JP3835361B2 - Manufacturing method of three-dimensional shaped object - Google Patents

Manufacturing method of three-dimensional shaped object Download PDF

Info

Publication number
JP3835361B2
JP3835361B2 JP2002189059A JP2002189059A JP3835361B2 JP 3835361 B2 JP3835361 B2 JP 3835361B2 JP 2002189059 A JP2002189059 A JP 2002189059A JP 2002189059 A JP2002189059 A JP 2002189059A JP 3835361 B2 JP3835361 B2 JP 3835361B2
Authority
JP
Japan
Prior art keywords
powder
fluid path
bonding
layer
light beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002189059A
Other languages
Japanese (ja)
Other versions
JP2004027329A (en
Inventor
卯三 太田
光弘 新郷
広 吉原
隆史 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2002189059A priority Critical patent/JP3835361B2/en
Publication of JP2004027329A publication Critical patent/JP2004027329A/en
Application granted granted Critical
Publication of JP3835361B2 publication Critical patent/JP3835361B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Powder Metallurgy (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、粉末に光ビームを照射して結合層を形成し、この結合層を積層一体化して所望の三次元形状に造形する三次元形状造形物の製造方法に関するものである。
【0002】
【従来の技術】
金属粉末等の無機質粉末或いは樹脂粉末等の有機質粉末の層にレーザビーム等の光ビームを照射し、粉末を溶融固化させ結合させることによって結合層を形成し、この結合層の上に更に粉末の層を被覆すると共にこの粉末に光ビームを照射し同様に結合させることによって下の結合層と一体になった結合層を形成し、そして、これを繰り返すことによって、複数の結合層が積層一体化された粉末結合体を作製する方法がある。
【0003】
特に、粉末として金属の粉末を用い、粉末の層にレーザビーム等の光ビームを照射して粉末を焼結させることによって、粉末が焼結して結合した結合層を形成し、この結合層の上に粉末の層を被覆すると共にこの粉末に光ビームを照射して焼結させることによって下の結合層と一体になった結合層を形成し、そしてこれを繰り返すことによって、複数の結合層が積層一体化された金属粉末焼結体からなる粉末結合体を作製する方法が、例えば、特許第2620353号公報や特開2000−73108公報等で提供されている。
【0004】
図12はその一例を示すものであり、まず、図12(a)に示す如く、昇降テーブル1の上に金属の粉末2をスキージー3で所定の厚みに分与する。昇降テーブル1は基準テーブル4の側面に沿って昇降するものであり、スキージー3は基準テーブル1の上面と同じレベルで水平方向に往復移動するようにしてある。したがって、昇降テーブル1の上面と基準テーブル4の上面との間のΔtの段差に相当する厚みで粉末2の層を昇降テーブル1の上に形成することができる。その後、図12(b)に示す如く、集光レンズ5で集光したレーザビーム等の光ビームLを走査させ、前記粉末2の層の必要な部分にのみ同光ビームLを照射することによって、この光ビームLを照射した部分の粉末2の層を焼結し、厚みΔtの結合層6aを焼結層として形成させる。
【0005】
次に、昇降テーブル1をΔtの寸法で下降させ、前記結合層6aの上に粉末2を供給して、図12(c)に示す如く、スキージー3によりΔtの厚みで粉末2の層を同結合層6aの上に被覆し、次いで、図12(d)に示す如く、この粉末2の層の必要な部分にのみ光ビームLを照射して焼結し、結合層6aの上に結合層6bを一体に積層させる。そして、このような操作を必要な層数だけ繰り返すことによって、図12(e)に示す如く、所定数の結合層6a〜6fを積層一体化し、図13に示す如く、複数の結合層6a〜6fからなる金属粉末焼結体として粉末結合体Aを作製することができるものである。
【0006】
ここで、前記の如く、粉末結合体Aを作製するにあたっては、図14(a)に示すような製品モデル10を設計する際の三次元CADデータに基づいて、同製品モデル10を、図14(b)に示す如く、所定の間隔Δtで水平にスライスしたときの各層10a〜10fのスライス面の断面データを得て、このスライス断面データを基にして粉末2の各層に照射する光ビームLの走査経路を決定し、各層10a〜10fに対応する水平断面形状で各結合層6a〜6bを形成することにより、製品モデル10と同じ三次元形状に造形された粉末結合体Aを作製することができる。
【0007】
そして、このように各結合層6a〜6fを順次形成して積み重ねていく工法を採用することにより、三次元CADにより設計された形状に従って三次元的に切削加工するCAMを用いるような必要がなくなって、二次元的な加工の繰り返しで三次元的に造形された製品を作製することが可能となるもので、複雑な機構の装置を用いることなく三次元造形物を迅速に作製することができるものである。
【0008】
【発明が解決しようとする課題】
上記の如く、三次元造形物として作製される粉末結合体Aにあって、粉末結合体Aを、例えば、成形金型等として用いる場合には、冷却や加熱等の機能を付与するために、粉末結合体Aの内部に流体が流通される経路を形成することが行われている。そして、粉末結合体Aの内部には粉末が焼結等で結合された緻密な状態で充填されているので、粉末結合体A内に流体経路を形成する場合には、粉末結合体Aを造形した後、この粉末結合体Aに切削や孔あけ等の加工を施す必要がある。しかしながら、このような切削や孔あけ等の加工では、粉末結合体A内に形成する流体経路の形状が単純なものに制限され、最適な形状で自由に流体経路を設計し形成することはできないものであった。
【0009】
そこで、本出願人は、粉末結合体内に最適な形状で自由に流体経路を形成することができる三次元造形物の製造方法を提供することを目的として、特願2001−126608を出願している。この出願の請求項4記載の発明では、流体経路となる部分の粉末を溶融結合させないで粉末結合体を作製し、粉末結合体内から流体経路の粉末を抜き出すようにしたので、最適な形状で自由に流体経路を設計し形成することができる上に、流体経路内を流れる流体の流動抵抗が小さくなってその流速や流量を高めることができ、流体による熱交換等の効果が大きくなるものである。
【0010】
しかしながら、前記出願に係る発明では、次のような問題が残っている。すなわち、金属の粉末結合体の内部に三次元的に流体経路を形成した場合、この流体経路の内壁面には微細なヘアクラックや亀裂が発生する。ここで、流体経路内に流体を流通させると、流体が前記ヘアクラックや亀裂から染み出して粉末結合体の外表面にまで流出する恐れがあり、例えば、金型温度調整用の流体経路を備えた成形用金型としては不適となるものであった。
【0011】
本発明は、上記従来の技術における問題を解決すると共に上記本出願人の先願に係る発明における問題をも解決するために発明されたもので、その課題は、粉末結合体内に最適な形状で自由に流体経路を形成することができ、しかも、この流体経路内では流体の染み出しが防止され流動抵抗も小さくなって、同流体による熱交換等の効果が大きくなり、温度調整用の流体経路を備えた成形型として最適となる三次元形状造形物の製造方法を提供することである。
【0012】
【課題を解決するための手段】
本発明の請求項1記載の三次元形状造形物の製造方法は、粉末の層の所定箇所に光ビームを照射して溶融結合させることにより粉末が結合した結合層を形成し、この結合層の上に粉末の層を被覆すると共にこの粉末の所定箇所に光ビームを照射して結合させることにより下の結合層と一体になった結合層を形成し、これを繰り返すことによって複数の結合層が積層一体化された粉末結合体で三次元形状造形物を作製するにあたって、流体経路となる部分には光ビームを照射しないで溶融結合しない粉末を残存させたままとし、粉末結合体が作製された後に、前記残存した粉末を流体経路から排出除去し、次に、この流体経路内に目止め処理剤を流入し、この目止め処理剤を同流体経路の内壁面に毛細管現象により浸透させて目止め処理を施すことを特徴としている。
【0013】
したがって、この場合、流体経路となる部分には光ビームを照射しないで溶融結合しない粉末を残存させたままとし、粉末結合体が作製された後に、前記残存した粉末を流体経路から排出除去することで、空洞となった流体経路を簡単に形成することができ、ここでは、最適な形状で自由に同流体経路を形成することができる。
【0014】
しかも、前記流体経路内に目止め処理剤を流入し、この目止め処理剤を同流体経路の内壁面に毛細管現象により浸透させて目止め処理を施すので、同流体経路の内壁面に発生するヘアクラックや亀裂等が確実に密閉される。それ故、この流体経路では、流体の染み出しが防止され、流体の流動抵抗が小さくなってその流速や流量を高めることもでき、同流体による熱交換等の効果が大きくなって、温度調整用の流体経路を備えた成形型として最適な三次元形状造形物を得ることができる。
【0015】
本発明の請求項2記載の三次元形状造形物の製造方法は、上記請求項1記載の三次元形状造形物の製造方法において、粉末結合体の外側から真空引きしながら、流体経路の内壁面に目止め処理剤を浸透させることを特徴としている。
【0016】
したがって、この場合は特に、大気圧では浸透しないマイクロクラックや目止め処理剤の粘度によっては比較的大きなクラックにも容易に浸透されるようになり、目止め処理が確実に施される。
【0017】
本発明の請求項3記載の三次元形状造形物の製造方法は、上記請求項1記載の三次元形状造形物の製造方法において、粉末結合体に振動を与えながら、流体経路の内壁面に目止め処理剤を浸透させることを特徴としている。
【0018】
したがって、この場合は特に、粉末結合体が振動されることで、流体経路の内壁面に目止め処理剤は浸透し易くなり、この浸透に要する時間が短くなって、目止め処理時間が短縮される。
【0019】
本発明の請求項4記載の三次元形状造形物の製造方法は、上記請求項1〜3のいずれか一つに記載の三次元形状造形物の製造方法において、目止め処理を施した後に、流体経路内に砥粒が混入された研磨液を流通させることを特徴としている。
【0020】
したがって、この場合は特に、ヘアクラックや亀裂等に浸透して目止めに供された以外の余分な目止め処理剤が、流体経路内に砥粒が混入された研磨液を流通させることによって削り取り除去され、断熱層となってしまう同目止め処理剤の被覆層が薄くなって、熱交換等の効果がより大きくなる。
【0021】
本発明の請求項5記載の三次元形状造形物の製造方法は、粉末の層の所定箇所に光ビームを照射して溶融結合させることにより粉末が結合した結合層を形成し、この結合層の上に粉末の層を被覆すると共にこの粉末の所定箇所に光ビームを照射して結合させることにより下の結合層と一体になった結合層を形成し、これを繰り返すことによって複数の結合層が積層一体化された粉末結合体で三次元形状造形物を作製するにあたって、流体経路となる部分には光ビームを照射しないで溶融結合しない粉末を残存させたままとし、粉末結合体が作製された後に、前記残存した粉末を流体経路から排出除去し、次に、この流体経路の内壁面にメッキ処理を施すことを特徴としている。
【0022】
したがって、この場合、流体経路となる部分には光ビームを照射しないで溶融結合しない粉末を残存させたままとし、粉末結合体が作製された後に、前記残存した粉末を流体経路から排出除去することで、空洞となった流体経路を簡単に形成することができ、ここでは、最適な形状で自由に同流体経路を形成することができる。
【0023】
しかも、前記流体経路の内壁面にメッキ処理を施すので、同流体経路の内壁面に発生するヘアクラックや亀裂等が確実に密閉される。それ故、この流体経路では、流体の染み出しが防止され、流体の流動抵抗が小さくなってその流速や流量を高めることもでき、同流体による熱交換等の効果が大きくなって、温度調整用の流体経路を備えた成形型として最適な三次元形状造形物を得ることができる。
【0024】
本発明の請求項6記載の三次元形状造形物の製造方法は、粉末の層の所定箇所に光ビームを照射して溶融結合させることにより粉末が結合した結合層を形成し、この結合層の上に粉末の層を被覆すると共にこの粉末の所定箇所に光ビームを照射して結合させることにより下の結合層と一体になった結合層を形成し、これを繰り返すことによって複数の結合層が積層一体化された粉末結合体で三次元形状造形物を作製するにあたって、流体経路となる部分には光ビームを照射しないで溶融結合しない粉末を残存させたままとし、粉末結合体が作製された後に、前記残存した粉末を流体経路から排出除去し、次に、この流体経路内に熱可塑性のパイプを挿入設置し、このパイプを加熱軟化させて同流体経路の内壁面に密着させることを特徴としている。
【0025】
したがって、この場合、流体経路となる部分には光ビームを照射しないで溶融結合しない粉末を残存させたままとし、粉末結合体が作製された後に、前記残存した粉末を流体経路から排出除去することで、空洞となった流体経路を簡単に形成することができ、ここでは、最適な形状で自由に同流体経路を形成することができる。
【0026】
しかも、前記流体経路内に熱可塑性のパイプを挿入設置し、このパイプを加熱軟化させて同流体経路の内壁面に密着させるので、同流体経路の内壁面に発生するヘアクラックや亀裂等が確実に密閉される。それ故、この流体経路では、流体の染み出しが防止され、流体の流動抵抗が小さくなってその流速や流量を高めることもでき、同流体による熱交換等の効果が大きくなって、温度調整用の流体経路を備えた成形型として最適な三次元形状造形物を得ることができる。
【0027】
【発明の実施の形態】
図1〜5は、本発明の請求項1に対応する第一の実施形態を示している。この実施形態の三次元形状造形物の製造方法において、粉末結合体Aは上記の図12〜14のようにして、金属等の無機質或いは樹脂等の有機質の粉末2を用い、レーザビーム等の光ビームLを照射することにより作製することができる。
【0028】
すなわち、粉末2として金属のものを用いる場合は、金属の粉末2の層に光ビームLを照射して粉末2を焼結させることによって、粉末2が焼結して結合した結合層6aを形成し、この結合層6aの上に粉末2の層を被覆すると共にこの粉末2に光ビームLを照射して焼結させることにより下の結合層6aと一体になった結合層6bを形成し、そしてこれを繰り返すことにより、複数の結合層6a、6b、6c・・・が積層一体化された金属粉末焼結体からなる粉末結合体Aを作製することができる。ここで、金属の粉末2としては、例えば、平均粒径20〜30μm程度の鉄粉やブロンズとニッケルとの混合粉末等を用いることができ、各結合層6a、6b、6c・・・はその厚みΔtを0.02〜0.2mm 程度に形成することができる。
【0029】
又、粉末2としては、上記のような金属のものの他、無機質であるセラミックのものを用いることができ、この場合も、金属の粉末2の場合と同様に、光ビームLを照射して焼結することにより、結合層6a、6b、6c・・・を形成することができる。更に、粉末2として樹脂等の有機質のものを用いる場合には、光ビームLを照射して粉末2を溶融・固化させることにより、粉末2を結合させた結合層6a、6b、6c・・・を形成することができる。なお、図12に示す如く、所定数の結合層6a〜6fを順次積層一体化し、図13に示す如く、複数の結合層6a〜6fからなる金属粉末焼結体として粉末結合体Aを作製することについては、上記と同様の説明となるので、ここでは、その具体的な説明を省略する。
【0030】
そして、前記の如く、粉末結合体Aを作製するにあたっては、図14(a)に示すような製品モデル10を設計する際の三次元CADデータに基づいて、同製品モデル10を、図14(b)に示す如く、所定の間隔Δtで水平にスライスしたときの各層10a〜10fのスライス面の断面データを得て、このスライス断面データを基にして粉末2の各層に照射する光ビームLの走査経路を決定し、各層10a〜10fに対応する水平断面形状で各結合層6a〜6bを形成することにより、製品モデル10と同じ三次元形状に造形された粉末結合体Aを作製することができる。
【0031】
この場合、製品モデル10や各層10a〜10fの断面データは全体から流体経路7に相当する部分を差し引いたものとなり、同流体経路7を有する粉末結合体Aが作製されることとなる。そして、このように各結合層6a〜6fを順次形成して積み重ねていく工法を採用することにより、三次元CADにより設計された形状に従って三次元的に切削加工するCAMを用いるような必要がなくなって、二次元的な加工の繰り返しで三次元的に造形された製品を作製することが可能となるもので、複雑な機構の装置を用いることなく三次元造形物を迅速に作製することができるものである。
【0032】
ところで、流体経路7となる部分には光ビームLが照射されないので、前記粉末結合体Aにあっては、図3に示す如く、同流体経路7内に溶融結合されない粉末2が残存することになる。又、ここでは、図2に示す如く、金属でなる造形プレート14上に金属の粉末2を焼結させた前記各結合層6a〜6b(積層部15)を積層一体化して粉末結合体Aを作製しているので、図2(a)に示す如く、同粉末結合体Aの流体経路7内には未焼結の金属の粉末2が密封された状態で残存保持されることになる。
【0033】
そこで、図2(b)に示す如く、造形プレート14の部分に、流体経路7と連通する入口用孔8と出口用孔9とを穿設し、同流体経路7を粉末結合体Aの外部に開通させている。そして、図4に示す如く、前記残存した粉末2を流体経路7から強制的に排出除去するものである。この場合、図4(a)に示す如く、入口用孔8から送風機16によって圧縮エアを送り込むことで流体経路7内に残存した粉末2を出口用孔9から排出除去しても良いし、又、図4(b)に示す如く、出口用孔9から吸引機17で吸引して同粉末2を排出除去しても良い。このように、未焼結の粉末2を排出除去して、図5に示す如く、流体経路7が入口用孔8及び出口用孔9を介して外部と開通された粉末結合体Aとなる。
【0034】
次に、図1に示す如く、前記開通された流体経路7内に目止め処理剤11を流入し、この目止め処理剤11を同流体経路7の内壁面に浸透させて目止め処理を施すものである。この場合、図1(a)に示す如く、出口用孔9を開口させた状態で入口用孔8から流体経路7内に目止め処理剤11を流し込んで、図1(b)に示す如く、この目止め処理剤11を同流体経路7内に略充満された状態とし、この状態のままで暫くの間放置する。その際、目止め処理剤11が流体経路7から流出しないように、入口用孔8及び出口用孔9に蓋をしておいても良い。ここでは、液体が有する毛細管現象性により目止め処理剤11は流体経路7の内壁面に浸透し、粉末結合体Aの粉末焼結体内部のヘアクラックや亀裂18等に染み込み、これ等が確実に埋められて密閉され。
【0035】
この場合、ヘアクラックや亀裂18等の大きさによっては、目止め処理剤11の粒子径を変化させることで目止め作用が増大されるものである。例えば、0.5mm 程度のクラックであれば、大きい粒子の目止め処理剤11を先に使用した後に、小さい粒子の目止め処理剤11を使用すると、流体経路7の内壁面が確実に目止めされるものである。又、目止め処理剤11を流体経路7内に充填し、数分間放置した後にこの流体経路7から一旦流出させ、再度、同流体経路7内に新しい目止め処理剤11を流し込み、これを何度か繰り返すことによって、目止め作用がより増大される。
【0036】
そして、最後に、前記目止め処理剤11の余剰分を流体経路7から完全に流出して、粉末結合体Aを常温或いは加熱した状態で数時間放置する。これにより、流体経路7内で目止めに供された目止め処理剤11は完全に硬化して、同流体経路7の内壁面での目止め処理が完了する。目止め処理が施された流体経路7の内壁面では、ヘアクラックや亀裂18等が確実に密閉されているだけでなく、同内壁面は平滑となって、そこにおける流体の流動抵抗も小さくなり、この流体経路7は冷却や加熱等のための流体を流通させるのに最適なものとなる。
【0037】
したがって、この実施形態の三次元形状造形物の製造方法においては、流体経路7となる部分に光ビームLを照射しないで焼結しない金属の粉末2を残存させたままとし、粉末結合体Aが作製された後に、この残存した粉末2を同流体経路7から排出除去することで、空洞となった流体経路7を簡単に形成することができる。ここでは、流体経路7が複雑且つ長い形状であっても、残存した粉末2を流体経路7から容易に排出除去することができ、最適な形状で自由に同流体経路7を形成することができるものである。
【0038】
しかも、前記流体経路7内に目止め処理剤11を流入し、この目止め処理剤11を同流体経路7の内壁面に毛細管現象により浸透させて目止め処理を施すので、同流体経路7の内壁面に発生するヘアクラックや亀裂18等が確実に埋められ密閉される。それ故、この流体経路7では、流体の染み出しが防止され、流体の流動抵抗が小さくなってその流速や流量を高めることもでき、同流体による熱交換等の効果が大きくなるので、冷却や加熱等の温度調整用の流体経路7を備えた成形用の金型として最適な三次元形状造形物を得ることができる。
【0039】
図6は、本発明の請求項2に対応する第二の実施形態を示している。この実施形態の三次元形状造形物の製造方法では、上記第一の実施形態において、粉末結合体Aの外側から真空引きして、流体経路7の内壁面に目止め処理剤11を浸透させるものである。この場合、流体経路7内に目止め処理剤11を流入充填させた粉末結合体Aを真空槽19内に設置して、同粉末結合体Aの外側から真空引きしている。
【0040】
ここでは、流体経路7の内壁面にあるヘアクラックや亀裂18等の箇所に目止め処理剤11が気圧差によって十分に浸透される。そして、数分後、真空槽19から粉末結合体Aを取り出して流体経路7内の余剰の目止め処理剤11を流し出し、常温或いは加熱した状態で数時間放置することによって、同流体経路7内の目止め処理剤11が完全に硬化して目止め処理は完了する。
【0041】
したがって、この実施形態の三次元形状造形物の製造方法においては、大気圧では浸透しないマイクロクラックや目止め処理剤11の粘度によっては比較的大きなクラックにも容易に浸透されるようになり、目止め処理が確実に施される。なお、それ以外は、上記第一の実施形態と同様であり、同上記第一の実施形態におけると同様の作用効果が奏される。
【0042】
図7は、本発明の請求項3に対応する第三の実施形態を示している。この実施形態の三次元形状造形物の製造方法では、上記第一の実施形態において、粉末結合体Aに振動を与えながら、流体経路7の内壁面に目止め処理剤11を浸透させるものである。この場合、流体経路7内に目止め処理剤11を流入充填させた粉末結合体Aを振動装置20上に設置して、同粉末結合体Aに振動を付与している。
【0043】
ここでは、粉末結合体Aを振動装置20上に設置して振動を与えながら、流体経路7内に入口用孔8から目止め処理剤11を流入し、この入口用孔8及び出口用孔9を塞いで振動させた状態のままにして数時間放置する。これにより、流体経路7の内壁面にあるヘアクラックや亀裂18等の箇所に目止め処理剤11が十分に浸透される。その後、流体経路7内の余剰の目止め処理剤11を流し出し、常温或いは加熱した状態で数時間放置することによって、同流体経路7内の目止め処理剤11が完全に硬化して目止め処理は完了する。
【0044】
したがって、この実施形態の三次元形状造形物の製造方法においては、粉末結合体Aが振動されることで、流体経路7の内壁面に目止め処理剤11は浸透し易くなり、この浸透に要する時間が短くなって目止め処理時間が短縮され、目止め処理が確実にもなる。なお、それ以外は、上記第一の実施形態と同様であり、同上記第一の実施形態におけると同様の作用効果が奏される。
【0045】
図8は、本発明の請求項4に対応する第四の実施形態を示している。この実施形態の三次元形状造形物の製造方法では、上記第一乃至第三の実施形態のようにして、流体経路7の内壁面に目止め処理を施した後に、同流体経路7内に砥粒が混入された研磨液12を流通させるものである。この場合、強制循環装置21の吹出口22及び吸込口23を流体経路7の入口用孔8と出口用孔9とに各々接続し、同流体経路7内に研磨液12を強制的に循環流通させるものである。ここでは、流圧のかかる研磨液12によって、目止めされた以外の目止め処理剤11による被覆層11aが研磨され、目止めに不用な同被覆層11aの部分は取り除かれる。
【0046】
したがって、この実施形態の三次元形状造形物の製造方法においては、ヘアクラックや亀裂18等に浸透して目止めに供された以外の余分な目止め処理剤11による被覆層11aの部分が、流体経路7内に砥粒が混入された研磨液12を流通させることによって削り取り除去され、断熱層となってしまう同目止め処理剤11の被覆層11aが薄くなって、熱交換等の効果がより大きく発揮される。なお、それ以外は、上記第一乃至第三の実施形態と同様であり、同上記第一乃至第三の実施形態におけると同様の作用効果が奏される。
【0047】
図9は、本発明の請求項5に対応する第五の実施形態を示している。この実施形態の三次元形状造形物の製造方法では、上記第一の実施形態と同様に、粉末結合体Aを作製して、残存した粉末2を流体経路7から排出除去させ、次に、この流体経路7の内壁面にメッキ処理を施すものである。この場合、未焼結の粉末2を流体経路7から取り除いた後、粉末結合体Aの洗浄、脱脂、活性化を行ってメッキ槽24内で同流体経路7内にのみメッキ処理を施すことにより、この流体経路7の内壁面にメッキ層25が形成される。
【0048】
したがって、この実施形態の三次元形状造形物の製造方法においては、流体経路7の内壁面にメッキ処理を施すので、同流体経路7の内壁面に発生するヘアクラックや亀裂18等がメッキ層25によって確実に密閉されることになる。なお、それ以外は、上記第一の実施形態と同様であり、同上記第一の実施形態におけると同様の作用効果が奏される。
【0049】
図10は、本発明の請求項6に対応する第六の実施形態を示している。この実施形態の三次元形状造形物の製造方法では、上記第一の実施形態と同様に、粉末結合体Aを作製して、残存した粉末2を流体経路7から排出除去させ、次に、この流体経路7内に熱可塑性のパイプ13を挿入設置し、このパイプ13を加熱軟化させて同流体経路7の内壁面にエア圧で密着させるものである。この場合、柔軟性を有する熱可塑性樹脂等で形成されたパイプ13を流体経路7内の略全長にわたって挿入設置して、粉末結合体Aをヒータ内蔵台26上に載置する。このヒータ内蔵台26上で粉末結合体Aを加熱して、パイプ13が軟化したところで、流体経路7の一方の出口用孔9を密閉蓋27で閉塞し、他方の入口用孔8から送風機16によって同流体経路7内に圧縮エアを送り込むことで、この流体経路7の内壁面に同パイプ13はエア圧により密着固定される。
【0050】
したがって、この実施形態の三次元形状造形物の製造方法においては、流体経路7内に熱可塑性のパイプ13を挿入設置し、このパイプ13を加熱軟化させて同流体経路7の内壁面に密着させるので、同流体経路7の内壁面に発生するヘアクラックや亀裂18等が軟化固着したパイプ13の層によって確実に密閉されることになる。なお、それ以外は、上記第一の実施形態と同様であり、同上記第一の実施形態におけると同様の作用効果が奏される。
【0051】
図11は、本発明の請求項6に対応する第七の実施形態を示している。この実施形態の三次元形状造形物の製造方法では、流体経路7内に挿入設置したパイプ13を加熱軟化させて同流体経路7の内壁面に密着させるに際し、パイプ13を流体経路7内に挿入設置した粉末結合体Aを真空槽19内に収容してヒータ内蔵台26上に載置している。この場合、ヒータ内蔵台26上で粉末結合体Aを加熱して、パイプ13が軟化したところで、真空槽19内で真空引きを行うことにより、同パイプ13は気圧差によって流体経路7の内壁面に密着固定される。なお、それ以外は、上記第六の実施形態と同様であり、同上記第六の実施形態におけると同様の作用効果が奏される。
【0052】
【発明の効果】
上述の如く、本発明の請求項1記載の三次元形状造形物の製造方法では、最適な形状で自由に流体経路を簡単に形成することができ、しかも、目止め処理によってヘアクラックや亀裂等が確実に密閉され、流体経路での流体の染み出しも防止され、流体の流動抵抗も小さくなり、同流体による熱交換等の効果が大きくなって、温度調整用の流体経路を備えた成形型として最適な三次元形状造形物を得ることができる。
【0053】
又、本発明の請求項2記載の三次元形状造形物の製造方法では、特に、大気圧では浸透しないマイクロクラックや目止め処理剤の粘度によっては比較的大きなクラックにも容易に浸透され、目止め処理が確実に施される。
【0054】
又、本発明の請求項3記載の三次元形状造形物の製造方法では、特に、粉末結合体が振動されることで、流体経路の内壁面に目止め処理剤は浸透し易く、この浸透に要する時間が短くなって、目止め処理時間が短縮される。
【0055】
又、本発明の請求項4記載の三次元形状造形物の製造方法では、特に、ヘアクラックや亀裂等に浸透して目止めに供された以外の余分な目止め処理剤が削り取り除去され、断熱層となってしまう同目止め処理剤の被覆層が薄くなって、熱交換等の効果がより大きくなる。
【0056】
本発明の請求項5記載の三次元形状造形物の製造方法では、最適な形状で自由に流体経路を簡単に形成することができ、しかも、メッキ処理によってヘアクラックや亀裂等が確実に密閉され、流体経路での流体の染み出しも防止され、流体の流動抵抗も小さくなり、同流体による熱交換等の効果が大きくなって、温度調整用の流体経路を備えた成形型として最適な三次元形状造形物を得ることができる。
【0057】
本発明の請求項6記載の三次元形状造形物の製造方法では、最適な形状で自由に流体経路を簡単に形成することができ、しかも、加熱軟化されるパイプによってヘアクラックや亀裂等が確実に密閉され、流体経路での流体の染み出しも防止され、流体の流動抵抗も小さくなり、同流体による熱交換等の効果が大きくなって、温度調整用の流体経路を備えた成形型として最適な三次元形状造形物を得ることができる。
【図面の簡単な説明】
【図1】本発明の第一の実施形態である三次元形状造形物の製造方法において、(a)は目止め処理剤を流入している状態を示す断面図、(b)は同目止め処理剤を浸透させている状態を示す断面図。
【図2】同上の三次元形状造形物の製造方法において、(a)は流体経路内に粉末が残存密封された状態を示す断面図、(b)は同流体経路が貫通開口された状態を示す断面図。
【図3】同上の三次元形状造形物の製造方法において、流体経路内に粉末が残存された状態を示す要部断面図。
【図4】同上の三次元形状造形物の製造方法において、残存した粉末を流体経路から排出除去する(a)、(b)各々異なった方法を示す断面図。
【図5】同上の三次元形状造形物の製造方法における粉末結合体を示す断面図。
【図6】本発明の第二の実施形態である三次元形状造形物の製造方法において、目止め処理剤を浸透させている状態を示す断面図。
【図7】本発明の第三の実施形態である三次元形状造形物の製造方法において、目止め処理剤を浸透させている状態を示す断面図。
【図8】本発明の第四の実施形態である三次元形状造形物の製造方法において、研磨液を流通させている状態を示す断面図。
【図9】本発明の第五の実施形態である三次元形状造形物の製造方法において、メッキ処理を施している状態を示す断面図。
【図10】本発明の第六の実施形態である三次元形状造形物の製造方法において、パイプを流体経路の内壁面に密着させている状態を示す断面図。
【図11】本発明の第七の実施形態である三次元形状造形物の製造方法において、パイプを流体経路の内壁面に密着させている状態を示す断面図。
【図12】粉末結合体の製造の各工程を示し、(a)〜(e)は各工程での断面図。
【図13】同上の製造によって得られる粉末結合体を示す斜視図。
【図14】(a)は同上の製造に用いる設計された製品モデルを示す斜視図、(b)は同製品モデルをスライスした各層を示す斜視図。
【符号の説明】
2 粉末
6 結合層
7 流体経路
11 目止め処理剤
12 研磨液
13 パイプ
19 真空槽
20 振動装置
25 メッキ層
A 粉末結合体
L 光ビーム
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a three-dimensional shaped object that forms a bonding layer by irradiating a powder with a light beam, and laminates and integrates the bonding layers to form a desired three-dimensional shape.
[0002]
[Prior art]
A layer of an inorganic powder such as a metal powder or an organic powder such as a resin powder is irradiated with a light beam such as a laser beam, and the powder is melted, solidified, and bonded to form a bonded layer. By covering the layers and irradiating the powder with a light beam and bonding them in the same manner, a bonding layer integrated with the lower bonding layer is formed, and by repeating this, a plurality of bonding layers are laminated and integrated There is a method for producing a powder combination.
[0003]
In particular, a metal powder is used as the powder, and the powder layer is irradiated with a light beam such as a laser beam to sinter the powder, whereby the powder is sintered to form a bonded layer. By coating the powder layer on top and irradiating the powder with a light beam to sinter the powder, a tie layer integral with the lower tie layer is formed, and by repeating this, a plurality of tie layers are formed. For example, Japanese Patent No. 2620353 and Japanese Patent Laid-Open No. 2000-73108 provide a method for producing a powder bonded body made of a laminated metal powder sintered body.
[0004]
FIG. 12 shows an example thereof. First, as shown in FIG. 12A, a metal powder 2 is dispensed on a lifting table 1 to a predetermined thickness by a squeegee 3. The elevating table 1 moves up and down along the side surface of the reference table 4, and the squeegee 3 reciprocates in the horizontal direction at the same level as the upper surface of the reference table 1. Therefore, a layer of the powder 2 can be formed on the lifting table 1 with a thickness corresponding to a step Δt between the upper surface of the lifting table 1 and the upper surface of the reference table 4. Thereafter, as shown in FIG. 12B, a light beam L such as a laser beam condensed by the condenser lens 5 is scanned, and only the necessary portion of the powder 2 layer is irradiated with the light beam L. The portion of the powder 2 irradiated with the light beam L is sintered to form a bonding layer 6a having a thickness Δt as a sintered layer.
[0005]
Next, the elevating table 1 is lowered to a size of Δt, and the powder 2 is supplied onto the bonding layer 6a. As shown in FIG. 12B. Then, as shown in FIG. 12D, only a necessary portion of the layer of the powder 2 is irradiated with the light beam L to be sintered, and the bonding layer 6a is coated on the bonding layer 6a. 6b is laminated together. Then, by repeating such an operation for the required number of layers, a predetermined number of coupling layers 6a to 6f are laminated and integrated as shown in FIG. 12E, and a plurality of coupling layers 6a to 6f are integrated as shown in FIG. The powder combination A can be produced as a metal powder sintered body made of 6f.
[0006]
Here, as described above, in producing the powder combination A, the product model 10 is converted into the product model 10 based on the three-dimensional CAD data when the product model 10 shown in FIG. As shown in (b), the cross section data of the slice planes of the respective layers 10a to 10f when horizontally sliced at a predetermined interval Δt are obtained, and the light beam L irradiated to each layer of the powder 2 based on the slice cross section data. And forming the bonding layers 6a to 6b with horizontal cross-sectional shapes corresponding to the respective layers 10a to 10f, thereby producing a powder combined body A shaped in the same three-dimensional shape as the product model 10 Can do.
[0007]
In addition, by adopting a construction method in which the bonding layers 6a to 6f are sequentially formed and stacked in this manner, it is not necessary to use a CAM that is three-dimensionally cut according to the shape designed by the three-dimensional CAD. Thus, it becomes possible to produce a three-dimensionally shaped product by repeating two-dimensional processing, and a three-dimensional shaped object can be quickly produced without using a complicated mechanism device. Is.
[0008]
[Problems to be solved by the invention]
As described above, in the powder combination A produced as a three-dimensional structure, when the powder combination A is used as, for example, a molding die or the like, in order to provide functions such as cooling and heating, Forming a path through which a fluid is circulated inside the powder combination A is performed. Since the powder combined body A is filled in a dense state in which the powder is bonded by sintering or the like, when forming a fluid path in the powder combined body A, the powder combined body A is formed. After that, it is necessary to perform processing such as cutting and drilling on the powder bonded body A. However, in such processes as cutting and drilling, the shape of the fluid path formed in the powder bonded body A is limited to a simple one, and the fluid path cannot be designed and formed freely with an optimal shape. It was a thing.
[0009]
Therefore, the present applicant has filed Japanese Patent Application No. 2001-126608 for the purpose of providing a method for producing a three-dimensional structure that can freely form a fluid path in an optimum shape in a powdered binder. . In the invention according to claim 4 of this application, the powder combined body is produced without melt-bonding the powder of the fluid path portion, and the powder of the fluid path is extracted from the powder combined body. In addition, the fluid path can be designed and formed, and the flow resistance of the fluid flowing in the fluid path can be reduced to increase the flow velocity and flow rate, thereby increasing the effect of heat exchange by the fluid. .
[0010]
However, the following problems remain in the invention according to the application. That is, when a fluid path is formed three-dimensionally inside the metal powder combination, fine hair cracks and cracks are generated on the inner wall surface of the fluid path. Here, if a fluid is circulated in the fluid path, the fluid may ooze out from the hair cracks or cracks and flow out to the outer surface of the powder combination. For example, a fluid path for mold temperature adjustment is provided. It was unsuitable as a molding die.
[0011]
The present invention was invented in order to solve the above-mentioned problems in the prior art and also to solve the problems in the above-mentioned prior application of the present applicant. The fluid path can be freely formed, and in the fluid path, the fluid is prevented from seeping out and the flow resistance is reduced, and the effect of heat exchange or the like by the fluid is increased. It is providing the manufacturing method of the three-dimensional shape molded article which becomes optimal as a shaping | molding die provided with.
[0012]
[Means for Solving the Problems]
In the method for manufacturing a three-dimensional shaped object according to claim 1 of the present invention, a bonding layer in which powder is bonded is formed by irradiating a predetermined portion of the powder layer with a light beam and melt-bonding, and the bonding layer is formed. A powder layer is coated on top and a predetermined portion of the powder is irradiated with a light beam and bonded to form a bond layer integrated with the lower bond layer. By repeating this, a plurality of bond layers are formed. When producing a three-dimensional modeled object with a laminated powder composite, a powder composite was produced by leaving the powder that does not melt bond without irradiating the light beam in the part that becomes the fluid path. Thereafter, the remaining powder is discharged and removed from the fluid path, and then a sealing agent is introduced into the fluid path, and the sealing agent is permeated into the inner wall surface of the fluid path by capillary action. Apply stop processing It is characterized by a door.
[0013]
Therefore, in this case, the powder that is not melt-bonded without irradiating the light beam is left in the portion that becomes the fluid path, and after the powder combined body is produced, the remaining powder is discharged and removed from the fluid path. Thus, it is possible to easily form a hollow fluid path, and here, the fluid path can be freely formed with an optimum shape.
[0014]
In addition, since the sealing agent flows into the fluid path and permeates the inner wall surface of the fluid path by capillarity to perform the sealing process, the sealing agent is generated on the inner wall surface of the fluid path. Hair cracks and cracks are securely sealed. Therefore, in this fluid path, the seepage of the fluid is prevented, the flow resistance of the fluid is reduced and the flow velocity and flow rate can be increased, and the effect of heat exchange etc. by the fluid is increased, and the temperature is adjusted. An optimal three-dimensional shaped article can be obtained as a mold having a fluid path.
[0015]
The method for producing a three-dimensional shaped object according to claim 2 of the present invention is the method for producing a three-dimensional shaped object according to claim 1, wherein the inner wall surface of the fluid path is evacuated from the outside of the powder bonded body. It is characterized by infiltrating the sealing agent.
[0016]
Therefore, in this case, in particular, depending on the viscosity of the microcracks that do not penetrate at atmospheric pressure and the viscosity of the sealing agent, it can easily penetrate into relatively large cracks, and the sealing treatment is reliably performed.
[0017]
According to a third aspect of the present invention, there is provided a method for producing a three-dimensional shaped object in the method for producing a three-dimensional shaped object according to the first aspect, in which an inner wall surface of a fluid path is observed while vibration is applied to the powder combination. It is characterized by the penetration of a stop treatment.
[0018]
Therefore, particularly in this case, the powder binder is vibrated, so that the sealing agent easily penetrates into the inner wall surface of the fluid path, and the time required for this penetration is shortened, and the sealing treatment time is shortened. The
[0019]
In the method for producing a three-dimensional shaped article according to claim 4 of the present invention, in the method for producing a three-dimensional shaped article according to any one of claims 1 to 3, after performing the sealing treatment, A polishing liquid in which abrasive grains are mixed is circulated in the fluid path.
[0020]
Therefore, in this case, in particular, an extra sealing agent other than that which has penetrated into hair cracks and cracks, etc., was used to scrape off by circulating a polishing solution mixed with abrasive grains in the fluid path. The coating layer of the same-sealing treatment agent that is removed and becomes a heat insulating layer becomes thin, and the effect of heat exchange or the like becomes greater.
[0021]
In the method for manufacturing a three-dimensional shaped article according to claim 5 of the present invention, a bonding layer in which powder is bonded is formed by irradiating a predetermined portion of the powder layer with a light beam and melt-bonding, and the bonding layer is formed. A powder layer is coated on top and a predetermined portion of the powder is irradiated with a light beam and bonded to form a bond layer integrated with the lower bond layer. By repeating this, a plurality of bond layers are formed. When producing a three-dimensional modeled object with a laminated powder composite, a powder composite was produced by leaving the powder that does not melt bond without irradiating the light beam in the part that becomes the fluid path. Thereafter, the remaining powder is discharged and removed from the fluid path, and then the inner wall surface of the fluid path is plated.
[0022]
Therefore, in this case, the powder that is not melt-bonded without irradiating the light beam is left in the portion that becomes the fluid path, and after the powder combined body is produced, the remaining powder is discharged and removed from the fluid path. Thus, it is possible to easily form a hollow fluid path, and here, the fluid path can be freely formed with an optimum shape.
[0023]
In addition, since the inner wall surface of the fluid path is plated, hair cracks, cracks and the like generated on the inner wall surface of the fluid path are reliably sealed. Therefore, in this fluid path, the seepage of the fluid is prevented, the flow resistance of the fluid is reduced and the flow velocity and flow rate can be increased, and the effect of heat exchange etc. by the fluid is increased, and the temperature is adjusted. An optimal three-dimensional shaped article can be obtained as a mold having a fluid path.
[0024]
In the method for manufacturing a three-dimensional shaped article according to claim 6 of the present invention, a bonding layer in which powder is bonded is formed by irradiating a predetermined portion of the powder layer with a light beam and melt-bonding, and the bonding layer is formed. A powder layer is coated on top and a predetermined portion of the powder is irradiated with a light beam and bonded to form a bond layer integrated with the lower bond layer. By repeating this, a plurality of bond layers are formed. When producing a three-dimensional modeled object with a laminated powder composite, a powder composite was produced by leaving the powder that does not melt bond without irradiating the light beam in the part that becomes the fluid path. Later, the remaining powder is discharged and removed from the fluid path, and then a thermoplastic pipe is inserted and installed in the fluid path, and the pipe is heated and softened to adhere to the inner wall surface of the fluid path. As That.
[0025]
Therefore, in this case, the powder that is not melt-bonded without irradiating the light beam is left in the portion that becomes the fluid path, and after the powder combined body is produced, the remaining powder is discharged and removed from the fluid path. Thus, it is possible to easily form a hollow fluid path, and here, the fluid path can be freely formed with an optimum shape.
[0026]
In addition, since a thermoplastic pipe is inserted and installed in the fluid path, and the pipe is heated and softened to adhere to the inner wall surface of the fluid path, hair cracks and cracks generated on the inner wall surface of the fluid path are surely secured. Sealed. Therefore, in this fluid path, the seepage of the fluid is prevented, the flow resistance of the fluid is reduced and the flow velocity and flow rate can be increased, and the effect of heat exchange etc. by the fluid is increased, and the temperature is adjusted. An optimal three-dimensional shaped article can be obtained as a mold having a fluid path.
[0027]
DETAILED DESCRIPTION OF THE INVENTION
1 to 5 show a first embodiment corresponding to claim 1 of the present invention. In the manufacturing method of the three-dimensional shaped object of this embodiment, the powder combination A uses an inorganic powder 2 such as a metal or an organic powder 2 such as a resin as shown in FIGS. It can be produced by irradiating the beam L.
[0028]
That is, when a metal is used as the powder 2, the layer 2 of the metal powder 2 is irradiated with the light beam L to sinter the powder 2 to form a bonded layer 6 a in which the powder 2 is sintered and bonded. Then, a layer of the powder 2 is coated on the bonding layer 6a and the powder 2 is irradiated with a light beam L and sintered to form a bonding layer 6b integrated with the lower bonding layer 6a. And by repeating this, it is possible to produce a powder bonded body A composed of a sintered metal powder in which a plurality of bonded layers 6a, 6b, 6c. Here, as the metal powder 2, for example, iron powder having an average particle diameter of about 20 to 30 μm or a mixed powder of bronze and nickel can be used, and each of the bonding layers 6 a, 6 b, 6 c. The thickness Δt can be formed to about 0.02 to 0.2 mm.
[0029]
Further, as the powder 2, in addition to the above-mentioned metal, an inorganic ceramic can be used. In this case, as in the case of the metal powder 2, the powder 2 is irradiated with the light beam L and baked. By bonding, the coupling layers 6a, 6b, 6c,... Can be formed. Further, when an organic material such as a resin is used as the powder 2, the bonding layers 6 a, 6 b, 6 c, etc. to which the powder 2 is bonded by irradiating the light beam L to melt and solidify the powder 2. Can be formed. As shown in FIG. 12, a predetermined number of bonding layers 6a to 6f are sequentially laminated and integrated, and as shown in FIG. 13, a powder combination A is produced as a metal powder sintered body composed of a plurality of bonding layers 6a to 6f. Since this is the same as described above, the specific description thereof is omitted here.
[0030]
As described above, when the powder combination A is manufactured, the product model 10 is converted into the product model 10 shown in FIG. 14 (a) based on the three-dimensional CAD data when the product model 10 shown in FIG. As shown in b), cross-sectional data of slice surfaces of the respective layers 10a to 10f when horizontally sliced at a predetermined interval Δt is obtained, and the light beam L irradiated to each layer of the powder 2 based on the slice cross-sectional data is obtained. By determining the scanning path and forming the bonding layers 6a to 6b with horizontal cross-sectional shapes corresponding to the layers 10a to 10f, the powder combined body A formed in the same three-dimensional shape as the product model 10 can be produced. it can.
[0031]
In this case, the cross-sectional data of the product model 10 and each of the layers 10a to 10f is obtained by subtracting the portion corresponding to the fluid path 7 from the whole, and the powder combined body A having the fluid path 7 is produced. In addition, by adopting a construction method in which the bonding layers 6a to 6f are sequentially formed and stacked in this manner, it is not necessary to use a CAM that is three-dimensionally cut according to the shape designed by the three-dimensional CAD. Thus, it becomes possible to produce a three-dimensionally shaped product by repeating two-dimensional processing, and a three-dimensional shaped object can be quickly produced without using a complicated mechanism device. Is.
[0032]
By the way, since the light beam L is not irradiated to the portion that becomes the fluid path 7, in the powder combined body A, the powder 2 that is not melt-bonded remains in the fluid path 7 as shown in FIG. Become. Further, here, as shown in FIG. 2, the above-mentioned bonding layers 6a to 6b (lamination portion 15) obtained by sintering the metal powder 2 on the metal forming plate 14 are laminated and integrated to form a powder bonded body A. Since it is manufactured, as shown in FIG. 2 (a), the unsintered metal powder 2 is retained and retained in the fluid path 7 of the powder combination A.
[0033]
Therefore, as shown in FIG. 2B, an inlet hole 8 and an outlet hole 9 communicating with the fluid path 7 are formed in the modeling plate 14, and the fluid path 7 is formed outside the powder combined body A. Has opened. Then, as shown in FIG. 4, the remaining powder 2 is forcibly discharged and removed from the fluid path 7. In this case, the powder 2 remaining in the fluid path 7 may be discharged and removed from the outlet hole 9 by sending compressed air from the inlet hole 8 by the blower 16 as shown in FIG. As shown in FIG. 4B, the powder 2 may be discharged and removed by suction from the outlet hole 9 with a suction machine 17. In this manner, the unsintered powder 2 is discharged and removed, and as shown in FIG. 5, the fluid path 7 becomes a powder combined body A opened to the outside through the inlet hole 8 and the outlet hole 9.
[0034]
Next, as shown in FIG. 1, the sealing agent 11 flows into the opened fluid path 7, and the sealing agent 11 is permeated into the inner wall surface of the fluid path 7 to perform the sealing process. Is. In this case, as shown in FIG. 1 (a), the sealing agent 11 is poured into the fluid path 7 from the inlet hole 8 with the outlet hole 9 opened, and as shown in FIG. 1 (b). The sealing agent 11 is made to be substantially filled in the fluid path 7 and left in this state for a while. At this time, the inlet hole 8 and the outlet hole 9 may be covered so that the sealing agent 11 does not flow out of the fluid path 7. Here, the sealing agent 11 penetrates into the inner wall surface of the fluid path 7 due to the capillary phenomenon of the liquid, and soaks into hair cracks and cracks 18 in the powder sintered body of the powder bonded body A, which is surely confirmed. Buried and sealed.
[0035]
In this case, the sealing action is increased by changing the particle diameter of the sealing agent 11 depending on the size of the hair crack, the crack 18 and the like. For example, in the case of a crack of about 0.5 mm, the inner wall surface of the fluid path 7 is surely sealed when the small particle sealing agent 11 is used after the large particle sealing agent 11 is used first. Is. Further, the filling agent 11 is filled in the fluid path 7 and left for a few minutes, and then it is allowed to flow out from the fluid path 7 again. Then, a new sealing agent 11 is poured into the fluid path 7 again. By repeating several times, the sealing action is further increased.
[0036]
Finally, the surplus of the sealing agent 11 is completely discharged from the fluid path 7, and the powder combined body A is left at room temperature or in a heated state for several hours. As a result, the sealing agent 11 provided for sealing in the fluid path 7 is completely cured, and the sealing process on the inner wall surface of the fluid path 7 is completed. On the inner wall surface of the fluid path 7 subjected to the sealing treatment, not only hair cracks and cracks 18 are securely sealed, but the inner wall surface becomes smooth, and the fluid flow resistance there is also reduced. The fluid path 7 is optimal for circulating a fluid for cooling or heating.
[0037]
Therefore, in the manufacturing method of the three-dimensional shaped object of this embodiment, the metal powder 2 that does not sinter without irradiating the light beam L on the part that becomes the fluid path 7 is left, and the powder combined body A is formed. After the production, the remaining powder 2 is discharged and removed from the fluid path 7 so that the fluid path 7 can be easily formed. Here, even if the fluid path 7 has a complicated and long shape, the remaining powder 2 can be easily discharged and removed from the fluid path 7, and the fluid path 7 can be freely formed in an optimum shape. Is.
[0038]
In addition, since the sealing agent 11 flows into the fluid path 7 and this sealing agent 11 is permeated into the inner wall surface of the fluid path 7 by capillary action to perform the sealing process. Hair cracks and cracks 18 generated on the inner wall surface are securely filled and sealed. Therefore, in the fluid path 7, the fluid is prevented from seeping out, the flow resistance of the fluid is reduced and the flow velocity and flow rate can be increased, and the effect of heat exchange and the like by the fluid is increased. An optimal three-dimensional shaped article can be obtained as a molding die provided with a fluid path 7 for temperature adjustment such as heating.
[0039]
FIG. 6 shows a second embodiment corresponding to claim 2 of the present invention. In the method of manufacturing a three-dimensional shaped object of this embodiment, in the first embodiment, vacuuming is performed from the outside of the powder combination A and the sealing agent 11 is permeated into the inner wall surface of the fluid path 7. It is. In this case, the powder combination A in which the filling agent 11 is inflow-filled into the fluid path 7 is placed in the vacuum chamber 19 and evacuated from the outside of the powder combination A.
[0040]
Here, the sealing agent 11 is sufficiently infiltrated into a portion such as a hair crack or a crack 18 on the inner wall surface of the fluid path 7 due to a pressure difference. Then, after a few minutes, the powder composite A is taken out from the vacuum chamber 19, the excess sealing agent 11 in the fluid path 7 is poured out, and left at room temperature or in a heated state for several hours, whereby the fluid path 7 The sealing agent 11 inside is completely cured and the sealing process is completed.
[0041]
Therefore, in the method for producing a three-dimensional shaped article of this embodiment, the microcracks that do not penetrate at atmospheric pressure or the relatively large cracks depending on the viscosity of the sealing agent 11 can easily penetrate. Stopping treatment is reliably performed. The rest is the same as in the first embodiment, and the same operational effects as in the first embodiment are achieved.
[0042]
FIG. 7 shows a third embodiment corresponding to claim 3 of the present invention. In the manufacturing method of the three-dimensional shaped object of this embodiment, in the first embodiment, the sealing agent 11 is infiltrated into the inner wall surface of the fluid path 7 while vibrating the powder bonded body A. . In this case, the powder combination A in which the filling agent 11 is inflow-filled into the fluid path 7 is installed on the vibration device 20 to impart vibration to the powder combination A.
[0043]
Here, while the powder combined body A is placed on the vibration device 20 and given vibration, the sealing agent 11 flows into the fluid path 7 from the inlet hole 8, and the inlet hole 8 and the outlet hole 9. And leave it in a vibrating state for several hours. As a result, the sealing agent 11 is sufficiently permeated into locations such as hair cracks and cracks 18 on the inner wall surface of the fluid path 7. Thereafter, the excess sealing agent 11 in the fluid path 7 is poured out and left at room temperature or in a heated state for several hours, whereby the sealing agent 11 in the fluid path 7 is completely cured and sealed. Processing is complete.
[0044]
Therefore, in the manufacturing method of the three-dimensional shaped object according to this embodiment, the powder treating body A is vibrated, so that the sealing agent 11 easily penetrates into the inner wall surface of the fluid path 7 and is required for this penetration. The time is shortened, the sealing process time is shortened, and the sealing process is ensured. The rest is the same as in the first embodiment, and the same operational effects as in the first embodiment are achieved.
[0045]
FIG. 8 shows a fourth embodiment corresponding to claim 4 of the present invention. In the method for manufacturing a three-dimensional shaped object according to this embodiment, after the sealing treatment is performed on the inner wall surface of the fluid path 7 as in the first to third embodiments, the grinding is performed in the fluid path 7. A polishing liquid 12 mixed with grains is circulated. In this case, the outlet 22 and the suction port 23 of the forced circulation device 21 are connected to the inlet hole 8 and the outlet hole 9 of the fluid path 7, respectively, and the polishing liquid 12 is forcibly circulated and circulated in the fluid path 7. It is something to be made. Here, the coating layer 11a of the sealing agent 11 other than the sealing agent 11 is polished by the polishing liquid 12 applied with fluid pressure, and the portion of the coating layer 11a unnecessary for sealing is removed.
[0046]
Therefore, in the manufacturing method of the three-dimensional shape shaped article of this embodiment, the portion of the coating layer 11a by the extra sealing agent 11 other than the one that has penetrated into the hair cracks and cracks 18 etc. The coating layer 11a of the same-sealing treatment agent 11 that is scraped and removed by circulating the polishing liquid 12 mixed with abrasive grains in the fluid path 7 and becomes a heat insulating layer is thinned, and effects such as heat exchange are obtained. It is demonstrated more greatly. The rest is the same as in the first to third embodiments, and the same operational effects as in the first to third embodiments are achieved.
[0047]
FIG. 9 shows a fifth embodiment corresponding to claim 5 of the present invention. In the manufacturing method of the three-dimensional shape shaped article of this embodiment, the powder combined body A is produced and the remaining powder 2 is discharged and removed from the fluid path 7 in the same manner as in the first embodiment. The inner wall surface of the fluid path 7 is plated. In this case, after removing the unsintered powder 2 from the fluid path 7, the powder combined body A is washed, degreased and activated, and the plating process is performed only in the fluid path 7 in the plating tank 24. The plating layer 25 is formed on the inner wall surface of the fluid path 7.
[0048]
Therefore, in the manufacturing method of the three-dimensional shaped object of this embodiment, the inner wall surface of the fluid path 7 is plated, so that hair cracks, cracks 18 and the like generated on the inner wall surface of the fluid path 7 are formed on the plating layer 25. Is surely sealed. The rest is the same as in the first embodiment, and the same operational effects as in the first embodiment are achieved.
[0049]
FIG. 10 shows a sixth embodiment corresponding to claim 6 of the present invention. In the manufacturing method of the three-dimensional shape shaped article of this embodiment, the powder combined body A is produced and the remaining powder 2 is discharged and removed from the fluid path 7 in the same manner as in the first embodiment. A thermoplastic pipe 13 is inserted and installed in the fluid path 7, the pipe 13 is heated and softened, and is brought into close contact with the inner wall surface of the fluid path 7 by air pressure. In this case, the pipe 13 formed of a flexible thermoplastic resin or the like is inserted and installed over substantially the entire length in the fluid path 7, and the powder combined body A is placed on the heater built-in base 26. When the powder combined body A is heated on the heater built-in base 26 and the pipe 13 is softened, one outlet hole 9 of the fluid path 7 is closed with a sealing lid 27, and the blower 16 is blown from the other inlet hole 8. Therefore, the compressed air is fed into the fluid path 7 so that the pipe 13 is tightly fixed to the inner wall surface of the fluid path 7 by air pressure.
[0050]
Therefore, in the manufacturing method of the three-dimensional shaped object of this embodiment, the thermoplastic pipe 13 is inserted and installed in the fluid path 7, and the pipe 13 is heated and softened so as to be in close contact with the inner wall surface of the fluid path 7. Therefore, hair cracks, cracks 18 and the like generated on the inner wall surface of the fluid path 7 are surely sealed by the layer of the pipe 13 softened and fixed. The rest is the same as in the first embodiment, and the same operational effects as in the first embodiment are achieved.
[0051]
FIG. 11 shows a seventh embodiment corresponding to claim 6 of the present invention. In the manufacturing method of the three-dimensional shaped object of this embodiment, when the pipe 13 inserted and installed in the fluid path 7 is heated and softened and closely adhered to the inner wall surface of the fluid path 7, the pipe 13 is inserted into the fluid path 7. The installed powder combination A is accommodated in the vacuum chamber 19 and placed on the heater built-in table 26. In this case, the powder combined body A is heated on the heater built-in base 26, and when the pipe 13 is softened, the pipe 13 is evacuated in the vacuum chamber 19, so that the pipe 13 is subjected to the inner wall surface of the fluid path 7 by the pressure difference. It is closely fixed to. Other than that, this embodiment is the same as the sixth embodiment, and the same operational effects as in the sixth embodiment are achieved.
[0052]
【The invention's effect】
As described above, in the method for manufacturing a three-dimensional shaped object according to claim 1 of the present invention, a fluid path can be easily formed with an optimum shape, and hair cracks, cracks, and the like can be formed by a sealing process. A mold with a fluid path for temperature adjustment, which is securely sealed, prevents fluid seepage in the fluid path, reduces the flow resistance of the fluid, increases the effect of heat exchange with the fluid, etc. As a result, an optimal three-dimensional shaped object can be obtained.
[0053]
Further, in the method for producing a three-dimensional shaped article according to claim 2 of the present invention, in particular, depending on the viscosity of the microcracks that do not penetrate at atmospheric pressure and the viscosity of the sealing agent, Stopping treatment is reliably performed.
[0054]
In the method for manufacturing a three-dimensional shaped article according to claim 3 of the present invention, in particular, when the powder combination is vibrated, the sealing agent easily permeates the inner wall surface of the fluid path. The required time is shortened and the sealing processing time is shortened.
[0055]
Further, in the method for producing a three-dimensional shaped article according to claim 4 of the present invention, in particular, an extra sealing agent other than that used for sealing by penetrating hair cracks or cracks is scraped and removed, The covering layer of the same-sealing treatment agent that becomes a heat insulating layer becomes thinner, and the effect of heat exchange or the like becomes greater.
[0056]
In the method for producing a three-dimensional shaped article according to claim 5 of the present invention, a fluid path can be easily formed with an optimum shape, and hair cracks, cracks, and the like are reliably sealed by plating.・ Three dimensions that are optimal as a mold with a fluid path for temperature adjustment, which prevents the fluid from leaking through the fluid path, reduces the flow resistance of the fluid, increases the effect of heat exchange with the fluid, etc. A shaped object can be obtained.
[0057]
In the method for manufacturing a three-dimensional shaped article according to claim 6 of the present invention, a fluid path can be easily formed with an optimum shape, and hair cracks, cracks, and the like are reliably ensured by the heat-softened pipe. It is hermetically sealed, prevents fluid from leaking through the fluid path, reduces fluid flow resistance, increases the effect of heat exchange with the fluid, and is ideal as a mold with a fluid path for temperature adjustment 3D shaped objects can be obtained.
[Brief description of the drawings]
1A is a cross-sectional view showing a state in which a sealing agent is flowing, and FIG. 1B is a cross-sectional view of the method for manufacturing a three-dimensional shaped object according to the first embodiment of the present invention; Sectional drawing which shows the state which is making the process agent osmose | permeate.
2A is a cross-sectional view showing a state in which powder remains and is sealed in a fluid path, and FIG. 2B is a state in which the fluid path is opened through; FIG.
FIG. 3 is a fragmentary cross-sectional view showing a state in which powder remains in the fluid path in the manufacturing method of the three-dimensional shaped object.
FIGS. 4A and 4B are cross-sectional views showing different methods (a) and (b), respectively, for discharging and removing remaining powder from the fluid path in the manufacturing method of the three-dimensional shaped object.
FIG. 5 is a cross-sectional view showing a powder combined body in the method for producing a three-dimensional shaped article same as above.
FIG. 6 is a cross-sectional view showing a state in which a sealing agent is infiltrated in the method for manufacturing a three-dimensionally shaped object according to the second embodiment of the present invention.
FIG. 7 is a cross-sectional view showing a state in which a sealing agent is infiltrated in the method for manufacturing a three-dimensionally shaped object according to the third embodiment of the present invention.
FIG. 8 is a cross-sectional view showing a state in which a polishing liquid is circulated in the method for manufacturing a three-dimensionally shaped object according to the fourth embodiment of the present invention.
FIG. 9 is a cross-sectional view showing a state where a plating process is performed in the method for manufacturing a three-dimensionally shaped object according to the fifth embodiment of the present invention.
FIG. 10 is a cross-sectional view showing a state in which a pipe is brought into close contact with an inner wall surface of a fluid path in a method for manufacturing a three-dimensionally shaped object according to a sixth embodiment of the present invention.
FIG. 11 is a cross-sectional view showing a state in which a pipe is brought into close contact with an inner wall surface of a fluid path in a method for manufacturing a three-dimensionally shaped object according to a seventh embodiment of the present invention.
FIGS. 12A to 12E show the steps of manufacturing a powder composite, and FIGS. 12A to 12E are cross-sectional views of the steps.
FIG. 13 is a perspective view showing a powder bonded body obtained by the production described above.
14A is a perspective view showing a designed product model used for manufacturing the same as above, and FIG. 14B is a perspective view showing each layer obtained by slicing the product model.
[Explanation of symbols]
2 Powder
6 Bonding layer
7 Fluid path
11 Sealing agent
12 Polishing liquid
13 Pipe
19 Vacuum chamber
20 Vibration device
25 Plating layer
A powder combination
L Light beam

Claims (6)

粉末の層の所定箇所に光ビームを照射して溶融結合させることにより粉末が結合した結合層を形成し、この結合層の上に粉末の層を被覆すると共にこの粉末の所定箇所に光ビームを照射して結合させることにより下の結合層と一体になった結合層を形成し、これを繰り返すことによって複数の結合層が積層一体化された粉末結合体で三次元形状造形物を作製するにあたって、流体経路となる部分には光ビームを照射しないで溶融結合しない粉末を残存させたままとし、粉末結合体が作製された後に、前記残存した粉末を流体経路から排出除去し、次に、この流体経路内に目止め処理剤を流入し、この目止め処理剤を同流体経路の内壁面に毛細管現象により浸透させて目止め処理を施すことを特徴とする三次元形状造形物の製造方法。A bonding layer in which the powder is bonded is formed by irradiating a light beam to a predetermined portion of the powder layer and melt-bonding, and the powder layer is coated on the bonding layer and the light beam is applied to the predetermined portion of the powder. In forming a three-dimensional shaped object with a powder combination in which a plurality of bonding layers are laminated and integrated by forming a bonding layer integrated with the lower bonding layer by irradiation and bonding, and repeating this The powder that is not melt-bonded without irradiating the light beam is left in the portion that becomes the fluid path, and after the powder combination is produced, the remaining powder is discharged and removed from the fluid path. A method for producing a three-dimensional shaped article, wherein a sealing agent is introduced into a fluid path, and the sealing agent is permeated into the inner wall surface of the fluid path by capillary action to perform a sealing process. 粉末結合体の外側から真空引きしながら、流体経路の内壁面に目止め処理剤を浸透させることを特徴とする請求項1記載の三次元形状造形物の製造方法。The method for producing a three-dimensional shaped article according to claim 1, wherein the sealing agent is permeated into the inner wall surface of the fluid path while evacuating from the outside of the powder bonded body. 粉末結合体に振動を与えながら、流体経路の内壁面に目止め処理剤を浸透させることを特徴とする請求項1記載の三次元形状造形物の製造方法。The method for producing a three-dimensional shaped article according to claim 1, wherein the sealing agent is infiltrated into the inner wall surface of the fluid path while applying vibration to the powder bonded body. 目止め処理を施した後に、流体経路内に砥粒が混入された研磨液を流通させることを特徴とする請求項1〜3のいずれか一つに記載の三次元形状造形物の製造方法。The method for producing a three-dimensional shaped article according to any one of claims 1 to 3, wherein after the sealing treatment is performed, a polishing liquid in which abrasive grains are mixed is circulated in the fluid path. 粉末の層の所定箇所に光ビームを照射して溶融結合させることにより粉末が結合した結合層を形成し、この結合層の上に粉末の層を被覆すると共にこの粉末の所定箇所に光ビームを照射して結合させることにより下の結合層と一体になった結合層を形成し、これを繰り返すことによって複数の結合層が積層一体化された粉末結合体で三次元形状造形物を作製するにあたって、流体経路となる部分には光ビームを照射しないで溶融結合しない粉末を残存させたままとし、粉末結合体が作製された後に、前記残存した粉末を流体経路から排出除去し、次に、この流体経路の内壁面にメッキ処理を施すことを特徴とする三次元形状造形物の製造方法。A bonding layer in which the powder is bonded is formed by irradiating a light beam to a predetermined portion of the powder layer and melt-bonding, and the powder layer is coated on the bonding layer and the light beam is applied to the predetermined portion of the powder. In forming a three-dimensional shaped object with a powder combination in which a plurality of bonding layers are laminated and integrated by forming a bonding layer integrated with the lower bonding layer by irradiation and bonding, and repeating this The powder that is not melt-bonded without irradiating the light beam is left in the portion that becomes the fluid path, and after the powder combination is produced, the remaining powder is discharged and removed from the fluid path. A method for producing a three-dimensional shaped object, wherein an inner wall surface of a fluid path is plated. 粉末の層の所定箇所に光ビームを照射して溶融結合させることにより粉末が結合した結合層を形成し、この結合層の上に粉末の層を被覆すると共にこの粉末の所定箇所に光ビームを照射して結合させることにより下の結合層と一体になった結合層を形成し、これを繰り返すことによって複数の結合層が積層一体化された粉末結合体で三次元形状造形物を作製するにあたって、流体経路となる部分には光ビームを照射しないで溶融結合しない粉末を残存させたままとし、粉末結合体が作製された後に、前記残存した粉末を流体経路から排出除去し、次に、この流体経路内に熱可塑性のパイプを挿入設置し、このパイプを加熱軟化させて同流体経路の内壁面に密着させることを特徴とする三次元形状造形物の製造方法。A bonding layer in which the powder is bonded is formed by irradiating a light beam to a predetermined portion of the powder layer and melt-bonding, and the powder layer is coated on the bonding layer and the light beam is applied to the predetermined portion of the powder. In forming a three-dimensional shaped object with a powder combination in which a plurality of bonding layers are laminated and integrated by forming a bonding layer integrated with the lower bonding layer by irradiation and bonding, and repeating this The powder that is not melt-bonded without irradiating the light beam is left in the portion that becomes the fluid path, and after the powder combination is produced, the remaining powder is discharged and removed from the fluid path. A method for producing a three-dimensional shaped object, wherein a thermoplastic pipe is inserted and installed in a fluid path, and the pipe is heated and softened to be in close contact with an inner wall surface of the fluid path.
JP2002189059A 2002-06-28 2002-06-28 Manufacturing method of three-dimensional shaped object Expired - Fee Related JP3835361B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002189059A JP3835361B2 (en) 2002-06-28 2002-06-28 Manufacturing method of three-dimensional shaped object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002189059A JP3835361B2 (en) 2002-06-28 2002-06-28 Manufacturing method of three-dimensional shaped object

Publications (2)

Publication Number Publication Date
JP2004027329A JP2004027329A (en) 2004-01-29
JP3835361B2 true JP3835361B2 (en) 2006-10-18

Family

ID=31183576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002189059A Expired - Fee Related JP3835361B2 (en) 2002-06-28 2002-06-28 Manufacturing method of three-dimensional shaped object

Country Status (1)

Country Link
JP (1) JP3835361B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5186316B2 (en) * 2008-09-09 2013-04-17 パナソニック株式会社 Manufacturing method of three-dimensional shaped object
JP2011026675A (en) * 2009-07-28 2011-02-10 Panasonic Electric Works Co Ltd Method for producing three-dimensionally shaped article and three-dimensionally shaped article obtained by the same
WO2013137283A1 (en) * 2012-03-16 2013-09-19 パナソニック株式会社 Production method for three-dimensionally shaped object, and three-dimensionally shaped object
EP3417090B1 (en) 2016-02-15 2021-07-28 REM Technologies, Inc. Chemical processing of additive manufactured workpieces
EP3257659A1 (en) 2016-06-13 2017-12-20 Siemens Aktiengesellschaft Method of processing a surface for additive manufacturing
US20180015539A1 (en) * 2016-07-12 2018-01-18 Hamilton Sundstrand Corporation Additive manufacturing method
DE102016213917A1 (en) * 2016-07-28 2018-02-01 General Electric Technology Gmbh Method for producing a component and component produced by the method
JP6760096B2 (en) * 2017-01-18 2020-09-23 トヨタ自動車株式会社 Laminated modeling method
JP6551947B2 (en) * 2017-07-14 2019-07-31 熱産ヒート株式会社 Method of manufacturing spiral shape heat exchanger, spiral shape heat exchanger and direct fire type heat exchanger integrated burner

Also Published As

Publication number Publication date
JP2004027329A (en) 2004-01-29

Similar Documents

Publication Publication Date Title
JP3835361B2 (en) Manufacturing method of three-dimensional shaped object
KR101243280B1 (en) Metal Product Having Internal Space And Method of Manufacturing The Same
JP6190038B2 (en) Laser powder additive manufacturing apparatus, laser powder additive manufacturing method, and three-dimensional additive manufacturing apparatus
US6147138A (en) Method for manufacturing of parts by a deposition technique
US6582562B2 (en) Mold with integral screen and method for making mold and apparatus and method for using the mold
JP5951672B2 (en) Laminate manufacturing apparatus and manufacturing method
KR102048693B1 (en) Manufacturing method of three-dimensional shape sculpture
US20120225210A1 (en) Device and method for manufacturing a three-dimensional body
JP2003048781A (en) Method and apparatus for manufacturing ceramic compact
US10137642B1 (en) Methods to form 3D objects using cross-linkable or sinterable materials
JP2005536324A5 (en)
CN102333607A (en) Process for producing three-dimensional shape and three-dimensional shape obtained thereby
JP4655063B2 (en) Manufacturing method of three-dimensional shaped object
JP2000328106A (en) Manufacture of three-dimensional molded article
JP4110856B2 (en) Manufacturing method of mold
US9242412B2 (en) Method and apparatus for making partially coated products
JP3893992B2 (en) Method for producing photomolding
JP2017160485A (en) Manufacturing method of three-dimensional shape molded object
JP4867790B2 (en) Manufacturing method of three-dimensional shaped object
KR20160085786A (en) Embossing roller
NL1026378C2 (en) Material for synthetic resin mold and synthetic resin mold.
JP6643643B2 (en) Manufacturing method of three-dimensional shaped object
FR2851944A1 (en) Fabrication of metallic mould impressions in a ceramic mould using a model to form the impressions and coating with a metal powder that is sintered, applicable for metal and plastic injection moulding operations
JP3601535B1 (en) Manufacturing method of three-dimensional shaped object
JP6736611B2 (en) Additive manufacturing method and related parts

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060717

R151 Written notification of patent or utility model registration

Ref document number: 3835361

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090804

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090804

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090804

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100804

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110804

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120804

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130804

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees