JP4190173B2 - Electrochemical treatment method and electrochemical treatment apparatus - Google Patents

Electrochemical treatment method and electrochemical treatment apparatus Download PDF

Info

Publication number
JP4190173B2
JP4190173B2 JP2001262287A JP2001262287A JP4190173B2 JP 4190173 B2 JP4190173 B2 JP 4190173B2 JP 2001262287 A JP2001262287 A JP 2001262287A JP 2001262287 A JP2001262287 A JP 2001262287A JP 4190173 B2 JP4190173 B2 JP 4190173B2
Authority
JP
Japan
Prior art keywords
diamond layer
doped diamond
electrode
doped
electrochemical treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001262287A
Other languages
Japanese (ja)
Other versions
JP2003073876A (en
Inventor
武史 橘
憲一 井上
薫 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2001262287A priority Critical patent/JP4190173B2/en
Publication of JP2003073876A publication Critical patent/JP2003073876A/en
Application granted granted Critical
Publication of JP4190173B2 publication Critical patent/JP4190173B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46133Electrodes characterised by the material
    • C02F2001/46138Electrodes comprising a substrate and a coating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/36Organic compounds containing halogen
    • C02F2101/366Dioxine; Furan

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、環境汚染物質を含む溶液及びガスを無害な低分子量の物質に分解する電気化学的な処理に好適な電気化学的処理用電極、電気化学的処理方法及び電気化学的処理装置に関し、特に、ダイオキシン等の電気分解が困難な物質の分解を可能にする電気化学的処理用電極、電気化学的処理方法及び電気化学的処理装置に関する。
【0002】
【従来の技術】
産業廃棄物及び生活廃棄物に起因する大気汚染並びに河川及び湖沼の水質悪化等により環境及び人体への影響が憂慮され、その問題解決のための技術的な対策が急務になっている。例えば、飲料水の処理、下水処理及び排水処理において、その脱色、化学的酸素要求量(COD:Chemical Oxygen Demand)の低減及び殺菌を目的として塩素等の薬剤が水中に投入されているが、塩素注入による新たな危険物質、例えば環境ホルモン(外因性分泌攪乱物質)及び発ガン性物質等が発生するため、このような塩素注入は禁止される方向にある。また、廃棄物の焼却処理では、燃焼条件によっては廃ガス中に発ガン性物質(ダイオキシン類)が発生し、生態系に影響を及ぼすため、その安全性が問題視され、これを解決するために新規な方法が検討されている。また、廃水処理の方法の1つに電解法がある。この電解法は、汚染が少ない電気エネルギを利用して、電極の表面での化学反応を制御することにより、水素、酸素、オゾン又は過酸化水素等を発生させ、これらの物質により被処理物質を間接的に分解するか、被処理物を電極に吸着させて直接電気分解することが可能である。分解生成物は、最終的には二酸化炭素、水、水素、酸素、窒素、アンモニア又は塩化物イオン等の低分子量の安全な物質となることが好ましいが、分解過程にある中間体がかえって危険性を有する場合もあることが知られている。
【0003】
このような電解法に使用される電極として、不純物をドープした導電性ダイヤモンド電極は、水の電気分解に対しては不活性であり、酸化反応では酸素以外にオゾン又は過酸化水素を生成することが知られている(特開平9−268395号公報)。過酸化水素及びオゾンは、より酸化力が高いOHラジカル等の発生原料であり、それらの共存下では、ラジカルが容易に生成することが知られている。従って、導電性ダイヤモンド電極を使用した電気分解処理では、それまでの電極を使用した場合と比較して、効率が向上することが期待できる。
【0004】
【発明が解決しようとする課題】
しかしながら、ダイオキシン等の有害物質の中には、水の酸化還元反応と比較して、より高い電位でないと分解反応が促進されないものもあり、単に従来の導電性ダイヤモンド電極を使用しただけでは、そのような有害物質を効率的に分解することができないという問題点がある。
【0005】
本発明はかかる問題点に鑑みてなされたものであって、分解に高い電位が必要とされる有害物質であっても分解することができる電気化学的処理用電極、電気化学的処理方法及び電気化学的処理装置を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明に係る電気化学的処理方法は、チタンからなる導電性基体、この基体の表面に熱フィラメントCVD法により形成され不純物が導入されたドープダイヤモンド層、及びこのドープダイヤモンド層の少なくとも一部を覆うようにマイクロ波CVD法により形成されたノンドープダイヤモンド層を備えた電極を陽極及び陰極の少なくともいずれかとして使用して前記電極に接触した被処理物質をそれよりも分子量が低い物質に電気化学的に分解する工程を有し、前記ドープダイヤモンド層の表面積に対する前記ノンドープダイヤモンド層により覆われた領域の面積の割合及び膜厚により、溶媒の酸化還元反応電位を調整することを特徴とする。
【0007】
本発明においては、ドープダイヤモンド層の少なくとも一部がノンドープダイヤモンド層で覆われているので、ドープダイヤモンド層の表面からノンドープダイヤモンド層に注入された電荷がノンドープダイヤモンド層中で加速された上でノンドープダイヤモンド層の表面まで輸送され、電極表面における被処理物質の化学反応を促進する。このため、水の酸化還元反応と比較して、より高い電位でないと分解反応が促進されないような物質、例えばダイオキシンであっても、電気分解することが可能である。なお、ドープダイヤモンド層の全面がノンドープダイヤモンド層により覆われていてもよい。
【0009】
本発明に係る電気化学的処理装置は、チタンからなる導電性基体、この基体の表面に熱フィラメントCVD法により形成され不純物が導入されたドープダイヤモンド層、及びこのドープダイヤモンド層の少なくとも一部を覆うようにマイクロ波CVD法により形成されたノンドープダイヤモンド層、を備えた電極を陽極及び陰極の少なくともいずれかとして有し、前記ドープダイヤモンド層の表面積に対する前記ノンドープダイヤモンド層により覆われた領域の面積の割合及び膜厚により、溶媒の酸化還元反応電位を調整し、前記電極に接触した被処理物質をそれよりも分子量が低い物質に電気化学的に分解することを特徴とする。
【0010】
これらの電気化学的処理方法及び電気化学的処理装置は、上述の本発明に係る電気化学的処理用電極を使用しているので、ダイオキシン等の従来分解が困難とされている有害物質を電気分解することができる。
【0011】
【発明の実施の形態】
以下、本発明の実施例に係る電気化学的処理用電極、電気化学的処理方法及び電気化学的処理装置について、添付の図面を参照して具体的に説明する。図1は本発明の第1の実施例に係る電気化学的処理用電極の構造を示す断面図である。
【0012】
本実施例においては、導電性基体1の表面がドープダイヤモンド層2により覆われており、更にドープダイヤモンド層2の表面の全部又は一部がノンドープダイヤモンド層3により覆われている。導電性基体1は、例えばシリコン、モリブデン、プラチナ、タングステン、コバルト、ニッケル、チタン、タンタル又はニオブ等の1種の金属製又はこれらから選択された2種以上の金属からなる合金製である。ドープダイヤモンド層2は、ダイヤモンドに5×1019cm−3以上の濃度でリン、窒素、イオウ又はリチウム等の不純物原子が導入されることにより構成されている。また、ノンドープダイヤモンド層3の不純物含有量は極めて小さく、炭素以外の元素の原子濃度は、5×1017cm−3以下である。
【0013】
このように構成された電極においては、ノンドープダイヤモンド層3がドープダイヤモンド層2上に形成されているので、ノンドープダイヤモンド層3が形成されていない場合と比較すると、溶媒が電気分解される電位が高くなる。前述のように、導電性ダイヤモンド電極は、そのダイヤモンド層の作用により、溶媒自体を電気分解せずに高い電圧を印加して水中に含まれる不純物を効率よく分解できるが、ダイオキシン等の一部の有害物質の電気分解にはより高い電圧の印加が必要とされ、従来の導電性ダイヤモンド電極ではこのような有害物質の電気分解が困難であった。これに対し、本実施例によれば、より高い電圧を印加しても溶媒自体が電気分解しないので、ダイオキシン等の有害物質が効率よく電気分解される。これは、ドープダイヤモンド層2の表面からノンドープダイヤモンド層3に注入された電荷がノンドープダイヤモンド層3中で加速された上でノンドープダイヤモンド層3の表面まで輸送され、電極表面における被処理物質の化学反応を促進するためである。
【0014】
なお、本実施例においては、溶媒の酸化還元反応電位の調整は、ノンドープダイヤモンド層3の被覆率、即ちドープダイヤモンド層2の表面積に対するノンドープダイヤモンド層3により覆われた領域の面積の割合、及び膜厚により調整することができる。従って、被処理物質の種類に応じて最適な電極を適用することができる。
【0015】
ノンドープダイヤモンド層3は、例えば公知の気相合成技術(マイクロ波化学的気相成長(CVD:Chemical Vapor Deposition)法及び熱フィラメントCVD法等)を採用し、メタン又は一酸化炭素等の炭素含有ガスと水素ガスとの混合ガスを原料として容易に形成することができる。このような方法における典型的な成膜速度は、1時間当たり0.1乃至1μm程度であるため、その膜厚の制御は容易である。ドープダイヤモンド層2を形成する際には、ノンドープダイヤモンド層3を形成する方法における原料ガス中に適当な不純物を添加すればよい。
【0016】
なお、電極自体の形状は特に限定されるものではなく、棒状、板状、網目状又は円筒状等であってもよい。
【0017】
次に、本発明の第2の実施例に係る電気化学的処理装置について説明する。図2は本発明の第2の実施例に係る電気化学的処理装置の構造を示す図であって、(a)は縦断面図、(b)は横断面図である。図2(a)は図2(b)中のB−B線に沿った断面図に相当し、逆に図2(b)は図2(a)中のA−A線に沿った断面図に相当する。
【0018】
第2の実施例においては、槽11内に大きさが相違する円筒状の電気化学的処理用電極12及び13が同軸的に配置されている。また、電極12と電極13との間には隔膜14が配置され、槽11内が2つの領域に区画されている。電極12及び13は、第1の実施例と同様の内部構造を有している。即ち、導電性基体がドープダイヤモンド層に覆われ、その一部又は全部がノンドープダイヤモンド層に覆われている。隔膜14の内側の領域の上部には被処理物質の導入口15が設けられ、下部には処理済み物質の排出口16が設けられている。また、隔壁14の外側の領域の下部には、処理済み物質の排出口17が設けられている。
【0019】
このように構成された第2の実施例においては、例えば電極12及び13を、夫々陽極、陰極とし、これらに従来のものよりも高い適当な電圧を印加しながら被処理物質を導入口15から槽11内に導入すれば、溶媒を電気分解することなくダイオキシン等の有害物質を電気分解することができる。
【0020】
次に、本発明の第3の実施例に係る電気化学的処理装置について説明する。図3は本発明の第3の実施例に係る電気化学的処理装置の構造を示す図であって、(a)は縦断面図、(b)は横断面図である。図3(a)は図3(b)中のD−D線に沿った断面図に相当し、逆に図3(b)は図3(a)中のC−C線に沿った断面図に相当する。なお、図3に示す第3の実施例において、図2に示す第2の実施例と同一の構成要素には、同一の符号を付してその詳細な説明は省略する。
【0021】
第3の実施例においては、円筒状の電極13の内側に、円柱状の電極21が電極13と同軸的に配置されている。また、電極13と電極21との間には隔膜22が配置され、槽11内が3つの領域に区画されている。電極21は、第1の実施例と同様の内部構造を有している。即ち、導電性基体がドープダイヤモンド層に覆われ、その一部又は全部がノンドープダイヤモンド層に覆われている。隔膜14及び22により区画された領域の下部には処理済み物質の排出口23が設けられており、排出口16は隔膜22の内側の領域に位置している。
【0022】
このように構成された第3の実施例においては、例えば電極12及び21を陽極とし、電極13を陰極とし、これらに従来のものよりも高い適当な電圧を印加しながら被処理物質を導入口15から槽11内に導入すれば、第2の実施例と同様に、溶媒を電気分解することなくダイオキシン等の有害物質を電気分解することができる。
【0023】
なお、導入口16から槽11内に導入される物質の状態は、液体でもよく気体でもよい。
【0024】
【実施例】
以下、本発明の実施例について、その特許請求の範囲から外れる比較例と比較して具体的に説明する。
【0025】
厚さが1mm、1辺の長さが1cmの正方形のチタンからなる導電性基体1の表面に、熱フィラメントCVD法により2×1020cm−3のボロン原子を含有するドープダイヤモンド層2を3μmの厚さで形成した。更に、マイクロ波CVD法によりノンドープダイヤモンド層3を0.2μmの厚さで形成することにより、実施例に係る電極を製造した(図1参照)。また、比較例に係る電極として、ノンドープダイヤモンド層3を形成しないものを製造した(図6参照)。そして、これらの電極を陽極とし、白金電極からなる陰極との極間距離を3mmとし、参照電極として飽和カロメル電極を組み込んで電解槽を組み立てた。これらの電解槽に1mol/mmのNaSO水溶液を入れ、サイクリックボルタンメトリにより電極反応の特性を測定した。
【0026】
図4及び図5は、横軸に電極電位(飽和カロメル電極(SCE:saturated calomel electrode)に対する電位)をとり、縦軸に電流密度をとって両者の関係を示すグラフ図であって、夫々比較例、実施例における測定結果を示す。図4に示すように、ドープダイヤモンド層2のみが形成された電極(従来の導電性ダイヤモンド電極)では、約1.5Vから水の電気分解が開始したのに対し、ノンドープダイヤモンド層3も形成された実施例では、図5に示すように、水の電気分解は約3Vで開始した。従って、実施例の方が、電気分解により高いエネルギが必要とされる物質を電気分解することができる。
【0027】
【発明の効果】
以上詳述したように、本発明によれば、ドープダイヤモンド層の表面からノンドープダイヤモンド層に注入された電荷がノンドープダイヤモンド層中で加速された上でノンドープダイヤモンド層の表面まで輸送され、電極表面における被処理物質の化学反応を促進するため、水の酸化還元反応と比較してより高い電位でないと分解反応が促進されないような物質、例えばダイオキシンであっても、電気分解することができ、電極表面での不純物分解効果が飛躍的に向上する。
【図面の簡単な説明】
【図1】本発明の第1の実施例に係る電気化学的処理用電極の構造を示す断面図である。
【図2】本発明の第2の実施例に係る電気化学的処理装置の構造を示す図であって、(a)は縦断面図、(b)は横断面図である。
【図3】本発明の第3の実施例に係る電気化学的処理装置の構造を示す図であって、(a)は縦断面図、(b)は横断面図である。
【図4】比較例における結果を示すグラフ図である。
【図5】実施例における結果を示すグラフ図である。
【図6】比較例に係る電気化学的処理用電極の構造を示す断面図である。
【符号の説明】
1;導電性基体
2;ドープダイヤモンド層
3;ノンドープダイヤモンド層
11;槽
12、13、21;電極
14、22;隔膜
15;導入口
16、17、23;排出口
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electrode for electrochemical treatment, an electrochemical treatment method and an electrochemical treatment apparatus suitable for electrochemical treatment for decomposing a solution and gas containing environmental pollutants into harmless low molecular weight substances, In particular, the present invention relates to an electrode for electrochemical treatment, an electrochemical treatment method, and an electrochemical treatment apparatus that enable decomposition of a substance that is difficult to be electrolyzed, such as dioxin.
[0002]
[Prior art]
There are concerns about the impact on the environment and human body due to air pollution caused by industrial waste and domestic waste, and deterioration of water quality of rivers and lakes, and technical measures for solving these problems are urgently needed. For example, in drinking water treatment, sewage treatment and wastewater treatment, chemicals such as chlorine are introduced into water for the purpose of decolorization, reduction of chemical oxygen demand (COD) and sterilization. Since new dangerous substances, such as environmental hormones (exogenous secretion disturbance substances) and carcinogenic substances, are generated by the injection, such chlorine injection tends to be prohibited. In addition, incineration of waste, carcinogenic substances (dioxins) are generated in the waste gas depending on the combustion conditions, and this affects the ecosystem. New methods are being studied. One of the wastewater treatment methods is an electrolysis method. In this electrolytic method, hydrogen, oxygen, ozone, hydrogen peroxide, or the like is generated by controlling the chemical reaction on the surface of the electrode by using electric energy with little contamination, and these substances are used to treat the material to be treated. It can be decomposed indirectly or can be directly electrolyzed by adsorbing an object to be treated on the electrode. The decomposition product should eventually be a low molecular weight safe substance such as carbon dioxide, water, hydrogen, oxygen, nitrogen, ammonia or chloride ions, but the intermediates in the decomposition process are rather dangerous. It is known that there may be.
[0003]
As an electrode used in such an electrolysis method, an impurity-doped conductive diamond electrode is inactive against water electrolysis and generates ozone or hydrogen peroxide in addition to oxygen in the oxidation reaction. Is known (Japanese Patent Laid-Open No. 9-268395). Hydrogen peroxide and ozone are generation raw materials such as OH radicals having higher oxidizing power, and it is known that radicals are easily generated in the presence of them. Therefore, in the electrolysis treatment using the conductive diamond electrode, it can be expected that the efficiency is improved as compared with the case where the conventional electrode is used.
[0004]
[Problems to be solved by the invention]
However, some harmful substances such as dioxins cannot be accelerated unless the potential is higher than that of water oxidation-reduction reactions, and simply using a conventional conductive diamond electrode There is a problem that such harmful substances cannot be efficiently decomposed.
[0005]
The present invention has been made in view of such a problem, and is an electrode for electrochemical treatment, an electrochemical treatment method, and electricity that can be decomposed even if it is a harmful substance that requires a high potential for decomposition. An object is to provide a chemical processing apparatus.
[0006]
[Means for Solving the Problems]
The electrochemical treatment method according to the present invention covers a conductive substrate made of titanium, a doped diamond layer formed by hot filament CVD on the surface of the substrate and doped with impurities, and covering at least a part of the doped diamond layer. As described above, an electrode having a non-doped diamond layer formed by a microwave CVD method is used as at least one of an anode and a cathode, and a material to be treated which is in contact with the electrode is electrochemically converted into a material having a lower molecular weight. And a step of decomposing, wherein the redox reaction potential of the solvent is adjusted by the ratio of the area of the region covered by the non-doped diamond layer to the surface area of the doped diamond layer and the film thickness.
[0007]
In the present invention, since at least part of the doped diamond layer is covered with the non-doped diamond layer, the charge injected into the non-doped diamond layer from the surface of the doped diamond layer is accelerated in the non-doped diamond layer and then the non-doped diamond. It is transported to the surface of the layer and promotes the chemical reaction of the material to be treated on the electrode surface. For this reason, even if it is a substance which does not accelerate | stimulate a decomposition reaction, for example, a dioxin compared with the oxidation reduction reaction of water, it is possible to electrolyze. The entire surface of the doped diamond layer may be covered with a non-doped diamond layer.
[0009]
An electrochemical processing apparatus according to the present invention covers a conductive substrate made of titanium , a doped diamond layer formed by hot filament CVD on the surface of the substrate, and at least part of the doped diamond layer. the proportion of the microwave non-doped diamond layer formed by a CVD method, an electrode having a possess by at least one of the anode and the cathode, the area of the region covered by the non-doped diamond layer to the surface area of the doped diamond layer as Further, the oxidation-reduction reaction potential of the solvent is adjusted depending on the film thickness, and the material to be treated which is in contact with the electrode is electrochemically decomposed into a material having a lower molecular weight.
[0010]
Since these electrochemical treatment methods and electrochemical treatment apparatuses use the electrode for electrochemical treatment according to the present invention described above, they can electrolyze harmful substances such as dioxins that are conventionally difficult to decompose. can do.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an electrode for electrochemical processing, an electrochemical processing method, and an electrochemical processing apparatus according to embodiments of the present invention will be specifically described with reference to the accompanying drawings. FIG. 1 is a sectional view showing the structure of an electrode for electrochemical processing according to a first embodiment of the present invention.
[0012]
In this embodiment, the surface of the conductive substrate 1 is covered with the doped diamond layer 2, and all or part of the surface of the doped diamond layer 2 is covered with the non-doped diamond layer 3. The conductive substrate 1 is made of one kind of metal such as silicon, molybdenum, platinum, tungsten, cobalt, nickel, titanium, tantalum or niobium, or an alloy made of two or more kinds of metals selected from these metals. The doped diamond layer 2 is constituted by introducing impurity atoms such as phosphorus, nitrogen, sulfur or lithium into diamond at a concentration of 5 × 10 19 cm −3 or more. Moreover, the impurity content of the non-doped diamond layer 3 is extremely small, and the atomic concentration of elements other than carbon is 5 × 10 17 cm −3 or less.
[0013]
In the electrode configured in this manner, since the non-doped diamond layer 3 is formed on the doped diamond layer 2, the potential at which the solvent is electrolyzed is higher than when the non-doped diamond layer 3 is not formed. Become. As described above, the conductive diamond electrode can efficiently decompose impurities contained in water by applying a high voltage without electrolyzing the solvent itself due to the action of the diamond layer. Electrolysis of harmful substances requires application of a higher voltage, and it has been difficult to electrolyze such harmful substances with conventional conductive diamond electrodes. On the other hand, according to the present embodiment, since the solvent itself does not electrolyze even when a higher voltage is applied, harmful substances such as dioxins are efficiently electrolyzed. This is because the charge injected into the non-doped diamond layer 3 from the surface of the doped diamond layer 2 is accelerated in the non-doped diamond layer 3 and then transported to the surface of the non-doped diamond layer 3, and the chemical reaction of the material to be treated on the electrode surface. It is for promoting.
[0014]
In this embodiment, the redox reaction potential of the solvent is adjusted by the coverage of the non-doped diamond layer 3, that is, the ratio of the area of the region covered by the non-doped diamond layer 3 to the surface area of the doped diamond layer 2, and the film The thickness can be adjusted. Therefore, an optimum electrode can be applied according to the type of the material to be treated.
[0015]
The non-doped diamond layer 3 employs, for example, a known vapor phase synthesis technique (such as a microwave chemical vapor deposition (CVD) method and a hot filament CVD method), and a carbon-containing gas such as methane or carbon monoxide. And a mixed gas of hydrogen gas can be easily formed as a raw material. Since a typical film formation rate in such a method is about 0.1 to 1 μm per hour, the film thickness can be easily controlled. When the doped diamond layer 2 is formed, an appropriate impurity may be added to the source gas in the method for forming the non-doped diamond layer 3.
[0016]
The shape of the electrode itself is not particularly limited, and may be a rod shape, a plate shape, a mesh shape, a cylindrical shape, or the like.
[0017]
Next, an electrochemical processing apparatus according to the second embodiment of the present invention will be described. 2A and 2B are views showing the structure of an electrochemical processing apparatus according to a second embodiment of the present invention, wherein FIG. 2A is a longitudinal sectional view and FIG. 2B is a transverse sectional view. 2A corresponds to a cross-sectional view taken along the line BB in FIG. 2B, and conversely, FIG. 2B is a cross-sectional view taken along the line A-A in FIG. It corresponds to.
[0018]
In the second embodiment, cylindrical electrochemical processing electrodes 12 and 13 having different sizes are coaxially arranged in the tank 11. Moreover, the diaphragm 14 is arrange | positioned between the electrode 12 and the electrode 13, and the inside of the tank 11 is divided into two area | regions. The electrodes 12 and 13 have the same internal structure as in the first embodiment. That is, the conductive substrate is covered with the doped diamond layer, and part or all of the conductive substrate is covered with the non-doped diamond layer. An inlet 15 for the substance to be processed is provided in the upper part of the inner region of the diaphragm 14, and an outlet 16 for the processed substance is provided in the lower part. Further, at the lower part of the region outside the partition wall 14, a discharge port 17 for the processed substance is provided.
[0019]
In the second embodiment configured as described above, for example, the electrodes 12 and 13 are respectively an anode and a cathode, and a material to be treated is introduced from the inlet 15 while applying an appropriate voltage higher than that of the conventional one to these electrodes. If it introduce | transduces in the tank 11, harmful substances, such as a dioxin, can be electrolyzed, without electrolyzing a solvent.
[0020]
Next, an electrochemical processing apparatus according to the third embodiment of the present invention will be described. 3A and 3B are views showing the structure of an electrochemical processing apparatus according to a third embodiment of the present invention, wherein FIG. 3A is a longitudinal sectional view and FIG. 3B is a transverse sectional view. 3A corresponds to a cross-sectional view taken along the line DD in FIG. 3B, and conversely, FIG. 3B is a cross-sectional view taken along the line CC in FIG. 3A. It corresponds to. In the third embodiment shown in FIG. 3, the same components as those in the second embodiment shown in FIG. 2 are denoted by the same reference numerals, and detailed description thereof is omitted.
[0021]
In the third embodiment, a columnar electrode 21 is arranged coaxially with the electrode 13 inside the cylindrical electrode 13. Moreover, the diaphragm 22 is arrange | positioned between the electrode 13 and the electrode 21, and the inside of the tank 11 is divided into three area | regions. The electrode 21 has the same internal structure as in the first embodiment. That is, the conductive substrate is covered with the doped diamond layer, and part or all of the conductive substrate is covered with the non-doped diamond layer. In the lower part of the area defined by the diaphragms 14 and 22, an outlet 23 for the treated substance is provided, and the outlet 16 is located in an area inside the diaphragm 22.
[0022]
In the third embodiment thus configured, for example, the electrodes 12 and 21 are anodes, the electrode 13 is a cathode, and a material to be treated is introduced into the inlet while applying an appropriate voltage higher than that of the conventional one. If it introduce | transduces in 15 from the tank 11, like 2nd Example, harmful substances, such as a dioxin, can be electrolyzed, without electrolyzing a solvent.
[0023]
In addition, the state of the substance introduced into the tank 11 from the inlet 16 may be liquid or gas.
[0024]
【Example】
Examples of the present invention will be specifically described below in comparison with comparative examples that depart from the scope of the claims.
[0025]
A doped diamond layer 2 containing 2 × 10 20 cm −3 of boron atoms is 3 μm on the surface of a conductive substrate 1 made of square titanium having a thickness of 1 mm and a side length of 1 cm by hot filament CVD. The thickness was formed. Furthermore, the electrode according to the example was manufactured by forming the non-doped diamond layer 3 with a thickness of 0.2 μm by the microwave CVD method (see FIG. 1). Moreover, the electrode which does not form the non-doped diamond layer 3 was manufactured as an electrode according to the comparative example (see FIG. 6). These electrodes were used as anodes, the distance between the cathodes made of platinum electrodes was 3 mm, and saturated calomel electrodes were incorporated as reference electrodes to assemble an electrolytic cell. A 1 mol / mm 3 Na 2 SO 4 aqueous solution was put into these electrolytic cells, and the characteristics of the electrode reaction were measured by cyclic voltammetry.
[0026]
4 and 5 are graphs showing the relationship between the electrode potential (potential with respect to a saturated calomel electrode (SCE)) on the horizontal axis and the current density on the vertical axis. The measurement result in an example and an example is shown. As shown in FIG. 4, in the electrode in which only the doped diamond layer 2 is formed (conventional conductive diamond electrode), the electrolysis of water starts from about 1.5 V, whereas the non-doped diamond layer 3 is also formed. In this example, as shown in FIG. 5, the electrolysis of water started at about 3V. Therefore, the embodiment can electrolyze a substance that requires high energy by electrolysis.
[0027]
【The invention's effect】
As described above in detail, according to the present invention, the charge injected into the non-doped diamond layer from the surface of the doped diamond layer is accelerated in the non-doped diamond layer and then transported to the surface of the non-doped diamond layer. In order to promote the chemical reaction of the material to be treated, even a substance that does not promote the decomposition reaction unless it has a higher potential compared to the redox reaction of water, such as dioxin, can be electrolyzed and the electrode surface Improves the effect of impurity decomposition.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing the structure of an electrode for electrochemical processing according to a first embodiment of the present invention.
2A and 2B are views showing the structure of an electrochemical processing apparatus according to a second embodiment of the present invention, wherein FIG. 2A is a longitudinal sectional view, and FIG. 2B is a transverse sectional view.
FIGS. 3A and 3B are diagrams showing the structure of an electrochemical processing apparatus according to a third embodiment of the present invention, wherein FIG. 3A is a longitudinal sectional view and FIG. 3B is a transverse sectional view.
FIG. 4 is a graph showing results in a comparative example.
FIG. 5 is a graph showing the results in the examples.
FIG. 6 is a cross-sectional view showing the structure of an electrochemical processing electrode according to a comparative example.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1; Conductive base | substrate 2; Dope diamond layer 3; Non-doped diamond layer 11; Tank 12, 13, 21; Electrode 14, 22; Diaphragm 15; Inlet 16, 17, 23;

Claims (2)

チタンからなる導電性基体、この基体の表面に熱フィラメントCVD法により形成され不純物が導入されたドープダイヤモンド層、及びこのドープダイヤモンド層の少なくとも一部を覆うようにマイクロ波CVD法により形成されたノンドープダイヤモンド層を備えた電極を陽極及び陰極の少なくともいずれかとして使用して前記電極に接触した被処理物質をそれよりも分子量が低い物質に電気化学的に分解する工程を有し、前記ドープダイヤモンド層の表面積に対する前記ノンドープダイヤモンド層により覆われた領域の面積の割合及び膜厚により、溶媒の酸化還元反応電位を調整することを特徴とする電気化学的処理方法。A conductive substrate made of titanium, a doped diamond layer formed by hot filament CVD on the surface of the substrate and doped with impurities, and a non-doped layer formed by microwave CVD so as to cover at least part of the doped diamond layer Using the electrode provided with the diamond layer as at least one of an anode and a cathode, and electrochemically decomposing the material to be treated which is in contact with the electrode into a material having a molecular weight lower than that, the doped diamond layer A method for electrochemical treatment, wherein the redox reaction potential of the solvent is adjusted by the ratio of the area of the region covered with the non-doped diamond layer to the surface area and the film thickness. チタンからなる導電性基体、この基体の表面に熱フィラメントCVD法により形成され不純物が導入されたドープダイヤモンド層、及びこのドープダイヤモンド層の少なくとも一部を覆うようにマイクロ波CVD法により形成されたノンドープダイヤモンド層、を備えた電極を陽極及び陰極の少なくともいずれかとして有し、前記ドープダイヤモンド層の表面積に対する前記ノンドープダイヤモンド層により覆われた領域の面積の割合及び膜厚により、溶媒の酸化還元反応電位を調整し、前記電極に接触した被処理物質をそれよりも分子量が低い物質に電気化学的に分解することを特徴とする電気化学的処理装置。A conductive substrate made of titanium, a doped diamond layer formed by hot filament CVD on the surface of the substrate and doped with impurities, and a non-doped layer formed by microwave CVD so as to cover at least part of the doped diamond layer An electrode comprising a diamond layer is provided as at least one of an anode and a cathode, and the ratio of the area of the region covered with the non-doped diamond layer to the surface area of the doped diamond layer and the film thickness, the redox reaction potential of the solvent And electrochemically decomposing the substance to be treated which is in contact with the electrode into a substance having a lower molecular weight.
JP2001262287A 2001-08-30 2001-08-30 Electrochemical treatment method and electrochemical treatment apparatus Expired - Fee Related JP4190173B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001262287A JP4190173B2 (en) 2001-08-30 2001-08-30 Electrochemical treatment method and electrochemical treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001262287A JP4190173B2 (en) 2001-08-30 2001-08-30 Electrochemical treatment method and electrochemical treatment apparatus

Publications (2)

Publication Number Publication Date
JP2003073876A JP2003073876A (en) 2003-03-12
JP4190173B2 true JP4190173B2 (en) 2008-12-03

Family

ID=19089205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001262287A Expired - Fee Related JP4190173B2 (en) 2001-08-30 2001-08-30 Electrochemical treatment method and electrochemical treatment apparatus

Country Status (1)

Country Link
JP (1) JP4190173B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100436650C (en) * 2003-11-11 2008-11-26 章浩龙 Electrolytic electrode and its using method
CN1303254C (en) * 2004-04-16 2007-03-07 清华大学 Electrobath for treating sewerage
ITMI20041974A1 (en) * 2004-10-18 2005-01-18 De Nora Elettrodi Spa IMPROVEMENT OF THE COD KILLING PROCESS FOR ELECTROCHEMICAL OXIDATION
US8105469B2 (en) * 2006-03-17 2012-01-31 Andrew John Whitehead Microelectrode array
WO2008029258A2 (en) * 2006-09-05 2008-03-13 Element Six Limited Solid electrode
JP5419881B2 (en) 2008-09-24 2014-02-19 栗田工業株式会社 Diamond electrode and method for producing diamond electrode
DE102009058766A1 (en) * 2009-12-15 2011-06-16 Finatep Ag Multifunctional liquid treatment device (device) for the electrochemical treatment (electrolysis) of water and water solutions
WO2015020680A1 (en) 2013-08-09 2015-02-12 Therm-O-Disc, Incorporated Wireless temperature and/or humidity sensor assembly
JP6329392B2 (en) * 2014-02-28 2018-05-23 荏原工業洗浄株式会社 Method and apparatus for dehalogenation of organic halogen compounds using conductive diamond electrode
CN107994233A (en) * 2017-12-15 2018-05-04 深圳先进技术研究院 Surface has aluminium electrode of diamond layer and preparation method thereof and lithium secondary battery
CN112752868A (en) * 2018-08-08 2021-05-04 联邦科学与工业研究组织 Electrochemical flow reactor

Also Published As

Publication number Publication date
JP2003073876A (en) 2003-03-12

Similar Documents

Publication Publication Date Title
Teng et al. Electrochemical oxidation of sulfadiazine with titanium suboxide mesh anode
JP4116726B2 (en) Electrochemical treatment method and apparatus
Liu et al. Comparative studies on the electrocatalytic properties of modified PbO2 anodes
US6235186B1 (en) Apparatus for producing electrolytic water
US6547947B1 (en) Method and apparatus for water treatment
EP1754804A1 (en) Electrode, ozone generator and ozone generating method
CN110759437B (en) Method for electrochemical-UV composite treatment of refractory organic matters
JP4190173B2 (en) Electrochemical treatment method and electrochemical treatment apparatus
Turro et al. Reprint of: electrochemical oxidation of stabilized landfill leachate on DSA electrodes
KR101057393B1 (en) Tube type electrolytic treatment device and wastewater treatment method using the same
EP3865459A1 (en) Water-processing electrochemical reactor
Vasconcelos et al. Recent advances on modified reticulated vitreous carbon for water and wastewater treatment–A mini-review
KR20030079726A (en) Functional water, the process and the apparatus for preparing the same, and the process and the apparatus for cleansing the electronic part using the functional water
US20030226810A1 (en) Method of decomposing organic compound in liquid to be treated
Vlaicu et al. Degradation of humic acid from water by advanced electrochemical oxidation method
JP4121322B2 (en) Electrochemical processing equipment
Chandrasekara Pillai et al. Using RuO2 anode for chlorine dioxide production in an un-divided electrochemical cell
KR101741675B1 (en) Method for electrochemical treatment of sewage and wastewater using conductive material
JP2009034625A (en) Wastewater treatment apparatus and method
JP2005013858A (en) Method and apparatus for treating wastewater using high voltage pulses
JPWO2003091166A1 (en) Method and apparatus for treating wastewater containing organic compounds
KR100564062B1 (en) The apparatus for hybrid mediated oxidation of destroying organic wastes
JP2002018446A (en) Method and apparatus for treating liquid
Montilla et al. Synthetic Boron-Doped Diamond Electrodes for Electrochemical Water Treatment
JP2004237165A (en) Method and apparatus for treating organic compound-containing water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041022

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070918

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071116

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080610

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080705

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080811

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080916

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080916

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110926

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110926

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120926

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120926

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130926

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees