JP2004031362A - Composition for hole injection transporting layer, organic el element and its manufacturing method - Google Patents

Composition for hole injection transporting layer, organic el element and its manufacturing method Download PDF

Info

Publication number
JP2004031362A
JP2004031362A JP2003209651A JP2003209651A JP2004031362A JP 2004031362 A JP2004031362 A JP 2004031362A JP 2003209651 A JP2003209651 A JP 2003209651A JP 2003209651 A JP2003209651 A JP 2003209651A JP 2004031362 A JP2004031362 A JP 2004031362A
Authority
JP
Japan
Prior art keywords
composition
hole injection
transport layer
injection transport
organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003209651A
Other languages
Japanese (ja)
Inventor
Shunichi Seki
関 俊一
Hiroshi Kiguchi
木口 浩史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2003209651A priority Critical patent/JP2004031362A/en
Publication of JP2004031362A publication Critical patent/JP2004031362A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a composition for a hole injection transporting layer, whereby a material and an element can be most properly designed, and a film can inexpensively accurately be formed by patterning in a short time. <P>SOLUTION: This composition for the hole injection transporting layer is a composition used to form the hole injection transporting layer of an EL element by patterning by using an ink jet type recording head, and contains a conductive compound and a solvent which are components of the hole injection transporting layer. Its contact angle to a material forming the ink discharging nozzle face of the ink jet type recording head is in the range of 30° to 70°, its viscosity is in the range of 1 cp to 20 cp, and its surface tension is in the range of 20 dyne to 70 dyne. Because of such physical properties, materials and elements can be most properly designed, and the film can accurately, simply and inexpensively be formed by patterning in a short time by using this composition for the hole injection transporting layer. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、ディスプレイ、表示光源などに用いられる電気的発光素子である有機EL(electroluminescence)素子の製造方法に関するものである。特に、インクジェットパターニングに好適な正孔注入輸送層用組成物に係わる。
【0002】
【従来の技術】
蛍光性有機分子を含む固体薄膜を電極で挟み電荷を印加すると陽極から正孔(ホール)が、陰極から電子が注入され、これらのキャリアは印加電場により薄膜中を移動し再結合する。この再結合の際放出されたエネルギーは蛍光分子の一重項励起状態(分子励起子)の形成に消費され、この一重項励起子の基底状態への緩和にともなって放出される蛍光を利用した素子が有機EL素子である。
【0003】
ところで、発光層のみからなる単層型構造素子では発光効率が低く、耐久性に問題があるため、陽極と発光層間に密着性の良い正孔注入輸送層を設けた二層構造型素子が提案されている。積層構造を採用することで、キャリアの注入/輸送バランスおよびキャリアの再結合部位の制御により、EL発光素子の発光効率、耐久性を向上させることができる。また、積層構造によれば、発光、注入/輸送といった機能を別々の材料に分担させることができるため、材料、素子の最適設計が可能になるという利点を持つ。
【0004】
これまで二層積層型有機EL素子の正孔注入輸送層化合物としては、ポルフィリン化合物(米国特許第4356429号,同4720432号)、アニリンやピリジンおよびそれらの誘導体低分子(特開平 3−34382号)、あるいはカーボン層用いた正孔注入輸送層(特開平 8−31573号)などがこれまでに提案されている。これらの低分子系材料を用いた正孔注入輸送層形成には、真空蒸着やスパッタによる成膜法が一般的である。高分子材料としてはポリアニリン(Nature,357,477(1992))などが知られ、スピンコートなどの湿式法で成膜される。
【0005】
【発明が解決しようとする課題】
しかしながら、真空蒸着やスパッタによる成膜法はバッチ処理であり長時間を有するため量産効率が悪い。また低分子材料の場合には成膜後結晶化しやすく、素子の信頼性が低下するといった課題を有する。一方、高分子材料の場合は分子設計上の自由度が高く、湿式のため材料の最適化がしやすいという利点を有するが、スピンコートなどの成膜法は材料の殆どを浪費するという大きな問題がある。
【0006】
更に、フルカラーディスプレイなど材料の微細パターンニングが必要とされる場合、蒸着法においては高精度のパターニングは困難であり、またフォトリソグラフィーによるパターニング工程に対しては材料に耐性がないという根本的な問題がある。高分子材料においても同様な問題を有する。正孔注入輸送層あるいはバッファー層として用いられる材料は導電性を有するものであるから完全なパターニングが実現できなければ同一基板上に設けられた隣の画素間での漏電を引き起こす原因となる。
【0007】
【課題を解決するための手段】
そこで、本発明は、材料や素子設計の最適化を行うことができ、かつ簡便、短時間、低コストで精度の高いパターニング成膜を行うことができる正孔注入輸送層用組成物を提供することを課題とする。また、正孔注入輸送層用組成物の製造方法を提供することを課題とする。また、この組成物を用いた有機EL素子の製造法を提供することを課題とする。さらに、この製造方法で製造した、発光特性に優れた有機EL素子を提供することを課題とする。
【0008】
本発明の正孔注入輸送層用組成物は、有機EL素子の正孔注入輸送層をインクジェット式記録ヘッドを用いてパターニング形成するために用いられる組成物であって、正孔注入輸送層を形成する導電性化合物を分散或いは溶解させる極性溶媒、及び、インクジェットパターニングを容易にするための湿潤剤とを含み、以下の物性的特性(接触角、粘度、表面張力)を有する。
【0009】
(1)接触角
インクジェット式記録ヘッドのノズル面を構成する材料と正孔注入輸送層用組成物との接触角は30deg〜170degの範囲に設定することが好ましい。特に、35deg〜65degの範囲に設定することが好ましい。
【0010】
正孔注入輸送層用組成物がこの範囲の接触角をもつことによって吐出時の飛行曲がりを抑制することができ、精密な吐出制御が可能になる。接触角が30deg未満の場合、正孔注入輸送層用組成物のノズル面における濡れ性が増大し、正孔注入輸送層用組成物を吐出する際に、正孔注入輸送層用組成物がノズル孔の周囲に非対称に付着することがある。この場合、ノズル孔に付着した正孔注入輸送層用組成物と吐出しようとする正孔注入輸送層用組成物との相互間に引力が働くため、正孔注入輸送層用組成物は不均一な力により吐出されることになり、飛行曲がりが生じ、目標位置に着弾できない。また、飛行曲がり頻度が多くなる。一方、接触角が170degを超えると、正孔注入輸送層用組成物とノズル孔との相互作用が極小となり、ノズル先端でのメニスカスの形状が安定しないため正孔注入輸送層用組成物の吐出量及び吐出タイミングの制御が困難になる。
【0011】
尚、飛行曲がりとは、正孔注入輸送層用組成物をノズル孔から吐出させたとき、正孔注入輸送層用組成物の着弾位置が目標位置に対して30μm以上のずれを生じることをいう。また、飛行曲がり頻度とは、インクジェット式記録ヘッドの圧電体薄膜素子の振動周波数、例えば、14.4kHzで連続吐出したときの飛行曲がりが生じるまでの時間をいう。
【0012】
(2)粘度
正孔注入輸送層用組成物の粘度は1cp〜20cpの範囲が好ましい。特に、2cp〜4cpの範囲に設定することが好ましい。
【0013】
正孔注入輸送層用組成物の粘度が1cp未満の場合、ノズル孔における正孔注入輸送層用組成物のメニスカスが安定せず、吐出制御が困難となる。一方、粘度が20cpを超えると、ノズル孔から正孔注入輸送層用組成物を円滑に吐出させることができず、ノズル孔を大きくする等のインクジェット式記録ヘッドの仕様を変更しない限り、インク吐出が困難となる。さらに、粘度が大きい場合、正孔注入輸送層用組成物中の固形成分が析出しやすくなり、ノズル孔の目詰まり頻度が高くなる。
【0014】
(3)表面張力
正孔注入輸送層用組成物の表面張力は20dyne〜70dyneの範囲に設定することが好ましい。特に、25dyne〜40dyneの範囲内に設定することが好ましい。
【0015】
この範囲内の表面張力に設定することにより、上述した接触角と同様、飛行曲がりを抑制し、飛行曲がり頻度を低減することができる。表面張力が70dyne以上になると、ノズル先端でメニスカス形状が安定しないため、正孔注入輸送層用組成物の吐出量、吐出タイミングの制御が困難となる。一方、表面張力が20dyne未満であると、ノズル面の構成材料に対する正孔注入輸送層用組成物の濡れ性が増大するため、上記接触角の場合と同様、飛行曲がりが生じ、飛行曲がり頻度が高くなる。
【0016】
この飛行曲がりは、主にノズル孔の濡れ性が不均一である場合や、正孔注入輸送層用組成物の固形成分の付着による目詰まり等によって発生するが、インクジェット式記録ヘッドをクリーニングする(以下、「フッラッシング」という。)ことによって解消することができる。このフッラッシングは通常、インクジェット式記録ヘッド機構に細工をして目詰まりや飛行曲がりを防止するもので、正孔注入輸送層用組成物の吐出が一定時間(以下、「フラッシング時間」という。)行われなくなると、所定量の正孔注入輸送層用組成物を強制的に吐出させる仕組みになっている。このフラッシング時間は、正孔注入輸送層用組成物を吐出していないノズルが乾燥し、飛行曲がりを起こすまでの時間を意味し、正孔注入輸送層用組成物の特性を示す指標となる。フラッシング時間が長い程、インクジェットの印刷技法に適しているといえるため、長時間安定して正孔注入輸送層用組成物を吐出することができる。
【0017】
従って、正孔注入輸送層用組成物が上記の物性値を有することで、フラッシング時間を長くすることができ、大気と正孔注入輸送層用組成物の界面をよりフレッシュな状態に保持することができる。また、吐出される正孔注入輸送層用組成物のドットの濃度を均一にすることができるので正孔注入輸送層用組成物のムラの発生等を防止することができる。さらに、飛行直進性に優れるため、インクジェット式記録ヘッドの制御が容易となり、製造装置を簡易な構成とすることができる。
【0018】
尚、極性溶媒として、水と低級アルコール(例えば、メタノール又はエタノール)の混合溶媒が好ましい。また、水とセロソルブ系溶媒(例えば、エトキシエタノール)の混合溶媒としてもよい。また、湿潤剤はグリセリンが好ましい。さらに、本発明の正孔注入輸送層用組成物の製造方法は、超音波処理工程と、濾過工程を経て調整するものである。
【0019】
本発明の有機EL素子の製造方法は、画素領域毎に区画された仕切部材内に形成される、正孔注入輸送層と発光層の積層構造を有する有機EL素子の製造方法であって、画素領域に対応した開口部を備える仕切部材を基板上に形成する工程と、インクジェット式記録ヘッドを用いて前記開口部内に、本発明の正孔注入輸送層用組成物を充填する工程と、開口部内に充填された正孔注入輸送層用組成物を乾燥処理して正孔注入輸送層を形成する工程と、を備える。この方法により、正孔注入輸送層の膜厚、ドット数等の条件を任意に調整することができるため、有機EL発光素子のサイズやパターンも任意に設定することができる。
【0020】
本発明の有機EL素子は、上記の方法で製造されるものであり、正孔注入輸送層の膜厚が、0.1μm以下とする。また、正孔注入輸送層の膜抵抗は、0.5×10Ω/m乃至5×10Ω/mの範囲とする。正孔注入輸送層の膜厚、膜抵抗を上記の範囲に設定することで、有機EL素子の発光特性を向上させることができる。
【0021】
【発明の実施の形態】
発明の実施の形態1.
以下、本実施の形態に係わる正孔注入輸送層用組成物、有機EL素子の製造方法及び有機EL素子について説明する。
【0022】
正孔注入輸送層用組成物は、主として正孔注入輸送層を形成する導電性化合物、分散溶媒、湿潤剤を含み、インクジェット方式によるパターン成膜に用いられる。この正孔注入輸送層を形成する導電性化合物は陽極よりイオン化ポテンシャルが低い化合物が望ましい。例えば、陽電極としてITOを用いた場合、低分子系材料としては、銅フタロシアニン等のポルフィリン化合物が挙げられる。
【0023】
尚、その他の添加剤、被膜安定化材料を添加してもよく、例えば、粘度調製剤、老化防止剤、pH調製剤、防腐剤、樹脂エマルジョン、レベリング剤等を用いることができる。
【0024】
(実施例)
導電性化合物(正孔注入輸送層成分)として、銅フタロシアニンを用いた場合の、正孔注入輸送層用組成物の物性的特性について検討した。試料は表1乃至表10に示す組成物1乃至組成物10を調整した。
【0025】
組成物1
【0026】
【表1】

Figure 2004031362
【0027】
組成物2
【0028】
【表2】
Figure 2004031362
【0029】
組成物3
【0030】
【表3】
Figure 2004031362
【0031】
組成物4
【0032】
【表4】
Figure 2004031362
【0033】
組成物5
【0034】
【表5】
Figure 2004031362
【0035】
組成物6
【0036】
【表6】
Figure 2004031362
【0037】
組成物7
【0038】
【表7】
Figure 2004031362
【0039】
組成物8
【0040】
【表8】
Figure 2004031362
【0041】
組成物9
【0042】
【表9】
Figure 2004031362
【0043】
組成物10
【0044】
【表10】
Figure 2004031362
【0045】
(吐出評価)
表1〜表8に示す組成物1〜組成物8のインクジェット式記録ヘッドを構成するノズル面構成材料に対する接触角、粘度および表面張力を測定し、それらの吐出性を評価した。吐出評価はインクジェットプリント装置(エプソン製MJ−500C)を用いて行った。
【0046】
尚、粘度は20℃での測定値である。これらの結果を表11に示す。
【0047】
【表11】
Figure 2004031362
【0048】
この結果から、接触角は30°から170°、特に、35°から65°が好ましいことがわかる。また、粘度は1cpから20cp、特に、2cpから4cpが好ましく、表面張力は20dyneから70dyne、特に、25dyneから40dyneの範囲が好ましいことがわかる。
【0049】
また、湿潤剤としてグリセリンが混入されている組成物1乃至組成物3は、湿潤剤が混入されていない組成物6乃至組成物8と比較すると、吐出性に優れていることがわかる。従って、インク組成物中に湿潤剤が含まれていることが好ましい。湿潤剤を混入することで、インク組成物がノズル口で乾燥・凝固することを有効に防止することができる。かかる湿潤剤としては、例えば、グリセリン、ジエチレングリコール等の多価アルコール類が挙げられるが、グリセリンが特に好ましい。
【0050】
(正孔注入輸送層用組成物の製法)
表1乃至表3、及び、表9、表10にそれぞれ示す組成物1乃至組成物3、及び、組成物9、組成物10を製造し、超音波処理前後の正孔注入輸送層形成化合物(銅フタロシアニン)の粒度分布を測定した。更に、超音波処理後、濾過工程を経た上記正孔注入輸送層用組成物を用い、インクジェット方式パターニングにより形成された正孔注入輸送層の成膜性を評価した。
【0051】
これらの結果を表12に示す。超音波処理の効果は1μm以下の粒度分布の割合で示した。
【0052】
尚、スチレンアクリル樹脂分散液での粒径は1μm以上である。
【0053】
【表12】
Figure 2004031362
【0054】
この結果から、前記分散液を4時間超音波処理することで分散性を上げることができることがわかる。また、超音波処理分散液をさらに濾過することによって、より均一な正孔注入輸送層膜を得ることができる。また、導電性化合物の分散極性溶媒としては、水、又は、水とメタノール或いはエトキシエタノールとの混合溶媒であることが好ましく(組成物1乃至組成物3)、これらの溶媒を用いた場合、成膜性も良いことがわかる。
【0055】
(有機EL素子の製造工程)
表1乃至表3に示す組成物1乃至組成物3を用いて、以下に示す手順でインクジェット方式による正孔注入輸送層のパターニング成膜を行い、有機EL素子を製造した。
【0056】
陽極形成工程(第1図(A))
本工程はガラス基板102上に陽極101を形成する工程である。ガラス基板102としては、酸やアルカリ等の薬品に侵されにくく、量産可能であるものが好ましい。ITO透明電極を基板102上に0.1μmの厚さで成膜し、100μmピッチでパターニングする。
【0057】
仕切部材形成工程(同図(B))
本工程は、ガラス基板102上に仕切部材103を形成する工程である。具体的には、陽極(ITO電極)101間を埋め、インク垂れ防止壁(バンク)を兼ねた非感光性ポリイミド(仕切部材)をフォトリソグラフィーにより形成した。非感光性ポリイミドは幅20μm、厚さ2.0μmとした。
【0058】
正孔注入輸送層用組成物吐出工程(同図(C))
更に、インクジェットプリント装置(エプソン製MJ−800C)104のヘッド105から正孔注入輸送層用組成物1乃至3(図中106)を吐出し、正孔注入輸送層107をパターンニング成膜した。パターン成膜後、200℃10分の乾燥処理により正孔注入輸送層を形成した。正孔注入輸送層用組成物吐出時において、バンク越しの塗布は見られず、高精度の正孔注入輸送層パターンが得られた。
【0059】
発光層組成物充填工程(同図(D))
次いで、緑色発光層としてPPV前駆体(ポリ(パラ−フェニレンビニレン))組成物を製造した。インクジェット方式により発光層組成物108を吐出し、発光層109をパターンニング成膜した。発光層109としては赤色発光を示すローダミンBをドープしたPPVや青色発光を示すクマリンをドープしたPPVを用いても良い。赤、緑、青の3原色発光を示す発光層を正孔注入輸送層上に更にパターニングすることにより高精細なフルカラー有機ELディスプレイの製造が可能となる。
【0060】
陰極形成工程(同図(E))
最後に、発光層109を覆うように陰電極110を蒸着して有機EL素子を形成した。
【0061】
(正孔注入輸送層の成膜評価)
上記有機EL素子の製造工程において、正孔注入輸送層用組成物の吐出回数を変えたときの正孔注入輸送層の膜厚、シート抵抗を測定し、成膜性を評価した。これらの結果を表13に示す。
【0062】
【表13】
Figure 2004031362
【0063】
この結果から、低分子系材料の場合、正孔注入輸送層の膜厚が0.05μm以下であり、膜抵抗値が0.5×10Ω/mから5×10Ω/mである場合、発光特性が良いことがわかる。
【0064】
(作用)
本実施の形態のインクジェット方式パターニングによれば、微細パターニングを簡便に短時間かつ低コストで実現できる。従って、べた成膜法では解決することのできなかった正孔注入輸送層自身による漏電の心配はない。また、吐出量あるいは吐出回数の加減により膜厚の制御が容易にできるため、それによって薄膜設計の最適化が可能となる。
【0065】
発明の実施の形態2.
本実施の形態は、正孔注入輸送層を形成する導電性化合物を溶液からの成膜が可能な材料(高分子材料)としたもので、ポリアニリン、ポリシラン等の導電性高分子を用いるものである。特に、水を主溶媒として使えること、混合比により特性を調節できることからPEDT(ポリエチレンジオキシチオフェン)
【0066】
【化1】
Figure 2004031362
【0067】
とPSS(ポリスチレンスルフォン酸)
【0068】
【化2】
Figure 2004031362
【0069】
の混合材料が好ましい。
【0070】
(実施例)
高分子材料(正孔注入輸送層成分)として、PEDT/PSS混合水溶液を用いた場合の正孔注入輸送層用組成物を、表14乃至表18に示す5種類(組成物11乃至組成物15)を調整し、物性的特性(接触角、表面張力及び粘度)を測定した。
【0071】
組成物11
【0072】
【表14】
Figure 2004031362
【0073】
組成物12
【0074】
【表15】
Figure 2004031362
【0075】
組成物13
【0076】
【表16】
Figure 2004031362
【0077】
組成物14
【0078】
【表17】
Figure 2004031362
【0079】
組成物15
【0080】
【表18】
Figure 2004031362
【0081】
吐出評価は、インクジェットプリント装置(エプソン製MJ−800C)を用いて行った。また、成膜性の評価は、吐出による塗布後、200℃、10〜60分の加熱処理後の膜状態を評価した。粘度は20℃での測定値である。
【0082】
【表19】
Figure 2004031362
【0083】
以上の結果から、導電性高分子材料の濃度は、組成物全体に対して0.01wt%〜10.0wt%が好ましく、特に、0.1wt%〜5.0wt%が好ましい。導電性高分子の濃度が低すぎると必要な膜厚を得るために吐出回数が多くなってしまい量産効率が悪くなり、一方、導電性高分子の濃度が高すぎても粘度が高くなってしまうからである。
【0084】
また、正孔注入輸送層用組成物中には湿潤剤が含まれていることが好ましい。これによりインク組成物がインクジェットノズル口で乾燥・凝固することを有効に防止することができる。かかる湿潤剤としては、例えば、グリセリン、ジエチレングリコール等の多価アルコール類が挙げられるが、グリセリンが好ましい。湿潤剤の添加量としては、組成物全体量に対して5wt%〜20wt%程度が好ましい。
【0085】
正孔注入輸送層用組成物に用いる極性溶媒としては、水と低級アルコールの混合溶媒あるいは水とセロソルブ系溶媒の混合溶媒が好ましい。これらの溶媒を用いることにより導電性化合物の溶解性あるいは分散性を損なうことなく、正孔注入輸送層用組成物のインクジェット用ヘッドのノズル面を構成する材料に対する接触角、粘度および表面張力の調整が可能となる。低級アルコールとしてはメタノール、エタノールがより好ましい。セロソルブ系溶媒としては成膜性という点からもエトキシエタノールがより好ましい。
【0086】
尚、その他の添加剤、被膜安定化材料を添加してもよく、例えば、粘度調製剤、老化防止剤、pH調製剤、防腐剤、樹脂エマルジョン、レベリング剤等を用いることができる。
【0087】
(正孔注入輸送層用組成物の製造方法)
表18に示す正孔注入輸送層用組成物(組成物15)を用いて、超音波処理、濾過工程の有無による成膜性および発光特性の比較を表7に示す。緑色発光層としてはPPV(ポリ(パラ−フェニレンビニレン))を用いた。
【0088】
【表20】
Figure 2004031362
【0089】
この結果から、超音波処理することでより分散性を上げ、さらに、超音波処理分散液を濾過した組成物を用いることによって平坦性の良い均一な正孔注入輸送層を得ることができることがわかる。膜厚は0.05μm〜0.1μmが好ましい。正孔注入輸送層の成膜性は素子の発光特性に影響を及ぼすからである。
【0090】
尚、本実施の形態の有機EL素子の製造工程は、実施の形態1と同様である。
【0091】
【発明の効果】
本発明によれば、正孔注入輸送層用組成物を液体にすることにより材料の最適設計を可能にし、更に液体組成物をインク化することにより、インクジェット方式による正孔注入輸送層の高精度パターニングを可能にできる。また、正孔注入輸送層材料して導電性化合物、特に、高分子材料を用いることにより高信頼性、高特性の有機EL素子を製造することが可能となる。
【0092】
本発明に係わるインクジェット方式パターニングによれば、簡便でかつ低コストな正孔注入輸送層形成を提供することができる。
【0093】
本発明の有機EL素子の製造法によれば、膜厚、ドット数等の条件を任意に調整可能であるため発光素子のサイズやパターンも任意に設定することができる。更に、インクジェット方式パターニングによる赤色、緑色、青色の3原色発光層形成とを組み合わせることにより、発光特性の優れた高精細フルカラーディスプレイの開発が可能となる。
【図面の簡単な説明】
【図1】EL素子の製造工程断面図である。
【符号の説明】
101  透明画素電極
102  ガラス基板
103  仕切部材
104  インクジェットプリント装置
105  インクジェットヘッド
106  正孔注入輸送用組成物
107  正孔注入輸送層
108  発光層組成物
109  発光層
110  陰電極[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing an organic EL (electroluminescence) element that is an electric light emitting element used for a display, a display light source, and the like. In particular, the present invention relates to a composition for a hole injection transport layer suitable for inkjet patterning.
[0002]
[Prior art]
When a solid thin film containing a fluorescent organic molecule is sandwiched between electrodes and charges are applied, holes are injected from the anode and electrons are injected from the cathode, and these carriers move in the thin film by the applied electric field and recombine. The energy released during the recombination is consumed to form a singlet excited state (molecular exciton) of the fluorescent molecule, and an element utilizing the fluorescence emitted as the singlet exciton relaxes to the ground state. Is an organic EL element.
[0003]
By the way, a single-layer structure element composed of only a light-emitting layer has low luminous efficiency and has a problem in durability. Therefore, a two-layer structure element in which a positive hole injection / transport layer is provided between an anode and a light-emitting layer is proposed. Have been. By employing a stacked structure, the luminous efficiency and durability of the EL light emitting element can be improved by controlling the injection / transport balance of carriers and the recombination sites of carriers. In addition, according to the stacked structure, functions such as light emission and injection / transport can be assigned to different materials, so that there is an advantage that an optimal design of a material and an element is possible.
[0004]
So far, porphyrin compounds (U.S. Pat. Nos. 4,356,429 and 4,720,432), aniline, pyridine, and their low-molecular derivatives (Japanese Unexamined Patent Publication No. 3-34382) have been used as hole injection / transport layer compounds in two-layer stacked organic EL devices. And a hole injection / transport layer using a carbon layer (JP-A-8-31573) have been proposed. For forming a hole injection transport layer using these low molecular materials, a film forming method by vacuum evaporation or sputtering is generally used. Polyaniline (Nature, 357, 477 (1992)) or the like is known as a polymer material, and is formed by a wet method such as spin coating.
[0005]
[Problems to be solved by the invention]
However, the film formation method by vacuum evaporation or sputtering is a batch process and has a long time, so that mass production efficiency is poor. Further, in the case of a low molecular material, there is a problem that the film is easily crystallized after film formation, and the reliability of the device is reduced. On the other hand, polymer materials have a high degree of freedom in molecular design, and have the advantage of being easy to optimize materials because of the wet process. However, film formation methods such as spin coating waste most of the material. There is.
[0006]
Further, when fine patterning of a material is required, such as in a full-color display, it is difficult to perform high-precision patterning by a vapor deposition method, and there is a fundamental problem that the material is not resistant to a patterning step by photolithography. There is. Polymer materials also have similar problems. Since the material used as the hole injection transport layer or the buffer layer has conductivity, if complete patterning cannot be achieved, it causes electrical leakage between adjacent pixels provided on the same substrate.
[0007]
[Means for Solving the Problems]
Therefore, the present invention provides a composition for a hole injection transport layer that can optimize a material and an element design, and can perform simple, short-time, low-cost, and highly accurate patterning film formation. That is the task. Another object is to provide a method for producing a composition for a hole injection transport layer. Another object is to provide a method for manufacturing an organic EL device using the composition. It is another object of the present invention to provide an organic EL device manufactured by this manufacturing method and having excellent light emitting characteristics.
[0008]
The composition for a hole injecting and transporting layer of the present invention is a composition used for patterning the hole injecting and transporting layer of an organic EL element using an ink jet recording head, and forms the hole injecting and transporting layer. And a wetting agent for facilitating inkjet patterning, and has the following physical properties (contact angle, viscosity, surface tension).
[0009]
(1) Contact Angle The contact angle between the material constituting the nozzle surface of the ink jet recording head and the composition for the hole injection transport layer is preferably set in the range of 30 deg to 170 deg. In particular, it is preferable to set in the range of 35 deg to 65 deg.
[0010]
When the composition for a hole injecting and transporting layer has a contact angle in this range, flight bending at the time of ejection can be suppressed, and precise ejection control can be performed. When the contact angle is less than 30 deg, the wettability of the composition for a hole injection transport layer on the nozzle surface increases, and when the composition for a hole injection transport layer is ejected, the composition for a hole injection transport layer may May adhere asymmetrically around holes. In this case, since the attractive force acts between the composition for the hole injection transport layer attached to the nozzle hole and the composition for the hole injection transport layer to be discharged, the composition for the hole injection transport layer is non-uniform. As a result, the ink is ejected by an excessive force, and a flight bend occurs. In addition, the frequency of flight bending increases. On the other hand, when the contact angle exceeds 170 deg, the interaction between the composition for the hole injection transport layer and the nozzle hole is minimized, and the shape of the meniscus at the tip of the nozzle is not stable. It becomes difficult to control the amount and the ejection timing.
[0011]
Note that the flight bend means that when the composition for a hole injection transport layer is discharged from a nozzle hole, the landing position of the composition for a hole injection transport layer is shifted by 30 μm or more from a target position. . In addition, the term "flying frequency" refers to the time required until flight bending occurs when continuous ejection is performed at the vibration frequency of the piezoelectric thin film element of the ink jet recording head, for example, at 14.4 kHz.
[0012]
(2) Viscosity The viscosity of the composition for a hole injection transport layer is preferably in the range of 1 cp to 20 cp. In particular, it is preferable to set the range of 2 cp to 4 cp.
[0013]
When the viscosity of the composition for a hole injection transport layer is less than 1 cp, the meniscus of the composition for a hole injection transport layer in a nozzle hole is not stable, and it becomes difficult to control the discharge. On the other hand, when the viscosity exceeds 20 cp, the composition for the hole injection transport layer cannot be smoothly discharged from the nozzle holes, and unless the specifications of the ink jet recording head such as enlarging the nozzle holes are changed, the ink discharge is not performed. Becomes difficult. Furthermore, when the viscosity is high, solid components in the composition for the hole injection transport layer are easily precipitated, and the frequency of clogging of the nozzle holes increases.
[0014]
(3) Surface Tension The surface tension of the composition for a hole injection transport layer is preferably set in the range of 20 dyne to 70 dyne. In particular, it is preferable to set within the range of 25 dyne to 40 dyne.
[0015]
By setting the surface tension within this range, the flight bend can be suppressed and the frequency of the flight bend can be reduced, similarly to the contact angle described above. When the surface tension is 70 dyne or more, the meniscus shape is not stable at the tip of the nozzle, so that it becomes difficult to control the discharge amount and the discharge timing of the composition for the hole injection transport layer. On the other hand, when the surface tension is less than 20 dyne, the wettability of the composition for the hole injection transport layer with respect to the constituent material of the nozzle surface increases, so that the flight bending occurs as in the case of the contact angle, and the frequency of the flight bending is reduced. Get higher.
[0016]
This flight bending is mainly caused by non-uniform wettability of the nozzle holes or clogging due to adhesion of solid components of the composition for the hole injection transport layer. Hereinafter, this will be referred to as “flashing”.) This flushing is usually performed by modifying the ink jet recording head mechanism to prevent clogging and flight bending, and discharge of the composition for the hole injection transport layer for a certain period of time (hereinafter, referred to as "flushing time"). When the operation is not performed, a predetermined amount of the composition for the hole injection transport layer is forcibly discharged. The flushing time means a time from when a nozzle which does not discharge the composition for a hole injection transport layer dries and a flight bend occurs, and is an index indicating characteristics of the composition for a hole injection transport layer. It can be said that the longer the flushing time is, the more suitable it is for the ink jet printing technique. Therefore, the composition for the hole injection transport layer can be discharged stably for a long time.
[0017]
Therefore, when the composition for the hole injection transport layer has the above-mentioned physical properties, the flushing time can be extended, and the interface between the atmosphere and the composition for the hole injection transport layer can be kept more fresh. Can be. Further, since the concentration of the dots of the composition for the hole injection transport layer to be discharged can be made uniform, it is possible to prevent the unevenness of the composition for the hole injection transport layer from occurring. Furthermore, because of excellent flight straightness, the control of the ink jet recording head becomes easy, and the manufacturing apparatus can have a simple configuration.
[0018]
As the polar solvent, a mixed solvent of water and a lower alcohol (for example, methanol or ethanol) is preferable. Further, a mixed solvent of water and a cellosolve-based solvent (for example, ethoxyethanol) may be used. Further, the humectant is preferably glycerin. Further, the method for producing the composition for a hole injection transport layer of the present invention is adjusted through an ultrasonic treatment step and a filtration step.
[0019]
The method for manufacturing an organic EL device of the present invention is a method for manufacturing an organic EL device having a laminated structure of a hole injection / transport layer and a light emitting layer, which is formed in a partition member partitioned for each pixel region, Forming a partition member having an opening corresponding to the region on the substrate; filling the opening with the composition for a hole injection transport layer of the present invention using an ink jet recording head; Drying the composition for a hole injection transport layer filled in the composition to form a hole injection transport layer. According to this method, conditions such as the film thickness of the hole injection transport layer and the number of dots can be arbitrarily adjusted, so that the size and pattern of the organic EL light emitting element can be arbitrarily set.
[0020]
The organic EL device of the present invention is manufactured by the above method, and the thickness of the hole injection / transport layer is 0.1 μm or less. Further, the film resistance of the hole injection / transport layer is in the range of 0.5 × 10 9 Ω / m 2 to 5 × 10 9 Ω / m 2 . By setting the thickness and the film resistance of the hole injecting and transporting layer in the above ranges, the light emitting characteristics of the organic EL device can be improved.
[0021]
BEST MODE FOR CARRYING OUT THE INVENTION
First Embodiment of the Invention
Hereinafter, the composition for a hole injection transport layer, the method for manufacturing an organic EL device, and the organic EL device according to the present embodiment will be described.
[0022]
The composition for a hole injection transport layer mainly contains a conductive compound for forming the hole injection transport layer, a dispersion solvent, and a wetting agent, and is used for pattern formation by an inkjet method. The conductive compound forming the hole injection transport layer is preferably a compound having an ionization potential lower than that of the anode. For example, when ITO is used as the positive electrode, a porphyrin compound such as copper phthalocyanine is used as the low-molecular material.
[0023]
In addition, other additives and a film stabilizing material may be added. For example, a viscosity adjuster, an antioxidant, a pH adjuster, a preservative, a resin emulsion, a leveling agent and the like can be used.
[0024]
(Example)
The physical properties of the composition for the hole injection transport layer when copper phthalocyanine was used as the conductive compound (component of the hole injection transport layer) were examined. For the samples, compositions 1 to 10 shown in Tables 1 to 10 were prepared.
[0025]
Composition 1
[0026]
[Table 1]
Figure 2004031362
[0027]
Composition 2
[0028]
[Table 2]
Figure 2004031362
[0029]
Composition 3
[0030]
[Table 3]
Figure 2004031362
[0031]
Composition 4
[0032]
[Table 4]
Figure 2004031362
[0033]
Composition 5
[0034]
[Table 5]
Figure 2004031362
[0035]
Composition 6
[0036]
[Table 6]
Figure 2004031362
[0037]
Composition 7
[0038]
[Table 7]
Figure 2004031362
[0039]
Composition 8
[0040]
[Table 8]
Figure 2004031362
[0041]
Composition 9
[0042]
[Table 9]
Figure 2004031362
[0043]
Composition 10
[0044]
[Table 10]
Figure 2004031362
[0045]
(Discharge evaluation)
The contact angles, viscosities, and surface tensions of the compositions 1 to 8 shown in Tables 1 to 8 with respect to the nozzle surface constituting material of the ink jet recording head were measured, and their ejection properties were evaluated. The ejection evaluation was performed using an inkjet printing apparatus (MJ-500C manufactured by Epson).
[0046]
The viscosity is a value measured at 20 ° C. Table 11 shows the results.
[0047]
[Table 11]
Figure 2004031362
[0048]
From this result, it is understood that the contact angle is preferably from 30 ° to 170 °, particularly preferably from 35 ° to 65 °. Further, it is understood that the viscosity is preferably from 1 cp to 20 cp, particularly preferably from 2 cp to 4 cp, and the surface tension is preferably from 20 dyne to 70 dyne, particularly preferably from 25 dyne to 40 dyne.
[0049]
In addition, it can be seen that the compositions 1 to 3 in which glycerin is mixed as a wetting agent are superior in ejection property as compared with the compositions 6 to 8 in which no wetting agent is mixed. Therefore, it is preferable that the ink composition contains a wetting agent. By mixing the wetting agent, it is possible to effectively prevent the ink composition from drying and solidifying at the nozzle opening. Examples of such a wetting agent include polyhydric alcohols such as glycerin and diethylene glycol, and glycerin is particularly preferred.
[0050]
(Method for producing composition for hole injection transport layer)
The compositions 1 to 3 and the compositions 9 and 10 shown in Tables 1 to 3 and Tables 9 and 10 were manufactured, and the compound for forming the hole injection transport layer before and after the ultrasonic treatment ( The particle size distribution of (copper phthalocyanine) was measured. Furthermore, using the composition for a hole injection transport layer that had been subjected to a filtration step after the ultrasonic treatment, the film forming property of the hole injection transport layer formed by inkjet patterning was evaluated.
[0051]
Table 12 shows the results. The effect of the ultrasonic treatment was shown by the ratio of the particle size distribution of 1 μm or less.
[0052]
The particle size of the styrene acrylic resin dispersion is 1 μm or more.
[0053]
[Table 12]
Figure 2004031362
[0054]
From this result, it is understood that the dispersibility can be improved by subjecting the dispersion to ultrasonic treatment for 4 hours. Further, by further filtering the ultrasonically treated dispersion liquid, a more uniform hole injection transport layer film can be obtained. Further, as the polar solvent for dispersing the conductive compound, water or a mixed solvent of water and methanol or ethoxyethanol is preferable (compositions 1 to 3). It can be seen that the film properties are also good.
[0055]
(Manufacturing process of organic EL element)
Using Compositions 1 to 3 shown in Tables 1 to 3, patterning and film formation of a hole injection / transport layer by an ink-jet method were performed in the following procedure to manufacture an organic EL device.
[0056]
Anode formation process (FIG. 1 (A))
This step is a step of forming the anode 101 on the glass substrate 102. It is preferable that the glass substrate 102 be hardly affected by chemicals such as acids and alkalis and be mass-produced. An ITO transparent electrode is formed on the substrate 102 to a thickness of 0.1 μm and patterned at a pitch of 100 μm.
[0057]
Partition member forming process (FIG. (B))
This step is a step of forming the partition member 103 on the glass substrate 102. Specifically, a space between the anodes (ITO electrodes) 101 was filled, and a non-photosensitive polyimide (partition member) also serving as an ink dripping prevention wall (bank) was formed by photolithography. The non-photosensitive polyimide had a width of 20 μm and a thickness of 2.0 μm.
[0058]
Step of discharging composition for hole injecting and transporting layer (Fig. (C))
Further, the compositions 1 to 3 (106 in the figure) for the hole injection transport layer were discharged from the head 105 of an inkjet printing apparatus (MJ-800C manufactured by Epson) 104, and the hole injection transport layer 107 was formed into a patterned film. After pattern formation, a hole injection transport layer was formed by a drying process at 200 ° C. for 10 minutes. At the time of discharging the composition for a hole injecting and transporting layer, application over a bank was not observed, and a highly accurate hole injecting and transporting layer pattern was obtained.
[0059]
Light emitting layer composition filling step (FIG. (D))
Next, a PPV precursor (poly (para-phenylenevinylene)) composition was produced as a green light-emitting layer. The light emitting layer composition 108 was discharged by an ink jet method, and the light emitting layer 109 was formed into a patterned film. As the light emitting layer 109, PPV doped with rhodamine B emitting red light or PPV doped with coumarin emitting blue light may be used. By further patterning a light emitting layer which emits red, green and blue primary colors on the hole injecting and transporting layer, a high definition full color organic EL display can be manufactured.
[0060]
Cathode forming process (Fig. (E))
Finally, a negative electrode 110 was deposited so as to cover the light emitting layer 109 to form an organic EL element.
[0061]
(Evaluation of film formation of hole injection transport layer)
In the manufacturing process of the organic EL device, the film thickness and sheet resistance of the hole injection transport layer when the number of discharges of the composition for the hole injection transport layer was changed were measured, and the film formability was evaluated. Table 13 shows the results.
[0062]
[Table 13]
Figure 2004031362
[0063]
From these results, in the case of the low molecular weight material, the thickness of the hole injecting and transporting layer is 0.05 μm or less, and the film resistance is 0.5 × 10 9 Ω / m 2 to 5 × 10 9 Ω / m 2. In this case, it can be seen that the light emission characteristics are good.
[0064]
(Action)
According to the ink-jet patterning of the present embodiment, fine patterning can be easily realized in a short time and at low cost. Therefore, there is no fear of leakage due to the hole injection / transport layer itself which could not be solved by the solid film formation method. In addition, since the control of the film thickness can be easily performed by adjusting the discharge amount or the discharge frequency, it is possible to optimize the thin film design.
[0065]
Embodiment 2 of the invention
In this embodiment mode, a conductive compound forming the hole injection transport layer is a material (polymer material) capable of forming a film from a solution, and uses a conductive polymer such as polyaniline or polysilane. is there. In particular, PEDT (polyethylenedioxythiophene) because water can be used as the main solvent and its properties can be adjusted by mixing ratio
[0066]
Embedded image
Figure 2004031362
[0067]
And PSS (polystyrene sulfonic acid)
[0068]
Embedded image
Figure 2004031362
[0069]
Are preferred.
[0070]
(Example)
Five types of compositions for the hole injecting and transporting layer shown in Tables 14 to 18 (compositions 11 to 15) when a PEDT / PSS mixed aqueous solution was used as the polymer material (hole injecting and transporting layer component) ) Was adjusted, and physical properties (contact angle, surface tension and viscosity) were measured.
[0071]
Composition 11
[0072]
[Table 14]
Figure 2004031362
[0073]
Composition 12
[0074]
[Table 15]
Figure 2004031362
[0075]
Composition 13
[0076]
[Table 16]
Figure 2004031362
[0077]
Composition 14
[0078]
[Table 17]
Figure 2004031362
[0079]
Composition 15
[0080]
[Table 18]
Figure 2004031362
[0081]
The ejection evaluation was performed using an inkjet printing apparatus (MJ-800C manufactured by Epson). In addition, the evaluation of the film forming property was performed by evaluating the state of the film after heat treatment at 200 ° C. for 10 to 60 minutes after application by discharge. The viscosity is a value measured at 20 ° C.
[0082]
[Table 19]
Figure 2004031362
[0083]
From the above results, the concentration of the conductive polymer material is preferably from 0.01 wt% to 10.0 wt%, and particularly preferably from 0.1 wt% to 5.0 wt%, based on the whole composition. If the concentration of the conductive polymer is too low, the number of ejections increases to obtain a required film thickness, and mass production efficiency deteriorates. On the other hand, if the concentration of the conductive polymer is too high, the viscosity increases. Because.
[0084]
It is preferable that the composition for a hole injection transport layer contains a wetting agent. This can effectively prevent the ink composition from drying and solidifying at the ink jet nozzle opening. Examples of such a wetting agent include polyhydric alcohols such as glycerin and diethylene glycol, and glycerin is preferable. The addition amount of the wetting agent is preferably about 5 wt% to 20 wt% based on the total amount of the composition.
[0085]
As the polar solvent used in the composition for the hole injection transport layer, a mixed solvent of water and a lower alcohol or a mixed solvent of water and a cellosolve solvent is preferable. Adjustment of the contact angle, viscosity and surface tension of the composition for the hole injection transport layer with respect to the material constituting the nozzle surface of the inkjet head without impairing the solubility or dispersibility of the conductive compound by using these solvents. Becomes possible. Methanol and ethanol are more preferred as lower alcohols. Ethoxyethanol is more preferred as a cellosolve solvent from the viewpoint of film forming properties.
[0086]
In addition, other additives and a film stabilizing material may be added. For example, a viscosity adjuster, an antioxidant, a pH adjuster, a preservative, a resin emulsion, a leveling agent and the like can be used.
[0087]
(Method for producing composition for hole injection transport layer)
Table 7 shows a comparison of film forming properties and light emission characteristics with and without the ultrasonic treatment and the filtration step using the composition for a hole injection transport layer shown in Table 18 (Composition 15). PPV (poly (para-phenylene vinylene)) was used as the green light emitting layer.
[0088]
[Table 20]
Figure 2004031362
[0089]
From this result, it can be seen that the dispersibility is further improved by sonication, and further, a uniform hole injection / transport layer with good flatness can be obtained by using the composition obtained by filtering the sonication dispersion. . The thickness is preferably 0.05 μm to 0.1 μm. This is because the film forming property of the hole injection / transport layer affects the light emission characteristics of the device.
[0090]
Note that the manufacturing process of the organic EL device of the present embodiment is the same as that of the first embodiment.
[0091]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the composition for a hole injection transport layer is made into a liquid, and the optimal design of a material is attained. Patterning can be enabled. Further, by using a conductive compound, in particular, a polymer material as a material of the hole injection / transport layer, it becomes possible to manufacture an organic EL device having high reliability and high characteristics.
[0092]
According to the ink-jet patterning according to the present invention, it is possible to provide a simple and low-cost formation of a hole injection / transport layer.
[0093]
According to the method for manufacturing an organic EL device of the present invention, the conditions such as the film thickness and the number of dots can be arbitrarily adjusted, so that the size and pattern of the light emitting device can be arbitrarily set. Further, by combining the formation of the three primary color light emitting layers of red, green and blue by the ink jet patterning, it is possible to develop a high-definition full-color display having excellent light emitting characteristics.
[Brief description of the drawings]
FIG. 1 is a sectional view of a manufacturing process of an EL element.
[Explanation of symbols]
101 Transparent Pixel Electrode 102 Glass Substrate 103 Partition Member 104 Inkjet Printing Apparatus 105 Inkjet Head 106 Composition for Hole Injection and Transport 107 Hole Injection and Transport Layer 108 Light Emitting Layer Composition 109 Light Emitting Layer 110 Negative Electrode

Claims (15)

有機EL素子の正孔注入輸送層をインクジェット式記録ヘッドを用いてパターニング形成するために用いられる組成物であって、導電性化合物と溶媒とを含み、表面張力が20dyneから70dyneの範囲であり、かつ、前記インクジェット式記録ヘッドのインク吐出ノズル面を構成する材料に対する接触角が30°から170°の範囲である、正孔注入輸送層用組成物。A composition used to pattern the hole injection transport layer of the organic EL element using an ink jet recording head, comprising a conductive compound and a solvent, the surface tension is in the range of 20 dyne to 70 dyne, A composition for a hole injecting and transporting layer, wherein a contact angle with a material constituting an ink discharge nozzle surface of the ink jet recording head is in a range of 30 ° to 170 °. 前記導電性化合物は高分子材料或いは低分子材料の何れかである、請求項1に記載の正孔注入輸送層用組成物。The composition for a hole injecting and transporting layer according to claim 1, wherein the conductive compound is one of a polymer material and a low molecular material. 前記導電性化合物の濃度は、0.01wt%乃至10wt%の範囲である、請求項1に記載の正孔注入輸送層用組成物。The composition for a hole injection transport layer according to claim 1, wherein the concentration of the conductive compound is in a range of 0.01 wt% to 10 wt%. 前記導電性化合物が前記溶媒として極性溶媒に溶解又は分散された状態で存在する、請求項1に記載の正孔注入輸送層用組成物。The composition for a hole injecting and transporting layer according to claim 1, wherein the conductive compound is present as being dissolved or dispersed in a polar solvent as the solvent. 前記極性溶媒は水と低級アルコールの混合溶媒である、請求項4に記載の正孔注入輸送層用組成物。The composition for a hole injection transport layer according to claim 4, wherein the polar solvent is a mixed solvent of water and a lower alcohol. 前記低級アルコールは、メタノール又はエタノールである、請求項5に記載の正孔注入輸送層用組成物。The composition for a hole injection transport layer according to claim 5, wherein the lower alcohol is methanol or ethanol. 前記極性溶媒が水とセロソルブ系溶媒の混合溶媒である、請求項4に記載の正孔注入輸送層用組成物。The composition for a hole injecting and transporting layer according to claim 4, wherein the polar solvent is a mixed solvent of water and a cellosolve-based solvent. 前記セロソルブ系溶媒は、エトキシエタノールである、請求項7に記載の正孔注入輸送層用組成物。The composition for a hole injection transport layer according to claim 7, wherein the cellosolve-based solvent is ethoxyethanol. 前記組成物中には湿潤剤が含まれている、請求項1に記載の正孔注入輸送層用組成物。The composition for a hole injection transport layer according to claim 1, wherein the composition contains a wetting agent. 前記湿潤剤はグリセリンである、請求項9に記載の正孔注入輸送層用組成物。The composition of claim 9, wherein the wetting agent is glycerin. 請求項1乃至請求項10のうち何れか1項に記載の正孔注入輸送層用組成物を、超音波処理工程と、濾過工程を経て製造する方法。A method for producing the composition for a hole injection transport layer according to any one of claims 1 to 10 through an ultrasonic treatment step and a filtration step. 画素領域毎に区画された仕切部材内に形成される、正孔注入輸送層と発光層の積層構造を有する有機EL素子の製造方法において、
前記画素領域に対応した開口部を備える仕切部材を基板上に形成する工程と、インクジェット式記録ヘッドを用いて前記開口部内に、導電性化合物と溶媒とを含み、表面張力が20dyneから70dyneの範囲であり、かつ、前記インクジェット式記録ヘッドのインク吐出ノズル面を構成する材料に対する接触角が30°から170°の範囲である正孔注入輸送層用組成物を充填する工程と、
前記開口部内に充填された前記正孔注入輸送層用組成物を乾燥処理して正孔注入輸送層を形成する工程と、
を備える有機EL素子の製造方法。
A method for manufacturing an organic EL device having a stacked structure of a hole injection transport layer and a light emitting layer, which is formed in a partition member partitioned for each pixel region,
A step of forming a partition member having an opening corresponding to the pixel region on the substrate, and using an ink jet recording head, the opening includes a conductive compound and a solvent, and has a surface tension in a range of 20 dyne to 70 dyne. And filling a composition for a hole injection transport layer having a contact angle with respect to a material constituting an ink ejection nozzle surface of the ink jet recording head in a range of 30 ° to 170 °,
A step of drying the composition for a hole injection transport layer filled in the opening to form a hole injection transport layer,
A method for manufacturing an organic EL device comprising:
請求項12に記載の製造方法で製造された有機EL素子。An organic EL device manufactured by the manufacturing method according to claim 12. 請求項12に記載の製造方法で製造された、前記正孔注入輸送層の膜厚が0.1μm以下である、有機EL素子。An organic EL device manufactured by the manufacturing method according to claim 12, wherein the thickness of the hole injection transport layer is 0.1 μm or less. 請求項12に記載の製造方法で製造された、前記正孔注入輸送層の膜抵抗が0.5×10Ω/m乃至5×10Ω/mの範囲である、有機EL素子。An organic EL device manufactured by the manufacturing method according to claim 12, wherein a film resistance of the hole injection transport layer is in a range of 0.5 × 10 9 Ω / m 2 to 5 × 10 9 Ω / m 2. .
JP2003209651A 1997-09-02 2003-08-29 Composition for hole injection transporting layer, organic el element and its manufacturing method Withdrawn JP2004031362A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003209651A JP2004031362A (en) 1997-09-02 2003-08-29 Composition for hole injection transporting layer, organic el element and its manufacturing method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP23710397 1997-09-02
JP21459698 1998-07-29
JP2003209651A JP2004031362A (en) 1997-09-02 2003-08-29 Composition for hole injection transporting layer, organic el element and its manufacturing method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP10248816A Division JP2000106278A (en) 1997-09-02 1998-09-02 Manufacture of organic el element and the organic el element

Publications (1)

Publication Number Publication Date
JP2004031362A true JP2004031362A (en) 2004-01-29

Family

ID=31191784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003209651A Withdrawn JP2004031362A (en) 1997-09-02 2003-08-29 Composition for hole injection transporting layer, organic el element and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2004031362A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120154494A1 (en) * 2010-12-15 2012-06-21 Ngk Spark Plug Co., Ltd Conductor pattern printing ink

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62181490A (en) * 1986-02-05 1987-08-08 株式会社豊田自動織機製作所 Method and apparatus for manufacturing printed circuit boardby ink-jet method
JPS645095A (en) * 1987-06-26 1989-01-10 Tdk Corp Formation of conductive pattern
JPH04121702A (en) * 1990-09-13 1992-04-22 Mitsubishi Electric Corp Formation of color filter
JPH04248880A (en) * 1991-01-09 1992-09-04 Seiko Epson Corp Ink jet recording
JPH0673271A (en) * 1992-04-06 1994-03-15 Agfa Gevaert Ag Antistatic plastic article
JPH06208198A (en) * 1992-11-16 1994-07-26 Agfa Gevaert Ag Photographic material
JPH06347637A (en) * 1993-06-14 1994-12-22 Dainippon Ink & Chem Inc Printing method
JPH0723578A (en) * 1993-06-30 1995-01-24 Matsushita Electric Works Ltd Motor controller
JPH07235378A (en) * 1993-12-28 1995-09-05 Casio Comput Co Ltd Electroluminescent and its manufacture
JPH0848858A (en) * 1994-05-06 1996-02-20 Bayer Ag Conductive coating
JPH08197731A (en) * 1995-01-30 1996-08-06 Brother Ind Ltd Ink jet device and production thereof
JPH08327991A (en) * 1995-03-31 1996-12-13 Toshiba Corp Substrate for display device and liquid crystal display using the same and its production
JPH0969334A (en) * 1994-12-16 1997-03-11 Canon Inc Electron emitting element, electron source board, electron source, display panel, and image forming device, and their manufacture
JPH1012377A (en) * 1996-06-19 1998-01-16 Seiko Epson Corp Manufacture of active matrix type organic el display body

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62181490A (en) * 1986-02-05 1987-08-08 株式会社豊田自動織機製作所 Method and apparatus for manufacturing printed circuit boardby ink-jet method
JPS645095A (en) * 1987-06-26 1989-01-10 Tdk Corp Formation of conductive pattern
JPH04121702A (en) * 1990-09-13 1992-04-22 Mitsubishi Electric Corp Formation of color filter
JPH04248880A (en) * 1991-01-09 1992-09-04 Seiko Epson Corp Ink jet recording
JPH0673271A (en) * 1992-04-06 1994-03-15 Agfa Gevaert Ag Antistatic plastic article
JPH06208198A (en) * 1992-11-16 1994-07-26 Agfa Gevaert Ag Photographic material
JPH06347637A (en) * 1993-06-14 1994-12-22 Dainippon Ink & Chem Inc Printing method
JPH0723578A (en) * 1993-06-30 1995-01-24 Matsushita Electric Works Ltd Motor controller
JPH07235378A (en) * 1993-12-28 1995-09-05 Casio Comput Co Ltd Electroluminescent and its manufacture
JPH0848858A (en) * 1994-05-06 1996-02-20 Bayer Ag Conductive coating
JPH0969334A (en) * 1994-12-16 1997-03-11 Canon Inc Electron emitting element, electron source board, electron source, display panel, and image forming device, and their manufacture
JPH08197731A (en) * 1995-01-30 1996-08-06 Brother Ind Ltd Ink jet device and production thereof
JPH08327991A (en) * 1995-03-31 1996-12-13 Toshiba Corp Substrate for display device and liquid crystal display using the same and its production
JPH1012377A (en) * 1996-06-19 1998-01-16 Seiko Epson Corp Manufacture of active matrix type organic el display body

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120154494A1 (en) * 2010-12-15 2012-06-21 Ngk Spark Plug Co., Ltd Conductor pattern printing ink
US8827435B2 (en) * 2010-12-15 2014-09-09 Ngk Spark Plug Co., Ltd. Conductor pattern printing ink

Similar Documents

Publication Publication Date Title
JP3911775B2 (en) Manufacturing method of organic EL element
JP2000106278A (en) Manufacture of organic el element and the organic el element
JP3941169B2 (en) Manufacturing method of organic EL element
JP4721114B2 (en) Method for manufacturing organic electroluminescence element
EP1394236B1 (en) Composition for an organic EL element
JP4477726B2 (en) Manufacturing method of organic LED element
KR100403544B1 (en) Production of organic luminescence device
JP4225425B2 (en) Manufacturing method and apparatus for active matrix organic EL display, active matrix organic EL display, liquid crystal array manufacturing method and liquid crystal array, color filter substrate manufacturing method and apparatus, and color filter substrate
WO1999012395A1 (en) Method of producing organic el element and organic el element
JP4898850B2 (en) INK JET INK FOR ORGANIC ELECTROLUMINESCENT ELEMENT AND METHOD FOR PRODUCING ORGANIC ELECTROLUMINESCENT ELEMENT
JP2000323276A (en) Manufacture of organic el element, organic el element, and ink composition
US6712661B1 (en) Method for manufacturing electroluminescence device
TW558912B (en) Electroluminescent element
KR20030072227A (en) Droplet discharging device and method of driving the same, film forming device and method of forming film, method of manufacturing color filter, method of manufacturing organic el device, and electronic equipment
JP2004358299A (en) Method of forming thin film pattern, method of manufacturing organic electro luminescent element, method of manufacturing color filter, method of manufacturing plasma display panel, method of manufacturing liquid crystal panel, and electronic apparatus
JP3807621B2 (en) Manufacturing method of organic EL element
JP4513800B2 (en) Manufacturing method of organic EL element
JP2004031360A (en) Composition for hole injection transporting layer, organic el element and its manufacturing method
JP2004111367A (en) Hole injection transport layer composition, organic el element and manufacturing method thereof
JP2004055555A (en) Composition for hole injection transport layer, organic el element, and manufacturing method
JP2004031362A (en) Composition for hole injection transporting layer, organic el element and its manufacturing method
JP3685188B2 (en) Organic EL device and manufacturing method thereof
JP2004031363A (en) Composition for hole injection transporting layer, organic el element and its manufacturing method
JP2004358298A (en) Method of forming thin film pattern, method of manufacturing organic electro luminescent element, method of manufacturing color filter, method of manufacturing plasma display panel, method of manufacturing liquid crystal panel, and electronic apparatus
JP2005056855A (en) Electroluminescent element and manufacturing method of the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050510

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20050603