理用電極。The catalyst metal particles are platinum, iridium, ruthenium, rhodium, palladium, gold, silver, copper, nickel, cobalt, iron, molybdenum and tantalum, or two or more metals selected from the group. The electrode for electrochemical treatment according to claim 1, wherein the electrode is an alloy containing an element. 前記触媒金属粒子は直径1μm以下の粒径で前記導電性ダイヤモンド層中に10cm−3以上の体積密度で含有されていることを特徴とする請求項1又は2に記載の電気化学的処理用電極。3. The electrochemical treatment according to claim 1, wherein the catalytic metal particles are contained in the conductive diamond layer at a volume density of 10 5 cm −3 or more with a particle diameter of 1 μm or less. 4. Electrodes. 請求項1乃至3のいずれか1項に記載の電気化学的処理用電極を陽極及び陰極の少なくともいずれかとして使用し、前記電極により被処理物質をそれよりも分子量の低い物質に電気化学的に分解するものであることを特徴とする電気化学的処理装置。The electrode for electrochemical treatment according to any one of claims 1 to 3 is used as at least one of an anode and a cathode, and the electrode electrochemically converts a substance to be treated into a substance having a lower molecular weight. An electrochemical treatment device characterized by being decomposed. 波長が180nm乃至750nmの光を電極表面に照射する光源を有することを特徴とする請求項3に記載の電気化学的処理装置。4. The electrochemical processing apparatus according to claim 3, further comprising a light source for irradiating light having a wavelength of 180 nm to 750 nm to the electrode surface.
JP2002190604A 2002-06-28 2002-06-28 Electrochemical processing equipment Expired - Fee Related JP4121322B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002190604A JP4121322B2 (en) 2002-06-28 2002-06-28 Electrochemical processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002190604A JP4121322B2 (en) 2002-06-28 2002-06-28 Electrochemical processing equipment

Publications (2)

Publication Number Publication Date
JP2004035908A true JP2004035908A (en) 2004-02-05
JP4121322B2 JP4121322B2 (en) 2008-07-23

Family

ID=31700484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002190604A Expired - Fee Related JP4121322B2 (en) 2002-06-28 2002-06-28 Electrochemical processing equipment

Country Status (1)

Country Link
JP (1) JP4121322B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005090954A1 (en) * 2004-03-09 2005-09-29 Element Six B.V. Electrochemical sensor comprising diamond particles
WO2005116306A1 (en) * 2004-05-27 2005-12-08 Toppan Printing Co., Ltd. Nanocrystal diamond film, process for producing the same and apparatus using nanocrystal diamond film
JP2010023030A (en) * 2008-06-19 2010-02-04 Mitsubishi Gas Chemical Co Inc Catalyst and method for manufacturing carboxylic acid or carboxylic acid anhydride using the same
JP2011120983A (en) * 2009-12-09 2011-06-23 Omega:Kk Liquid treatment method
JP2011184749A (en) * 2010-03-09 2011-09-22 Shinshu Univ Electrochemical electrode and method of manufacturing the same
CN105905988A (en) * 2016-05-25 2016-08-31 安徽普氏生态环境工程有限公司 Method for degrading sewage COD (chemical oxygen demand) on basis of visible light catalytic-electrocatalytic air oxidation

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005090954A1 (en) * 2004-03-09 2005-09-29 Element Six B.V. Electrochemical sensor comprising diamond particles
JP2007528495A (en) * 2004-03-09 2007-10-11 エレメント シックス ベスローテン フェンノートシャップ Electrochemical sensor containing diamond particles
JP4685089B2 (en) * 2004-03-09 2011-05-18 エレメント シックス ベスローテン フェンノートシャップ Electrochemical sensor containing diamond particles
WO2005116306A1 (en) * 2004-05-27 2005-12-08 Toppan Printing Co., Ltd. Nanocrystal diamond film, process for producing the same and apparatus using nanocrystal diamond film
US8420043B2 (en) 2004-05-27 2013-04-16 Toppan Printing Co., Ltd. Nano-crystal diamond film, manufacturing method thereof, and device using nano-crystal diamond film
JP2010023030A (en) * 2008-06-19 2010-02-04 Mitsubishi Gas Chemical Co Inc Catalyst and method for manufacturing carboxylic acid or carboxylic acid anhydride using the same
JP2011120983A (en) * 2009-12-09 2011-06-23 Omega:Kk Liquid treatment method
JP2011184749A (en) * 2010-03-09 2011-09-22 Shinshu Univ Electrochemical electrode and method of manufacturing the same
US8338323B2 (en) 2010-03-09 2012-12-25 Permelec Electrode Ltd. Electrode for electrochemical reaction and production process thereof
CN105905988A (en) * 2016-05-25 2016-08-31 安徽普氏生态环境工程有限公司 Method for degrading sewage COD (chemical oxygen demand) on basis of visible light catalytic-electrocatalytic air oxidation
CN105905988B (en) * 2016-05-25 2018-11-30 安徽普氏生态环境工程有限公司 A method of based on visible light catalytic-electro-catalysis air oxidation degradation COD of sewage

Also Published As

Publication number Publication date
JP4121322B2 (en) 2008-07-23

Similar Documents

Publication Publication Date Title
Shu et al. Electrocatalytic hydrodechlorination of 4-chlorophenol on Pd supported multi-walled carbon nanotubes particle electrodes
Song et al. Preparation of Pd-Fe/graphene catalysts by photocatalytic reduction with enhanced electrochemical oxidation-reduction properties for chlorophenols
Mao et al. Dechlorination of triclosan by enhanced atomic hydrogen-mediated electrochemical reduction: Kinetics, mechanism, and toxicity assessment
JP4116726B2 (en) Electrochemical treatment method and apparatus
Zhang et al. Decomposition of acetaminophen in water by a gas phase dielectric barrier discharge plasma combined with TiO2-rGO nanocomposite: Mechanism and degradation pathway
Zhou et al. Intimate coupling of an N-doped TiO2 photocatalyst and anode respiring bacteria for enhancing 4-chlorophenol degradation and current generation
US20190112211A1 (en) Method for Photocatalytic Ozonation Reaction, Catalyst for photocatalytic ozonation and Reactor Containing the Same
Zhang et al. A nitrogen functionalized carbon nanotube cathode for highly efficient electrocatalytic generation of H2O2 in Electro-Fenton system
Li et al. Electro-activation of peroxymonosulfate by a graphene oxide/iron oxide nanoparticle-doped Ti4O7 ceramic membrane: mechanism of singlet oxygen generation in the removal of 1, 4-dioxane
Xu et al. A facile solution to mature cathode modified by hydrophobic dimethyl silicon oil (DMS) layer for electro-Fenton processes: water proof and enhanced oxygen transport
Oturan et al. Oxidation/mineralization of 2-nitrophenol in aqueous medium by electrochemical advanced oxidation processes using Pt/carbon-felt and BDD/carbon-felt cells
Norra et al. Removal of persistent organic contaminants from wastewater using a hybrid electrochemical-granular activated carbon (GAC) system
Deng et al. Electrocatalytic sulfathiazole degradation by a novel nickel-foam cathode coated with nitrogen-doped porous carbon
Wang et al. Mechanism for enhancing biodegradability of antibiotic pharmacy wastewater by in-situ generation of H2O2 and radicals over MnOx/nano-G/2-EAQ/AC cathode
He et al. Electrochemically reductive dechlorination of 3, 6-dichloropicolinic acid on a palladium/nitrogen-doped carbon/nickel foam electrode
Guo et al. Electric-field-driven nanoparticles produce dual-functional bipolar electrodes and nanoelectrolytic cells for water remediation
JP2005290403A (en) Electrolysis method by conductive diamond particle and method for manufacturing conductive diamond particle
Li et al. Efficient TN removal and simultaneous TOC conversion for highly toxic organic amines based on a photoelectrochemical-chlorine radicals process
Bezerra et al. Photo-and electro-oxidation of tetracycline hydrochloride on self-doped titanium dioxide nanotubes modified by Pt sub-monolayers
Li et al. Efficient removal of bromate from contaminated water using electrochemical membrane filtration with metal heteroatom interface
JP4121322B2 (en) Electrochemical processing equipment
JP4190173B2 (en) Electrochemical treatment method and electrochemical treatment apparatus
Thai et al. Graphene quantum dots (GQDs) decorated zeolitic imidazole framework-67 (ZIF67) electrode for the in-situ oxidation of ciprofloxacin in water
Wei et al. Water Flow-Driven Coupling Process of Anodic Oxygen Evolution and Cathodic Oxygen Activation for Water Decontamination and Prevention of Chlorinated Byproducts
JP2005139328A (en) Remover of organochlorine compound and method for removing organochlorine compound

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041022

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071009

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071207

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080207

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080428

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080428

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120509

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120509

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130509

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140509

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees