JP2004031902A - Mounting method and mounting apparatus - Google Patents

Mounting method and mounting apparatus Download PDF

Info

Publication number
JP2004031902A
JP2004031902A JP2003047043A JP2003047043A JP2004031902A JP 2004031902 A JP2004031902 A JP 2004031902A JP 2003047043 A JP2003047043 A JP 2003047043A JP 2003047043 A JP2003047043 A JP 2003047043A JP 2004031902 A JP2004031902 A JP 2004031902A
Authority
JP
Japan
Prior art keywords
adhesive
chip
substrate
mounting
microwave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003047043A
Other languages
Japanese (ja)
Inventor
Akira Yamauchi
山内 朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Engineering Co Ltd
Original Assignee
Toray Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Engineering Co Ltd filed Critical Toray Engineering Co Ltd
Priority to JP2003047043A priority Critical patent/JP2004031902A/en
Publication of JP2004031902A publication Critical patent/JP2004031902A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies
    • H01L24/75Apparatus for connecting with bump connectors or layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/7525Means for applying energy, e.g. heating means
    • H01L2224/75251Means for applying energy, e.g. heating means in the lower part of the bonding apparatus, e.g. in the apparatus chuck
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/7525Means for applying energy, e.g. heating means
    • H01L2224/753Means for applying energy, e.g. heating means by means of pressure
    • H01L2224/75301Bonding head
    • H01L2224/75314Auxiliary members on the pressing surface
    • H01L2224/75315Elastomer inlay
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/7525Means for applying energy, e.g. heating means
    • H01L2224/753Means for applying energy, e.g. heating means by means of pressure
    • H01L2224/75301Bonding head
    • H01L2224/75314Auxiliary members on the pressing surface
    • H01L2224/75317Removable auxiliary member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/7598Apparatus for connecting with bump connectors or layer connectors specially adapted for batch processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/81001Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector involving a temporary auxiliary member not forming part of the bonding apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/81001Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector involving a temporary auxiliary member not forming part of the bonding apparatus
    • H01L2224/81005Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector involving a temporary auxiliary member not forming part of the bonding apparatus being a temporary or sacrificial substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/095Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00 with a principal constituent of the material being a combination of two or more materials provided in the groups H01L2924/013 - H01L2924/0715
    • H01L2924/097Glass-ceramics, e.g. devitrified glass
    • H01L2924/09701Low temperature co-fired ceramic [LTCC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Wire Bonding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a mounting method and a mounting apparatus which are capable of efficiently curing an adhesive agent in a short period of time, shortening the tact of a mounting process remarkably, dispensing with a multi-head, and furthermore dropping the heating temperature of a chip or a board to be bonded except a bonding agent. <P>SOLUTION: In a mounting process of bonding the electrodes of the chip to the electrodes of the board as they are confronted with each other, an adhesive agent is interposed between the chip and the board, and irradiated with microwaves so as to be cured as the electrodes are cold-welded to each other. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、チップの電極と基板の電極を相対させて接合する、いわゆるフリップチップ実装方法および実装装置に関し、とくに、両者間に介在される接着剤を短時間で硬化させて実装工程全体のタクトを短縮できるとともに、接着剤硬化までの加圧状態維持機構の簡略化も可能な実装方法および実装装置に関する。
【0002】
【従来の技術】
フリップチップ実装においては、たとえば、チップと基板間に接着剤を介在させた状態で、加圧してチップの電極と基板の電極を圧接させ、その圧接状態を保ちつつ接着剤を硬化させるようにしている。たとえば、接着剤として、少なくとも表面が金属からなる(たとえば、表面が金メッキされた)導電粒子を含有した異方導電フィルムを使用する方法においては、チップと基板間に圧着力を作用させ、粒子を弾性変形させた状態で接着剤を硬化させる必要がある。そのため、とくに基板に複数のチップを実質的に同時に実装する場合、マルチヘッド構造にて各チップを個別に加圧しながら接着剤が硬化するまで押さえておかなければならず、これに時間を要するため、その分タクトの時間短縮が難しく、生産性をより向上することが困難であるという問題がある。また、マルチヘッド化するために、設備の複雑化とコストアップを招くという問題もある。
【0003】
また、たとえば、チップおよび基板の少なくとも一方の電極が、溶融されて接合される金属からなるバンプに形成されており(たとえば、ハンダバンプに形成されており)、これを非導電性接着剤中で溶融接合させる場合、溶融されたバンプを押し拡げるためには一定の圧力をかけておく必要があり、接合が完了するまでは、接着剤(樹脂)の張力(表面張力)によって押し戻されてしまうのを防止するため、押さえ続けておく必要があった。したがって、上記同様、タクトの時間短縮が難しく、生産性をより向上することが困難であるという問題があり、また、マルチヘッド化する場合には、設備の複雑化とコストアップを招くという問題もある。
【0004】
さらに、たとえば、フラット表示パネル等における実装においては、ガラス等からなる基板に、加熱操作を加えつつチップを実装していくが、加熱時のチップと基板の熱膨張差により歪みが生じ、それによって接合部抵抗値にばらつきが生じるおそれがある。このばらつきを抑えるためには、加熱温度を下げることが好ましいが、温度を下げると接着剤の硬化が進まないか、硬化に長時間を要することになり、やはり生産性を向上することが困難である。
【0005】
【発明が解決しようとする課題】
そこで本発明の課題は、上記のような従来の実装における問題点に着目し、接着剤の硬化を効率よく短時間で行わせて実装工程のタクトを大幅に短縮でき、かつ、マルチヘッド化の不要化も可能とすることができ、しかも、接着剤部分以外、とくに、接合されるチップや基板の加熱温度の低下が可能な、実装方法および実装装置を提供し、実装工程における生産性向上、設備の簡略化およびコストダウン、品質向上等を可能ならしめることにある。
【0006】
【課題を解決するための手段】
上記課題を解決するために、本発明に係る実装方法は、チップの電極と基板の電極を相対させて接合する実装方法において、チップと基板との間に接着剤を介在させ、かつ、前記電極同士を圧接した状態にて、マイクロウェーブを照射して前記接着剤を硬化させることを特徴とする方法からなる。
【0007】
この実装方法においては、チップの加圧手段とチップとの間に弾性材を介在させて前記電極同士を圧接することが可能である。この場合、とくに、複数のチップを同時に前記基板に実装することが可能になる。
【0008】
本発明において、チップとは、たとえば、ICチップ、半導体チップ、光素子、表面実装部品、ウエハーなど、種類や大きさに関係なく、基板と接合させる側の全てのものをいう。また、基板とは、たとえば、樹脂基板、ガラス基板、フィルム基板、チップ、ウエハーなど、種類や大きさに関係なく、チップと接合される側の全てのものを指す。チップや基板の電極の形態としては、とくに限定されず、先端面が平坦な電極の他に丸く膨らんだ形状のものも含み、表面に金や銅メッキの施されたもの、溶融されて接合される金属からなるバンプ(ハンダバンプ)等のあらゆる形態が含まれる。また、電気配線を伴った電極、電気配線につながっていないダミー電極など、チップや基板に設けられる全ての電極を対象とすることができる。さらに接着剤としても、本発明によるマイクロウェーブ照射により硬化の促進が可能なものであれば、種類を問わずあらゆる実装用接着剤が含まれる。
【0009】
この本発明に係る実装方法においては、上記接着剤中に、少なくとも表面が金属からなる粒子(たとえば、表面に金メッキが施された導電粒子)を含有させることができる。このような接着剤は、導電粒子を含有した、いわゆる異方導電性接着剤、つまり、異方導電性フィルムや異方導電性ペーストの形態で用いることができる。
【0010】
また、チップおよび基板の少なくとも一方の電極については、前述した電極形態のうち、たとえば、溶融されて接合される金属からなるバンプで形成することができる。この場合、上記接着剤として、たとえば、非導電性接着剤を用いることができる。
【0011】
また、本発明においては、上記マイクロウェーブの照射を、次のような段階で行うことができる。すなわち、チップを基板に対しアライメントした後の実装工程で、つまり、アライメントを行ったのと同じ装置内での実装工程で、接着剤に対してマイクロウェーブを照射することができる。あるいは、チップを基板に対しアライメントした後両者を仮接合し(仮圧着し)、この仮接合体を別の場所の本接合工程(本圧着工程)に搬送し、該本接合工程で、前記接着剤にマイクロウェーブを照射し本硬化させることもできる。
【0012】
本発明に係る実装装置は、チップの電極と基板の電極を相対させて接合する実装装置において、前記電極同士を圧接させる手段と、チップと基板との間に介在された接着剤にマイクロウェーブを照射する手段とを有することを特徴とするものからなる。
【0013】
この実装装置においては、チップの加圧手段とチップとの間に弾性材を介装させることが可能である。この弾性材を介装させた形態では、とくに、複数のチップを同時に前記基板に実装することが可能になる。
【0014】
この実装装置においては、接着剤介在部に対し、周囲に対するマイクロウェーブシールド手段が設けられていることが好ましい。マイクロウェーブシールド手段は、たとえば、チップと基板を覆うチャンバの少なくとも一部として構成することができる。また、マイクロウェーブには容易に指向性を持たせることができるので、接着剤介在部に対し、該接着剤介在部に向けてマイクロウェーブを透過させる手段を設けておくと、実質的に接着剤介在部に対してのみ効率よくマイクロウェーブを照射することが可能となる。この場合、マイクロウェーブシールド手段は、少なくとも、マイクロウェーブ照射手段により指向性を付与されたマイクロウェーブに相対する位置に設けられていることが好ましい。また、基板保持部は、加圧力を受けるための構造が必要であり、かつ、下部からマイクロウェーブを照射するためにはそれを透過させる材料である必要がある。したがって、この基板保持部を構成するバックアップ部分は、マイクロウェーブ透過材で加圧力に耐えうるガラスやセラミック等で構成されていることが好ましい。
【0015】
この実装装置においても、接着剤中に、少なくとも表面が金属からなる粒子が含有されている形態を採用でき、接着剤として、異方導電性フィルムや異方導電性ペーストを用いることができる。また、チップおよび基板の少なくとも一方の電極として、溶融されて接合される金属からなるバンプで形成することができる。さらに、接着剤として、非導電性接着剤を用いることもできる。
【0016】
さらに、マイクロウェーブ照射手段は、チップを基板に対しアライメントした後の実装工程に設けることもできるし、チップを基板に対しアライメントした後両者を仮接合し、該仮接合体が搬送される別の場所の本接合工程に設けることもできる。
【0017】
上記のように構成された本発明に係る実装方法および実装装置においては、接着剤としてたとえば異方導電性フィルムを用いる場合、マイクロウェーブの照射により、短時間のうちに迅速に接着剤を硬化させることができるので、タクトを大幅に短縮でき、生産性を大幅に向上できる。また、極めて短時間で接着剤を硬化させることができるので、複数のチップを実装する場合に、従来のようにマルチヘッド化することは不要になり、設備を大幅に簡略化できるとともに、コストダウンが可能となる。
【0018】
また、マイクロウェーブにより接着剤を硬化させるため基本的に加圧手段側から加熱する必要がなくなるので、チップの加圧手段とチップとの間に弾性材を介在させることが可能になる。弾性材を介在させることにより、電極同士が圧接される際の電極の高さのばらつきを吸収させることが可能になるとともに、とくに複数のチップを実装する場合にチップ間の高さのばらつきを吸収させることが可能になり、複数のチップを同時に一括で基板に実装することが可能になる。
【0019】
また、非導電性接着剤中で接合する場合にも、マイクロウェーブの照射により短時間で接着剤の硬化が完了するため、長時間チップを押さえておく必要がなくなる。その結果、前記同様、タクトを大幅に短縮して生産性を大幅に向上できるとともに、マルチヘッド化を不要化して設備の簡略化とコストダウンが可能となる。ただし、隣り合うチップ間が近い場合は、加圧していないチップ下の接着剤も硬化してしまうため、複数チップを同時に圧接しながら、マイクロウェーブを照射する場合もある。この場合には、上記のように弾性材を介在させてチップ間の高さのばらつきを吸収させることが好ましい。
【0020】
また、フラット表示パネルのように、従来、チップと基板との熱膨張差が問題となっていた実装においては、マイクロウェーブの照射により接着剤介在部のみを集中的に効率的に加熱することが可能となるため、チップや基板の温度を従来方法に比べて低く抑えることができ、熱膨張差に伴う問題を解消あるいは軽減し、品質の向上をはかることができる。とくに基板等がガラスからなる場合には、マイクロウェーブはガラスを透過するため、温度上昇が望ましくない部位に対して加熱による温度上昇を低く抑えることができる。さらに、接着剤中に表面が金属からなる導電粒子が含有されている場合には、照射されてきたマイクロウェーブを効率よく導電粒子で吸収し、周囲部分へのマイクロウェーブによる影響を抑えて、結果的に接着剤部分を効果的に加熱してその迅速な硬化に寄与させることができる。つまり、結果的に、チップと基板の温度上昇は低く抑えられ、従来の高温加熱による歪みの発生が抑えられる。
【0021】
さらに、仮接合(仮圧着)と本接合(本圧着)工程とを分離し、マイクロウェーブの照射を本接合工程で行うようにすれば、タクトを一層短縮することが可能になり、生産性をより向上することが可能となる。
【0022】
【発明の実施の形態】
以下に、本発明の望ましい実施の形態を、図面を参照しながら説明する。
図1は、本発明の一実施態様に係る実装装置1を示している。図1において、チップ2上には複数の電極4(図1には2つの電極4を示してある)が設けられており、基板3には対応する電極5が設けられている。これらチップ2と基板3が、間に接着剤を介在させ、かつ、電極同士を圧接した状態にて、マイクロウェーブ照射手段9から照射されるマイクロウェーブにより接着剤が硬化され、電極同士が電気的に接合される。
【0023】
本実施態様では、基板3を保持するバックアップステージ6とチップ2を保持するツール7が設けられ、バックアップステージ6はX、Y方向(水平方向)および/または回転方向(θ方向)に位置調整できるようになっており、ツール7はZ方向(上下方向)および/または回転方向(θ方向)に位置調整できるようになっている。本実施態様では、このツール7は、加圧手段も兼ねており、所定の圧力にて、チップ2の電極4を基板3の電極5に圧着できるようになっている。また、上下の被接合物の位置ずれ量を検出し、それに基づいて所望の位置精度範囲内にアライメントできるようにするために、バックアップステージ6とツール7の間には、上下の被接合物側に付された認識マークを読み取る認識手段8が進退可能に設けられている。この認識手段8も、X、Y方向(場合によっては、さらにZ方向)に位置調整できるようになっている。
【0024】
なお、上記のようなバックアップステージ、ツール、認識手段は、一般には、平行移動および/または回転自在に装着されるが、必要に応じて、それらと昇降とを組み合わせた態様に装着してもよい。また、認識手段は、CCDカメラ、赤外線カメラ、X線カメラ、適当なセンサー等、認識マークを認識できる全ての手段を含む概念である。
【0025】
チップ2と基板3間の接合は、たとえば図2に示すように行われる。すなわち、チップ2と基板3との間に接着剤11が介在され、本実施態様では、少なくとも表面が金属からなる粒子(導電粒子)12が多数含有された接着剤11が介在され、電極4、5同士が圧接された状態にて、マイクロウェーブ照射手段9からマイクロウェーブ13が照射される。照射されたマイクロウェーブ13により接着剤11が硬化され、電極4、5間で押しつぶされた導電粒子12を介して電極4、5同士が電気的に接合される。導電粒子含有接着剤11は、たとえば異方導電性フィルムや異方導電性ペーストの形態で準備される。この導電粒子含有接着剤11には、通常、約5μm径程度の導電性微粒子12が約100万個/mm3 程度含有されている。
【0026】
マイクロウェーブ13の照射により、接着剤11の分子を振動させることで接着剤11が加熱されてその硬化が促進され、通常のヒータ等による加熱に比べ、硬化時間が大幅に短縮される。このマイクロウェーブ13による加熱、硬化では、接着剤11の分子振動による加熱であるため、接着剤11部分以外の温度は低く抑えられる。これは、マイクロウェーブ13そのものの特性を利用していることによる。
【0027】
すなわち、マイクロウェーブ13は一般に図3に示すような特性を有しており、ガラスやセラミックに対しては吸収率が低いため透過されやすく、金属に対しては吸収率が低くて反射されやすく、接着剤を構成しているような樹脂に対しては吸収率が高く、そのような樹脂は分子振動されて加熱されやすい。したがって、このマイクロウェーブ13の照射により、樹脂に比べて比較的分子振動の起こりにくいシリコン等からなるチップ2や、ガラスや同じくシリコン、セラミック等からなる基板3の温度上昇は抑えられるが、間に介在された接着剤11は効率よく加熱されて短時間で迅速に硬化される。とくに図2に示したような導電性粒子12が含有されている場合には、その表面金属でマイクロウェーブ13が反射、散乱され、結果的に、マイクロウェーブ13が接着剤11の介在部を中心に吸収されることになるので、チップ2や基板3の温度が従来方法に比べて低く抑えられつつ、接着剤11の硬化が促進される。また、チップ2や基板3の温度が低く抑えられる結果、高温加熱時の問題、たとえばフラット表示パネルにおける実装の場合に問題となっていた熱膨張差に伴う歪みも小さく抑えられ、接合抵抗値のばらつきも抑えられることになる。
【0028】
なお、図2には導電粒子含有接着剤11の場合を示したが、接着剤としては非導電性接着剤を用いてバンプと電極を圧接した状態で非導電性接着剤を硬化させることも可能であり、上記同様に、マイクロウェーブ13の照射により硬化が促進される。また、チップ2または/および基板3の電極4、5をバンプ、たとえば加熱溶融されて互いに接合される金属からなるバンプ(ハンダバンプ)に形成し、接着剤中で加熱溶融接合し、接着剤を硬化させる方法の場合にも、たとえばバンプの加熱溶融は従来通りツール7やステージ6側に内蔵されたヒータによって行い、それとともに、あるいはそれとは独立した制御にて、マイクロウェーブ13の照射により接着剤の硬化を促進することができる。その場合に、たとえば、バンプの溶融接合後、冷却し、熱膨張による歪みをなくした状態でマイクロウェーブ13を照射して樹脂を硬化させれば、より一層信頼性は向上する。たとえば特願2000−399759に記載のように、バンプを溶融したまま、さらに高い温度で樹脂を硬化させる方法では、バンプの熱膨張による歪みが残るおそれがある。
【0029】
いずれの接合形態にあっても、接着剤が効率よく短時間で硬化されるため、従来のように硬化が完了するまで、接着剤樹脂の張力(表面張力)によってチップ2が押し戻されるのを防止するためにチップ2を押さえておかなかればならなかった動作を、ごく短時間で済ませることができるか、あるいは、そのような圧着力付与持続動作を無くすることまで可能となる。また、硬化が短時間で完了するため、硬化を含む一連の実装工程におけるタクトが大幅に短縮される。
【0030】
この圧着力付与持続動作の簡略化、タクトの短縮は、マルチヘッド機構を採用していた従来方法に対して特に有効であり、本発明では、マルチヘッド化を不要化することが可能である。たとえば図4に示すように(図4では、2つのチップ2a、2bを一つの基板3に実装する場合を例示してある。)、マイクロウェーブ13の照射により接着剤11の硬化が極めて短時間で完了するため、各チップ2a、2bを個別に押さえておく必要がなくなり、タクト短縮とともに、マルチヘッド化を不要化することが可能となる。マルチヘッド化の不要化により、設備を簡略化できるとともに、コストダウンを達成することができる。
【0031】
また、本発明では、照射されるマイクロウェーブが接合部以外に悪影響を及ぼさないように、あるいは、接合部に効率よく集中して照射されるようにすることができる。
【0032】
たとえば図5に示す構造では、チップ2側のツール7の周囲に、マイクロウェーブ照射手段としてのアンテナあるいはプローブ21が設けられ、接着剤11が介在された接合部22に向けて、チャンバ内部にマイクロウェーブ23が照射されるようになっている。この部位は、チャンバ24方式にて覆われており、下方の基板3側下部には、マイクロウェーブシールド手段としての金属板からなるシールド板25が設けられている。あたかも電子レンジのような構造が形成され、この中で接着剤11が迅速に硬化される。
【0033】
ただし、上記のようなチャンバ方式にすると、そのチャンバの大きさによって適用できる基板3の最大寸法が決まってしまうので、より大きな基板に対しては使用困難となる。そのため、図6に示すように多少の隙間を開けて基板を通すことも実用上可能である。
【0034】
また、指向性を持たせた方法で一方から照射することもできる。たとえば図6に示すような構造も採用できる。図6に示す構造では、基板3aがたとえばガラス基板のようなマイクロウェーブを透過する材質からなっており、基板3aの下方、たとえば基板ステージ6内に、マイクロウェーブ照射手段としてのアンテナあるいはプローブ31が設けられている。基板3aを透過したマイクロウェーブが、接着剤11を介在させた接合部32に向けて照射される。接合部32の上方には、図示例ではツール7の下部に、チップ2とともに接合部32を覆うようにマイクロウェーブシールド手段としての金属板からなるシールド板33が設けられている。このように構成すれば、とくに大きな基板3aに対しても、シールド板33による反射によって周囲への悪影響を防止しつつ、接合部32に効率よく基板3aを透過したマイクロウェーブを照射することができ、接着剤を迅速に硬化させることができる。なお、図6では下部より照射したが、上部から照射することも可能である。
【0035】
なお、図示は省略するが、図6に示したように基板ステージ6内にマイクロウェーブ照射手段としてのアンテナあるいはプローブを設ける場合、その基板ステージ6の上部のマイクロウェーブ照射経路に位置する部分を、マイクロウェーブが透過しやすい、たとえばガラスやセラミックで構成することが好ましい。
【0036】
さらに本発明においては、上記のようなマイクロウェーブを、チップ2を基板3に対してアライメントした後の同じ装置内における実装工程にて、接合部に向けて照射することもできるし、この装置内における工程を仮接合工程としてここではマイクロウェーブを照射せず、仮接合された仮接合体を別の場所の本接合工程に搬送し、該本接合工程にてチップを加圧した状態でマイクロウェーブを照射して接着剤を硬化完了させるようにすることもできる。後者のようにすれば、一連の実装工程を分離して実施できるので、全体としてのタクトを一層短縮することが可能となる。
【0037】
また、本発明においては、チップと基板の電極同士の圧接の際に電極高さのばらつきを吸収させたり、とくに複数のチップを基板に実装する場合にチップ間の高さのばらつきを吸収させるために、とくにチップの加圧手段(前述のツール7)とチップの間に弾性材を介在させることができる。
【0038】
たとえば図7に示すように、チップの加圧手段としての加圧ツール41の下面側に、チップ42との間に弾性材43が介在される。弾性材43は加圧ツール41に固定することも可能であるが、図示例では、テープ状の弾性材43が順次加圧ツール41の下面側に供給されるようになっており、このテープ状の弾性材43に、基板44に実装すべき複数のチップ42が保持されている。この弾性材43には、たとえばガラスクロス入りのシリコンシートなどが使用される。弾性材43の厚みは、実装すべきチップ42等に応じて適宜設定すればよい。
【0039】
基板44の電極45と、対応する複数のチップ42の電極46とが接着剤47中で圧接され、マイクロウェーブ48がたとえば下方から照射されて接着剤47が硬化される。
【0040】
このように本発明ではマイクロウェーブ48により接着剤47を硬化させるため、加圧ツール41側から加熱する必要がなくなり、加圧ツール41側に弾性材43を介在させることが可能になる。弾性材43を介在させることにより、互いに当接される電極同士の高さにばらつきがある場合、および、とくに複数のチップ42間に高さのばらつきがある場合、これらのばらつきが弾性材43の変形により効果的に吸収される。とくに複数のチップ42間の高さのばらつきが吸収されることにより、該複数のチップ42を同時に一括で圧着し、実装することができ、実装の効率化、タクトタイムの大幅な短縮が可能になる。
【0041】
【発明の効果】
以上説明したように、本発明に係る実装方法および実装装置によれば、マイクロウェーブの照射により接着剤の硬化を促進して実装におけるタクトを大幅に短縮することが可能となり、生産性を大幅に向上することができる。とくに、導電粒子を含有させた接着剤を使用する場合には、チップや基板の温度上昇を低く抑えることも可能となり、熱膨張差に伴う歪み等の発生を抑制して、接合部の電気抵抗値のばらつきを抑え、製品品質の向上をはかることができる。また、複数のチップを実装する場合、マルチヘッド化を実質的に不要化することが可能になり、設備の簡略化、コストダウンも可能となる。さらに、マイクロウェーブによる接着剤の硬化により、とくに複数のチップと加圧手段との間に弾性材を介在させることが可能になり、弾性材の介在によりチップ間の高さのばらつきを吸収して、複数のチップを同時に一括して実装することが可能になり、タクトタイムの大幅な短縮をはかることができる。
【図面の簡単な説明】
【図1】本発明の一実施態様に係る実装装置の概略構成図である。
【図2】図1の装置におけるマイクロウェーブ照射の様子の一例を示す部分拡大縦断面図である。
【図3】物質の種類とマイクロウェーブ吸収率との関係を示す特性比較図である。
【図4】本発明において複数のチップを実装する様子の一例を示す接合部の縦断面図である。
【図5】別のマイクロウェーブ照射構成を示す実装装置の部分構成図である。
【図6】さらに別のマイクロウェーブ照射構成を示す実装装置の部分構成図である。
【図7】本発明において弾性材を介装した場合の一例を示す、実装装置の部分構成図である。
【符号の説明】
1 実装装置
2、2a、2b チップ
3、3a 基板
4 チップの電極
5 基板の電極
6 バックアップステージ
7 ツール
8 認識手段
9 マイクロウェーブ照射手段
11 接着剤
12 粒子(導電粒子)
13 マイクロウェーブ
21、31 マイクロウェーブ照射手段としてのアンテナあるいはプローブ
22、32 接合部
23 マイクロウェーブ
24 チャンバ
25、33 マイクロウェーブシールド手段としてのシールド板
41 加圧手段としての加圧ツール
42 チップ
43 弾性材
44 基板
45 基板の電極
46 チップの電極
47 接着剤
48 マイクロウェーブ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a so-called flip-chip mounting method and mounting apparatus for bonding electrodes of a chip and electrodes of a substrate so as to face each other, and in particular, hardens an adhesive interposed therebetween in a short time to reduce the tact time of the entire mounting process. The present invention relates to a mounting method and a mounting apparatus capable of shortening a pressure state and a mechanism for maintaining a pressurized state until the adhesive is cured.
[0002]
[Prior art]
In flip chip mounting, for example, in a state where an adhesive is interposed between the chip and the substrate, pressure is applied to press the electrode of the chip and the electrode of the substrate, and the adhesive is cured while maintaining the pressed state. I have. For example, in a method of using an anisotropic conductive film containing conductive particles having at least a surface made of a metal (for example, a surface plated with gold) as an adhesive, a pressing force is applied between the chip and the substrate, and the particles are pressed. It is necessary to cure the adhesive while being elastically deformed. Therefore, especially when mounting a plurality of chips on the substrate substantially simultaneously, it is necessary to hold down each chip individually in a multi-head structure while pressing the adhesive until the adhesive is cured, which takes time. However, there is a problem that it is difficult to shorten the tact time, and it is difficult to further improve the productivity. In addition, there is also a problem that the use of a multi-head system complicates equipment and increases costs.
[0003]
Further, for example, at least one electrode of the chip and the substrate is formed on a bump made of a metal to be melted and joined (for example, formed on a solder bump), and this is melted in a non-conductive adhesive. When joining, it is necessary to apply a certain pressure in order to spread the melted bumps. Until the joining is completed, the adhesive (resin) will not be pushed back by the tension (surface tension) of the adhesive. To prevent this, it was necessary to keep holding down. Therefore, similarly to the above, there is a problem that it is difficult to shorten the tact time, and it is difficult to further improve the productivity. Further, in the case of using a multi-head, there is also a problem that the equipment becomes complicated and the cost increases. is there.
[0004]
Further, for example, in mounting on a flat display panel or the like, a chip is mounted on a substrate made of glass or the like while applying a heating operation, but distortion occurs due to a difference in thermal expansion between the chip and the substrate during heating. There is a possibility that the junction resistance value varies. In order to suppress this variation, it is preferable to lower the heating temperature, but if the temperature is lowered, the curing of the adhesive does not proceed, or the curing takes a long time, and it is still difficult to improve the productivity. is there.
[0005]
[Problems to be solved by the invention]
Therefore, an object of the present invention is to focus on the problems in the conventional mounting as described above, and to cure the adhesive efficiently and in a short time to greatly reduce the tact time of the mounting process, and to realize a multi-head. It is also possible to eliminate the need, and also provide a mounting method and a mounting device capable of lowering the heating temperature of a chip and a substrate to be bonded, in particular, other than the adhesive portion, to improve productivity in the mounting process, The simplification of equipment, cost reduction, quality improvement, and the like are made possible.
[0006]
[Means for Solving the Problems]
In order to solve the above problems, a mounting method according to the present invention is a mounting method in which an electrode of a chip and an electrode of a substrate are bonded to each other, wherein an adhesive is interposed between the chip and the substrate, and The method is characterized in that the adhesive is cured by irradiating microwaves in a state where they are pressed against each other.
[0007]
In this mounting method, it is possible to press the electrodes together by interposing an elastic material between the chip pressing means and the chip. In this case, in particular, a plurality of chips can be simultaneously mounted on the substrate.
[0008]
In the present invention, the term “chip” refers to, for example, an IC chip, a semiconductor chip, an optical element, a surface-mounted component, a wafer, or any other object on the side to be bonded to a substrate, regardless of the type or size. The term “substrate” refers to, for example, a resin substrate, a glass substrate, a film substrate, a chip, a wafer, etc., regardless of the type or size, all of the substrate to be bonded to the chip. The form of the electrode of the chip or the substrate is not particularly limited, and includes an electrode having a flat tip surface and a swelled shape in addition to an electrode having a flat tip surface, a material having a gold or copper plating on the surface, and a molten and joined material. All forms, such as metal bumps (solder bumps). Further, all electrodes provided on a chip or a substrate, such as an electrode with an electric wiring and a dummy electrode not connected to the electric wiring, can be targeted. Further, as the adhesive, any mounting adhesive can be used, regardless of the type, as long as curing can be accelerated by the microwave irradiation according to the present invention.
[0009]
In the mounting method according to the present invention, at least the surface of the adhesive can be made of metal particles (for example, conductive particles having a gold-plated surface). Such an adhesive can be used in the form of a so-called anisotropic conductive adhesive containing conductive particles, that is, an anisotropic conductive film or an anisotropic conductive paste.
[0010]
In addition, at least one of the electrodes of the chip and the substrate can be formed of, for example, a bump made of a metal that is melted and joined in the above-described electrode form. In this case, for example, a non-conductive adhesive can be used as the adhesive.
[0011]
In the present invention, the microwave irradiation can be performed in the following steps. That is, the adhesive can be irradiated with microwaves in a mounting step after the chip is aligned with the substrate, that is, in a mounting step in the same apparatus as the alignment is performed. Alternatively, after aligning the chip with the substrate, the two are temporarily bonded (temporarily bonded), and the temporary bonded body is transported to a final bonding step (main pressure bonding step) in another place, and the bonding is performed in the final bonding step. Irradiation of the agent with microwaves can also be used for full curing.
[0012]
The mounting device according to the present invention is a mounting device in which electrodes of a chip and electrodes of a substrate are bonded to each other, and a means for pressing the electrodes together, and applying a microwave to an adhesive interposed between the chip and the substrate. Irradiating means.
[0013]
In this mounting apparatus, an elastic material can be interposed between the chip pressing means and the chip. In the mode in which the elastic material is interposed, it is possible to mount a plurality of chips on the substrate at the same time.
[0014]
In this mounting apparatus, it is preferable that a microwave shield means for surroundings is provided for the adhesive interposed portion. The microwave shield means can be configured, for example, as at least a part of a chamber covering the chip and the substrate. In addition, since the microwave can easily have directivity, if the means for transmitting the microwave toward the adhesive interposed part is provided for the adhesive interposed part, the adhesive It is possible to efficiently irradiate microwaves only to the intervening portions. In this case, it is preferable that the microwave shield means is provided at least at a position opposed to the microwave provided with directivity by the microwave irradiation means. Further, the substrate holding portion needs to have a structure for receiving a pressing force, and needs to be made of a material that transmits the microwave in order to irradiate the microwave from below. Therefore, it is preferable that the backup portion constituting the substrate holding portion is made of glass, ceramic, or the like, which is a microwave transmitting material and can withstand a pressing force.
[0015]
Also in this mounting apparatus, it is possible to adopt a form in which at least the surface of the adhesive contains metal particles, and as the adhesive, an anisotropic conductive film or an anisotropic conductive paste can be used. Further, at least one of the electrodes of the chip and the substrate can be formed by a bump made of a metal which is melted and joined. Further, a non-conductive adhesive may be used as the adhesive.
[0016]
Further, the microwave irradiation means can be provided in a mounting step after the chip is aligned with the substrate, or the two are temporarily bonded after the chip is aligned with the substrate, and another temporary bonded body is transported. It can also be provided in the main joining step of the place.
[0017]
In the mounting method and mounting apparatus according to the present invention configured as described above, when an anisotropic conductive film is used as the adhesive, for example, the adhesive is rapidly cured in a short time by microwave irradiation. As a result, the tact time can be greatly reduced, and the productivity can be greatly improved. Also, since the adhesive can be cured in a very short time, when mounting multiple chips, it is not necessary to use a multi-head as in the past, greatly simplifying the equipment and reducing costs. Becomes possible.
[0018]
In addition, since the adhesive is hardened by the microwave, it is basically unnecessary to heat from the pressing means side, so that an elastic material can be interposed between the pressing means of the chip and the chip. By interposing an elastic material, it is possible to absorb variations in electrode height when electrodes are pressed against each other, and to absorb variations in height between chips, especially when multiple chips are mounted. This makes it possible to simultaneously mount a plurality of chips on the substrate at once.
[0019]
Also, in the case of bonding in a non-conductive adhesive, the curing of the adhesive is completed in a short time by irradiation with microwaves, so that it is not necessary to hold the chip for a long time. As a result, the productivity can be greatly improved by greatly shortening the tact, and the simplification of the equipment and the cost reduction can be achieved by eliminating the need for a multi-head. However, when adjacent chips are close to each other, the adhesive under the unpressed chips is also cured, so that microwave irradiation may be performed while simultaneously pressing a plurality of chips. In this case, it is preferable to interpose the elastic material as described above to absorb variations in height between chips.
[0020]
Also, in the case of mounting where the difference in thermal expansion between the chip and the substrate has been a problem, as in the case of flat display panels, it is possible to intensively and efficiently heat only the adhesive interposed part by microwave irradiation. As a result, the temperature of the chip or the substrate can be kept lower than that of the conventional method, and the problem caused by the difference in thermal expansion can be eliminated or reduced, and the quality can be improved. In particular, when the substrate or the like is made of glass, the microwave transmits through the glass, so that it is possible to suppress the temperature rise due to heating to a portion where the temperature rise is not desired. Furthermore, if the adhesive contains conductive particles whose surface is made of metal, the irradiated microwaves are efficiently absorbed by the conductive particles, and the effect of the microwaves on the surrounding area is suppressed. The adhesive part can be effectively heated to contribute to its rapid curing. That is, as a result, the temperature rise of the chip and the substrate is suppressed low, and the occurrence of distortion due to conventional high-temperature heating is suppressed.
[0021]
Furthermore, if the temporary bonding (temporary pressure bonding) and the main bonding (main pressure bonding) steps are separated from each other and microwave irradiation is performed in the main bonding step, the tact time can be further reduced, and productivity can be improved. It is possible to further improve.
[0022]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows a mounting apparatus 1 according to one embodiment of the present invention. In FIG. 1, a plurality of electrodes 4 (two electrodes 4 are shown in FIG. 1) are provided on a chip 2, and a corresponding electrode 5 is provided on a substrate 3. In a state where the adhesive is interposed between the chip 2 and the substrate 3 and the electrodes are pressed against each other, the adhesive is cured by the microwave irradiated from the microwave irradiating means 9 and the electrodes are electrically connected to each other. Joined.
[0023]
In this embodiment, a backup stage 6 for holding the substrate 3 and a tool 7 for holding the chip 2 are provided, and the position of the backup stage 6 can be adjusted in the X and Y directions (horizontal direction) and / or the rotation direction (θ direction). The position of the tool 7 can be adjusted in the Z direction (vertical direction) and / or the rotational direction (θ direction). In this embodiment, the tool 7 also serves as a pressurizing means, and can press the electrode 4 of the chip 2 on the electrode 5 of the substrate 3 at a predetermined pressure. Further, in order to detect the positional shift amount of the upper and lower workpieces and to perform alignment within a desired position accuracy range based on the detected amount, the upper and lower workpiece sides are provided between the backup stage 6 and the tool 7. A recognizing means 8 for reading the recognizing mark attached to is provided to be able to advance and retreat. The recognition means 8 can also adjust the position in the X and Y directions (and, in some cases, the Z direction).
[0024]
The backup stage, the tool, and the recognition unit as described above are generally mounted so as to be movable in parallel and / or rotatable. However, if necessary, the backup stage, the tool, and the recognition unit may be mounted in a mode in which they are moved up and down. . The recognition means is a concept including all means capable of recognizing a recognition mark, such as a CCD camera, an infrared camera, an X-ray camera, and an appropriate sensor.
[0025]
The bonding between the chip 2 and the substrate 3 is performed, for example, as shown in FIG. That is, the adhesive 11 is interposed between the chip 2 and the substrate 3, and in this embodiment, the adhesive 11 containing a large number of particles (conductive particles) 12 of which at least the surface is made of metal is interposed. The microwave 13 is irradiated from the microwave irradiating means 9 in a state where the members 5 are pressed against each other. The adhesive 11 is cured by the irradiated microwave 13, and the electrodes 4 and 5 are electrically connected to each other via the conductive particles 12 crushed between the electrodes 4 and 5. The conductive particle-containing adhesive 11 is prepared, for example, in the form of an anisotropic conductive film or an anisotropic conductive paste. The conductive particle-containing adhesive 11 generally contains conductive particles 12 having a diameter of about 5 μm at a rate of about 1 million particles / mm 3 .
[0026]
The irradiation of the microwave 13 causes the molecules of the adhesive 11 to vibrate, whereby the adhesive 11 is heated and its curing is promoted, and the curing time is greatly reduced as compared with the heating by a normal heater or the like. In the heating and curing by the microwave 13, since the heating is performed by the molecular vibration of the adhesive 11, the temperature other than that of the adhesive 11 can be kept low. This is because the characteristics of the microwave 13 itself are used.
[0027]
That is, the microwave 13 generally has characteristics as shown in FIG. 3, and is easily transmitted through glass and ceramics because of its low absorptance, and easily absorbed and reflected by metals with low absorptance. The resin that forms the adhesive has a high absorption rate, and such a resin is easily heated due to molecular vibration. Therefore, the irradiation of the microwave 13 suppresses the temperature rise of the chip 2 made of silicon or the like, which is less likely to cause molecular vibration compared to the resin, and the temperature of the substrate 3 made of glass, silicon or ceramic, etc. The interposed adhesive 11 is efficiently heated and quickly cured in a short time. In particular, when the conductive particles 12 as shown in FIG. 2 are contained, the microwave 13 is reflected and scattered by the surface metal, and as a result, the microwave 13 is centered on the intervening portion of the adhesive 11. Therefore, the curing of the adhesive 11 is promoted while the temperature of the chip 2 and the substrate 3 is kept lower than in the conventional method. In addition, as a result of suppressing the temperature of the chip 2 and the substrate 3 to be low, a problem at the time of high-temperature heating, for example, distortion due to a difference in thermal expansion, which has been a problem in the case of mounting on a flat display panel, can be suppressed to be small. Variations will also be suppressed.
[0028]
FIG. 2 shows the case of the conductive particle-containing adhesive 11, but it is also possible to use a non-conductive adhesive as the adhesive and to cure the non-conductive adhesive in a state where the bumps and the electrodes are pressed against each other. In the same manner as described above, irradiation with the microwave 13 promotes curing. Also, the electrodes 4 and 5 of the chip 2 and / or the substrate 3 are formed into bumps, for example, bumps (solder bumps) made of a metal which is heated and melted and joined to each other, and are heated and melted in an adhesive to cure the adhesive. Also in the case of the method of heating, for example, the heating and melting of the bumps are performed by a heater built in the tool 7 or the stage 6 as in the past, and the adhesive 13 is irradiated by the microwave 13 together with or independently of the control. Can accelerate curing. In this case, for example, the reliability is further improved if the resin is cured by irradiating the microwave 13 in a state where the resin is cured after the bump is melt-bonded and the distortion due to thermal expansion is eliminated. For example, as described in Japanese Patent Application No. 2000-399759, in a method in which the resin is cured at a higher temperature while the bump is melted, distortion due to thermal expansion of the bump may remain.
[0029]
Regardless of the joining mode, the adhesive is cured efficiently and in a short time, so that the chip 2 is prevented from being pushed back by the tension (surface tension) of the adhesive resin until the curing is completed as in the conventional case. The operation that had to be held down by the chip 2 in order to perform the operation can be completed in a very short time, or it is possible to eliminate such an operation of continuously applying the pressing force. In addition, since the curing is completed in a short time, the tact in a series of mounting steps including the curing is greatly reduced.
[0030]
The simplification of the operation for continuously applying the pressing force and the shortening of the tact time are particularly effective with respect to the conventional method employing the multi-head mechanism, and the present invention can eliminate the need for the multi-head mechanism. For example, as shown in FIG. 4 (FIG. 4 illustrates a case where two chips 2a and 2b are mounted on one substrate 3), the curing of the adhesive 11 by the irradiation of the microwave 13 is extremely short. Therefore, it is not necessary to individually hold the chips 2a and 2b, and it is possible to shorten the tact time and eliminate the need for a multi-head. By eliminating the need for a multi-head, the equipment can be simplified and the cost can be reduced.
[0031]
Further, according to the present invention, it is possible to irradiate the microwave so that the irradiated microwave does not adversely affect the portion other than the joint, or efficiently concentrates the irradiation on the joint.
[0032]
For example, in the structure shown in FIG. 5, an antenna or a probe 21 as a microwave irradiation means is provided around the tool 7 on the chip 2 side, and a micro-wave is placed inside the chamber toward the joint 22 with the adhesive 11 interposed. Wave 23 is irradiated. This part is covered by a chamber 24 system, and a shield plate 25 made of a metal plate as a microwave shield means is provided below the lower part of the substrate 3. A structure like a microwave oven is formed, in which the adhesive 11 is quickly cured.
[0033]
However, if the above-mentioned chamber system is used, the maximum size of the applicable substrate 3 is determined depending on the size of the chamber, so that it becomes difficult to use the substrate 3 for a larger substrate. Therefore, as shown in FIG. 6, it is practically possible to pass the substrate with some gaps.
[0034]
In addition, irradiation can be performed from one side by a method having directivity. For example, a structure as shown in FIG. 6 can be adopted. In the structure shown in FIG. 6, the substrate 3a is made of a material that transmits microwaves, such as a glass substrate, and an antenna or probe 31 as microwave irradiation means is provided below the substrate 3a, for example, in the substrate stage 6. Is provided. The microwave transmitted through the substrate 3a is irradiated toward the joint 32 with the adhesive 11 interposed. A shield plate 33 made of a metal plate as a microwave shield means is provided above the joint 32 and below the tool 7 in the illustrated example so as to cover the joint 32 together with the chip 2. With such a configuration, it is possible to efficiently irradiate the bonding portion 32 with microwaves that have passed through the substrate 3a, while preventing a particularly large substrate 3a from being adversely affected by reflection by the shield plate 33. The adhesive can be cured quickly. In FIG. 6, the irradiation is performed from the lower part, but the irradiation may be performed from the upper part.
[0035]
Although not shown, when an antenna or a probe as microwave irradiation means is provided in the substrate stage 6 as shown in FIG. 6, a portion located on the microwave irradiation path above the substrate stage 6 is It is preferable to use a glass or ceramic, for example, which is easy to transmit microwaves.
[0036]
Further, in the present invention, the microwave as described above can be applied to the bonding portion in the mounting process in the same device after the chip 2 is aligned with the substrate 3, In this case, the temporary bonding step is carried out to the final bonding step in another place without applying microwaves, and the microwave is applied while the chips are pressed in the final bonding step. May be applied to complete the curing of the adhesive. In the latter case, a series of mounting steps can be performed separately, so that the tact as a whole can be further reduced.
[0037]
Further, in the present invention, in order to absorb variations in electrode height when the electrodes of the chip and the substrate are pressed against each other, or to absorb variations in height between the chips particularly when a plurality of chips are mounted on the substrate. Particularly, an elastic material can be interposed between the chip pressing means (the tool 7 described above) and the chip.
[0038]
For example, as shown in FIG. 7, an elastic material 43 is interposed between the tip 42 and the pressing tool 41 serving as a tip pressing means. Although the elastic member 43 can be fixed to the pressing tool 41, in the illustrated example, the tape-shaped elastic member 43 is sequentially supplied to the lower surface side of the pressing tool 41. The plurality of chips 42 to be mounted on the substrate 44 are held by the elastic member 43. As the elastic member 43, for example, a silicon sheet containing a glass cloth is used. The thickness of the elastic member 43 may be appropriately set according to the chip 42 to be mounted or the like.
[0039]
The electrodes 45 of the substrate 44 and the electrodes 46 of the corresponding plurality of chips 42 are pressed against each other in the adhesive 47, and the microwave 48 is irradiated from below, for example, to cure the adhesive 47.
[0040]
As described above, in the present invention, since the adhesive 47 is cured by the microwave 48, it is not necessary to heat the adhesive 47 from the pressure tool 41 side, and the elastic member 43 can be interposed on the pressure tool 41 side. When the elastic material 43 is interposed, if the heights of the electrodes abutting each other vary, and particularly if the heights vary between the plurality of chips 42, these variations are caused by the elastic material 43. Effectively absorbed by deformation. In particular, by absorbing variations in height between the plurality of chips 42, the plurality of chips 42 can be simultaneously compression-bonded and mounted at the same time, thereby enabling mounting efficiency and greatly shortening tact time. Become.
[0041]
【The invention's effect】
As described above, according to the mounting method and the mounting apparatus according to the present invention, it is possible to greatly reduce the tact time in mounting by promoting the curing of the adhesive by irradiating the microwave, thereby greatly improving the productivity. Can be improved. In particular, when an adhesive containing conductive particles is used, it is also possible to suppress the temperature rise of the chip and the substrate to a low level, thereby suppressing the occurrence of distortion due to the difference in thermal expansion, and reducing the electrical resistance of the joint. Variations in values can be suppressed and product quality can be improved. In addition, when a plurality of chips are mounted, it is possible to substantially eliminate the need for a multi-head, and to simplify the equipment and reduce the cost. Furthermore, the hardening of the adhesive by microwaves makes it possible to interpose an elastic material, especially between the plurality of chips and the pressing means. In addition, a plurality of chips can be simultaneously mounted at the same time, and the tact time can be significantly reduced.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of a mounting apparatus according to an embodiment of the present invention.
FIG. 2 is a partially enlarged longitudinal sectional view showing an example of a state of microwave irradiation in the apparatus of FIG.
FIG. 3 is a characteristic comparison diagram showing a relationship between a type of a substance and a microwave absorption rate.
FIG. 4 is a longitudinal sectional view of a joint showing an example of how a plurality of chips are mounted in the present invention.
FIG. 5 is a partial configuration diagram of a mounting apparatus showing another microwave irradiation configuration.
FIG. 6 is a partial configuration diagram of a mounting apparatus showing still another microwave irradiation configuration.
FIG. 7 is a partial configuration diagram of a mounting device showing an example in which an elastic material is interposed in the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Mounting device 2, 2a, 2b Chip 3, 3a Substrate 4 Chip electrode 5 Substrate electrode 6 Backup stage 7 Tool 8 Recognition means 9 Microwave irradiation means 11 Adhesive 12 Particles (conductive particles)
13 Microwave 21, 31 Antenna or probe 22, 32 as microwave irradiating means Joint 23 Microwave 24 Chamber 25, 33 Shield plate 41 as microwave shielding means Pressing tool 42 as pressing means 42 Chip 43 Elastic material 44 substrate 45 substrate electrode 46 chip electrode 47 adhesive 48 microwave

Claims (22)

チップの電極と基板の電極を相対させて接合する実装方法において、チップと基板との間に接着剤を介在させ、かつ、前記電極同士を圧接した状態にて、マイクロウェーブを照射して前記接着剤を硬化させることを特徴とする実装方法。In a mounting method in which an electrode of a chip and an electrode of a substrate are bonded to face each other, an adhesive is interposed between the chip and the substrate, and, while the electrodes are pressed against each other, the adhesive is applied by microwave irradiation. A mounting method characterized by curing an agent. チップの加圧手段とチップとの間に弾性材を介在させて前記電極同士を圧接する、請求項1の実装方法。The mounting method according to claim 1, wherein the electrodes are pressed against each other with an elastic material interposed between the pressing means of the chip and the chip. 複数のチップを同時に前記基板に実装する、請求項2の実装方法。3. The mounting method according to claim 2, wherein a plurality of chips are mounted on the substrate at the same time. 前記接着剤中に、少なくとも表面が金属からなる粒子を含有させる、請求項1〜3のいずれかに記載の実装方法。The mounting method according to claim 1, wherein at least a surface of the adhesive is made of metal. 前記接着剤として、異方導電性接着剤を用い、該接着剤中に含有された導電粒子を介して電極同士を圧接する、請求項4の実装方法。The mounting method according to claim 4, wherein an anisotropic conductive adhesive is used as the adhesive, and the electrodes are pressed against each other via conductive particles contained in the adhesive. チップおよび基板の少なくとも一方の電極を、溶融されて接合される金属からなるバンプで形成する、請求項1〜3のいずれかに記載の実装方法。The mounting method according to any one of claims 1 to 3, wherein at least one electrode of the chip and the substrate is formed by a bump made of a metal that is melted and joined. 前記接着剤として、非導電性接着剤を用いる、請求項1〜3、6のいずれかに記載の実装方法。The mounting method according to claim 1, wherein a non-conductive adhesive is used as the adhesive. チップを基板に対しアライメントした後の実装工程で、前記接着剤にマイクロウェーブを照射する、請求項1〜7のいずれかに記載の実装方法。The mounting method according to claim 1, wherein the adhesive is irradiated with microwaves in a mounting step after the chip is aligned with the substrate. チップを基板に対しアライメントした後両者を仮接合し、仮接合体を本接合工程に搬送し、該本接合工程で、前記接着剤にマイクロウェーブを照射する、請求項1〜7のいずれかに記載の実装方法。8. After the chip is aligned with the substrate, the two are temporarily bonded, the temporary bonded body is transported to the main bonding step, and the adhesive is irradiated with microwaves in the main bonding step. Implementation method described. チップの電極と基板の電極を相対させて接合する実装装置において、前記電極同士を圧接させる手段と、チップと基板との間に介在された接着剤にマイクロウェーブを照射する手段とを有することを特徴とする実装装置。In a mounting apparatus for bonding the electrodes of the chip and the electrodes of the substrate so as to face each other, the mounting apparatus includes means for pressing the electrodes together, and means for irradiating the adhesive interposed between the chip and the substrate with microwaves. Characteristic mounting device. チップの加圧手段とチップとの間に弾性材が介装されている、請求項10の実装装置。The mounting device according to claim 10, wherein an elastic material is interposed between the chip pressing means and the chip. 複数のチップが同時に前記基板に実装される、請求項11の実装装置。The mounting device according to claim 11, wherein a plurality of chips are mounted on the substrate at the same time. 接着剤介在部に対し、周囲に対するマイクロウェーブシールド手段が設けられている、請求項10〜12のいずれかに記載の実装装置。The mounting device according to claim 10, wherein a microwave shield means for surroundings is provided for the adhesive interposed portion. 前記マイクロウェーブシールド手段が、前記チップと基板を覆うチャンバの少なくとも一部として構成されている、請求項13の実装装置。14. The mounting apparatus according to claim 13, wherein the microwave shield means is configured as at least a part of a chamber covering the chip and the substrate. 前記マイクロウェーブシールド手段が、少なくとも、前記マイクロウェーブ照射手段により指向性を付与されたマイクロウェーブに相対する位置に設けられている、請求項13の実装装置。14. The mounting apparatus according to claim 13, wherein the microwave shield unit is provided at least at a position facing the microwave to which the directivity is given by the microwave irradiation unit. 接着剤介在部に対し、該接着剤介在部に向けてマイクロウェーブを透過させる手段が設けられている、請求項10〜13、15のいずれかに記載の実装装置。16. The mounting apparatus according to claim 10, wherein a means for transmitting microwaves toward the adhesive interposed portion is provided for the adhesive interposed portion. 前記接着剤中に、少なくとも表面が金属からなる粒子が含有されている、請求項10〜16のいずれかに記載の実装装置。The mounting device according to any one of claims 10 to 16, wherein at least the surface of the adhesive contains particles made of metal. 前記接着剤として、導電粒子を含有した異方導電性接着剤が用いられる、請求項17の実装装置。The mounting device according to claim 17, wherein an anisotropic conductive adhesive containing conductive particles is used as the adhesive. チップおよび基板の少なくとも一方の電極が、溶融されて接合される金属からなるバンプで形成されている、請求項10〜16のいずれかに記載の実装装置。17. The mounting apparatus according to claim 10, wherein at least one electrode of the chip and the substrate is formed of a bump made of a metal that is melted and joined. 前記接着剤として、非導電性接着剤が用いられる、請求項10〜16、19のいずれかに記載の実装装置。The mounting device according to claim 10, wherein a non-conductive adhesive is used as the adhesive. チップを基板に対しアライメントした後の実装工程に、前記マイクロウェーブ照射手段が設けられている、請求項10〜20のいずれかに記載の実装装置。21. The mounting apparatus according to claim 10, wherein the microwave irradiation means is provided in a mounting step after the chip is aligned with the substrate. チップを基板に対しアライメントした後両者を仮接合し、該仮接合体が搬送される本接合工程に、前記マイクロウェーブ照射手段が設けられている、請求項10〜20のいずれかに記載の実装装置。The mounting according to any one of claims 10 to 20, wherein the microwave irradiation means is provided in a main bonding step in which the chips are temporarily bonded to each other after the chip is aligned with the substrate, and the temporary bonded body is transported. apparatus.
JP2003047043A 2002-04-30 2003-02-25 Mounting method and mounting apparatus Pending JP2004031902A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003047043A JP2004031902A (en) 2002-04-30 2003-02-25 Mounting method and mounting apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002128017 2002-04-30
JP2003047043A JP2004031902A (en) 2002-04-30 2003-02-25 Mounting method and mounting apparatus

Publications (1)

Publication Number Publication Date
JP2004031902A true JP2004031902A (en) 2004-01-29

Family

ID=31189962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003047043A Pending JP2004031902A (en) 2002-04-30 2003-02-25 Mounting method and mounting apparatus

Country Status (1)

Country Link
JP (1) JP2004031902A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101211753B1 (en) 2011-07-18 2012-12-12 한국과학기술원 Method and device for connecting electronic parts using high frequency electromagnetic field
WO2014142330A1 (en) * 2013-03-15 2014-09-18 株式会社ニコン Biochip fixing method, biochip fixing device, and screening method for biomolecule array
US9082885B2 (en) 2013-05-30 2015-07-14 Samsung Electronics Co., Ltd. Semiconductor chip bonding apparatus and method of forming semiconductor device using the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101211753B1 (en) 2011-07-18 2012-12-12 한국과학기술원 Method and device for connecting electronic parts using high frequency electromagnetic field
WO2014142330A1 (en) * 2013-03-15 2014-09-18 株式会社ニコン Biochip fixing method, biochip fixing device, and screening method for biomolecule array
JPWO2014142330A1 (en) * 2013-03-15 2017-02-16 株式会社ニコン Biochip fixing device and biochip fixing method
US9082885B2 (en) 2013-05-30 2015-07-14 Samsung Electronics Co., Ltd. Semiconductor chip bonding apparatus and method of forming semiconductor device using the same

Similar Documents

Publication Publication Date Title
US6284086B1 (en) Apparatus and method for attaching a microelectronic device to a carrier using a photo initiated anisotropic conductive adhesive
EP1067598B1 (en) Method of packaging semiconductor device using anisotropic conductive adhesive
JP3150347B2 (en) Method and apparatus for mounting electronic components on circuit board
CN109103117B (en) Apparatus for bonding semiconductor chips and method of bonding semiconductor chips
TW201344819A (en) Thermal compression bonding of semiconductor chips
US20240008189A1 (en) Method and Apparatus for Flexible Circuit Cable Attachment
JP2006253665A (en) Bonding method and bonding device
JP3303832B2 (en) Flip chip bonder
US20030138993A1 (en) Method and apparatus for manufacturing semiconductor device
JP2008153399A (en) Bonding device and bonding method by the same
JPH10112478A (en) Ball grid array semiconductor device and its mounting method
KR101189290B1 (en) Bonding method and apparatus
JP2004031902A (en) Mounting method and mounting apparatus
US6794623B2 (en) Guided heating apparatus and method for using the same
JP2008153366A (en) Jointing method by jointer
JP2007049040A (en) Joining method
US20030009876A1 (en) Method and device for chip mounting
JPH10112515A (en) Ball grid array semiconductor device and its manufacture
JP2002299809A (en) Electronic component mounting method and equipment
JP2009004462A (en) Method of mounting semiconductor device
JP3509474B2 (en) Bonding apparatus and bonding method for work with bump
EP1255293A1 (en) Method and device for chip mounting
JP2001068847A (en) Method and device for mounting electronic component
JP2000260826A (en) Heater for mounting semiconductor chip
JP2008227409A (en) Joining device and joining method