JP2004022986A - Cleaning liquid used after chemomechanical polishing - Google Patents

Cleaning liquid used after chemomechanical polishing Download PDF

Info

Publication number
JP2004022986A
JP2004022986A JP2002178873A JP2002178873A JP2004022986A JP 2004022986 A JP2004022986 A JP 2004022986A JP 2002178873 A JP2002178873 A JP 2002178873A JP 2002178873 A JP2002178873 A JP 2002178873A JP 2004022986 A JP2004022986 A JP 2004022986A
Authority
JP
Japan
Prior art keywords
cleaning
film
weight
cleaning liquid
polishing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002178873A
Other languages
Japanese (ja)
Inventor
Haruki Nojo
能條 治輝
Kunikiyo Matsumoto
松本 訓己世
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EKC Technology KK
Original Assignee
EKC Technology KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EKC Technology KK filed Critical EKC Technology KK
Priority to JP2002178873A priority Critical patent/JP2004022986A/en
Publication of JP2004022986A publication Critical patent/JP2004022986A/en
Pending legal-status Critical Current

Links

Landscapes

  • Mechanical Treatment Of Semiconductor (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cleaning liquid and a cleaning method, wherein the cleaning liquid is one used after the planarization polishing of the film formed on a silicon wafer (metal film, element-isolating film, interlayer insulating film, and nitride film, etc.) in a semiconductor-device manufacturing process, and the cleaning liquid can efficiently remove metal impurities and the particles, etc. present on the surface of the film. <P>SOLUTION: The cleaning liquid is composed with diphosphonic acid, hydrogen peroxide, and low-molecular-weight polyacrylate being contained in a water. Also, the method is a cleaning method, in which this cleaning liquid is used for cleaning the surface of silicon wafers. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、半導体デバイスの製造工程である化学的機械的研磨(Chemical Mechanical Polishing:以後「CMP」と呼ぶ)による平坦化工程後洗浄に使用される洗浄液、及び、それを用いる半導体基板表面の洗浄処理方法に関する。
【0002】
【従来の技術】
半導体デバイス製造工程において、一般的に基板上には先ず素子分離膜とも云われるシャロウトレンチアイソレーション(STI)膜を下部に形成する場合が多く、その上に絶縁膜や金属膜等の層を多層積層した多層積層構造が形成される。多層積層化の際には、一般的には基板に、p−TEOS、O−TEOS等の通常用いられる層間絶縁膜のほか、例えば比誘電率が3.5〜2.0程度の低誘電率層間膜(例えば、有機ポリマー系、メチル基含有シリカ系、H−Si含有シリカ系、SiOF系、ポーラスシリカ系、ポーラス有機系等のLow−k膜)等を含む層間絶縁膜(ILD膜)や金属膜を堆積後、生じた凹凸をCMPによって平坦化処理を行い、平坦となった面の上に新たな配線を積み重ねて行く工程が一般に行われる。近年、半導体デバイスは微細化が進むにつれて、基板各層においてますます精度の高い平坦性が必要となっている。
【0003】
そのため、CMP工程に期待するところが大きく、半導体デバイス製造過程におけるCMPによる平坦化工程の割合が増大し、その後の洗浄工程も重要な役割をなしている。
【0004】
これら平坦化工程には各膜質により平坦化する研磨スラリーの構成が異なり、これに合わせてCMP後の洗浄液の構成もそれに応じ配合組成が多少異なってくる。
【0005】
ILD膜やSTI膜などシリカを主たる構成成分とする膜やlow−k膜の研磨砥粒として、煙霧状シリカ超微粒子粉末やコロイダルシリカ、酸化セリウムを水中に分散させたものが使用されている。このような研磨スラリーには、添加剤として水溶性高分子、界面活性剤、無機塩、沈降防止剤などが併用される。またスラリーレスといわれる極微量の砥粒の入った又は入らないスラリーもある。Cu、WやAl等の金属膜、窒化膜には、過酸化水素や硝酸鉄、ハイドロキシアミンなど酸化剤と、微粒子アルミナ、煙霧状シリカ、コロイダルシリカなどの砥粒と、キレート化剤、防蝕剤、その他前記添加剤などを併用した研磨スラリーが使用される。
【0006】
そして、これらの平坦化の為のCMP後には、ウエハ表面に残留する汚染粒子や汚染金属を目標値まで除去するための洗浄液を使用した洗浄工程が必要になる。
【0007】
近年、配線の微細化による配線抵抗増大に対処するため、配線材料として比抵抗の低いCuと、配線間容量を低くするためのlow−k膜の使用が検討されている。これらCuをはじめとするメタル材料、無機または有機系からなるlow−k材料は、材料自身の硬度が低く、砥粒が膜にささるため、残留しやすい。このため、従来から使用されてきたCMP後の洗浄液や洗浄方法をそのまま利用すると、上記のような金属膜やlow−k膜に砥粒がささり、洗浄後も取れずに膜に残留する確率が多くなる。このような残留粒子は、半導体デバイスの電気特性に悪影響を与えるため、デバイスの信頼性が低下する等の重大な問題を引き起こすことになる。
【0008】
例えば、特開平10−072594号公報には、シュウ酸やマロン酸等の有機酸、及び1−ヒドロキシエチリデン−1,1−ジホスホン酸等の錯化剤を含む洗浄処理剤が開示され、また、特開平9−286999号公報には、所定のフッ素系界面活性剤、1−ヒドロキシエチリデン−1,1−ジホスホン酸等の化合物、及びアンモニアを含む洗浄用組成物が開示されている。しかしながら、これら従来の洗浄液を使用して、Cu、W、Al等による金属膜やlow−k膜によってパターンが構成されている膜を洗浄し、評価試験機器TENCOR SP−1や、トプコン社DS−720SEM顕微鏡や、デジタルインストロメンタル社のAFM顕微鏡などを併用して詳しく表面解析したところ、膜に刺さって残ったり、パターンの凹部に残ってしまう砥粒が多く、このような砥粒の残留はCu膜やLow−k膜の洗浄後においては特に目立ち、除去効果が劣ることがわかった。このように、従来の洗浄液では、金属膜や絶縁膜等の硬度の低い膜に刺さる等によって強く付着した砥粒やパターン凹部に残った砥粒を除去しにくいという問題があった。
【0009】
【発明が解決しようとする課題】
以上説明したように、配線の微細化に使用される膜材料としてはCuやlow−k材料などが挙げられるが、これらの物質は材料自身の硬度が低く、膜に砥粒が刺さったり強く付着するため、洗浄液で除去しにくい。また、一般のILD膜であってもパターンの凹部に砥粒が残留しやすく、洗浄液では除去しにくい。そこで、このような材料を用いた被洗浄材料の膜に影響を与えることなく、膜の付着物質、残留物質の除去に効果のある洗浄液が必要と考えられた。
【0010】
【課題を解決するための手段】
本発明では、ジホスホン酸、過酸化水素、低分子量ポリアクリル酸塩、及び水を含有することを特徴とする洗浄液、及び、該洗浄液を用いることを特徴とする、シリコンウエハ表面の洗浄処理方法が提供される。
即ち、本発明では、シリコンウエハ上に形成された膜を平坦化研磨後に洗浄するための洗浄液であって、ジホスホン酸、過酸化水素、重量平均分子量が1000〜3000であるポリアクリル酸塩、及び水を含有することを特徴とする洗浄液が提供される。
本発明において、前記膜が、金属膜、素子分離膜、層間絶縁膜、及び窒化膜からなる群から選ばれる一種以上であることが好ましい。
また、本発明において、前記ジホスホン酸が、1−ヒドロキシエチリデン−1,1−ジホスホン酸であることが好ましい。
また、本発明において、前記過酸化水素を、0.001重量%〜1重量%含むことが好ましい。
また、本発明において、前記ポリアクリル酸塩が、ポリアクリル酸アンモニウム塩またはポリアクリル酸テトラメチルアンモニウム塩からなり、かつ、前記ポリアクリル酸塩を、0.0001重量%〜0.5重量%含むことが好ましい。
また、本発明では、化学的機械的研磨処理後に、上記洗浄液を用いて半導体基板表面を洗浄することを特徴とする、半導体基板表面の洗浄処理方法が提供される。
【0011】
本発明にかかる洗浄液は、シリコンウエハ上のパターンを形成したデバイス膜の洗浄に適し、特に各種膜、特にlow−k膜や、やわらかい金属膜の洗浄において、膜に刺さった状態や強く付着した状態の粒子の除去に効果的である。
【0012】
【発明の実施の形態】
以下、本発明の洗浄液について説明する。
【0013】
本発明の洗浄液は、ジホスホン酸、過酸化水素、および低分子量ポリアクリル酸塩を含むことを特徴としている。
【0014】
本発明にかかる洗浄液は、付着や浮遊している粒子状金属を錯化して除去する機能を主とするジホスホン酸を含む。ジホスホン酸としては、2つのホスホン酸基を含むものであれば特に制限なく使用することができ、たとえば、1−ヒドロキシエチリデン−1,1−ジホスホン酸、エチレンジアミンテトラジホスホン酸、アミノトリメチレンジホスホン酸、メチルジホスホン酸、エチリデンジホスホン酸、1−ヒドロキシプロピリデン−1,1−ジホスホン酸、1−ヒドロキシブチリデン−1,1−ジホスホン酸などを挙げることができる。
【0015】
本発明にかかる洗浄液において、ジホスホン酸の含有量は0.01重量%〜2重量%であることが好ましく、特に0.1重量%〜1重量%であることが好ましい。0.01重量%未満であると、金属汚染の除去効果が十分でない傾向がある。また、2重量%を越えると、3成分の配合バランスが悪くなり、粒子除去効果が劣る傾向がある。
【0016】
本発明にかかる洗浄液は、低分子量ポリアクリル酸塩を含む。低分子量ポリアクリル酸塩は、有機・無機両方の粒子や膜表面に親和性を発現する機能を有するものである。本発明にかかる洗浄液は、ジホスホン酸のほか、過酸化水素および低分子量ポリアクリル酸塩を含む3成分系をなすため、被洗浄材料の膜に影響を与えることなく、膜の付着物質、残留物質を除去するという、顕著な効果を達成することができる。
【0017】
本発明において使用される低分子量ポリアクリル酸塩は、低分子量ポリアクリル酸とアルカリとの塩であれば特に制限はされないが、好ましくは、低分子量ポリアクリル酸のアルカリ一価または二価金属塩、アンモニウム塩、テトラメチルアンモニウム塩を挙げることができる。低分子量ポリアクリル酸のアンモニウム塩、テトラメチルアンモニウム塩が特に好ましい。
【0018】
本発明において使用される低分子量ポリアクリル酸塩の重量平均分子量は、1000〜3000であり、好ましくは、1200〜2700である。重量平均分子量が1000未満では粒子除去効果が劣るため好ましくなく、また、3000を越えると、金属汚染の除去効果が劣って好ましくない。
【0019】
また、本発明にかかる洗浄液において、低分子量ポリアクリル酸塩の含有量は0.0001重量%〜0.5重量%であることが好ましく、特に0.005重量%〜0.2重量%であることが好ましい。0.0001重量%未満では粒子除去効果が劣る傾向がある。また、0.5重量%を越えると3成分の配合バランスが悪くなり、金属汚染除去及び粒子除去効果が劣る傾向がある。
【0020】
本発明にかかる洗浄液は、酸化剤として、分解して水に戻る過酸化水素を使用する。本発明において、過酸化水素は、前記2成分と組み合わさることで粒子の除去を促し、膜に刺さった粒子やパターンの凹部に残留した粒子を除去するのに効果を示す。
【0021】
本発明にかかる洗浄液において、過酸化水素の含有量は、0.001重量%〜1重量%であることが好ましく、特に0.005重量%〜0.5重量%であることが好ましい。0.001重量%未満であると、金属汚染の除去効果及び粒子除去効果が劣る傾向がある。また、1重量%を越えると他の2成分の変質が起き易い傾向がある。
【0022】
本発明にかかる洗浄液は、溶媒として水を使用する。本発明において、水溶性有機溶媒を併用しても良い。この場合、沸点の低い水溶性有機溶媒(たとえば、メタノール、エタノール、イソプロパノール等)を用いることが好ましい。
【0023】
本発明にかかる洗浄液において、好ましい洗浄液は、次のような組成を有する。
(1)1−ヒドロキシエチリデン−1,1−ジホスホン酸:0.05重量%〜0.2重量%/過酸化水素:0.05重量%〜0.15重量%/重量平均分子量約1800のポリアクリル酸アンモニウム:0.02重量%〜0.4重量%/水:残部
(2)1−ヒドロキシエチリデン−1,1−ジホスホン酸:0.1重量%〜0.3重量%/過酸化水素:0.005重量%〜0.01重量%/重量平均分子量約2600のポリアクリル酸アンモニウム:0.04重量%〜0.2重量%/水:残部
(3)1−ヒドロキシエチリデン−1,1−ジホスホン酸:0.04重量%〜0.1重量%/過酸化水素:0.005重量%〜0.03重量%/重量平均分子量約1200のポリアクリル酸テトラメチルアンモニウム:0.04重量%〜0.12重量%/水:残部
(4)1−ヒドロキシエチリデン−1,1−ジホスホン酸:0.02重量%〜0.05重量%/過酸化水素:0.1重量%〜0.4重量%/重量平均分子量約2500のポリアクリル酸テトラメチルアンモニウム:0.1重量%〜0.3重量%/水:残部
【0024】
本発明にかかる洗浄液は、本発明の効果を妨げない範囲内で、各種添加剤を使用することができる。添加剤としては、通常洗浄液に使用され得る界面活性剤、防錆剤等を挙げることができる。これら添加剤は、通常洗浄液において一般的に採用される含有量で含有させることができ、例えば、0.0001重量%〜0.5重量%を挙げることができる。
【0025】
本発明にかかる洗浄液のpHは、特に制限はないが、2〜7であることが望ましい。
【0026】
本発明にかかる洗浄液は、上記成分を適宜水に溶解することによって簡単に調製することができる。
【0027】
また、本発明の洗浄液が使用される所定の基板としては、半導体基板等の無機質基板上に、素子分離膜、層間絶縁膜であるILD膜、low−k膜、窒化膜等が配置された段階の半導体基板、あるいは、Cu、Al、W等の配線が配置された段階の半導体基板等を挙げることができる。
【0028】
本発明の洗浄液は、金属膜、窒化膜、層間絶縁膜、素子分離膜を平坦化研磨した後の、汚染金属や粒子の除去に効果を発揮する。
【0029】
次に、本発明では、化学的機械的研磨処理後に、本発明にかかる洗浄液を用いて半導体基板表面を洗浄することを特徴とする、半導体基板表面の洗浄処理方法が提供される。
本発明にかかる洗浄液を使用する洗浄処理の方法としては、上記のような基板の表面に、本発明にかかる洗浄液を接触させることができる方法であればよい。そのような方法として、例えば、基板を本発明の洗浄液に浸漬する方法や、基板表面に本発明の洗浄液を噴霧する方法等を挙げることができる。また、本発明にかかる洗浄液による洗浄と、ブラシスクラブやメガソニック等の物理的洗浄とを併用しても良い。
【0030】
本発明の洗浄液は、ジホスホン酸、過酸化水素および低分子量ポリアクリル酸塩を含むことにより、この3成分が組み合わさって相乗効果を奏することになる。即ち、本発明の洗浄液の特徴は、不純物金属を除去しながら、膜の腐食を発生させずに、更に強く付着している汚染または残留粒子や、パターン凹部に残留している粒子を効率よく除去する機能を備えている点にある。本発明において、付着粒子を膜表面から剥離できるように、ブラシュやジェット水圧を利用することができる。このような機械的除去機能の助けを借りることによって、膜と粒子間の力を緩め、膜表面の摩擦性を低下させ、粒子の剥離による除去がより容易になされる。このため、被洗浄材料の膜に影響を与えることなく、より容易に、膜の付着物質、残留物質を効率良く除去することができる。
【0031】
以下に本発明の実施例を説明するが、本発明の技術範囲がこれに限定されるものではない。
【0032】
【実施例】
A. ILD膜研磨後の洗浄評価試験(実施例1、比較例1)
(1) 研磨基板の作成
ILD膜研磨後における洗浄液の洗浄効果を確認するため、基板上のILD膜を研磨した研磨基板を作成した。基板としては、直径200mmのSiウエハ基板上に形成された約5000ÅのプラズマTEOS膜上に、高さ約0.6μm、ラインアンドスペース約6μmのアルミ配線を付け、アルミ配線の上に更に約0.8μmの前記TEOS膜が埋め込まれているものを用いた。
【0033】
研磨剤としては、シリカ系研磨剤であるEKCテクノロジー社製CMP1150を5倍水希釈して調製したスラリー(シリカ一次粒子径約75nm、SiO含有量8重量%、pH8.9)を使用し、研磨装置としては、荏原製作所製EPO222を用い、パッドとしては、ロデール社製IC1000/Suba400を用いた。上記基板を、研磨荷重150g/cm、キャリアー回転数60rpm、定盤回転数50rpm、スラリー流量200ml/minの研磨条件で30秒間研磨し、研磨基板1とした。
【0034】
(2) 洗浄液の調製
実施例1
純水を含む洗浄液が5.0リットルになるように、重量平均分子量約1800のポリアクリル酸アンモニウム0.35重量%、1−ヒドロキシエチリデン−1,1−ジホスホン酸0.10重量%、過酸化水素0.12重量%を順次混合し洗浄液を調製した。
比較例1
ポリアクリル酸アンモニウムを含まず、かつマロン酸を2.2重量%含有する以外は実施例1と同様の組成を有する洗浄液を調整した。
【0035】
(3) 洗浄液による洗浄試験
実施例1及び比較例1によって得られた洗浄液を使用して上記研磨基板1を洗浄することにより洗浄試験を行った。洗浄は、荏原製作所製EPO−222D型CMP装置内に内蔵しているスクラブ部でスクラブ洗浄をすることにより行った。洗浄液は、研磨基板1上側に450ml/min、下側に850ml/minで25秒間流し、その後、純水(脱イオン水)を研磨基板1上側に500ml/min、下側に700ml/minで55秒間流し、更に、上記CMP装置に内臓しているスピンドライ装置で30秒処理した。
【0036】
洗浄結果の良否は、洗浄後の残存粒子の大きさと、基板一枚あたりの数で評価した。即ち、ケーエルエーテンコール社製、粒子測定装置SP1−TBIによって、0.20μm以上の粒子が基板一枚当たり何個あるかによって評価した。
なお、上記装置によれば、粒子以外に一部スクラッチも一緒に数えることになるが、スクラッチの数は粒子の数と比較して極めて少ないため問題とする必要はない。
また、金属汚染は、理学電機社の全反射蛍光X線装置TXRF300型で測定し、金属元素としてFe、Niが基板の単位面積(cm)当たり何個存在するかによって評価した。
【0037】
実施例1および比較例1で得られた洗浄液の組成およびそれを用いて研磨基板1を洗浄した後のパーティクル量及び金属汚染の評価結果を表1に示す。
【0038】
【表1】

Figure 2004022986
なお、表1中(後述する表2〜4についても同様)、「ジホスホン酸」は、「1−ヒドロキシエチリデン−1,1−ジホスホン酸」を示す。また、表1中(後述する表2〜4についても同様)、残留金属の単位は、[×1010atoms/cm]である。
表1から明らかなように、実施例1で得られた洗浄液によれば、0.20μm以上の粒子は基板1枚あたり43個と、良い洗浄結果であった。また金属汚染もNiは1.2×1010atoms/cm、Feは0.8×1010atoms/cmと、汚染は少ないものであった。このように、本発明洗浄液は汚染粒子および金属汚染に対してよい除去効果があった。
一方、比較例1で得られた洗浄液の洗浄結果は、0.20μm以上の粒子は基板1枚あたり120個と多く残った悪い洗浄結果であった。金属汚染は、Niは1.5×1010atoms/cm、Feは2.2×1010atoms/cmと、汚染に関しては実施例1の場合と余り変らない少ないものであった。
【0039】
B. Cu膜研磨後の洗浄評価試験(実施例2、比較例2)
(1) 研磨基板の作成
Cu膜研磨後の洗浄効果を確認するため、基板上のCu膜を研磨した研磨基板を作成した。基板としては、直径200mmのSiウエハ基板上に形成された約15000ÅのプラズマTEOS膜上に、深さ約0.6μm、ラインアンドスペース約10μmのCu配線溝を形成し、その上に、高さ約12000ÅのCu膜が形成したものを用いた。なお、TEOS膜とCu膜の間にはCVDで付けたTaNのバリヤ膜を形成した。
研磨剤としては、シリカ一次粒子径が約60nmであり、SiO含有量6.0重量%、グリシン0.8重量%、過酸化水素1.0重量%からなるpHが4.8の煙霧状シリカ系研磨剤スラリーを調製して用いた。また、研磨装置としては、荏原製作所社製EPO222を用い、パッドとしては、ロデール社製IC1000/Suba400を使い、上記基板を、研磨荷重150g/cm、キャリアー回転数60rpm、定盤回転数50rpm、スラリー流量200ml/minの研磨条件で上記Cu膜付き基板を50秒間研磨し、研磨基板2とした。
【0040】
(2) 洗浄液の調製
実施例2
純水を含む洗浄液が5.0リットルになるように、重量平均分子量約2600のポリアクリル酸アンモニウム0.15重量%、1−ヒドロキシエチリデン−1,1−ジホスホン酸0.20重量%、過酸化水素0.008重量%及び防錆剤ベンゾトリアゾール0.0005重量%を順次混合し洗浄液を調製した。
比較例2
過酸化水素を含まない以外は実施例2と同様の組成を有する洗浄液を調整した。
【0041】
(3) 洗浄液による洗浄試験
実施例2及び比較例2によって得られた洗浄液を使用して、上記研磨基板2を洗浄することにより洗浄試験を行った。洗浄装置、洗浄条件、洗浄評価としては、A. ILD膜研磨後の洗浄評価試験(実施例1、比較例1)の場合と同一の洗浄装置、条件、洗浄評価を採用した。
【0042】
実施例2および比較例2で得られた洗浄液の組成およびそれを用いて研磨基板2を洗浄した後のパーティクル量及び金属汚染の評価結果を表2に示す。
【0043】
【表2】
Figure 2004022986
表2から明らかなように、実施例2で得られた洗浄液によれば、0.20μm以上の粒子は7個と良い洗浄結果であった。また金属汚染もNiは4.8×10 atoms/cm、Feは6.5×1010atoms/cmと汚染は少ないものであった。このように、本発明洗浄液は汚染粒子および金属汚染に対してよい除去効果があった。
一方、比較例2で得られた洗浄液によれば、0.20μm以上の粒子は65個と多く残った悪い洗浄結果であった。金属汚染は、Niは18.0×1010atoms/cm、Feは39.0×1010atoms/cmと汚染は本発明法よりかなり多いものであった。
【0044】
C. low−k膜研磨後の洗浄評価試験(実施例3、比較例3)
(1) 研磨基板の作成
SiOF系low−k膜研磨後の洗浄効果を確認するため、基板上のSiOF系low−k膜を研磨した研磨基板を作成した。基板としては、直径200mmのSiウエハ基板上に形成された約5000ÅのSiOF系low−k膜上に、高さ約0.6μm、ラインアンドスペース約6μmのアルミ配線を付け、アルミ配線の上に更に約1.4μmの前記SiOF系low−k膜をILD膜として埋め込まれているものを用いた。
研磨剤としては、テトラメチルオルトシリケートを加水分解して製造した高純度コロイダルシリカ研磨剤であって、シリカ一次粒子径約25nm、SiO含有量1.5重量%、弗化アンモニウム0.12重量%からなり、pHが6.0であるスラリーを調製して用いた。研磨装置としては、荏原製作所製EPO222を用い、パッドとしては、ロデール社製IC1000/Suba400を使用し、研磨荷重150g/cm、キャリアー回転数60rpm、定盤回転数50rpmでスラリー流量180ml/minの研磨条件でlow−k膜付きウエハを45秒間研磨し、研磨基板3とした。
【0045】
(2) 洗浄液の調製
実施例3
純水を含む洗浄液が5.0リットルになるよう重量平均分子量約1200のポリアクリル酸テトラメチルアンモニウム0.08重量%、1−ヒドロキシエチリデン−1,1−ジホスホン酸0.07重量%、過酸化水素0.02重量%を順次混合し洗浄液を調製した。
比較例3
1−ヒドロキシエチリデン−1,1−ジホスホン酸を含まない以外は実施例3と同様の組成を有する洗浄液を調製した。
【0046】
(3) 洗浄液による洗浄試験
実施例3及び比較例3によって得られた洗浄液を使用して、上記研磨基板3を洗浄することにより洗浄試験を行った。洗浄装置、洗浄条件、洗浄評価としては、A. ILD膜研磨後の洗浄評価試験(実施例1、比較例1)の場合と同一の洗浄装置、条件、洗浄評価を採用した。
【0047】
実施例3および比較例3で得られた洗浄液の組成およびそれを用いて研磨基板3を洗浄した後のパーティクル量及び金属汚染の評価結果を表3に示す。
【0048】
【表3】
Figure 2004022986
表3から明らかなように、実施例3で得られた洗浄液によれば、0.20μm以上の粒子は80個やや多いようだが比較例3の場合と比べて極めて良い洗浄結果であった。
また金属汚染もNiは20.0×1010atoms/cm、Feは8.0×1010atoms/cmと汚染は少ないものであった。このように本発明洗浄液は汚染粒子および金属汚染に対してよい除去効果があった。
一方、比較例3で得られた洗浄液によれば、0.20μm以上の粒子は235個と多く残った悪い洗浄結果であった。詳細な表面観察の結果、本発明法洗浄液による洗浄より砥粒粒子が刺さったように見受けられるのが多く目立った。金属汚染は、Niは15.0×1010atoms/cm、Feは13.0×1010atoms/cmと汚染は実施例3で得られた洗浄液の場合と変らなかった。
【0049】
D. ILD膜研磨後の洗浄評価試験(実施例4、比較例4)
(1) 研磨基板の作成
プラズマTEOS膜をセリア系スラリーで研磨した後の洗浄効果を確認するため、基板上のILD膜をセリア系スラリーで研磨した研磨基板を作成した。基板としては、研磨基板1の研磨前の基板と同様の基板を使用した。
研磨剤としては、約150nmの平均粒子径を持つセリア微粒子粉末2.0重量%、2種の平均分子量(約1200、約15000)を1:1の比率で有するポリアクリル酸アンモニウム0.1重量%を含有し、pH5.2であるスラリーを調製して用いた。研磨装置としては、荏原製作所製EPO222を用い、パッドとしては、ロデール社製IC1000/Suba400を使い、上記基板を、研磨荷重150g/cm、キャリアー回転数60rpm、定盤回転数50rpmでスラリー流量180ml/minで、前記ILD膜付き基板を50秒間研磨し、研磨基板4とした。
【0050】
(2) 洗浄液の調製
実施例4
純水を含む洗浄液が5.0リットルになるように、重量平均分子量約2500のポリアクリル酸アンモニウム0.20重量%、1−ヒドロキシエチリデン−1,1−ジホスホン酸0.03重量%、過酸化水素0.20重量%を順次混合し洗浄液を調製した。
比較例4
ポリアクリル酸塩として、重量平均分子量が12000であるポリアクリル酸アンモニウムを用いた以外は実施例4と同様の組成を有する洗浄液を調製した。
【0051】
(3) 洗浄液による洗浄試験
実施例4及び比較例4によって得られた洗浄液を使用して、上記研磨基板4を洗浄することにより洗浄試験を行った。洗浄装置、洗浄条件、洗浄評価としては、A. ILD膜研磨後の洗浄評価試験(実施例1、比較例1)の場合と同一の洗浄装置、条件、洗浄評価を採用した。
【0052】
実施例4および比較例4で得られた洗浄液の組成およびそれを用いて研磨基板4を洗浄した後のパーティクル量及び金属汚染の評価結果を表4に示す。
【0053】
【表4】
Figure 2004022986
表4から明らかなように、実施例4で得られた洗浄液によれば、0.20μm以上の粒子は28個と少なく良い洗浄結果であった。また金属汚染もNiは28.0×1010atoms/cm、Feは30.0×1010atoms/cmと通常の除去効果があった。このように、本発明洗浄液は汚染粒子および金属汚染に対してよい除去効果があった。
一方、比較例4で得られた洗浄液によれば、0.20μm以上の粒子は83個と多く残り比較例3と同じく刺さった粒子が見受けられ、悪い洗浄結果であった。詳細な表面観察の結果、本発明法洗浄液による洗浄より砥粒粒子が刺さったように見受けられるのが多く目立った。金属汚染は、Niは25.0×1010atoms/cm、Feは36.0×1010atoms/cmと汚染は実施例4の場合と変らなかった。
【0054】
【発明の効果】
本発明によれば、硬度の低い被洗浄材料による膜であっても、また、パターンを形成した膜であっても、膜に影響を与えることなく、膜の付着物質、残留物質を効果的に除去することができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a cleaning liquid used for cleaning after a planarization step by chemical mechanical polishing (hereinafter referred to as “CMP”), which is a manufacturing process of a semiconductor device, and cleaning of a semiconductor substrate surface using the cleaning liquid. Regarding the processing method.
[0002]
[Prior art]
In a semiconductor device manufacturing process, generally, a shallow trench isolation (STI) film, which is also called an element isolation film, is often formed on a substrate first, and a plurality of layers such as an insulating film and a metal film are formed thereon. A laminated multilayer structure is formed. In the case of multi-layer lamination, generally, p-TEOS, O3-In addition to a commonly used interlayer insulating film such as TEOS, for example, a low dielectric constant interlayer film having a relative dielectric constant of about 3.5 to 2.0 (e.g., an organic polymer type, a methyl group-containing silica type, an H-Si-containing silica After depositing an interlayer insulating film (ILD film) and a metal film including a low-k film such as a SiC-based, SiOF-based, porous silica-based, and porous organic-based material, etc., the resulting unevenness is subjected to a flattening process by CMP to achieve flatness. Generally, a process of stacking new wiring on the changed surface is performed. In recent years, as the miniaturization of semiconductor devices progresses, flatness with higher precision is required in each layer of the substrate.
[0003]
Therefore, expectations are high for the CMP process, the rate of the planarization process by the CMP in the semiconductor device manufacturing process is increasing, and the subsequent cleaning process also plays an important role.
[0004]
In these flattening steps, the structure of the polishing slurry to be flattened differs depending on the quality of each film, and accordingly, the composition of the cleaning liquid after the CMP slightly differs in accordance with this.
[0005]
As a polishing abrasive for a film mainly composed of silica such as an ILD film or an STI film or a low-k film, a dispersion of ultrafine fumed silica powder, colloidal silica, or cerium oxide in water is used. In such a polishing slurry, a water-soluble polymer, a surfactant, an inorganic salt, an antisettling agent and the like are used in combination as additives. There is also a slurry called "slurry-less" containing or not containing a very small amount of abrasive grains. Oxidizing agents such as hydrogen peroxide, iron nitrate, and hydroxyamine, abrasive grains such as fine-particle alumina, fumed silica, and colloidal silica; chelating agents; In addition, a polishing slurry used in combination with the above-mentioned additives is used.
[0006]
After the CMP for planarization, a cleaning step using a cleaning solution for removing contaminant particles and contaminant metals remaining on the wafer surface to a target value is required.
[0007]
In recent years, in order to cope with an increase in wiring resistance due to miniaturization of wiring, use of Cu having a low specific resistance as a wiring material and a low-k film for lowering the capacitance between wirings has been studied. These metal materials such as Cu, and low-k materials made of inorganic or organic materials have low hardness of the materials themselves, and the abrasive grains tend to stick to the film, so that they tend to remain. For this reason, if the cleaning solution or the cleaning method after the CMP which has been conventionally used is used as it is, there is a probability that the abrasive grains are inserted into the metal film or the low-k film as described above and remain on the film without being removed even after the cleaning. More. Such residual particles adversely affect the electrical characteristics of the semiconductor device, causing serious problems such as a decrease in device reliability.
[0008]
For example, JP-A-10-072594 discloses a cleaning agent containing an organic acid such as oxalic acid or malonic acid, and a complexing agent such as 1-hydroxyethylidene-1,1-diphosphonic acid. JP-A-9-286999 discloses a cleaning composition containing a predetermined fluorine-containing surfactant, a compound such as 1-hydroxyethylidene-1,1-diphosphonic acid, and ammonia. However, these conventional cleaning liquids are used to clean a metal film made of Cu, W, Al, or the like, or a film having a pattern formed by a low-k film, and to use an evaluation tester TENCER @ SP-1 or Topcon DS-. When the surface was analyzed in detail using a 720SEM microscope and an AFM microscope of Digital Instrumental Co., Ltd. in detail, there were many abrasive grains that stuck to the film or remained in the concave portions of the pattern. It was found that the Cu film and the Low-k film were particularly conspicuous after cleaning, and the removal effect was poor. As described above, the conventional cleaning liquid has a problem in that it is difficult to remove abrasive grains strongly adhered by piercing a low-hardness film such as a metal film or an insulating film or abrasive grains remaining in pattern recesses.
[0009]
[Problems to be solved by the invention]
As described above, examples of film materials used for miniaturization of wiring include Cu and low-k materials. However, these materials have low hardness of the materials themselves, and abrasive grains stick to or strongly adhere to the film. Therefore, it is difficult to remove with a cleaning solution. Further, even in a general ILD film, abrasive grains easily remain in the concave portions of the pattern, and are difficult to remove with a cleaning liquid. Therefore, it has been considered necessary to provide a cleaning liquid that is effective in removing adhered substances and residual substances from the film without affecting the film of the material to be cleaned using such a material.
[0010]
[Means for Solving the Problems]
In the present invention, a cleaning liquid characterized by containing diphosphonic acid, hydrogen peroxide, a low molecular weight polyacrylate, and water, and a method for cleaning a silicon wafer surface, characterized by using the cleaning liquid. Provided.
That is, in the present invention, a cleaning liquid for cleaning a film formed on a silicon wafer after flattening and polishing, diphosphonic acid, hydrogen peroxide, a polyacrylate having a weight average molecular weight of 1,000 to 3,000, and A cleaning liquid characterized by containing water is provided.
In the present invention, the film is preferably at least one selected from the group consisting of a metal film, an element isolation film, an interlayer insulating film, and a nitride film.
In the present invention, the diphosphonic acid is preferably 1-hydroxyethylidene-1,1-diphosphonic acid.
In the present invention, it is preferable that the hydrogen peroxide is contained in an amount of 0.001% by weight to 1% by weight.
In addition, in the present invention, the polyacrylate is made of a polyammonium acrylate or a tetramethylammonium acrylate, and the polyacrylate is contained in an amount of 0.0001% by weight to 0.5% by weight. Is preferred.
Further, the present invention provides a method for cleaning the surface of a semiconductor substrate, comprising cleaning the surface of the semiconductor substrate using the cleaning liquid after the chemical mechanical polishing treatment.
[0011]
The cleaning liquid according to the present invention is suitable for cleaning a device film on which a pattern is formed on a silicon wafer. In particular, when cleaning various films, particularly low-k films, and soft metal films, a state in which the film is stuck or strongly adhered. It is effective for removing particles.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the cleaning liquid of the present invention will be described.
[0013]
The cleaning solution of the present invention is characterized by containing diphosphonic acid, hydrogen peroxide, and a low molecular weight polyacrylate.
[0014]
The cleaning liquid according to the present invention contains diphosphonic acid mainly having a function of complexing and removing adhering and floating particulate metals. Any diphosphonic acid can be used without particular limitation as long as it contains two phosphonic acid groups. For example, 1-hydroxyethylidene-1,1-diphosphonic acid, ethylenediaminetetradiphosphonic acid, aminotrimethylenediphosphonic acid can be used. Examples include acid, methyldiphosphonic acid, ethylidene diphosphonic acid, 1-hydroxypropylidene-1,1-diphosphonic acid, 1-hydroxybutylidene-1,1-diphosphonic acid, and the like.
[0015]
In the cleaning solution according to the present invention, the content of diphosphonic acid is preferably 0.01% by weight to 2% by weight, and particularly preferably 0.1% by weight to 1% by weight. If it is less than 0.01% by weight, the effect of removing metal contamination tends to be insufficient. On the other hand, if it exceeds 2% by weight, the balance of the three components is poor, and the effect of removing particles tends to be poor.
[0016]
The cleaning solution according to the present invention contains a low molecular weight polyacrylate. The low molecular weight polyacrylate has a function of expressing affinity to both organic and inorganic particles and a film surface. The cleaning solution according to the present invention is a three-component system containing hydrogen peroxide and a low molecular weight polyacrylic acid salt in addition to diphosphonic acid. , And a remarkable effect of removing the same can be achieved.
[0017]
The low-molecular-weight polyacrylic acid salt used in the present invention is not particularly limited as long as it is a salt of low-molecular-weight polyacrylic acid and an alkali, preferably, a low-molecular-weight polyacrylic acid alkali monovalent or divalent metal salt. , Ammonium salts and tetramethylammonium salts. Ammonium salts and tetramethylammonium salts of low molecular weight polyacrylic acid are particularly preferred.
[0018]
The weight average molecular weight of the low molecular weight polyacrylate used in the present invention is from 1,000 to 3,000, preferably from 1,200 to 2,700. If the weight average molecular weight is less than 1,000, the effect of removing particles is poor, which is not preferable. If it exceeds 3000, the effect of removing metal contamination is poor, which is not preferable.
[0019]
In the cleaning solution according to the present invention, the content of the low molecular weight polyacrylate is preferably 0.0001% by weight to 0.5% by weight, and particularly preferably 0.005% by weight to 0.2% by weight. Is preferred. If it is less than 0.0001% by weight, the effect of removing particles tends to be poor. On the other hand, if it exceeds 0.5% by weight, the mixing balance of the three components becomes poor, and the metal contamination removal and particle removal effects tend to be poor.
[0020]
The cleaning liquid according to the present invention uses, as an oxidizing agent, hydrogen peroxide that decomposes and returns to water. In the present invention, hydrogen peroxide, in combination with the above two components, promotes the removal of particles, and is effective in removing particles stuck in the film and particles remaining in the concave portions of the pattern.
[0021]
In the cleaning solution according to the present invention, the content of hydrogen peroxide is preferably 0.001% by weight to 1% by weight, and particularly preferably 0.005% by weight to 0.5% by weight. If it is less than 0.001% by weight, the effect of removing metal contamination and the effect of removing particles tend to be inferior. If it exceeds 1% by weight, the other two components tend to deteriorate.
[0022]
The cleaning liquid according to the present invention uses water as a solvent. In the present invention, a water-soluble organic solvent may be used in combination. In this case, it is preferable to use a water-soluble organic solvent having a low boiling point (eg, methanol, ethanol, isopropanol, etc.).
[0023]
In the cleaning liquid according to the present invention, a preferable cleaning liquid has the following composition.
(1) 1-hydroxyethylidene-1,1-diphosphonic acid: 0.05% to 0.2% by weight / hydrogen peroxide: 0.05% to 0.15% by weight / polystyrene having a weight average molecular weight of about 1800 Ammonium acrylate: 0.02% to 0.4% by weight / water: balance
(2) 1-hydroxyethylidene-1,1-diphosphonic acid: 0.1% to 0.3% by weight / hydrogen peroxide: 0.005% to 0.01% by weight / polystyrene having a weight average molecular weight of about 2600 Ammonium acrylate: 0.04% to 0.2% by weight / water: balance
(3) 1-hydroxyethylidene-1,1-diphosphonic acid: 0.04% to 0.1% by weight / hydrogen peroxide: 0.005% to 0.03% by weight / weight average molecular weight of about 1200 Tetramethylammonium acrylate: 0.04% to 0.12% by weight / water: balance
(4) 1-hydroxyethylidene-1,1-diphosphonic acid: 0.02% to 0.05% by weight / hydrogen peroxide: 0.1% to 0.4% by weight / polystyrene having a weight average molecular weight of about 2500 Tetramethylammonium acrylate: 0.1% by weight to 0.3% by weight / water: balance
[0024]
Various additives can be used in the cleaning liquid according to the present invention as long as the effects of the present invention are not impaired. Examples of the additive include a surfactant, a rust preventive, and the like which can be generally used in a cleaning liquid. These additives can be contained at a content generally employed in a washing solution, and for example, 0.0001% by weight to 0.5% by weight.
[0025]
The pH of the cleaning solution according to the present invention is not particularly limited, but is preferably 2 to 7.
[0026]
The cleaning solution according to the present invention can be easily prepared by appropriately dissolving the above components in water.
[0027]
The predetermined substrate on which the cleaning liquid of the present invention is used is a stage in which an element isolation film, an ILD film serving as an interlayer insulating film, a low-k film, a nitride film, and the like are arranged on an inorganic substrate such as a semiconductor substrate. Semiconductor substrate, or a semiconductor substrate in which wiring of Cu, Al, W, etc. is arranged.
[0028]
The cleaning liquid of the present invention is effective in removing contaminant metals and particles after flattening and polishing a metal film, a nitride film, an interlayer insulating film, and an element isolation film.
[0029]
Next, the present invention provides a method for cleaning the surface of a semiconductor substrate, comprising cleaning the surface of the semiconductor substrate using the cleaning liquid according to the present invention after the chemical mechanical polishing treatment.
As a method of the cleaning treatment using the cleaning liquid according to the present invention, any method can be used as long as the cleaning liquid according to the present invention can be brought into contact with the surface of the substrate as described above. Examples of such a method include a method of immersing the substrate in the cleaning liquid of the present invention and a method of spraying the cleaning liquid of the present invention on the substrate surface. The cleaning with the cleaning liquid according to the present invention may be used in combination with the physical cleaning such as brush scrub or megasonic.
[0030]
Since the cleaning liquid of the present invention contains diphosphonic acid, hydrogen peroxide, and a low molecular weight polyacrylate, the three components are combined to produce a synergistic effect. That is, the feature of the cleaning liquid of the present invention is that, while removing impurity metals, the corrosion or the remaining particles that adhere more strongly and the particles remaining in the pattern concave portions are efficiently removed without causing corrosion of the film. In that it has the ability to In the present invention, a brush or jet water pressure can be used so that the adhered particles can be separated from the film surface. With the aid of such a mechanical removal function, the force between the film and the particles is relaxed, the frictional properties of the film surface are reduced, and the removal by peeling of the particles is made easier. For this reason, it is possible to more efficiently remove adhering substances and residual substances from the film without affecting the film of the material to be cleaned.
[0031]
Examples of the present invention will be described below, but the technical scope of the present invention is not limited thereto.
[0032]
【Example】
A.洗浄 Cleaning evaluation test after polishing ILD film (Example 1, Comparative Example 1)
(1) Preparation of polished substrate
In order to confirm the cleaning effect of the cleaning liquid after polishing the ILD film, a polished substrate was prepared by polishing the ILD film on the substrate. As a substrate, an aluminum wiring having a height of about 0.6 μm and a line and space of about 6 μm was provided on a plasma TEOS film of about 5000 ° formed on a Si wafer substrate having a diameter of 200 mm, and about 0 μm was further added on the aluminum wiring. The one in which the TEOS film of 0.8 μm was embedded was used.
[0033]
As the polishing agent, a slurry prepared by diluting a silica-based polishing agent CMP1150 (manufactured by EKC Technology Co., Ltd.) 5 times with water (silica primary particle diameter of about 75 nm, SiO2EPO222 manufactured by EBARA CORPORATION was used as a polishing apparatus, and IC1000 / Suba400 manufactured by Rodale was used as a pad. The above substrate was subjected to a polishing load of 150 g / cm.2The substrate was polished for 30 seconds under the conditions of a carrier rotation speed of 60 rpm, a platen rotation speed of 50 rpm, and a slurry flow rate of 200 ml / min.
[0034]
(2) Preparation of cleaning solution
Example 1
0.35% by weight of ammonium polyacrylate having a weight average molecular weight of about 1800, 0.10% by weight of 1-hydroxyethylidene-1,1-diphosphonic acid, and peroxide, so that the washing liquid containing pure water becomes 5.0 liters. A washing solution was prepared by sequentially mixing 0.12% by weight of hydrogen.
Comparative Example 1
A cleaning liquid having the same composition as in Example 1 except that it did not contain ammonium polyacrylate and contained 2.2% by weight of malonic acid was prepared.
[0035]
(3) Cleaning test with cleaning liquid
A cleaning test was performed by cleaning the polishing substrate 1 using the cleaning liquids obtained in Example 1 and Comparative Example 1. The cleaning was performed by performing scrub cleaning in a scrub section built in an EPO-222D type CMP apparatus manufactured by Ebara Corporation. The cleaning liquid is flowed at 450 ml / min on the upper side of the polishing substrate 1 and 850 ml / min on the lower side for 25 seconds. Then, the substrate was further treated for 30 seconds by a spin dry device built in the above-mentioned CMP device.
[0036]
The quality of the cleaning result was evaluated based on the size of the remaining particles after cleaning and the number per substrate. That is, the evaluation was performed by using a particle measuring device SP1-TBI manufactured by KLA Tencor Co., Ltd. to determine how many particles of 0.20 μm or more per substrate.
In addition, according to the above-described apparatus, some scratches are counted together with the particles, but the number of scratches is extremely small as compared with the number of particles, so there is no need to make a problem.
The metal contamination was measured using a total reflection X-ray fluorescence spectrometer TXRF300 (trade name, manufactured by Rigaku Denki Co., Ltd.).2) Was evaluated based on how many of them exist.
[0037]
Table 1 shows the compositions of the cleaning liquids obtained in Example 1 and Comparative Example 1, and the evaluation results of the amount of particles and metal contamination after cleaning the polishing substrate 1 using the cleaning liquids.
[0038]
[Table 1]
Figure 2004022986
In Table 1, (the same applies to Tables 2 to 4 described later), “diphosphonic acid” indicates “1-hydroxyethylidene-1,1-diphosphonic acid”. In Table 1 (the same applies to Tables 2 to 4 described later), the unit of the residual metal is [× 1010atoms / cm2].
As is clear from Table 1, according to the cleaning solution obtained in Example 1, the number of particles of 0.20 μm or more was 43 per substrate, which was a good cleaning result. Metal contamination is also 1.2 × 1010atoms / cm2, Fe is 0.8 × 1010atoms / cm2The pollution was small. Thus, the cleaning liquid of the present invention has a good effect of removing contaminant particles and metal contamination.
On the other hand, the cleaning result of the cleaning liquid obtained in Comparative Example 1 was a poor cleaning result in which a large number of particles of 0.20 μm or more remained at 120 particles per substrate. Metal contamination is 1.5 x 10 for Ni10atoms / cm2, Fe is 2.2 × 1010atoms / cm2As for the contamination, the contamination was not so different from that of Example 1.
[0039]
B.洗浄 Cleaning evaluation test after polishing of Cu film (Example 2, Comparative Example 2)
(1) Preparation of polished substrate
To confirm the cleaning effect after polishing the Cu film, a polished substrate was prepared by polishing the Cu film on the substrate. As a substrate, a Cu wiring groove having a depth of about 0.6 μm and a line and space of about 10 μm was formed on a plasma TEOS film of about 15000 ° formed on a Si wafer substrate having a diameter of 200 mm. The one on which a Cu film of about 12000 ° was formed was used. A TaN barrier film formed by CVD was formed between the TEOS film and the Cu film.
As an abrasive, the primary silica particle diameter is about 60 nm,2A fumed silica-based abrasive slurry having a content of 6.0% by weight, glycine 0.8% by weight and hydrogen peroxide 1.0% by weight and having a pH of 4.8 was prepared and used. Also, EPO222 manufactured by EBARA CORPORATION was used as a polishing apparatus, and IC1000 / Suba400 manufactured by Rodale was used as a pad. The substrate was polished with a polishing load of 150 g / cm.2The substrate with the Cu film was polished for 50 seconds under the polishing conditions of a carrier rotation speed of 60 rpm, a platen rotation speed of 50 rpm, and a slurry flow rate of 200 ml / min.
[0040]
(2) Preparation of cleaning solution
Example 2
0.15% by weight of ammonium polyacrylate having a weight average molecular weight of about 2600, 0.20% by weight of 1-hydroxyethylidene-1,1-diphosphonic acid, and peroxide so that the washing solution containing pure water becomes 5.0 liters. A cleaning solution was prepared by sequentially mixing 0.008% by weight of hydrogen and 0.0005% by weight of a rust inhibitor, benzotriazole.
Comparative Example 2
A cleaning liquid having the same composition as in Example 2 except that hydrogen peroxide was not contained was prepared.
[0041]
(3) Cleaning test with cleaning liquid
A cleaning test was performed by cleaning the polished substrate 2 using the cleaning liquid obtained in Example 2 and Comparative Example 2. The cleaning apparatus, cleaning conditions, and cleaning evaluation are as follows. (4) The same cleaning apparatus, conditions, and cleaning evaluation as in the cleaning evaluation test after polishing the ILD film (Example 1, Comparative Example 1) were employed.
[0042]
Table 2 shows the compositions of the cleaning liquids obtained in Example 2 and Comparative Example 2, and the evaluation results of the amount of particles and metal contamination after cleaning the polishing substrate 2 using the cleaning liquids.
[0043]
[Table 2]
Figure 2004022986
As is clear from Table 2, according to the cleaning solution obtained in Example 2, the number of particles having a particle size of 0.20 μm or more was seven, which was a good cleaning result. The metal contamination was 4.8 × 10 Ni.1 0atoms / cm2, Fe is 6.5 × 1010atoms / cm2And pollution was small. Thus, the cleaning liquid of the present invention has a good effect of removing contaminant particles and metal contamination.
On the other hand, according to the cleaning solution obtained in Comparative Example 2, the number of particles having a particle size of 0.20 μm or more was 65, which was a poor cleaning result. Metal contamination is 18.0 × 10 for Ni10atoms / cm2, Fe is 39.0 × 1010atoms / cm2And the contamination was much higher than the method of the present invention.
[0044]
C. Cleaning evaluation test after polishing of low-k film (Example 3, Comparative Example 3)
(1) Preparation of polished substrate
In order to confirm the cleaning effect after polishing the SiOF-based low-k film, a polished substrate was prepared by polishing the SiOF-based low-k film on the substrate. As a substrate, an aluminum wiring having a height of about 0.6 μm and a line and space of about 6 μm was provided on a SiOF-based low-k film of about 5000 ° formed on a Si wafer substrate having a diameter of 200 mm. Further, a film in which the SiOF low-k film of about 1.4 μm was embedded as an ILD film was used.
The polishing agent is a high-purity colloidal silica polishing agent produced by hydrolyzing tetramethyl orthosilicate, and has a silica primary particle diameter of about 25 nm, SiO 22A slurry comprising 1.5% by weight and 0.12% by weight of ammonium fluoride and having a pH of 6.0 was prepared and used. EPO222 manufactured by EBARA CORPORATION was used as the polishing apparatus, and IC1000 / Suba400 manufactured by Rodale was used as the pad, and the polishing load was 150 g / cm.2The wafer with the low-k film was polished for 45 seconds under the polishing conditions of a carrier rotation speed of 60 rpm, a platen rotation speed of 50 rpm, and a slurry flow rate of 180 ml / min.
[0045]
(2) Preparation of cleaning solution
Example 3
0.08% by weight of tetramethylammonium polyacrylate having a weight average molecular weight of about 1200, 0.07% by weight of 1-hydroxyethylidene-1,1-diphosphonic acid, and a peroxide so that the washing liquid containing pure water becomes 5.0 liters. A washing liquid was prepared by sequentially mixing 0.02% by weight of hydrogen.
Comparative Example 3
A washing solution having the same composition as in Example 3 except that 1-hydroxyethylidene-1,1-diphosphonic acid was not contained was prepared.
[0046]
(3) Cleaning test with cleaning liquid
A cleaning test was performed by cleaning the polishing substrate 3 using the cleaning liquids obtained in Example 3 and Comparative Example 3. The cleaning apparatus, cleaning conditions, and cleaning evaluation are as follows. (4) The same cleaning apparatus, conditions, and cleaning evaluation as in the cleaning evaluation test after polishing the ILD film (Example 1, Comparative Example 1) were employed.
[0047]
Table 3 shows the compositions of the cleaning liquids obtained in Example 3 and Comparative Example 3, and the evaluation results of the particle amount and metal contamination after cleaning the polishing substrate 3 using the cleaning liquids.
[0048]
[Table 3]
Figure 2004022986
As is clear from Table 3, according to the cleaning liquid obtained in Example 3, 80 particles having a particle size of 0.20 μm or more seemed to be slightly more than 80, but the cleaning result was much better than that of Comparative Example 3.
Metal contamination was 20.0 × 10 Ni.10atoms / cm2, Fe is 8.0 × 1010atoms / cm2And pollution was small. Thus, the cleaning liquid of the present invention has a good effect of removing contaminant particles and metal contamination.
On the other hand, according to the cleaning solution obtained in Comparative Example 3, the number of particles having a particle size of 0.20 μm or more was 235, which was a poor cleaning result. As a result of detailed surface observation, it was more conspicuous that abrasive particles seemed to be pierced as compared with the cleaning with the cleaning solution of the present invention. Metal contamination was 15.0 × 10 for Ni10atoms / cm2, Fe is 13.0 × 1010atoms / cm2And the contamination were not different from those of the cleaning solution obtained in Example 3.
[0049]
D.洗浄 Cleaning evaluation test after polishing ILD film (Example 4, Comparative Example 4)
(1) Preparation of polished substrate
In order to confirm the cleaning effect after polishing the plasma TEOS film with the ceria-based slurry, a polished substrate was prepared by polishing the ILD film on the substrate with the ceria-based slurry. As the substrate, the same substrate as the substrate before polishing of the polishing substrate 1 was used.
As an abrasive, 2.0% by weight of ceria fine particle powder having an average particle diameter of about 150 nm, 0.1% by weight of polyammonium acrylate having two kinds of average molecular weights (about 1200, about 15000) in a ratio of 1: 1 % And a slurry having a pH of 5.2 was prepared and used. EPO222 manufactured by EBARA CORPORATION was used as a polishing apparatus, IC1000 / Suba400 manufactured by Rodale was used as a pad, and the substrate was polished with a polishing load of 150 g / cm.2The substrate with the ILD film was polished for 50 seconds at a carrier rotation speed of 60 rpm, a platen rotation speed of 50 rpm, and a slurry flow rate of 180 ml / min.
[0050]
(2) Preparation of cleaning solution
Example 4
0.20% by weight of ammonium polyacrylate having a weight average molecular weight of about 2500, 0.03% by weight of 1-hydroxyethylidene-1,1-diphosphonic acid, and peroxide so that the washing solution containing pure water becomes 5.0 liters. A washing liquid was prepared by sequentially mixing 0.20% by weight of hydrogen.
Comparative Example 4
A cleaning solution having the same composition as in Example 4 was prepared except that ammonium polyacrylate having a weight average molecular weight of 12,000 was used as the polyacrylate.
[0051]
(3) Cleaning test with cleaning liquid
A cleaning test was performed by cleaning the polished substrate 4 using the cleaning liquids obtained in Example 4 and Comparative Example 4. The cleaning apparatus, cleaning conditions, and cleaning evaluation are as follows. (4) The same cleaning apparatus, conditions, and cleaning evaluation as in the cleaning evaluation test after polishing the ILD film (Example 1, Comparative Example 1) were employed.
[0052]
Table 4 shows the compositions of the cleaning liquids obtained in Example 4 and Comparative Example 4, and the evaluation results of the amount of particles and metal contamination after cleaning the polishing substrate 4 using the cleaning liquids.
[0053]
[Table 4]
Figure 2004022986
As is clear from Table 4, according to the cleaning liquid obtained in Example 4, the number of particles having a particle size of 0.20 μm or more was 28, which was a good cleaning result. The metal contamination was 28.0 × 10 Ni.10atoms / cm2, Fe is 30.0 × 1010atoms / cm2And the usual removal effect. Thus, the cleaning liquid of the present invention has a good effect of removing contaminant particles and metal contamination.
On the other hand, according to the cleaning liquid obtained in Comparative Example 4, as many as 83 particles having a particle size of 0.20 μm or more remained, and piercing particles were observed as in Comparative Example 3, which was a poor cleaning result. As a result of detailed surface observation, it was more conspicuous that abrasive particles seemed to be pierced as compared with the cleaning with the cleaning solution of the present invention. Metal contamination was 25.0 × 10 Ni10atoms / cm2, Fe is 36.0 × 1010atoms / cm2And contamination were not different from those in Example 4.
[0054]
【The invention's effect】
According to the present invention, even if the film is made of a low-hardness material to be cleaned, or even if it is a film on which a pattern is formed, it is possible to effectively remove attached substances and residual substances from the film without affecting the film. Can be removed.

Claims (6)

シリコンウエハ上に形成された膜を平坦化研磨後に洗浄するための洗浄液であって、ジホスホン酸、過酸化水素、重量平均分子量が1000〜3000であるポリアクリル酸塩、及び水を含有することを特徴とする洗浄液。A cleaning liquid for cleaning a film formed on a silicon wafer after flattening and polishing, which contains diphosphonic acid, hydrogen peroxide, a polyacrylate having a weight average molecular weight of 1,000 to 3,000, and water. Characterized cleaning liquid. 前記膜が、金属膜、素子分離膜、層間絶縁膜、及び窒化膜からなる群から選ばれる一種以上である、請求項1に記載の洗浄液。The cleaning liquid according to claim 1, wherein the film is at least one selected from the group consisting of a metal film, an element isolation film, an interlayer insulating film, and a nitride film. 前記ジホスホン酸が、1−ヒドロキシエチリデン−1,1−ジホスホン酸である、請求項1又は2に記載の洗浄液。3. The cleaning solution according to claim 1, wherein the diphosphonic acid is 1-hydroxyethylidene-1,1-diphosphonic acid. 前記過酸化水素を、0.001重量%〜1重量%含む、請求項1〜3のいずれかに記載の洗浄液。The cleaning liquid according to claim 1, wherein the cleaning liquid contains 0.001% by weight to 1% by weight of the hydrogen peroxide. 前記ポリアクリル酸塩が、ポリアクリル酸アンモニウム塩またはポリアクリル酸テトラメチルアンモニウム塩からなり、かつ、前記ポリアクリル酸塩を、0.0001重量%〜0.5重量%含む、請求項1〜4のいずれかに記載の洗浄液。The polyacrylate is composed of ammonium polyacrylate or tetramethylammonium polyacrylate, and the polyacrylate contains 0.0001% to 0.5% by weight of the polyacrylate. The cleaning solution according to any one of the above. 化学的機械的研磨処理後に、請求項1〜5のいずれかに記載の洗浄液を用いて半導体基板表面を洗浄することを特徴とする、半導体基板表面の洗浄処理方法。A method for cleaning the surface of a semiconductor substrate, comprising cleaning the surface of the semiconductor substrate using the cleaning liquid according to claim 1 after the chemical mechanical polishing treatment.
JP2002178873A 2002-06-19 2002-06-19 Cleaning liquid used after chemomechanical polishing Pending JP2004022986A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002178873A JP2004022986A (en) 2002-06-19 2002-06-19 Cleaning liquid used after chemomechanical polishing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002178873A JP2004022986A (en) 2002-06-19 2002-06-19 Cleaning liquid used after chemomechanical polishing

Publications (1)

Publication Number Publication Date
JP2004022986A true JP2004022986A (en) 2004-01-22

Family

ID=31176465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002178873A Pending JP2004022986A (en) 2002-06-19 2002-06-19 Cleaning liquid used after chemomechanical polishing

Country Status (1)

Country Link
JP (1) JP2004022986A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006114729A (en) * 2004-10-15 2006-04-27 Jsr Corp Excess-metal-layer removing method
JP2009074717A (en) * 2007-09-19 2009-04-09 Shin Ootsuka Kk Treated object drying device
JP2017103466A (en) * 2017-01-06 2017-06-08 日立化成株式会社 Cleaning liquid
JP2020136444A (en) * 2019-02-19 2020-08-31 三菱ケミカル株式会社 Cleaning liquid for removing cerium compound, cleaning method, and semiconductor wafer manufacturing method
WO2021111914A1 (en) * 2019-12-03 2021-06-10 三菱ケミカル株式会社 Cleaning liquid for removing cerium compounds, cleaning method, and method for producing semiconductor wafer

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006114729A (en) * 2004-10-15 2006-04-27 Jsr Corp Excess-metal-layer removing method
JP2009074717A (en) * 2007-09-19 2009-04-09 Shin Ootsuka Kk Treated object drying device
JP2017103466A (en) * 2017-01-06 2017-06-08 日立化成株式会社 Cleaning liquid
JP2020136444A (en) * 2019-02-19 2020-08-31 三菱ケミカル株式会社 Cleaning liquid for removing cerium compound, cleaning method, and semiconductor wafer manufacturing method
JP7271993B2 (en) 2019-02-19 2023-05-12 三菱ケミカル株式会社 Cleaning solution for removing cerium compound, cleaning method, and method for manufacturing semiconductor wafer
WO2021111914A1 (en) * 2019-12-03 2021-06-10 三菱ケミカル株式会社 Cleaning liquid for removing cerium compounds, cleaning method, and method for producing semiconductor wafer
KR20220110490A (en) 2019-12-03 2022-08-08 미쯔비시 케미컬 주식회사 Cleaning liquid for cerium compound removal, cleaning method and semiconductor wafer manufacturing method

Similar Documents

Publication Publication Date Title
JP5313885B2 (en) Compositions and methods for polishing silicon nitride materials
KR100804353B1 (en) Process for Removing Contaminant from a Surface and Composition Useful Therefor
EP2539411B1 (en) Chemical-mechanical planarization of substrates containing copper, ruthenium, and tantalum layers
JP5329786B2 (en) Polishing liquid and method for manufacturing semiconductor device
KR101477360B1 (en) Cmp compositions and methods for suppressing polysilicon removal rates
JP5596344B2 (en) Silicon oxide polishing method using colloidal silica
TWI751969B (en) Treatment composition for chemical mechanical polishing, chemical mechanical polishing method and cleaning method
JP6246263B2 (en) Method for polishing a substrate comprising at least one of silicon oxide and silicon nitride and polysilicon
JP5957777B2 (en) Method for polishing a substrate comprising polysilicon, silicon oxide and silicon nitride
JP5861906B2 (en) Method for chemical mechanical polishing a substrate with a polishing composition adapted to increase silicon oxide removal
JP6137793B2 (en) Method for chemical mechanical polishing of tungsten
JP6423214B2 (en) Low defect chemical mechanical polishing composition
JP2013074036A (en) Slurry for cmp and method for manufacturing semiconductor device
JP3849091B2 (en) Aqueous dispersion for chemical mechanical polishing
JP2008124377A (en) Aqueous dispersant for chemical-mechanical polishing, chemical-mechanical polishing method, and kit for preparing aqueous dispersant for chemical-mechanical polishing
WO2016158795A1 (en) Treatment composition for chemical mechanical polishing, chemical mechanical polishing method and cleaning method
JP2006352096A (en) Chemical mechanical polishing aqueous dispersion, chemical mechanical polishing method, and kit for preparing chemical mechanical polishing aqueous dispersion
JP5369597B2 (en) CMP polishing liquid and polishing method
JP2004022986A (en) Cleaning liquid used after chemomechanical polishing
JP4984032B2 (en) Chemical mechanical polishing aqueous dispersion and chemical mechanical polishing method
JP2004182773A (en) Liquid composition for cleaning hydrophobic substrate
JP2013065858A (en) Aqueous dispersing element for chemical mechanical polishing, chemical mechanical polishing method, and kit for preparing aqueous dispersing element for chemical mechanical polishing
WO2023084861A1 (en) Cleaning liquid for removing cerium compound, cleaning method, and method for producing semiconductor wafer
JP2007288155A (en) Cleaning solution for substrate for semiconductor device and cleaning method using it
JP2008305973A (en) Post-cmp treating liquid, and manufacturing method of semiconductor device using same