JP2004023962A - 車両発電機の整流装置 - Google Patents

車両発電機の整流装置 Download PDF

Info

Publication number
JP2004023962A
JP2004023962A JP2002178932A JP2002178932A JP2004023962A JP 2004023962 A JP2004023962 A JP 2004023962A JP 2002178932 A JP2002178932 A JP 2002178932A JP 2002178932 A JP2002178932 A JP 2002178932A JP 2004023962 A JP2004023962 A JP 2004023962A
Authority
JP
Japan
Prior art keywords
mos transistor
terminal
phase inverter
potential
channel mos
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002178932A
Other languages
English (en)
Inventor
Masahisa Kashimoto
樫本 雅久
Hirohide Sato
佐藤 博英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2002178932A priority Critical patent/JP2004023962A/ja
Publication of JP2004023962A publication Critical patent/JP2004023962A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/92Energy efficient charging or discharging systems for batteries, ultracapacitors, supercapacitors or double-layer capacitors specially adapted for vehicles

Landscapes

  • Control Of Charge By Means Of Generators (AREA)
  • Rectifiers (AREA)

Abstract

【課題】簡単な回路で整流損失が小さいMOSトランジスタ型車両発電機の整流装置を提供すること。
【解決手段】MOSトランジスタ型整流回路2の制御において、各MOSトランジスタ21〜26の電圧降下、又はそれに関連する信号電圧に基づいてこれらMOSトランジスタ21〜26を断続制御する。
【選択図】図1

Description

【0001】
【発明の属する技術分野】
本発明は、ハイブリッド車、エコラン車、燃料電池車、電気自動車、電動自転車などに用いられる車両発電機の整流装置(車両用三相回転電機の回生制動動作を含む)に関する。
【0002】
【従来の技術】
特許2959640は、車両用三相回転電機の発電電力を整流する整流装置をMOSトランジスタにより構成することを提案している。
【0003】
すなわち、その実施例は、発電機の相間電圧とバッテリ電圧とを比較し、バッテリ電圧を超える相間電圧が印加される一対の相のうち高電位側の相の上アーム側NチャンネルMOSトランジスタと、低電位側の相の下アーム側NチャンネルMOSトランジスタとをターンオンすることを記載している。
【0004】
また、同公報の特許請求の範囲には、逆ドレイン・ソース電圧がバッテリ電圧より大きいFETをターンオンする旨の記載、並びに、逆ドレイン・ソース電圧がバッテリ電圧より低いMOSトランジスタFETをターンオフする旨の記載がなされている。
【0005】
【発明が解決しようとする課題】
しかしながら、上記公報のMOSトランジスタ型整流装置には、次に示す問題があることがわかった。
【0006】
まず、上記公報の実施例記載のように、発電機の相間電圧とバッテリ電圧との比較結果に基づいてMOSトランジスタをターンオンする場合、比較電圧は、バッテリ電圧と相間電圧という互いに基準電位が異なる2つの電圧の大きさを比較することになり、比較回路の構成が非常に複雑となってしまう。
【0007】
一般に、比較回路は、同一基準電位にたいする2つの電位を比較回路の一対の入力端子に個別に印加して、これら2電位の上記基準電位に対する大きさを比較するものであるので、上記公報のように相間電圧(一方の相インバータの交流入力端子が基準電位となるが、常時変動する)と、バッテリ電圧(負極端子の接地電位が基準となる)との比較は、簡単には実施できない。
【0008】
また、同公報の特許請求の範囲に記載されるように、逆ドレイン・ソース電圧(ソースを基準としてドレインがマイナスとなる方向におけるドレイン・ソース間の電圧)がバッテリ電圧より大きいFETをターンオンするということは、バッテリ電圧を14Vに仮定すると、上アーム側NチャンネルMOSトランジスタにおいては、その交流側主電極端子(上記公報の図1では上アーム側NチャンネルMOSトランジスタのソース電極端子)の電位が+側直流出力端子(この上アーム側NチャンネルMOSトランジスタのドレイン電極端子)より14V以上高くなった場合にこの上アーム側NチャンネルMOSトランジスタをオンすることを意味し、この+側直流出力端子はバッテリ電圧(14V)に等しいので、結局、上アーム側NチャンネルMOSトランジスタの交流入力端子の電位が28V以上となった場合にこの上アーム側NチャンネルMOSトランジスタをターンオンすることを意味する。しかし、上アーム側NチャンネルMOSトランジスタの交流入力端子の電位は上アーム側NチャンネルMOSトランジスタの寄生ダイオードの導通によりバッテリの正極端子電位(14V)より大幅に高くなることはなく、結局、上記公報の上アーム側NチャンネルMOSトランジスタはターンオン動作することがないことがわかる。
【0009】
同様に、上記公報の特許請求の範囲の記載に基づく下アーム側NチャンネルMOSトランジスタのターンオン動作を考えると、上記上アーム側NチャンネルMOSトランジスタの場合の説明と同様に、相インバータの交流入力端子(上記公報の図1では下アーム側NチャンネルMOSトランジスタのドレイン電極端子)の電位がー側直流出力端子(接地電位)より14V以上低くなった場合にこの下アーム側NチャンネルMOSトランジスタをオンすることを意味する。しかし、下アーム側NチャンネルMOSトランジスタの交流入力端子の電位は下アーム側NチャンネルMOSトランジスタの寄生ダイオードの導通によりバッテリの負極端子電位より大幅に低くなることはなく、結局、上記公報の下アーム側NチャンネルMOSトランジスタはターンオン動作することがないことがわかる。
【0010】
次に、上記公報の特許請求の範囲の記載に基づく上アーム側NチャンネルMOSトランジスタのターンオフ動作を考えると、この記載によれば、「逆ドレイン・ソース電圧がバッテリ電圧より低いFETをターンオフする」旨の記載があるが、バッテリ電圧を14Vに仮定すると、上アーム側NチャンネルMOSトランジスタにおいては、その交流側主電極端子(上記公報の図1では上アーム側NチャンネルMOSトランジスタのソース電極端子)の電位が+側直流出力端子(この上アーム側NチャンネルMOSトランジスタのドレイン電極端子)より14V未満となった場合にこの上アーム側NチャンネルMOSトランジスタをオフすることを意味し、この+側直流出力端子はバッテリ電圧(14V)に等しいので、結局、上アーム側NチャンネルMOSトランジスタの交流入力端子の電位が28V未満となった場合にこの上アーム側NチャンネルMOSトランジスタをターンオフすることを意味する。しかし、上述のように、上アーム側NチャンネルMOSトランジスタの交流入力端子の電位は上アーム側NチャンネルMOSトランジスタの寄生ダイオードの導通によりバッテリの正極端子電位(14V)より大幅に高くなることはなく、結局、上記公報の上アーム側NチャンネルMOSトランジスタは常時ターンオフしていて、決してターンオン動作しないことがわかる。
【0011】
同様に、上記公報の特許請求の範囲の記載に基づく下アーム側NチャンネルMOSトランジスタのターンオフ動作を考えると、上記上アーム側NチャンネルMOSトランジスタの場合の説明と同様に、相インバータの交流入力端子(上記公報の図1では下アーム側NチャンネルMOSトランジスタのドレイン電極端子)の電位がー側直流出力端子(接地電位)より14V以上低くならない場合にこの下アーム側NチャンネルMOSトランジスタをオフすることを意味する。しかし、下アーム側NチャンネルMOSトランジスタの交流入力端子の電位は下アーム側NチャンネルMOSトランジスタの寄生ダイオードの導通によりバッテリの負極端子電位より大幅に低くなることはなく、結局、上記公報の下アーム側NチャンネルMOSトランジスタは常時ターンオフし、決してターンオン動作しないことがわかる。
【0012】
すなわち、上記公報は、MOSトランジスタを用いた三相整流装置の可能性を示唆するものの、どのようにMOSトランジスタを断続制御すればよいか未だ不明確であり、効果も期待することができなかった。
【0013】
本発明は上記問題点に鑑みなされたものであり、簡単な回路で整流損失が小さいMOSトランジスタ型車両発電機の整流装置を提供することをその目的としている。
【0014】
【課題を解決するための手段】
請求項1記載の車両用三相回転電機用インバータ回路装置は、バッテリの正極端子に接続される+側直流出力端子と、前記バッテリの負極端子に接続されるー側直流出力端子と、発電機の三つの相出力端子の互いに異なる一つに接続される交流入力端子とをそれぞれ有する三つの相インバータからなり、前記各相インバータは、一対の主電極端子が前記+側直流出力端子と前記交流入力端子に個別に接続される上アーム側NチャンネルMOSトランジスタと、一対の主電極端子が前記ー側直流出力端子と前記交流入力端子に個別に接続される下アーム側NチャンネルMOSトランジスタとを有して、前記発電機が出力する三相交流電圧を整流して前記バッテリを充電する三相整流回路と、前記MOSトランジスタを断続制御する制御回路とからなる車両発電機の整流装置において、
前記制御回路は、
前記相インバータの前記交流入力端子の電位が前記バッテリの正極端子の電位又は前記バッテリの目標充電電圧よりも0〜0.5V高い所定の電位を超えた場合に前記相インバータの上アーム側NチャンネルMOSトランジスタにターンオンを指令し、
前記相インバータの前記交流入力端子が前記バッテリの負極端子の電位よりも0〜0.5V低い所定の電位を下回った場合に前記相インバータの前記下アーム側NチャンネルMOSトランジスタにターンオンを指令し、
前記相インバータの前記交流入力端子が前記バッテリの正極端子の電位又は前記バッテリの目標充電電圧よりも0〜0.5V高い所定の電位を下回った場合に前記相インバータの上アーム側NチャンネルMOSトランジスタにターンオフを指令し、
前記相インバータの前記交流入力端子が前記バッテリの負極端子の電位よりも0〜0.5V低い所定の電位を上回った場合に前記相インバータの前記下アーム側NチャンネルMOSトランジスタにターンオフを指令することを特徴としている。
【0015】
このようにすれば、このMOSトランジスタの寄生ダイオードが未だターンオンする前にMOSトランジスタのチャンネルを通じて充電電流をバッテリに供給することができ、MOSトランジスタの損失を大幅に低減することができる。また、本構成によれば、比較回路の回路構成を簡素化することができるので、実用性に優れたMOSトランジスタ型の整流装置を実現することができる。
【0016】
なお、上記でいうバッテリの目標充電電圧とは、このバッテリの充電時の目標電圧であり、たとえば界磁コイル型発電機では界磁コイルの断続を行うためのしきい値電圧とすることが好適である。
【0017】
請求項2記載の構成によれば、三相整流回路を構成する各MOSトランジスタの一対の主電極端子間の電位の大小によりMOSトランジスタの断続を行うことができるので、更に一層、比較回路の回路構成を簡素化することができる。
【0018】
請求項3記載の構成によれば、整流用の前記MOSトランジスタに電流検出抵抗素子を直列接続し、この電流検出用抵抗素子の電圧降下に基づいて前記MOSトランジスタの両主電極端子間の電位差(MOSトランジスタの電圧降下)を推定する場合に比較して、この電流検出用抵抗素子による抵抗損失を回避しつつ、抵抗電圧降下検出によるMOSトランジスタの断続を行うことができるので、上記した整流用の前記MOSトランジスタに電流検出抵抗素子を直列接続し、この電流検出用抵抗素子の電圧降下に基づいて前記MOSトランジスタの両主電極端子間の電位差(MOSトランジスタの電圧降下)を推定する場合に比較して損失を低減することができる。
【0019】
【発明の実施の形態】
【0020】
【実施例1】
実施例1を図1を参照して以下に説明する。
【0021】
(全体説明)
1は界磁巻線型同期機からなる三相発電機、2はMOSトランジスタ型整流回路、3はコントローラ(制御回路)、4は界磁電流制御装置、5はバッテリである。
【0022】
三相ブラシレスDCモータ1は、U相巻線、V相巻線、W相巻線をスター接続又はΔ接続してなり、ロータに巻装されて界磁電流制御装置から所望の界磁電流を通電される界磁コイル100を有している。
【0023】
界磁電流制御回路4は、通常の車両発電機と同様にバッテリ電圧と所定の基準電圧とを比較し、この比較結果に基づいて界磁電流を断続制御してバッテリ電圧とを上記基準電圧に収束させるフィードバック制御を行っている。
【0024】
整流回路2において、21〜23は上アーム側NチャンネルMOSトランジスタ、24〜26は下アーム側NチャンネルMOSトランジスタ、DはこれらMOSトランジスタ21〜26の寄生ダイオードであるが、専用のダイオードを設けてもよい。
【0025】
上アーム側NチャンネルMOSトランジスタ21と下アーム側NチャンネルMOSトランジスタ24とは直列接続されて相インバータ6を構成し、上アーム側NチャンネルMOSトランジスタ22と下アーム側NチャンネルMOSトランジスタ25とは直列接続されて相インバータ7を構成し、上アーム側NチャンネルMOSトランジスタ23と下アーム側NチャンネルMOSトランジスタ26とは直列接続されて相インバータ8を構成している。
【0026】
上アーム側NチャンネルMOSトランジスタ21のドレイン電極端子(電子吐き出し側端子)と下アーム側NチャンネルMOSトランジスタ24のソース電極端子(電子注入端子)とは接続されて相インバータ6の交流入力端子11を構成するとともに、三相発電機(正確にはその三相電機子コイル)1のU相出力端に接続されている。上アーム側NチャンネルMOSトランジスタ22のドレイン電極端子(電子吐き出し側端子)と下アーム側NチャンネルMOSトランジスタ25のソース電極端子(電子注入端子)とは接続されて相インバータ7の交流入力端子12を構成するとともに、三相発電機(正確にはその三相電機子コイル)1のV相出力端に接続されている。上アーム側NチャンネルMOSトランジスタ23のドレイン電極端子(電子吐き出し側端子)と下アーム側NチャンネルMOSトランジスタ26のソース電極端子(電子注入端子)とは接続されて相インバータ8の交流入力端子13を構成するとともに、三相発電機(正確にはその三相電機子コイル)1のW相出力端に接続されている。
【0027】
各上アーム側NチャンネルMOSトランジスタ21〜23のソース電極端子すなわち各相インバータ6〜8の+側直流出力端子VHはバッテリ5の正極端子51に接続されている。各下アーム側NチャンネルMOSトランジスタ24〜26のドレイン電極端子すなわち各相インバータ6〜8のー側直流出力端子VLはバッテリ5の負極端子52に接続されている。
【0028】
次に、コントローラ3により行われるこれら各MOSトランジスタ21〜26の断続制御動作を以下に説明する。
【0029】
コントローラ(制御回路)3は、コンパレータ210〜260を有している。
【0030】
コンパレータ210には相インバータ6の交流入力端子11の電位と、バッテリ5の正極端子51の電位(以下、正極電位ともいう)とが印加され、交流入力端子11の電位が正極電位より高い場合に比較結果電圧S21としてハイレベル電圧を出力し、この比較結果電圧S21は電圧増幅およびレベルシフトされて上アーム側NチャンネルMOSトランジスタ21のゲート電極に印加され、上アーム側NチャンネルMOSトランジスタ21をターンオンする。逆に、交流入力端子11の電位が正極電位より低くなると比較結果電圧S21はローレベルとなり、このローレベルの比較結果電圧S21は電圧増幅およびレベルシフトされて上アーム側NチャンネルMOSトランジスタ21のゲート電極に印加され、上アーム側NチャンネルMOSトランジスタ21をターンオフする。
【0031】
コンパレータ220には相インバータ7の交流入力端子12の電位と、バッテリ5の正極端子51の電位(以下、正極電位ともいう)とが印加され、交流入力端子12の電位が正極電位より高い場合に比較結果電圧S22としてハイレベル電圧を出力し、この比較結果電圧S22は電圧増幅およびレベルシフトされて上アーム側NチャンネルMOSトランジスタ22のゲート電極に印加され、上アーム側NチャンネルMOSトランジスタ22をターンオンする。逆に、交流入力端子12の電位が正極電位より低くなると比較結果電圧S22はローレベルとなり、このローレベルの比較結果電圧S22は電圧増幅およびレベルシフトされて上アーム側NチャンネルMOSトランジスタ22のゲート電極に印加され、上アーム側NチャンネルMOSトランジスタ22をターンオフする。
【0032】
コンパレータ230には相インバータ8の交流入力端子13の電位と、バッテリ5の正極端子51の電位(以下、正極電位ともいう)とが印加され、交流入力端子13の電位が正極電位より高い場合に比較結果電圧S23としてハイレベル電圧を出力し、この比較結果電圧S23は電圧増幅およびレベルシフトされて上アーム側NチャンネルMOSトランジスタ23のゲート電極に印加され、上アーム側NチャンネルMOSトランジスタ23をターンオンする。逆に、交流入力端子13の電位が正極電位より低くなると比較結果電圧S23はローレベルとなり、このローレベルの比較結果電圧S23は電圧増幅およびレベルシフトされて上アーム側NチャンネルMOSトランジスタ23のゲート電極に印加され、上アーム側NチャンネルMOSトランジスタ23をターンオフする。
【0033】
コンパレータ240には相インバータ6の交流入力端子11の電位と、バッテリ5の負極端子52の電位(以下、負極電位ともいう)とが印加され、交流入力端子11の電位が負極電位より低い場合に比較結果電圧S24としてハイレベル電圧を出力し、この比較結果電圧S24は電圧増幅されて下アーム側NチャンネルMOSトランジスタ24のゲート電極に印加され、下アーム側NチャンネルMOSトランジスタ24をターンオンする。逆に、交流入力端子11の電位が負極電位より高くなると比較結果電圧S24はローレベルとなり、このローレベルの比較結果電圧S24は電圧増幅されて下アーム側NチャンネルMOSトランジスタ24のゲート電極に印加され、下アーム側NチャンネルMOSトランジスタ24をターンオフする。
【0034】
コンパレータ250には相インバータ7の交流入力端子12の電位と、バッテリ5の負極端子52の電位(以下、負極電位ともいう)とが印加され、交流入力端子12の電位が負極電位より低い場合に比較結果電圧S25としてハイレベル電圧を出力し、この比較結果電圧S25は電圧増幅されて下アーム側NチャンネルMOSトランジスタ25のゲート電極に印加され、下アーム側NチャンネルMOSトランジスタ25をターンオンする。逆に、交流入力端子12の電位が負極電位より高くなると比較結果電圧S25はローレベルとなり、このローレベルの比較結果電圧S25は電圧増幅されて下アーム側NチャンネルMOSトランジスタ25のゲート電極に印加され、下アーム側NチャンネルMOSトランジスタ25をターンオフする。
【0035】
コンパレータ260には相インバータ8の交流入力端子13の電位と、バッテリ5の負極端子52の電位(以下、負極電位ともいう)とが印加され、交流入力端子13の電位が負極電位より低い場合に比較結果電圧S26としてハイレベル電圧を出力し、この比較結果電圧S26は電圧増幅されて下アーム側NチャンネルMOSトランジスタ26のゲート電極に印加され、下アーム側NチャンネルMOSトランジスタ26をターンオンする。逆に、交流入力端子13の電位が負極電位より高く(正方向に)なると比較結果電圧S26はローレベルとなり、このローレベルの比較結果電圧S26は電圧増幅されて下アーム側NチャンネルMOSトランジスタ26のゲート電極に印加され、下アーム側NチャンネルMOSトランジスタ26をターンオフする。
【0036】
すなわち、上記説明した各NチャンネルMOSトランジスタ21〜26の制御は、これらNチャンネルMOSトランジスタ21〜26のソース・ドレイン間の電圧降下の方向、又は、チャンネル電流の方向の反転をモニタして、それがバッテリ充電方向となる場合にこれらNチャンネルMOSトランジスタ21〜26をターンオンし、バッテリ放電方向となる場合にこれらNチャンネルMOSトランジスタ21〜26をターンオフするのと等価であり、6つの比較器を用いるだけで行うことができ、回路が非常に簡単となり、信頼性に優れるという効果を奏することができる。
【0037】
なお、上記した図2の実施例では、バッテリ5の正極電位と相インバータ6〜8の交流入力端子11〜13の電位とを直接比較したが、これら電位と大地電位との間の電位差の分圧を求め、これらの分圧をコンパレータ21〜26の一対の入力端に印加して、同様の比較を行ってもよいことはもちろんである。
【0038】
上記実施例では、各交流入力端子11〜13の電位をバッテリ5の正極電位、負極電位と比較した。ただし、この場合においては、発電電圧すなわち相間電圧がバッテリ電圧+MOSトランジスタの寄生ダイオードの順方向電圧降下を超えない時点(通常は発電機の起動時)には、各交流入力端子11〜13が大地電位すなわちバッテリ5の負極電位からフローティング状態となっているために、コンパレータ210〜260に入力される各交流入力端子11〜13の電位がふらついて誤動作する可能性が生じる。
【0039】
相間電圧がバッテリ電圧+MOSトランジスタの寄生ダイオードの順方向電圧降下を超えれば、交流入力端子11〜13の一つは下アーム側NチャンネルMOSトランジスタの寄生ダイオードを通じてバッテリ5の負極端子52に導通し、他の一つは上アーム側NチャンネルMOSトランジスタの寄生ダイオードを通じてバッテリ5の正極端子51に導通するので、交流入力端子11〜13の電位は大地電位(負極電位)に対して所定の電位となり、上記ふらつきはなく問題は生じない。
【0040】
そこで、そこで、この実施例では、安全のために、発電機1の低回転時には各NチャンネルMOSトランジスタ21〜26が決してターンオンしないようにして、上記ふらつきによるMOSトランジスタ21〜26の誤オンを防止している。更に説明すると、たとえば発電機1の低回転時にはコンパレータ21がMOSトランジスタ21〜26をオンしないような禁止ゲートを設ければよい。このような禁止ゲートとしてはAND回路など種々考えられるので、図示説明は省略する。
【0041】
(変形態様)
上記実施例では、各交流入力端子11〜13の電位をバッテリ5の正極電位、負極電位と比較した。その代わりに、上アーム側NチャンネルMOSトランジスタ21〜23の断続制御においては、交流入力端子11〜13の電位をバッテリ5の正極電位又は発電目標電圧よりも0〜0.5V高いしきい値電圧と比較してもよく、下アーム側NチャンネルMOSトランジスタ24〜26の断続制御においては、交流入力端子11〜13の電位をバッテリ5の負極電位より0〜0.5V低いしきい値電圧と比較してもよい。これらのしきい値電圧は、バッテリ電圧から容易に作成することができる。
【0042】
(変形態様)
図2では6個のコンパレータを採用したが、その代わりに、コンパレータ210、240の二つだけを用い、コンパレータ210の+入力端に交流入力端子11〜13の電位を所定短期間ごとに印加して時間順次に判定し、判定結果をMOSトランジスタ21〜23ごとに個別にホールドしてもよく、同様に、コンパレータ240の−入力端に交流入力端子11〜13の電位を所定短期間ごとに印加して時間順次に判定し、判定結果をMOSトランジスタ24〜26ごとに個別にホールドしてもよい。これにより、コンパレータを2個に減らすことができる。
【0043】
【実施例2】
他の実施例を図3を参照して以下に説明する。
【0044】
この実施例は、図2に示すコンパレータ210〜260をMOSトランジスタ21〜26のターンオンのみに用い、MOSトランジスタ21〜26のターンオフには、MOSトランジスタ21〜26の電流を検出して行うものである。
【0045】
図3に基づいて具体的に説明する。
【0046】
700は、NチャンネルMOSトランジスタ21の電流を検出(推定)するための電流検出回路であって、NチャンネルMOSトランジスタ701、電流検出抵抗素子702、コンパレータ703からなる。
【0047】
MOSトランジスタ701と電流検出用抵抗素子702は直列接続され、MOSトランジスタ701のソース電極端子(電子注入端子)SはMOSトランジスタ21のソース電極端子Sと同じくバッテリ5の正極端子51に接続され、電流検出用抵抗素子702の他端は交流入力端子11に接続されている。電流検出用抵抗素子702の両端はコンパレータ703の一対の入力端に個別に接続されている。
【0048】
MOSトランジスタ701はMOSトランジスタ21よりも大幅に(たとえばMOSトランジスタ21よりも100倍程度小さく形成されており、電流検出用抵抗素子702はMOSトランジスタ701のオン抵抗よりもかなり大きく設定されている。
【0049】
このようにすれば、MOSトランジスタ21に流れる充電電流が反転した時点でコンパレータ703の電圧が反転するので、このコンパレータ703の出力反転によりMOSトランジスタ21、701のゲート電位をバッテリ5の正極端子51の電位よりも小さくすることにより、MOSトランジスタ21、701を遮断することができる。
【0050】
同じく、800は、NチャンネルMOSトランジスタ24の電流を検出(推定)するための電流検出回路であって、NチャンネルMOSトランジスタ801、電流検出抵抗素子802、コンパレータ803からなる。
【0051】
MOSトランジスタ801と電流検出用抵抗素子802は直列接続され、MOSトランジスタ801のソース電極端子(電子注入端子)SはMOSトランジスタ21のソース電極端子Sと交流入力端子11に接続され、電流検出用抵抗素子702の他端はバッテリ5の負極端子52に接続されている。電流検出用抵抗素子802の両端はコンパレータ803の一対の入力端に個別に接続されている。
【0052】
MOSトランジスタ801はMOSトランジスタ24よりも大幅に(たとえばMOSトランジスタ24よりも100倍程度小さく形成されており、電流検出用抵抗素子802はMOSトランジスタ801のオン抵抗よりもかなり大きく設定されている。
【0053】
このようにすれば、MOSトランジスタ24に流れる充電電流が反転した時点でコンパレータ803の電圧が反転するので、このコンパレータ803の出力反転によりMOSトランジスタ24、801のゲート電位をバッテリ5の負極端子52の電位よりも小さくすることにより、MOSトランジスタ24、801を遮断することができる。
【0054】
MOSトランジスタ22、23の電流検出(推定)については、上記MOSトランジスタ21と同様に、MOSトランジスタ25、26の電流検出(推定)については、上記MOSトランジスタ24と同様に実施することができる。
【0055】
(変形態様)
上記実施例では、コンパレータ703の電位差の反転を検出してMOSトランジスタ21のターンオフを実施した。その代わりに、上アーム側NチャンネルMOSトランジスタ21〜23の断続制御においては、コンパレータ703により、交流入力端子11の電位と、バッテリ5の負極電位を基準とする所定電位とを比較してもよく、下アーム側NチャンネルMOSトランジスタ24〜26の断続制御においては、コンパレータ803により、交流入力端子11の電位と、バッテリ5の負極電位を基準とする所定電位とを比較してもよい。
【図面の簡単な説明】
【図1】実施例1の車両発電機の整流装置を示す回路図である。
【図2】図1のコントローラの主要部を示す回路図である。
【図3】実施例2の車両発電機の整流装置の主要部を示す回路図である。
【符号の説明】
1 三相発電機(車両発電機)
2 MOSトランジスタ型整流回路
3 コントローラ(制御回路)
21〜23 上アーム側NチャンネルMOSトランジスタ
24〜26 下アーム側NチャンネルMOSトランジスタ

Claims (3)

  1. バッテリの正極端子に接続される+側直流出力端子と、前記バッテリの負極端子に接続されるー側直流出力端子と、発電機の三つの相出力端子の互いに異なる一つに接続される交流入力端子とをそれぞれ有する三つの相インバータからなり、前記各相インバータは、一対の主電極端子が前記+側直流出力端子と前記交流入力端子に個別に接続される上アーム側NチャンネルMOSトランジスタと、一対の主電極端子が前記ー側直流出力端子と前記交流入力端子に個別に接続される下アーム側NチャンネルMOSトランジスタとを有して、前記発電機が出力する三相交流電圧を整流して前記バッテリを充電する三相整流回路と、
    前記MOSトランジスタを断続制御する制御回路と、
    からなる車両発電機の整流装置において、
    前記制御回路は、
    前記相インバータの前記交流入力端子の電位が前記バッテリの正極端子の電位又は前記バッテリの目標充電電圧よりも0〜0.5V高い所定の電位を超えた場合に前記相インバータの上アーム側NチャンネルMOSトランジスタにターンオンを指令し、
    前記相インバータの前記交流入力端子が前記バッテリの負極端子の電位よりも0〜0.5V低い所定の電位を下回った場合に前記相インバータの前記下アーム側NチャンネルMOSトランジスタにターンオンを指令し、
    前記相インバータの前記交流入力端子が前記バッテリの正極端子の電位又は前記バッテリの目標充電電圧よりも0〜0.5V高い所定の電位を下回った場合に前記相インバータの上アーム側NチャンネルMOSトランジスタにターンオフを指令し、
    前記相インバータの前記交流入力端子が前記バッテリの負極端子の電位よりも0〜0.5V低い所定の電位を上回った場合に前記相インバータの前記下アーム側NチャンネルMOSトランジスタにターンオフを指令することを特徴とする車両発電機の整流装置。
  2. 請求項1記載の車両発電機の整流装置において、
    前記制御回路は、
    前記相インバータの前記交流入力端子が前記バッテリの正極端子又はこの相インバータの+側直流出力端子よりも高電位の場合に前記相インバータの上アーム側NチャンネルMOSトランジスタにターンオンを指令し、
    前記相インバータの前記交流入力端子が前記バッテリの負極端子又はこの相インバータのー側直流出力端子よりも低電位の場合に前記相インバータの前記下アーム側NチャンネルMOSトランジスタにターンオンを指令し、
    前記相インバータの前記交流入力端子が前記バッテリの正極端子又はこの相インバータの+側直流出力端子よりも低電位の場合に前記相インバータの上アーム側NチャンネルMOSトランジスタにターンオフを指令し、
    前記相インバータの前記交流入力端子が前記バッテリの負極端子又はこの相インバータのー側直流出力端子よりも高電位の場合に前記相インバータの前記下アーム側NチャンネルMOSトランジスタにターンオフを指令することを特徴とする車両発電機の整流装置。
  3. 請求項2記載の車両発電機の整流装置において、
    前記制御回路は、
    一主電極端子が前記バッテリの前記正極端子又は負極端子に接続された電流検出用小型MOSトランジスタと、この電流検出用小型MOSトランジスタの他主電極端子と前記相インバータの交流入力端子との間に介設される電流検出用抵抗素子とを有して、前記上アーム側NチャンネルMOSトランジスタ又は前記下アーム側NチャンネルMOSトランジスタと並列接続される電流検出回路を有し、
    前記上アーム側NチャンネルMOSトランジスタと並列接続される前記電流検出回路の前記電流検出用抵抗素子の電圧降下に基づいて、前記相インバータの前記交流入力端子と前記バッテリの正極端子又はこの相インバータの+側直流出力端子との電位差に応じた前記相インバータの上アーム側NチャンネルMOSトランジスタのターンオンおよびターンオフの指令を行い、
    前記下アーム側NチャンネルMOSトランジスタと並列接続される前記電流検出回路の前記電流検出用抵抗素子の電圧降下に基づいて、前記相インバータの前記交流入力端子と前記バッテリの負極端子又はこの相インバータのー側直流出力端子との電位差に応じた前記相インバータの下アーム側NチャンネルMOSトランジスタのターンオンおよびターンオフの指令を行うことを特徴とする車両発電機の整流装置。
JP2002178932A 2002-06-19 2002-06-19 車両発電機の整流装置 Pending JP2004023962A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002178932A JP2004023962A (ja) 2002-06-19 2002-06-19 車両発電機の整流装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002178932A JP2004023962A (ja) 2002-06-19 2002-06-19 車両発電機の整流装置

Publications (1)

Publication Number Publication Date
JP2004023962A true JP2004023962A (ja) 2004-01-22

Family

ID=31176512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002178932A Pending JP2004023962A (ja) 2002-06-19 2002-06-19 車両発電機の整流装置

Country Status (1)

Country Link
JP (1) JP2004023962A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011051756A1 (de) 2010-07-16 2012-01-19 Denso Corporation Fahrzeuggenerator
FR2966299A1 (fr) * 2010-10-15 2012-04-20 Denso Corp Machine rotative électrique pour une utilisation dans un véhicule

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011051756A1 (de) 2010-07-16 2012-01-19 Denso Corporation Fahrzeuggenerator
FR2966299A1 (fr) * 2010-10-15 2012-04-20 Denso Corp Machine rotative électrique pour une utilisation dans un véhicule

Similar Documents

Publication Publication Date Title
US20050001582A1 (en) Motor control device
JP5641448B2 (ja) 車両用回転電機
JPH09219938A (ja) 車両用発電装置
JP5464367B2 (ja) 車両用回転電機
JP6348424B2 (ja) 電力変換装置
US20100142235A1 (en) Power conversion device
JP2018098872A (ja) 回転電機の制御装置、及び、回転電機システム
US20160352272A1 (en) Motor controller and method for controlling motor
CN103991475A (zh) 电动动力转向用电子控制装置
JP5707762B2 (ja) 電力変換装置及び電力変換方法
JP2005304143A (ja) 電力変換装置
JP6392464B2 (ja) 車両用駆動装置、車両用駆動システム、および、車両用駆動装置の制御方法
JP2009118580A (ja) 車両用回転電機装置
JP2001045740A (ja) パワー半導体素子の駆動回路
JP4321444B2 (ja) Mos型fetを備えたモータ駆動装置、mos型fet、及びmos型fetを備えたモータ
JP2012016158A (ja) 車両用発電機
JP6638504B2 (ja) インバータ駆動装置
JP2004023962A (ja) 車両発電機の整流装置
JP7259563B2 (ja) 回転電機制御システム
JP4493701B2 (ja) 車両用電動発電装置
JP6119531B2 (ja) 車両用回転電機
US11476697B2 (en) Battery-charging device
JP2007244183A (ja) 単相倍電圧整流回路およびインバータ装置
JPH07337020A (ja) 直交変換装置
JP2007325340A (ja) 整流回路