JP2004027328A - Method for manufacturing mold - Google Patents

Method for manufacturing mold Download PDF

Info

Publication number
JP2004027328A
JP2004027328A JP2002189058A JP2002189058A JP2004027328A JP 2004027328 A JP2004027328 A JP 2004027328A JP 2002189058 A JP2002189058 A JP 2002189058A JP 2002189058 A JP2002189058 A JP 2002189058A JP 2004027328 A JP2004027328 A JP 2004027328A
Authority
JP
Japan
Prior art keywords
fluid path
powder
metal powder
fluid
bonding layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002189058A
Other languages
Japanese (ja)
Other versions
JP4110856B2 (en
Inventor
Mitsuhiro Shingo
新郷 光弘
Akira Shimooozono
下大園 明
Uzo Ota
太田 卯三
Akihiro Takatani
高谷 昭広
Takashi Matsuo
松尾 隆史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2002189058A priority Critical patent/JP4110856B2/en
Publication of JP2004027328A publication Critical patent/JP2004027328A/en
Application granted granted Critical
Publication of JP4110856B2 publication Critical patent/JP4110856B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Powder Metallurgy (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a mold in which fluid routes with optimum shapes can be freely formed and by which unsintered metallic powder is adequately discharged and removed in fluid route formation and a three-dimensional shaped article optimum as a mold provided with flow passage routes for temperature regulation can be obtained. <P>SOLUTION: A bonding layer is formed by sintering metal powder 2 by irradiating the metal powder with a light beam. This process is repeated to prepare a powder bonded body A in which the bonding layers are stacked and integrated. The powder bonded body A is prepared by integrating a bonding layer section 6 in which the bonding layers are stacked onto a molding plate 7. The portion to form the fluid route 8 is not irradiated with the light beams to allow the metallic powder 2 to remain, and after the powder bonded body A is prepared, a hole 9a for an inlet and a hole 9b for an outlet are formed at the molding plate 7 and the remaining metallic powder 2 is discharged and removed. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、金属粉末に光ビームを照射して結合層を形成し、この結合層を積層一体化して所望の三次元造形物となる粉末結合体を作製する成形金型の製造方法に関するものである。
【0002】
【従来の技術】
従来から、金属粉末の層にレーザビーム等の光ビームを照射して焼結させることにより、金属粉末が焼結した結合層を形成し、この結合層の上に金属粉末の層を被覆すると共にこの金属粉末に光ビームを照射して焼結させることにより下の結合層と一体になった結合層を形成し、そしてこれを繰り返すことによって、複数の結合層が積層一体化された金属粉末焼結体からなる粉末結合体を作製する方法が、例えば、特許第2620353号公報や特開2000−73108公報等で提供されている。
【0003】
図5は、その一例を示すものであり、まず、図5(a)に示す如く、昇降テーブル1の上に金属粉末2をスキージー3で所定の厚みに分与する。昇降テーブル1は基準テーブル4の側面に沿って昇降するものであり、スキージー3は基準テーブル1の上面と同じレベルで水平方向に往復移動するようにしてある。したがって、昇降テーブル1の上面と基準テーブル4の上面との間のΔtの段差に相当する厚みで金属粉末2の層を昇降テーブル1の上に形成することができる。その後、図5(b)に示す如く、集光レンズ5で集光したレーザビーム等の光ビームLを走査させて、前記金属粉末2の層の必要な部分にのみ同光ビームLを照射することにより、この光ビームLを照射した部分の金属粉末2の層を焼結して、厚みΔtの結合層6aを形成させる。
【0004】
次に、昇降テーブル1をΔtの寸法で下降させ、前記結合層6aの上に金属粉末2を供給して、図5(c)に示す如く、スキージー3によりΔtの厚みで金属粉末2の層を同結合層6aの上に被覆し、次いで、図5(d)に示す如く、この金属粉末2の層の必要な部分にのみ光ビームLを照射して焼結し、結合層6aの上に結合層6bを一体に積層させる。このような操作を必要な層数だけ繰り返すことによって、図5(e)に示す如く、所定数の結合層6a〜6fを積層一体化させ、図6に示す如く、複数の結合層6a〜6fからなる金属粉末焼結体として粉末結合体Aを作製することができるものである。
【0005】
ここで、前記の如く、粉末結合体Aを作製するにあたっては、図7(a)に示すような製品モデル10を設計する際の三次元CADデータに基づき、同製品モデル10を、図7(b)に示す如く、所定の間隔Δtで水平にスライスしたときの各層10a〜10fのスライス面の断面データを得て、このスライス断面データを基に金属粉末2の各層に照射する光ビームLの走査経路を決定し、各層10a〜10fに対応する水平断面形状で各結合層6a〜6bを形成することによって、製品モデル10と同じ三次元形状に造形された粉末結合体Aを作製することができる。
【0006】
そして、このように各結合層6a〜6fを順次形成して積み重ねていく工法を採用することにより、三次元CADにより設計された形状に従って三次元的に切削加工するCAMを用いるような必要がなくなって、二次元的な加工の繰り返しで三次元的に造形された製品を作製することが可能となるもので、複雑な機構の装置を用いることなく三次元造形物を迅速に作製することができるものである。
【0007】
【発明が解決しようとする課題】
上記の如く、三次元造形物として作製される粉末結合体Aにあって、これを成形金型とする場合には、冷却や加熱等の機能を付与するために、粉末結合体Aの内部に流体が流通される経路を形成することになる。そして、粉末結合体Aの内部には金属粉末2が焼結した緻密な状態で充填されていて、この粉末結合体A内に流体経路を形成する場合には、粉末結合体Aを造形作製した後に、この粉末結合体Aに切削や孔あけ等の加工を施す必要がある。しかしながら、このような切削や孔あけ等の加工では、粉末結合体A内に形成する流体経路の形状が単純なものに制限されて、最適な形状で自由に流体経路を設計し形成することはできないものであった。
【0008】
そこで、本出願人は、粉末結合体内に最適な形状で自由に流体経路を形成することができる三次元造形物の製造方法を提供することを目的として、特願2001−126608を出願している。この出願の請求項4記載の発明では、流体経路となる部分の粉末を溶融結合させないで粉末結合体を作製し、粉末結合体内から流体経路の粉末を抜き出すようにしたので、最適な形状で自由に流体経路を設計し形成することができる上に、流体経路内を流れる流体の流動抵抗が小さくなってその流速や流量を高めることもでき、流体による熱交換等の効果が大きくなるものである。
【0009】
しかしながら、前記出願に係る発明では、次のような問題が残っている。すなわち、流体経路を外部に開通させた状態で粉末結合体を作製すると、この粉末結合体を次工程へ移送運搬する際等に、未結合の粉体が同流体経路から不用意に排出されて上記昇降テーブル1上やその周辺等に飛散し易いものであった。又、金属の粉末結合体の内部に三次元的に流体経路を形成した場合、この流体経路の内壁面には微細なヘアクラックや亀裂が発生する。ここで、流体経路内に流体を流通させると、流体が前記ヘアクラックや亀裂から染み出して粉末結合体の外表面にまで流出する恐れがあり、金型温度調整用の流体経路を備えた成形用金型としては不適となるものであった。
【0010】
本発明は、上記従来の技術における問題を解決すると共に上記本出願人の先願に係る発明における問題をも解決するために発明されたもので、その課題は、粉末結合体内に最適な形状で自由に流体経路を形成することができ、その際、未焼結の金属粉末が適切に排出除去され、しかも、流体経路での流動抵抗が小さくなって、温度調整用の流路経路を備えた成形金型として最適な三次元造形物が得られる成形金型の製造方法を提供することである。
【0011】
【課題を解決するための手段】
本発明の請求項1記載の成形金型の製造方法は、金属粉末の層の所定箇所に光ビームを照射して金属粉末が焼結した結合層を形成し、この結合層の上に金属粉末の層を被覆すると共にこの金属粉末の所定箇所に光ビームを照射して焼結させることにより下の結合層と一体になった結合層を形成し、これを繰り返すことによって複数の結合層が積層一体化された成形金型となる粉末結合体を作製するにあたり、金属でなる造形プレート上に前記複数の結合層を積層一体化して粉末結合体を作製し、その際、成形金型の流体経路となる部分には光ビームを照射しないで未焼結の金属粉末を残存させたままとし、粉末結合体が作製された後に、前記造形プレートに入口用孔と出口用孔とを開口形成して流体経路を同粉末結合体の外部に開通させ、その後、前記残存した金属粉末を同開通された流体経路から排出除去することを特徴としている。
【0012】
したがって、この場合、流体経路となる部分には光ビームを照射しないで焼結しない金属粉末を残存させたままとし、粉末結合体が作製された後に、前記残存した金属粉末を流体経路から排出除去することで、空洞となった流体経路を簡単に形成することができ、ここでは、最適な形状で自由に同流体経路を形成することができる。
【0013】
しかも、粉末結合体を作製するにあたり、金属でなる造形プレート上に複数の結合層を積層一体化して粉末結合体を作製し、粉末結合体が作製された後に、前記造形プレートに入口用孔と出口用孔とを開口形成して流体経路を同粉末結合体の外部に開通させ、その後に、前記残存した金属粉末を同開通された流体経路から排出除去するので、粉末結合体が作製された段階では、未焼結の金属粉末が流体経路内に密封保持された状態にあり、この状態で同粉末結合体を移送運搬することで、金属粉末の不用意な漏出や飛散を防止することができる。
【0014】
そして、造形プレートに入口用孔と出口用孔とを開口形成する孔あけ加工を終えた段階で、残存した未焼結の金属粉末を開通された流体経路から適切に排出除去することができる。又、造形プレート上に複数の結合層を積層一体化する際には、この造形プレートが入口用孔及び出口用孔のない平坦な状態にあるので、光ビームは精度良く照射され、所定形状の流体経路が正確に形成される。
【0015】
本発明の請求項2記載の成形金型の製造方法は、上記請求項1記載の成形金型の製造方法において、入口用孔及び出口用孔を流体経路と略同径にして、この流体経路の両端部と連通するように開口形成することを特徴としている。
【0016】
したがって、この場合は特に、流体経路の両端部と連通する入口用孔及び出口用孔が同流体経路と略同径にして開口形成されるので、この流体経路内を流通される金型温度調整用等の流体の流動抵抗がより小さくなってその流速や流量を高めることもでき、同流体による熱交換等の効果は大きくなる。
【0017】
本発明の請求項3記載の成形金型の製造方法は、上記請求項1又は2記載の成形金型の製造方法において、入口用孔から圧縮流体を流入させることによって、流体経路内に残存した金属粉末を出口用孔から排出除去することを特徴としている。
【0018】
したがって、この場合は特に、圧縮流体を流入させることによって流体経路内に残存した金属粉末が排出除去されるので、この未焼結の金属粉末は同流体経路内から確実且つスムーズに排出除去され、同金属粉末の流体経路内での残存が確実に防止される。
【0019】
本発明の請求項4記載の成形金型の製造方法は、上記請求項1〜3のいずれか一つに記載の成形金型の製造方法において、金属粉末を流体経路から排出除去した後に、この流体経路内に目止め処理剤を流入し、この目止め処理剤を同流体経路の内壁面に毛細管現象により浸透させて目止め処理を施すことを特徴としている。
【0020】
したがって、この場合は特に、金属粉末を流体経路から排出除去した後に、この流体経路内に目止め処理剤を流入し、この目止め処理剤を同流体経路の内壁面に毛細管現象により浸透させて目止め処理を施すので、同流体経路の内壁面に発生するヘアクラックや亀裂等が確実に埋められ密閉される。それ故、この流体経路では、金型温度調整用等の流体の染み出しが防止され、同流体の流動抵抗がより小さくなってその流速や流量を高めることもでき、同流体による熱交換等の効果は大きくなる。
【0021】
【発明の実施の形態】
図1、2、4は、本発明の請求項1〜4全てに対応する一実施形態を示している。この実施形態の成形金型の製造方法において、粉末結合体Aは上記の図5〜7のようにして、金属粉末2を用い、レーザビーム等の光ビームLを照射することにより作製することができる。
【0022】
すなわち、金属粉末2の層に光ビームLを照射して金属粉末2を焼結させることにより、金属粉末2が焼結して結合した結合層6aを形成し、この結合層6aの上に金属粉末2の層を被覆すると共にこの金属粉末2に光ビームLを照射して焼結させることにより下の結合層6aと一体になった結合層6bを形成し、そしてこれを繰り返すことにより、複数の結合層6a、6b、6c・・・が積層一体化された金属粉末焼結体からなる粉末結合体Aを作製することができる。
【0023】
ここで、金属粉末2としては、例えば、平均粒径20〜30μm程度の鉄粉その他の鉄系粉末材料或いはブロンズとニッケルとの混合粉末材料等を用いることができ、各結合層6a、6b、6c・・・はその厚みΔtを0.02〜0.2mm 程度に形成することができる。なお、図5に示す如く、所定層数の結合層6a〜6fを順次に積層一体化し、図6に示す如く、複数の結合層6a〜6fからなる金属粉末焼結体として粉末結合体Aを作製する具体的な内容については、上記と同様の説明となるので、ここでは、その具体的な説明を省略する。
【0024】
そして、前記の如く、粉末結合体Aを作製するにあたっては、図7(a)に示すような製品モデル10を設計する際の三次元CADデータに基づき、同製品モデル10を、図7(b)に示す如く、所定の間隔Δtで水平にスライスしたときの各層10a〜10fのスライス面の断面データを得て、このスライス断面データを基にして金属粉末2の各層に照射する光ビームLの走査経路を決定し、各層10a〜10fに対応する水平断面形状で各結合層6a〜6bを形成することによって、製品モデル10と同じ三次元形状に造形された粉末結合体Aを作製することができる。
【0025】
この場合、製品モデル10や各層10a〜10fの断面データは全体から流体経路8に相当する部分を差し引いたものとなり、同流体経路8を有する粉末結合体Aが作製されることとなる。そして、このように各結合層6a〜6fを順次形成して積み重ねていく工法を採用することにより、三次元CADにより設計された形状に従って三次元的に切削加工するCAMを用いるような必要がなくなって、二次元的な加工の繰り返しで三次元的に造形された製品を作製することが可能となるもので、複雑な機構の装置を用いることなく三次元造形物を迅速に作製することができるものである。
【0026】
ところで、流体経路8となる部分には光ビームLが照射されないので、前記粉末結合体Aにあっては、図1(a)に示す如く、同流体経路8内に焼結されない金属粉末2が残存することになる。又、ここでは、金属でなる造形プレート7上に金属粉末2を焼結させた前記各結合層6a〜6b(結合層部6)を積層一体化して粉末結合体Aを作製しており、その際に、前記流体経路8となる部分には光ビームLが照射されないものであり、それ故に、同粉末結合体Aの流体経路8内には未焼結の金属粉末2が密封された状態で残存保持されることになる。
【0027】
この場合、金属粉末2は鉄系粉末材料でなり、造形プレート7がこれと同種の鉄系板材料で形成されていて、焼結された結合層部6は同造形プレート7に強固に結合固着される。そして、この状態では、未焼結の金属粉末2が流体経路8内に密封保持された状態にあって、この状態で同粉末結合体Aを移送運搬することにより、金属粉末2の不用意な漏出や飛散を防止することができ、上記図5で示した昇降テーブル1上やその周辺等は汚れ難くなる。
【0028】
そこで、図1(b)に示す如く、造形プレート7の部分に、流体経路8と連通する入口用孔9aと出口用孔9bとを開口形成し、同流体経路8を粉末結合体Aの外部に開通させるものである。この場合、図2に示す如く、入口用孔9a及び出口用孔9bは流体経路8と同軸で連通するように、且つ、略同径にしてこの流体経路8の両端部と連通するように対応させて造形プレート7に穿設される。その際、この造形プレート7にはドリル等で孔あけ切削加工が施されるが、その作業は同造形プレート7の厚み分だけの深さに切削加工するだけで容易なものである。
【0029】
又、ここで、図3に示す如く、造形プレート7に流体経路8と対応する入口用孔9a及び出口用孔9bを予め穿設しておいたとすると、次のような問題が発生するものである。すなわち、図3(a)に示す如く、造形プレート7に予め入口用孔9a及び出口用孔9bを穿設しておくと、一般に、この入口用孔9a及び出口用孔9bの口縁部分には面取り12が施されているものであり、そのため、その上に積層一体化される結合層部6は同面取り12での焼結に支障を来して、特に、流体経路8の両端部分で精度良く形成されない。
【0030】
又、図3(b)に示す如く、入口用孔9a及び出口用孔9bの口縁部分に前記面取り12が施されていない場合でも、造形プレート7が所定の位置からズレて設置されると、光ビームLは入口用孔9a或いは出口用孔9bからズレた位置に照射されることになり、流体経路8が所定の径よりも大きく形成されてしまう。そして、いずれにしても、造形プレート7に予め入口用孔9a及び出口用孔9bが開口形成されていると、その上に金属粉末2の層を被覆し難いものであり、これ等の孔9から同金属粉末2が落下することもあって、所定形状の流体経路8が正確には形成されないものである。
【0031】
これに対し、図2に示す如く、粉末結合体Aが作製された後に、造形プレート7に入口用孔9a及び出口用孔9bを開口形成するようになすと、造形プレート7上に結合層部6を積層一体化する際には、同造形プレート7が入口用孔9a及び出口用孔9bのない平坦な状態にあるので、その上に容易且つ確実に金属粉末2の層を被覆することができ、光ビームLも精度良く照射されるようになって、所定形状の流体経路8が正確に形成される。
【0032】
そして、次に、図1(c)に示す如く、残存した未焼結の金属粉末2を、前記のようにして開通された流体経路8から排出除去するものである。この場合、入口用孔9aから圧縮エアや圧縮液等の圧縮流体11を流入させて、流体経路8内に残存した金属粉末2を出口用孔9bから強制的に排出除去している。ここで、出口用孔9bから吸引機等で吸引して金属粉末2を流体経路8から排出除去することもできるが、そうすると、吸引した後の同金属粉末2を処理し難くなり、この点で前記のように圧縮流体11で押し出す方が好ましいものである。
【0033】
又、前記のようにして金属粉末2を流体経路8から排出除去した後に、図4に示す如く、同流体経路8内に目止め処理剤13を流入し、この目止め処理剤13を同流体経路8の内壁面に浸透させて目止め処理を施すものである。この場合、図4(a)に示す如く、流体経路8の両端部分にある入口用孔9a及び出口用孔9bが上向き開口状態となるように、粉末結合体Aをテーブル15上に設置し、図4(b)に示す如く、入口用孔9a、出口用孔9bいずれか一方から流体経路8内に目止め処理剤13を流し込んで、この目止め処理剤13を同流体経路8内に略充満された状態として、この状態のままで暫くの間(5分間程度)放置する。
【0034】
その際、目止め処理剤13が流体経路8から流出しないように、入口用孔9a及び出口用孔9bに蓋をしておいても良い。ここでは、液体が有する毛細管現象性によって目止め処理剤13は流体経路8の内壁面に浸透し、粉末結合体Aの粉末焼結体内部のヘアクラックや亀裂14等に染み込み、これ等が確実に埋められて密閉されるものである。この場合、目止め処理剤13は、粘度が低く、その液のもつ毛細管現象性によって目に見えないような微少気孔にも浸透して密閉し得る液体で、例えば、液体の粘度が20℃で0.35CP(12DINsek)で、液体の浸透度が 0.1mm以下の微少気孔,1/100mmの隙間に3分間で50mmのものを使用することができる。
【0035】
又、ここで、ヘアクラックや亀裂14等の大きさによっては、目止め処理剤13の粒子径を変化させることで目止め作用が増大されるものである。例えば、0.5mm 程度のクラックであれば、大きい粒子の目止め処理剤13を先に使用した後に、小さい粒子の目止め処理剤13を使用すると、流体経路8の内壁面が確実に目止めされるものである。又、目止め処理剤13を流体経路8内に充填し、数分間(5分間程度)放置した後にこの流体経路8から一旦流出させ、再度、同流体経路8内に新しい目止め処理剤13を流し込み、これを何度か繰り返すことで目止め作用がより増大される。
【0036】
なお、粘度が低くて浸透性の高い目止め処理剤13を使用する場合には、この目止め処理剤13が溜められたタンク内に粉末結合体A全体を浸漬したり、同目止め処理剤13をヘアクラックや亀裂14等の箇所に数回塗ったりたらしたりする等しても、目止め処理は施される。しかしながら、目止め処理は流体経路8の内壁面にのみ施されることが効率的且つ効果的であり、同流体経路8内に刷毛を差し入れることも困難であるため、前記の如く、目止め処理剤13を流体経路8内に流入してその内壁面に浸透させる目止め処理の仕方が好ましいものである。
【0037】
そして、最後に、前記目止め処理剤13の余剰分を流体経路8から完全に流出して、粉末結合体Aを常温或いは加熱した状態で数時間放置する。この場合は、図4(c)に示す如く、流体経路8の両端部分にある入口用孔9a及び出口用孔9bが下向き開口状態となるように、粉末結合体Aを反転させることで目止め処理剤13の余剰分を流体経路8から流出させ、この反転状態で放置すれば良い。これによって、流体経路8内で目止めに供された目止め処理剤13は完全に硬化し、同流体経路8の内壁面での目止め処理が完了する。目止め処理が施された流体経路8の内壁面では、ヘアクラックや亀裂14等が確実に密閉されているだけでなく、同内壁面は平滑となって、そこにおける流体の流動抵抗も小さくなり、この流体経路8は冷却や加熱等のための流体を流通させるのに最適なものとなる。
【0038】
したがって、この実施形態の成形金型の製造方法においては、流体経路8となる部分には光ビームLを照射しないで焼結しない金属粉末2を残存させたままとし、粉末結合体Aが作製された後に、この残存した金属粉末2を流体経路8から排出除去することで、空洞となった流体経路8を簡単に形成することができるものである。この場合には、流体経路8が複雑且つ長い形状であっても、残存した金属粉末2を流体経路8から容易に排出除去することができ、最適な形状で自由に同流体経路8を形成することができる。
【0039】
しかも、粉末結合体Aを作製するにあたり、金属でなる造形プレート7上に複数の結合層6a、6b、6c・・・を積層一体化して粉末結合体Aを作製し、粉末結合体Aが作製された後に、同造形プレート7に入口用孔9aと出口用孔9bとを開口形成して流体経路8を同粉末結合体Aの外部に開通させ、その後に、前記残存した金属粉末2をこの開通された流体経路8から排出除去するので、粉末結合体Aが作製された段階では、未焼結の金属粉末2が流体経路8内に密封保持された状態にあり、この状態で同粉末結合体Aを移送運搬することで、金属粉末2の不用意な漏出や飛散を防止することができる。
【0040】
そして、造形プレート7に入口用孔9aと出口用孔9bとを開口形成する孔あけ加工を終えた段階で、残存した未焼結の金属粉末2を開通された流体経路8から適切に排出除去することができるものである。又、造形プレート7上に複数の結合層6a、6b、6c・・・を積層一体化する際には、この造形プレート7が入口用孔9a及び出口用孔9bの開口形成されていない平坦な状態にあるので、その上に金属粉末2の層を被覆し易く、光ビームLも精度良く照射されて、所定形状の流体経路8を有する粉末結合体Aが正確に積層形成される。
【0041】
又、この実施形態の成形金型の製造方法においては、流体経路8の両端部と連通する入口用孔9a及び出口用孔9bが同流体経路8と略同径にして造形プレート7に開口形成されるので、この流体経路8内を流通される金型温度調整用等の流体の流動抵抗がより小さくなってその流速や流量を高めることもでき、同流体による熱交換等の効果は大きくなる。又、圧縮流体11を流入させることによって流体経路8内に残存した金属粉末2が排出除去されるので、この未焼結の金属粉末2は同流体経路8内から確実且つスムーズに排出除去されて、同金属粉末2の流体経路8内での残存が確実に防止される。
【0042】
更に、この実施形態の成形金型の製造方法においては、金属粉末2を流体経路8から排出除去した後に、この流体経路8内に目止め処理剤13を流入し、この目止め処理剤13を同流体経路8の内壁面に毛細管現象により浸透させて目止め処理を施すので、同流体経路8の内壁面に発生するヘアクラックや亀裂14等が確実に埋められ密閉される。そのため、この流体経路8では、金型温度調整用等の流体の染み出しが防止され、同流体の流動抵抗がより小さくなってその流速や流量を高めることもでき、同流体による熱交換等の効果は大きくなる。
【0043】
【発明の効果】
上述の如く、本発明の請求項1記載の成形金型の製造方法では、最適な形状で自由に流体経路を簡単に形成することができ、しかも、粉末結合体が作製された段階では、未焼結の金属粉末が流体経路内に密封保持された状態にあって取り扱い易く、孔あけ加工を終えた段階で、残存した金属粉末を開通された流体経路から適切に排出除去することができ、又、造形プレート上に複数の結合層を積層一体化する際には、この造形プレートが平坦な状態にあって、その上に所定形状の流体経路を有する粉末結合体が正確に形成される。
【0044】
又、本発明の請求項2記載の成形金型の製造方法では、特に、流体経路と入口用孔及び出口用孔とが略同径に連通されて、この流体経路内を流通される金型温度調整用等の流体の流動抵抗はより小さくなり、その流速や流量を高めることもできて、同流体による熱交換等の効果が大きくなる。
【0045】
又、本発明の請求項3記載の成形金型の製造方法では、特に、圧縮流体が流入されることによって、流体経路内に残存した未焼結の金属粉末は確実且つスムーズに排出除去され、同金属粉末の流体経路内での残存が確実に防止される。
【0046】
又、本発明の請求項4記載の成形金型の製造方法では、特に、目止め処理によりヘアクラックや亀裂等が確実に密閉されて、流体経路での金型温度調整用等の流体の染み出しが防止され、この流体の流動抵抗がより小さくなってその流速や流量を高めることもでき、同流体による熱交換等の効果は大きくなる。
【図面の簡単な説明】
【図1】本発明の一実施形態である成形金型の製造方法において、(a)は流体経路内に金属粉末が残存密封された状態を示す断面図、(b)は同流体経路が貫通開口された状態を示す断面図、(c)は前記残存した金属粉末を同流体経路から排出除去している状態を示す断面図。
【図2】同上の成形金型の製造方法において、流体経路が貫通開口された状態を示す要部断面図。
【図3】本発明とは異なる方法で造形プレートに孔あけ加工が施された流体経路の貫通開口状態を例示する(a)、(b)各別の要部断面図。
【図4】同上の成形金型の製造方法において、(a)は流体経路が貫通開口された状態を示す断面図、(b)は同流体経路に目止め処理剤を流入して浸透させている状態を示す断面図、(c)は同流体経路から目止め処理剤を排出除去した状態を示す断面図。
【図5】粉末結合体の製造の各工程を示し、(a)〜(e)は各工程での断面図。
【図6】同上の製造によって得られる粉末結合体を示す斜視図。
【図7】(a)は同上の製造に用いる設計された製品モデルを示す斜視図、(b)は同製品モデルをスライスした各層を示す斜視図。
【符号の説明】
2 金属粉末
6 結合層部
6a、6b、6c・・・ 結合層
7 造形プレート
8 流体経路
9a 入口用孔
9b 出口用孔
11 圧縮流体
A 粉末結合体
L 光ビーム
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing a molding die for irradiating a metal powder with a light beam to form a bonding layer, and laminating and integrating the bonding layer to produce a powder bonded body that becomes a desired three-dimensional structure. is there.
[0002]
[Prior art]
Conventionally, a metal powder layer is irradiated with a light beam such as a laser beam and sintered to form a bonding layer in which the metal powder is sintered, and the metal powder layer is coated on the bonding layer. The metal powder is irradiated with a light beam and sintered to form a bonding layer integrated with the lower bonding layer, and by repeating this, a metal powder firing in which a plurality of bonding layers are laminated and integrated. A method for producing a powdered composite made of a compact is provided in, for example, Japanese Patent No. 2620353, Japanese Patent Application Laid-Open No. 2000-73108, and the like.
[0003]
FIG. 5 shows an example thereof. First, as shown in FIG. 5A, a metal powder 2 is dispensed to a predetermined thickness on a lifting table 1 by a squeegee 3. The lifting table 1 moves up and down along the side surface of the reference table 4, and the squeegee 3 reciprocates in the horizontal direction at the same level as the upper surface of the reference table 1. Therefore, a layer of the metal powder 2 can be formed on the lifting table 1 with a thickness corresponding to a step of Δt between the upper surface of the lifting table 1 and the upper surface of the reference table 4. Thereafter, as shown in FIG. 5B, the light beam L such as a laser beam condensed by the condensing lens 5 is scanned to irradiate only a necessary portion of the layer of the metal powder 2 with the same light beam L. Thereby, the layer of the metal powder 2 irradiated with the light beam L is sintered to form the bonding layer 6a having a thickness Δt.
[0004]
Next, the elevating table 1 is lowered by the dimension of Δt, and the metal powder 2 is supplied onto the bonding layer 6a. As shown in FIG. Is coated on the bonding layer 6a, and then, as shown in FIG. 5D, only a necessary portion of the layer of the metal powder 2 is irradiated with the light beam L and sintered, and The bonding layer 6b is integrally laminated. By repeating such an operation for the required number of layers, a predetermined number of bonding layers 6a to 6f are laminated and integrated as shown in FIG. 5E, and a plurality of bonding layers 6a to 6f are formed as shown in FIG. The powdered composite A can be produced as a sintered metal powder composed of
[0005]
Here, as described above, when manufacturing the powdered composite A, the product model 10 is converted to the product model 10 based on the three-dimensional CAD data at the time of designing the product model 10 as shown in FIG. As shown in b), the slice data of the slice plane of each of the layers 10a to 10f when horizontally sliced at a predetermined interval Δt is obtained. By determining the scanning path and forming each of the bonding layers 6a to 6b with a horizontal cross-sectional shape corresponding to each of the layers 10a to 10f, it is possible to produce the powdered composite A shaped into the same three-dimensional shape as the product model 10. it can.
[0006]
By employing the method of sequentially forming and stacking the bonding layers 6a to 6f in this manner, it is not necessary to use a CAM that performs three-dimensional cutting according to a shape designed by three-dimensional CAD. Therefore, it is possible to produce a three-dimensionally formed product by repeating two-dimensional processing, and it is possible to quickly produce a three-dimensional molded article without using a device of a complicated mechanism Things.
[0007]
[Problems to be solved by the invention]
As described above, in the case of the powdered composite A produced as a three-dimensional molded article, and when this is used as a molding die, in order to provide functions such as cooling and heating, This forms a path through which the fluid flows. Then, the inside of the powder combined body A was filled in a dense state in which the metal powder 2 was sintered. When a fluid path was formed in the powder combined body A, the powder combined body A was formed and manufactured. Thereafter, it is necessary to perform processing such as cutting and drilling on the powder combined body A. However, in such processing as cutting and drilling, the shape of the fluid path formed in the powdered composite A is limited to a simple one, and it is not possible to freely design and form a fluid path with an optimal shape. It was impossible.
[0008]
In view of this, the present applicant has filed Japanese Patent Application No. 2001-126608 for the purpose of providing a method for manufacturing a three-dimensional structure capable of freely forming a fluid path with an optimum shape in a powdered joint. . In the invention according to claim 4 of the present application, the powder in the fluid path is manufactured without extracting the powder in the fluid path, and the powder in the fluid path is extracted from the powder combined body. In addition to being able to design and form a fluid path, the flow resistance and the flow rate of the fluid flowing in the fluid path can be reduced and the flow rate and flow rate can be increased, thereby increasing the effect of heat exchange by the fluid. .
[0009]
However, the following problems remain in the invention according to the application. That is, if the powder combined body is manufactured in a state where the fluid path is opened to the outside, unbound powder is inadvertently discharged from the same fluid path when the powder combined body is transferred and transported to the next process. It was easily scattered on the elevating table 1 and its surroundings. Further, when a fluid path is formed three-dimensionally inside the metal powder combination, minute hair cracks and cracks are generated on the inner wall surface of the fluid path. Here, if the fluid is circulated in the fluid path, the fluid may ooze out from the hair cracks and cracks and flow out to the outer surface of the powder combined body, and the molding with the fluid path for mold temperature adjustment may be performed. This was unsuitable for use as a mold.
[0010]
The present invention has been invented to solve the problems in the prior art and also to solve the problems in the invention according to the earlier application of the present applicant. A fluid path can be freely formed, and at this time, unsintered metal powder is appropriately discharged and removed, and the flow resistance in the fluid path is reduced, and a flow path for temperature adjustment is provided. An object of the present invention is to provide a method of manufacturing a molding die that can obtain an optimal three-dimensional molded product as a molding die.
[0011]
[Means for Solving the Problems]
According to the method for manufacturing a molding die according to claim 1 of the present invention, a predetermined portion of the metal powder layer is irradiated with a light beam to form a bonding layer in which the metal powder is sintered, and the metal powder is formed on the bonding layer. And sintering by irradiating a predetermined portion of the metal powder with a light beam to form a bonding layer integrated with the lower bonding layer, and by repeating this, a plurality of bonding layers are laminated. In producing a powdered composite that becomes an integrated molding die, the plurality of coupling layers are laminated and integrated on a modeling plate made of metal to produce a powdered composite, in which case, a fluid path of the molding die In the portion to be formed, the unsintered metal powder is left unirradiated without irradiating the light beam, and after the powder combined body is formed, an opening for entrance and an opening for exit are formed in the modeling plate by opening. Open the fluid path to the outside of the powder After the metal powders the remaining is characterized by discharging removed from the opened fluid path.
[0012]
Therefore, in this case, the metal powder which is not sintered is not irradiated to the portion serving as the fluid path without irradiating the light beam, and after the powder composite is manufactured, the remaining metal powder is discharged and removed from the fluid path. By doing so, it is possible to easily form a hollow fluid path, and here, the fluid path can be freely formed in an optimal shape.
[0013]
Moreover, in producing the powdered composite, a plurality of bonding layers are laminated and integrated on a metal forming plate to produce a powdered composite, and after the powdered composite is produced, an entrance hole is formed in the modeling plate. An outlet hole and an opening are formed to open a fluid path to the outside of the powder combined body, and thereafter, the remaining metal powder is discharged and removed from the opened fluid path, so that a powder combined body is manufactured. At this stage, the unsintered metal powder is sealed and held in the fluid path, and by transferring and transporting the powder composite in this state, it is possible to prevent inadvertent leakage and scattering of the metal powder. it can.
[0014]
Then, at the stage where drilling for forming the inlet hole and the outlet hole in the modeling plate is completed, the remaining unsintered metal powder can be appropriately discharged and removed from the opened fluid path. Further, when a plurality of bonding layers are laminated and integrated on the modeling plate, since the modeling plate is in a flat state without an entrance hole and an exit hole, a light beam is irradiated with high precision and a predetermined shape is formed. The fluid path is accurately formed.
[0015]
According to a second aspect of the present invention, there is provided a method of manufacturing a molding die according to the first aspect, wherein the inlet hole and the outlet hole have substantially the same diameter as the fluid path. The opening is formed so as to communicate with both end portions of the opening.
[0016]
Therefore, in this case, particularly, the inlet hole and the outlet hole communicating with both ends of the fluid path are formed to have substantially the same diameter as the fluid path, so that the temperature of the mold flowing through the fluid path is adjusted. The flow resistance and the flow rate of the fluid for use and the like can be further reduced, and the effect of heat exchange and the like by the fluid can be increased.
[0017]
According to a third aspect of the present invention, in the method for manufacturing a molding die according to the first or second aspect, the compressed fluid is left in the fluid path by flowing the compressed fluid through the inlet hole. It is characterized in that the metal powder is discharged and removed from the outlet hole.
[0018]
Therefore, in this case, in particular, since the metal powder remaining in the fluid path is discharged and removed by flowing the compressed fluid, the unsintered metal powder is reliably and smoothly discharged and removed from the fluid path, The metal powder is reliably prevented from remaining in the fluid path.
[0019]
According to a method of manufacturing a molding die according to claim 4 of the present invention, in the method of manufacturing a molding die according to any one of claims 1 to 3, after discharging and removing the metal powder from the fluid path, The present invention is characterized in that a filler treatment agent flows into a fluid path, and the filler treatment agent penetrates the inner wall surface of the fluid path by capillary action to perform the filler treatment.
[0020]
Therefore, in this case, in particular, after the metal powder is discharged and removed from the fluid path, the filler treatment agent flows into the fluid path, and the filler treatment agent penetrates the inner wall surface of the fluid path by capillary action. Since the filling process is performed, hair cracks, cracks, and the like generated on the inner wall surface of the fluid path are reliably filled and sealed. Therefore, in this fluid path, the bleeding of the fluid for mold temperature adjustment and the like is prevented, the flow resistance of the fluid becomes smaller, the flow velocity and the flow rate can be increased, and the heat exchange and the like by the fluid can be performed. The effect is greater.
[0021]
BEST MODE FOR CARRYING OUT THE INVENTION
FIGS. 1, 2, and 4 show an embodiment corresponding to all of claims 1 to 4 of the present invention. In the method of manufacturing a molding die according to this embodiment, the powder combined body A can be manufactured by irradiating a light beam L such as a laser beam using the metal powder 2 as shown in FIGS. it can.
[0022]
That is, by irradiating the layer of the metal powder 2 with the light beam L and sintering the metal powder 2, a bonding layer 6a in which the metal powder 2 is sintered and bonded is formed, and a metal layer is formed on the bonding layer 6a. By coating the layer of the powder 2 and irradiating the metal powder 2 with the light beam L and sintering, a bonding layer 6b integrated with the lower bonding layer 6a is formed. Can be produced from a metal powder sintered body in which the bonding layers 6a, 6b, 6c,.
[0023]
Here, as the metal powder 2, for example, iron powder or other iron-based powder material having an average particle diameter of about 20 to 30 μm, or a mixed powder material of bronze and nickel can be used, and each of the bonding layers 6a, 6b, 6c... Can be formed to have a thickness Δt of about 0.02 to 0.2 mm 2. As shown in FIG. 5, a predetermined number of bonding layers 6a to 6f are sequentially laminated and integrated, and as shown in FIG. 6, a powder bonding body A is formed as a metal powder sintered body including a plurality of bonding layers 6a to 6f. Since the specific contents to be manufactured are the same as those described above, the specific description is omitted here.
[0024]
Then, as described above, when producing the powdered composite A, the product model 10 is converted to the product model 10 based on the three-dimensional CAD data at the time of designing the product model 10 as shown in FIG. As shown in FIG. 2B, cross-sectional data of the slice planes of the layers 10a to 10f when horizontally sliced at a predetermined interval Δt is obtained, and based on the slice cross-sectional data, a light beam L for irradiating each layer of the metal powder 2 is obtained. By determining the scanning path and forming each of the bonding layers 6a to 6b with a horizontal cross-sectional shape corresponding to each of the layers 10a to 10f, it is possible to produce the powdered composite A shaped into the same three-dimensional shape as the product model 10. it can.
[0025]
In this case, the cross-sectional data of the product model 10 and the layers 10a to 10f are obtained by subtracting a portion corresponding to the fluid path 8 from the whole, and the powder combined body A having the fluid path 8 is produced. By employing the method of sequentially forming and stacking the bonding layers 6a to 6f in this manner, it is not necessary to use a CAM that performs three-dimensional cutting according to a shape designed by three-dimensional CAD. Therefore, it is possible to produce a three-dimensionally formed product by repeating two-dimensional processing, and it is possible to quickly produce a three-dimensional molded article without using a device of a complicated mechanism Things.
[0026]
By the way, since the light beam L is not irradiated to the portion that becomes the fluid path 8, the metal powder 2 that is not sintered in the fluid path 8 in the powder combined body A as shown in FIG. Will remain. Further, here, the bonding layers 6a to 6b (bonding layer portions 6) obtained by sintering the metal powder 2 are laminated and integrated on a shaping plate 7 made of metal to produce a powder bonded body A. At this time, the portion serving as the fluid path 8 is not irradiated with the light beam L. Therefore, the unsintered metal powder 2 is sealed in the fluid path 8 of the powder combined body A. It will be retained.
[0027]
In this case, the metal powder 2 is made of an iron-based powder material, and the shaping plate 7 is formed of the same type of iron-based plate material, and the sintered bonding layer 6 is firmly bonded and fixed to the shaping plate 7. Is done. In this state, the unsintered metal powder 2 is in a state of being hermetically held in the fluid path 8, and by transferring and transporting the powder combined body A in this state, careless preparation of the metal powder 2 is performed. Leakage and scattering can be prevented, and the surface of the elevating table 1 shown in FIG.
[0028]
Therefore, as shown in FIG. 1 (b), an inlet hole 9a and an outlet hole 9b communicating with the fluid path 8 are formed in the modeling plate 7 so that the fluid path 8 is formed outside the powder combined body A. It is to be opened to the public. In this case, as shown in FIG. 2, the inlet hole 9a and the outlet hole 9b are coaxially communicated with the fluid path 8 and have substantially the same diameter to communicate with both ends of the fluid path 8. Then, the molding plate 7 is bored. At this time, the shaping plate 7 is subjected to drilling and cutting with a drill or the like, but the work is easy only by cutting to a depth corresponding to the thickness of the shaping plate 7.
[0029]
Here, as shown in FIG. 3, if the inlet hole 9a and the outlet hole 9b corresponding to the fluid path 8 were previously formed in the modeling plate 7, the following problem would occur. It is. That is, as shown in FIG. 3 (a), when an inlet hole 9a and an outlet hole 9b are previously formed in the modeling plate 7, generally, the edge portions of the inlet hole 9a and the outlet hole 9b are formed in the edge portions. Is provided with a chamfer 12, so that the bonding layer portion 6 laminated and integrated thereon hinders sintering in the same chamfer 12, and particularly, at both end portions of the fluid path 8. It is not formed accurately.
[0030]
Further, as shown in FIG. 3B, even when the chamfer 12 is not formed on the rim portions of the entrance hole 9a and the exit hole 9b, the shaping plate 7 is displaced from a predetermined position. The light beam L is applied to a position shifted from the entrance hole 9a or the exit hole 9b, and the fluid path 8 is formed larger than a predetermined diameter. In any case, if an opening 9a and an outlet 9b are formed in the molding plate 7 in advance, it is difficult to cover the layer of the metal powder 2 thereon. The fluid path 8 having a predetermined shape is not accurately formed because the metal powder 2 may drop from the fluid path.
[0031]
On the other hand, as shown in FIG. 2, when the hole 9 a for the entrance and the hole 9 b for the outlet are formed in the shaping plate 7 after the powder combined body A is manufactured, the bonding layer portion is formed on the shaping plate 7. 6, the same shaped plate 7 is in a flat state without the entrance hole 9a and the exit hole 9b, so that the layer of the metal powder 2 can be easily and reliably coated thereon. As a result, the light beam L is irradiated with high accuracy, and the fluid path 8 having a predetermined shape is formed accurately.
[0032]
Then, as shown in FIG. 1C, the remaining unsintered metal powder 2 is discharged and removed from the fluid path 8 opened as described above. In this case, the compressed fluid 11 such as compressed air or compressed liquid flows into the inlet hole 9a, and the metal powder 2 remaining in the fluid path 8 is forcibly discharged and removed from the outlet hole 9b. Here, the metal powder 2 can be discharged and removed from the fluid path 8 by suction using the suction device or the like from the outlet hole 9b. However, this makes it difficult to process the metal powder 2 after suction. As described above, it is preferable to extrude with the compressed fluid 11.
[0033]
After the metal powder 2 is discharged and removed from the fluid path 8 as described above, the filling treatment agent 13 flows into the fluid path 8 as shown in FIG. The sealing process is performed by penetrating the inner wall surface of the passage 8. In this case, as shown in FIG. 4A, the powder combined body A is placed on the table 15 such that the inlet hole 9a and the outlet hole 9b at both ends of the fluid path 8 are open upward. As shown in FIG. 4B, the filler treatment agent 13 is poured into the fluid path 8 from one of the inlet hole 9a and the outlet hole 9b, and the filler treatment agent 13 is substantially introduced into the fluid path 8. In this state, the state is left for a while (about 5 minutes).
[0034]
At this time, the inlet hole 9a and the outlet hole 9b may be covered with a cover so that the filling treatment agent 13 does not flow out of the fluid path 8. Here, the capping agent 13 penetrates into the inner wall surface of the fluid passage 8 due to the capillary action of the liquid, and penetrates into hair cracks, cracks 14 and the like inside the powder sintered body of the powder combined body A, and these are surely formed. It is buried in and sealed. In this case, the filling treatment agent 13 is a liquid having a low viscosity and capable of penetrating even small pores that are invisible due to the capillary action of the liquid and sealing the liquid. For example, the liquid has a viscosity of 20 ° C. 0.35 CP (12 DINsek), micropores having a liquid permeability of 0.1 mm or less, and 50 mm in a 1/100 mm gap in 3 minutes can be used.
[0035]
Here, depending on the size of the hair cracks, cracks 14, etc., the filler action is increased by changing the particle diameter of the filler treatment agent 13. For example, in the case of a crack having a diameter of about 0.5 mm, the inner wall surface of the fluid path 8 is reliably sealed by using the filler 13 for small particles after using the filler 13 for large particles first. Is what is done. Further, the filling agent 13 is filled in the fluid path 8 and left for several minutes (about 5 minutes), and then flows out from the fluid path 8 once again, and the new filling agent 13 is again placed in the fluid path 8. By pouring and repeating this several times, the filling action is further increased.
[0036]
When the filler 13 having a low viscosity and a high permeability is used, the entire powdered composite A is immersed in a tank in which the filler 13 is stored, or the filler 13 is used. Even if the surface 13 is applied several times to a hair crack, a crack 14, or the like, the sealing process is performed. However, it is efficient and effective that the filling process is performed only on the inner wall surface of the fluid path 8 and it is difficult to insert a brush into the fluid path 8. It is preferable to use a filling method in which the treatment agent 13 flows into the fluid path 8 and penetrates the inner wall surface thereof.
[0037]
Finally, the excess of the filler 13 is completely discharged from the fluid path 8, and the powdered composite A is left at room temperature or in a heated state for several hours. In this case, as shown in FIG. 4C, the powder composite A is turned over so that the inlet hole 9a and the outlet hole 9b at both ends of the fluid path 8 open downward. The surplus of the processing agent 13 may be caused to flow out of the fluid path 8 and left in the inverted state. Thereby, the filling treatment agent 13 used for filling in the fluid path 8 is completely cured, and the filling treatment on the inner wall surface of the fluid path 8 is completed. On the inner wall surface of the fluid passage 8 subjected to the filling treatment, not only the hair cracks and the cracks 14 are securely sealed, but also the inner wall surface becomes smooth and the flow resistance of the fluid there is reduced. The fluid path 8 is optimal for flowing a fluid for cooling, heating, or the like.
[0038]
Therefore, in the manufacturing method of the molding die according to this embodiment, the powder combined body A is manufactured by leaving the metal powder 2 that is not sintered without being irradiated with the light beam L in the portion that becomes the fluid path 8. After that, the remaining metal powder 2 is discharged and removed from the fluid path 8 so that the hollow fluid path 8 can be easily formed. In this case, even if the fluid path 8 has a complicated and long shape, the remaining metal powder 2 can be easily discharged and removed from the fluid path 8, and the fluid path 8 can be freely formed in an optimal shape. be able to.
[0039]
Moreover, in producing the powdered composite A, the plurality of coupling layers 6a, 6b, 6c... Are laminated and integrated on the modeling plate 7 made of metal to produce the powdered composite A, and the powdered composite A is produced. After that, an inlet hole 9a and an outlet hole 9b are formed in the shaped plate 7 to open the fluid path 8 to the outside of the powder combined body A. Since the metal powder 2 is discharged and removed from the opened fluid path 8, the unsintered metal powder 2 is held in the fluid path 8 in a sealed state at the stage when the powder combined body A is manufactured. By transporting the body A, careless leakage and scattering of the metal powder 2 can be prevented.
[0040]
Then, at the stage where drilling for forming the inlet hole 9a and the outlet hole 9b in the modeling plate 7 is completed, the remaining unsintered metal powder 2 is appropriately discharged and removed from the opened fluid path 8. Is what you can do. When the plurality of bonding layers 6a, 6b, 6c,... Are laminated and integrated on the shaping plate 7, the shaping plate 7 is flat and has no entrance hole 9a and outlet hole 9b. In this state, it is easy to coat the layer of the metal powder 2 thereon, and the light beam L is also irradiated with high accuracy, so that the powdered composite A having the fluid path 8 of a predetermined shape is accurately laminated.
[0041]
In the method of manufacturing a molding die according to this embodiment, the inlet hole 9a and the outlet hole 9b communicating with both ends of the fluid path 8 are formed to have substantially the same diameter as the fluid path 8 so as to form an opening in the molding plate 7. Therefore, the flow resistance of the fluid flowing through the fluid passage 8 such as for adjusting the temperature of the mold can be reduced, so that the flow velocity and flow rate can be increased, and the effect of heat exchange and the like by the fluid is increased. . Further, since the metal powder 2 remaining in the fluid path 8 is discharged and removed by flowing the compressed fluid 11, the unsintered metal powder 2 is reliably and smoothly discharged and removed from the fluid path 8. The metal powder 2 is reliably prevented from remaining in the fluid path 8.
[0042]
Further, in the method of manufacturing a molding die according to this embodiment, after the metal powder 2 is discharged and removed from the fluid path 8, the filling agent 13 flows into the fluid path 8, and the filling agent 13 is removed. Since the sealing process is performed by infiltrating the inner wall surface of the fluid passage 8 by capillary action, hair cracks, cracks 14 and the like generated on the inner wall surface of the fluid passage 8 are securely filled and sealed. For this reason, in the fluid path 8, seepage of a fluid for mold temperature adjustment or the like is prevented, the flow resistance of the fluid is reduced, and the flow velocity or flow rate can be increased. The effect is greater.
[0043]
【The invention's effect】
As described above, in the method for manufacturing a molding die according to the first aspect of the present invention, a fluid path can be easily formed freely with an optimum shape. The sintered metal powder is kept sealed in the fluid path and is easy to handle, and at the stage of finishing the drilling, the remaining metal powder can be appropriately discharged and removed from the opened fluid path, When a plurality of bonding layers are laminated and integrated on a modeling plate, the modeling plate is in a flat state, and a powdered composite having a fluid path of a predetermined shape is accurately formed thereon.
[0044]
In the method of manufacturing a molding die according to claim 2 of the present invention, the fluid path, the inlet hole and the outlet hole are communicated with substantially the same diameter, and the die is circulated in the fluid path. The flow resistance of the fluid for temperature adjustment and the like becomes smaller, the flow velocity and the flow rate thereof can be increased, and the effect of heat exchange and the like by the fluid is increased.
[0045]
In the method for manufacturing a molding die according to claim 3 of the present invention, in particular, by flowing the compressed fluid, the unsintered metal powder remaining in the fluid path is reliably and smoothly discharged and removed, The metal powder is reliably prevented from remaining in the fluid path.
[0046]
In the method for manufacturing a molding die according to claim 4 of the present invention, in particular, hair cracks, cracks, etc. are reliably sealed by the plugging treatment, so that fluid stains such as for adjusting the temperature of the die in the fluid path. As a result, the flow resistance and the flow rate of the fluid can be increased, and the flow rate and the flow rate of the fluid can be increased.
[Brief description of the drawings]
FIG. 1A is a cross-sectional view showing a state in which metal powder remains in a fluid path and is sealed in a method of manufacturing a molding die according to an embodiment of the present invention, and FIG. FIG. 4C is a cross-sectional view illustrating an opened state, and FIG. 4C is a cross-sectional view illustrating a state in which the remaining metal powder is discharged and removed from the fluid path.
FIG. 2 is an essential part cross-sectional view showing a state where a fluid path is opened through in the method for manufacturing a molding die of the above.
FIGS. 3A and 3B are cross-sectional views illustrating main parts of a fluid path in which a forming plate is perforated by a method different from that of the present invention.
4 (a) is a cross-sectional view showing a state in which a fluid path is opened through, and FIG. 4 (b) is a diagram showing a state in which a filling agent flows into and permeates the fluid path. FIG. 3C is a cross-sectional view showing a state in which the filler treatment agent is discharged and removed from the fluid path.
FIGS. 5A to 5E show steps of manufacturing a powdered composite, and FIGS. 5A to 5E are cross-sectional views of each step.
FIG. 6 is a perspective view showing a powdered composite obtained by the same manufacturing method.
FIG. 7A is a perspective view showing a designed product model used for manufacturing the same, and FIG. 7B is a perspective view showing each layer obtained by slicing the product model.
[Explanation of symbols]
2 Metal powder
6. Bonding layer
6a, 6b, 6c ... bonding layer
7 Modeling plate
8 Fluid path
9a Entrance hole
9b Exit hole
11 Compressed fluid
A powder conjugate
L light beam

Claims (4)

金属粉末の層の所定箇所に光ビームを照射して金属粉末が焼結した結合層を形成し、この結合層の上に金属粉末の層を被覆すると共にこの金属粉末の所定箇所に光ビームを照射して焼結させることにより下の結合層と一体になった結合層を形成し、これを繰り返すことによって複数の結合層が積層一体化された成形金型となる粉末結合体を作製するにあたり、金属でなる造形プレート上に前記複数の結合層を積層一体化して粉末結合体を作製し、その際、成形金型の流体経路となる部分には光ビームを照射しないで未焼結の金属粉末を残存させたままとし、粉末結合体が作製された後に、前記造形プレートに入口用孔と出口用孔とを開口形成して流体経路を同粉末結合体の外部に開通させ、その後、前記残存した金属粉末を同開通された流体経路から排出除去することを特徴とする成形金型の製造方法。A light beam is applied to a predetermined portion of the metal powder layer to form a bonding layer in which the metal powder is sintered, and a layer of the metal powder is coated on the bonding layer, and a light beam is applied to a predetermined portion of the metal powder. Irradiation and sintering form a bonding layer integrated with the lower bonding layer, and by repeating this, a plurality of bonding layers are laminated and integrated to produce a powder bonded body that becomes a molding die. A plurality of bonding layers are laminated and integrated on a shaping plate made of metal to produce a powdered composite body. At this time, a portion which becomes a fluid path of a molding die is not irradiated with a light beam and the unsintered metal is formed. With the powder remaining, after the powder composite is produced, an inlet hole and an outlet hole are formed in the modeling plate to open a fluid path to the outside of the powder composite, and then, Fluid passed through the remaining metal powder Method for manufacturing a forming mold, characterized in that the exhaust removal from the road. 入口用孔及び出口用孔を流体経路と略同径にして、この流体経路の両端部と連通するように開口形成することを特徴とする請求項1記載の成形金型の製造方法。2. The method according to claim 1, wherein the inlet hole and the outlet hole have substantially the same diameter as the fluid path, and the opening is formed so as to communicate with both ends of the fluid path. 入口用孔から圧縮流体を流入させることによって、流体経路内に残存した金属粉末を出口用孔から排出除去することを特徴とする請求項1又は2記載の成形金型の製造方法。The method according to claim 1 or 2, wherein the metal powder remaining in the fluid path is discharged and removed from the outlet hole by flowing the compressed fluid through the inlet hole. 金属粉末を流体経路から排出除去した後に、この流体経路内に目止め処理剤を流入し、この目止め処理剤を同流体経路の内壁面に毛細管現象により浸透させて目止め処理を施すことを特徴とする請求項1〜3のいずれか一つに記載の成形金型の製造方法。After discharging and removing the metal powder from the fluid path, a filler treatment agent flows into the fluid path, and the filler treatment penetrates the inner wall surface of the fluid path by capillary action to perform the filler treatment. The method for producing a molding die according to any one of claims 1 to 3, wherein:
JP2002189058A 2002-06-28 2002-06-28 Manufacturing method of mold Expired - Lifetime JP4110856B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002189058A JP4110856B2 (en) 2002-06-28 2002-06-28 Manufacturing method of mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002189058A JP4110856B2 (en) 2002-06-28 2002-06-28 Manufacturing method of mold

Publications (2)

Publication Number Publication Date
JP2004027328A true JP2004027328A (en) 2004-01-29
JP4110856B2 JP4110856B2 (en) 2008-07-02

Family

ID=31183575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002189058A Expired - Lifetime JP4110856B2 (en) 2002-06-28 2002-06-28 Manufacturing method of mold

Country Status (1)

Country Link
JP (1) JP4110856B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008173887A (en) * 2007-01-19 2008-07-31 Ngk Insulators Ltd Degassing member for injection molding mold
JPWO2008038694A1 (en) * 2006-09-27 2010-01-28 日本碍子株式会社 Sprue bushing and manufacturing method thereof
JP2013194263A (en) * 2012-03-16 2013-09-30 Panasonic Corp Method of manufacturing three-dimensionally shaped object
JP2014105373A (en) * 2012-11-29 2014-06-09 Canon Inc Metal powder for metal photofabrication, method of manufacturing molding die for injection molding, and molded article
JP2015502256A (en) * 2011-10-26 2015-01-22 スネクマ Method for manufacturing metal parts of aircraft turbo engine
WO2016068434A1 (en) * 2014-10-28 2016-05-06 한국생산기술연구원 Method for manufacturing cooling block for hot stamping mold using three-dimensional metal printer
GB2539092A (en) * 2015-06-03 2016-12-07 Rolls Royce Plc Manufacture of component with cavity
JP2018115364A (en) * 2017-01-18 2018-07-26 トヨタ自動車株式会社 Lamination molding method
JP2018535319A (en) * 2015-10-30 2018-11-29 シューラット テクノロジーズ, インク.Seurat Technologies Inc. Additional manufacturing system and method
WO2019069767A1 (en) * 2017-10-04 2019-04-11 ヤマハ発動機株式会社 Mold, and mold manufacturing method

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2008038694A1 (en) * 2006-09-27 2010-01-28 日本碍子株式会社 Sprue bushing and manufacturing method thereof
JP5001289B2 (en) * 2006-09-27 2012-08-15 日本碍子株式会社 Sprue bushing and manufacturing method thereof
JP2008173887A (en) * 2007-01-19 2008-07-31 Ngk Insulators Ltd Degassing member for injection molding mold
JP2015502256A (en) * 2011-10-26 2015-01-22 スネクマ Method for manufacturing metal parts of aircraft turbo engine
JP2013194263A (en) * 2012-03-16 2013-09-30 Panasonic Corp Method of manufacturing three-dimensionally shaped object
JP2014105373A (en) * 2012-11-29 2014-06-09 Canon Inc Metal powder for metal photofabrication, method of manufacturing molding die for injection molding, and molded article
CN106170354A (en) * 2014-10-28 2016-11-30 韩国生产技术研究院 Utilize the hot stamping die cooling block manufacture method of 3-dimensional metal printer
US20160339546A1 (en) * 2014-10-28 2016-11-24 Korea Institute Of Industrial Technology Method of manufacturing cooling block for hot stamping mold using three-dimensional metal printer
WO2016068434A1 (en) * 2014-10-28 2016-05-06 한국생산기술연구원 Method for manufacturing cooling block for hot stamping mold using three-dimensional metal printer
US9849548B2 (en) 2014-10-28 2017-12-26 Korea Institute Of Industrial Technology Method of manufacturing cooling block for hot stamping mold using three-dimensional metal printer
GB2539092A (en) * 2015-06-03 2016-12-07 Rolls Royce Plc Manufacture of component with cavity
US10337331B2 (en) 2015-06-03 2019-07-02 Rolls-Royce Plc Manufacture of component with cavity
GB2539092B (en) * 2015-06-03 2020-02-19 Rolls Royce Plc Manufacture of component with cavity
JP2018535319A (en) * 2015-10-30 2018-11-29 シューラット テクノロジーズ, インク.Seurat Technologies Inc. Additional manufacturing system and method
JP7009362B2 (en) 2015-10-30 2022-01-25 シューラット テクノロジーズ,インク. Addition manufacturing system and method
JP2018115364A (en) * 2017-01-18 2018-07-26 トヨタ自動車株式会社 Lamination molding method
WO2019069767A1 (en) * 2017-10-04 2019-04-11 ヤマハ発動機株式会社 Mold, and mold manufacturing method
TWI684487B (en) * 2017-10-04 2020-02-11 日商山葉發動機股份有限公司 Mold and manufacturing method of mold

Also Published As

Publication number Publication date
JP4110856B2 (en) 2008-07-02

Similar Documents

Publication Publication Date Title
US10583606B2 (en) Method and supports with powder removal ports for additive manufacturing
JP6409079B2 (en) Method for additive manufacturing and keyway support
JP6496758B2 (en) Method and conformal support for additive manufacturing
JP6475766B2 (en) Method for additive manufacturing and support around it
US10357828B2 (en) Methods and leading edge supports for additive manufacturing
JP3446733B2 (en) Method and apparatus for manufacturing three-dimensional shaped object
US8968624B2 (en) Method for producing a three dimensional green article
JP2004027328A (en) Method for manufacturing mold
BR112018067374B1 (en) SYSTEM FOR MANUFACTURING A COMPOSITE IN POWDER AND METHOD FOR MANUFACTURING A COMPOSITE IN POWDER
KR100574268B1 (en) Method of manufacturing a three dimensional object
JP2000328106A (en) Manufacture of three-dimensional molded article
JP2017164813A (en) Method of casting including graded core components
US10137642B1 (en) Methods to form 3D objects using cross-linkable or sinterable materials
JP2008291315A (en) Method for producing three-dimensionally shaped object
JP2002322501A (en) Method for manufacturing three-dimensional molding, and molding die
JP2006257463A (en) Powdery material to be sintered by laser, manufacturing method therefor, three-dimensional structure and manufacturing method therefor
JP3835361B2 (en) Manufacturing method of three-dimensional shaped object
JP3893992B2 (en) Method for producing photomolding
JP2008291317A (en) Method for producing three-dimensionally shaped object
JP3599056B2 (en) Manufacturing method of three-dimensional shaped object
JP2002249804A (en) Method for molding three-dimensional product
US20060119017A1 (en) Method for making ceramic work piece and cermet work piece
FR2851944A1 (en) Fabrication of metallic mould impressions in a ceramic mould using a model to form the impressions and coating with a metal powder that is sintered, applicable for metal and plastic injection moulding operations
TW201117949A (en) Method of forming shell mold and high strength ceramic or metal-ceramic composite prototype using such shell mold
JP2003159755A (en) Method and device for manufacturing three- dimensionally shaped article

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080331

R151 Written notification of patent or utility model registration

Ref document number: 4110856

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140418

Year of fee payment: 6