JP2004022418A - Battery, and its electrode core member, positive electrode and negative electrode - Google Patents

Battery, and its electrode core member, positive electrode and negative electrode Download PDF

Info

Publication number
JP2004022418A
JP2004022418A JP2002177653A JP2002177653A JP2004022418A JP 2004022418 A JP2004022418 A JP 2004022418A JP 2002177653 A JP2002177653 A JP 2002177653A JP 2002177653 A JP2002177653 A JP 2002177653A JP 2004022418 A JP2004022418 A JP 2004022418A
Authority
JP
Japan
Prior art keywords
electrode
active material
negative electrode
battery
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002177653A
Other languages
Japanese (ja)
Other versions
JP4576785B2 (en
Inventor
Koki Yoshizawa
吉澤 廣喜
Takayuki Iwasaki
岩▲崎▼ 孝行
Tomotoshi Mochizuki
望月 智俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2002177653A priority Critical patent/JP4576785B2/en
Publication of JP2004022418A publication Critical patent/JP2004022418A/en
Application granted granted Critical
Publication of JP4576785B2 publication Critical patent/JP4576785B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve the performance of a battery by improving the current collection efficiency of electrodes. <P>SOLUTION: This electrode core member is formed by sticking a powdery active material 2 to its front face and back face at a predetermined thickness. The tips of projecting parts 1a formed on the electrode core member 1 are so set as to be exposed to the surface of the active material 2. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、電池及びその電極芯材と正電極と負電極に関する。
【0002】
【従来の技術及び発明が解決しようとする課題】
例えば、二次電池の電極は電極芯材に活物質粉末を圧延処理により固着させている。電極芯材は負極活物質から電子を受け取り、その電子は仕事をした後、電解液を介して正極に渡される。この一連の動作により電池としての機能を有している。しかしながら、圧延処理によって固着された活物質はある程度の厚みを有しているため、上記活物質粉末の粉末粒子個々で考えた場合、各々の活物質粉末から電極芯材までの距離に差が生じる。つまり、電極芯材に電子を受け渡しする条件の良悪が発生する。そのため電極全体としての集電効率が悪くなってしまうという問題が生じる。特に活物質が粒子状であることが多くその粒子の接触抵抗が大きいことから電極芯材までの距離の影響が大きくなる。
【0003】
本発明は、上述する問題点に鑑みてなされたもので、電極の集電効率を向上させることにより電池の性能を向上させることを目的とする。
【0004】
【課題を解決するための手段】
上記目的を達成するために、本発明では、電池の電極芯材に係わる第1の手段として、表面及び裏面に粉末状の活物質を所定厚で固着した電極芯材であって、電極芯材に設けられた突出部の先端が前記活物質の表面に露出して設置されるという手段を採用する。これにより、上記した電極芯材から電子の受け渡しする条件の悪い活物質粉末から電極芯材までの距離が短くなり、電極全体の集電効率が向上する。
【0005】
電池の電極芯材に係わる第2の手段として、上記第1の手段において、突出部は上記電極芯材のいずれか片面あるいは両面から局所的に押圧することにより設けられた孔が有するバリであるという手段を採用する。これにより、例えば圧延処理を行うローラーに所定形状に設定された突出部を設けることで、容易に上記突出部を形成することができる。
【0006】
電池の電極芯材に係わる第3の手段として、上記第1または第2の手段において、上記突出部は150Hv(ビッカース硬さ)以下の硬度であるという手段を採用する。これにより、例えば、負極活物質の充電時における体積膨張により負極活物質が上記突出部の先端にせり上がることによる絶縁材の破損防止が可能である。また、負極活物質の放電時の体積収縮によりせり出した突出部の先端が絶縁材を貫通することを防止することが可能である。
【0007】
電池の正電極に係わる第1の手段として、上記第1〜3いずれかの電池の電極芯材に係わる手段において、上記電極芯材の表面及び裏面に正極活物質を固着するという手段を採用する。これにより、上記電極芯材を正極とし使用することができる。
【0008】
電池の正極に係わる第2の手段として、上記第1の手段において、上記正極活物質は、水酸化ニッケルであるという手段を採用する。これにより、上記電極芯材を充電可能な二次電池の正極として使用することができる。
【0009】
電池の負電極に係わる第1の手段として、上記第1〜3いずれかの電池の電極芯材に係わる手段において、上記電極芯材の表面及び裏面に負極活物質を固着するという手段を採用する。これにより、上記電極芯材を負極として使用することができる。
【0010】
電池の負電極に係わる第2の手段として、上記第1の手段において、上記負極活物質は、水素吸蔵合金であるという手段を採用する。これにより上記電極芯材を充電可能な二次電池の正極として使用することができる。
【0011】
電池に係わる第1の手段として、上記第1または2の正電極に係わる手段において、正電極は絶縁材を挟んで負電極と交互に積層した状態で電槽内に実装しているという手段を採用する。これにより、正電極が負電極に触れ、短絡することなく小型の電池を構成することが可能である。
【0012】
電池に係わる第2の手段として、上記第1または2の正電極に係わる手段において正電極は絶縁材を挟んで負電極と重ねた状態で渦巻き状に巻回して電槽内に実装しているという手段を採用する。これにより正電極が負電極に触れ、短絡することなく円筒状の電槽内に電極を収納することができる。
【0013】
電池に係わる第3の手段として、上記第1または2の負電極に係わる手段において、負電極は絶縁材を挟んで正電極と交互に積層した状態で電槽内に実装しているという手段を採用する。これにより、負電極が正電極に触れ、短絡することなく小型の電池を構成することが可能である。
【0014】
電池に係わる第4の手段として、上記第1または2の負電極に係わる手段において負電極は絶縁材を挟んで正電極と重ねた状態で渦巻き状に巻回して電槽内に実装しているという手段を採用する。これにより負電極が正電極に触れ、短絡することなく円筒状の電槽内に電極を収納することができる。
【0015】
【発明の実施の形態】
以下、図面を参照して、本発明に係わる電池及びその電極芯材と正電極と負電極の一実施形態について説明する。
【0016】
図1は電極Eの構成図であり、(a)は側面図、(b)は正面図である。符号1は電極芯材、1aはバリ、1bは貫通孔、2は活物質、Eは電極である。
【0017】
電極芯材1は、例えば厚さ50μmの箔状の平板であって表面及び裏面に活物質2を所定厚で固着されている。バリ(突出部)1aは、先端が活物質2の表面に露出しており、上記電極芯材1のいずれか片面あるいは両面から局所的に押圧することにより設けられた略長方形の貫通孔(孔)1bの短辺から活物質2の表面まで届くように形成されている。また上記電極芯材1の硬さは150Hv以下に設定されており、すなわち、バリ1aの硬さは150Hv(ビッカース硬さ)以下に形成されている。貫通孔1bは、所定間隔で電極芯材1に設けられている。活物質2は、上記電極Eを負電極E1に用いる場合には負極活物質であり、正電極E2に用いる場合には正極活物質であって、電極芯材1の表面及び裏面に圧延処理によって一定厚に固着されている。例えば上記電極Eをニッケル水素電池に用いる場合、上記負極活物質は水素吸蔵合金粉末であり、上記正極活物質は水酸化ニッケル粉末である。
【0018】
図2は、図1における電極Eを積載し、円筒に形状設定された二次電池Bの斜視図である。E1は負電極、E2は正電極、3はセパレータ(絶縁材)、4は電槽(負極端子)、5は正極端子、6は封口板である。
【0019】
負電極E1と正電極E2はセパレータ3をはさんだ状態で多重巻回され円筒状の電槽(負極端子)4内に収納されており、また電槽4内は電解液に満たされている。電槽4の上端は開口部が形成されており、該開口部は中央に正極端子5が設けられると共に電槽4に対して絶縁された封口板6によって封止されている。また、負電極E1は電槽4に接続され、また正電極E2は正極端子5に接続されており、負電極E1と正電極E2は電解液を介して直列回路を構成している。
【0020】
次に、本実施形態における電池及びその電極芯材と正電極と負電極の作用を説明する。
【0021】
例えば、負電極E1の場合、活物質2には水素吸蔵合金粉末が用いられる。負電極E1の表面の点Aに位置する活物質2の粉末は電極芯材1までの距離が電極芯材1にバリ1aが設けられていない場合と比較して近くなっているため、点Aの水素吸蔵合金粉末は電子をバリ1aつまりは電極芯材1に渡しやすくなる。逆に電極芯材1に対して対称に位置する負電極E1の表面の点A´では電極芯材1に貫通孔1bが設けられているためにバリ1aがない場合と比較すると電極芯材1までの距離が遠くなっているが、この点を考慮しても、負電極E1全体で見た場合、集電効率は向上する。一般に活物質2は粉末であって粉末表面の抵抗が大きいことから導電体が近くにあることの効果は大きくなる。実験によれば1つの略長方形の貫通孔1bに形成された1つのバリ1aと他方のバリ1aの間隔を電極の厚さの4倍程度にした場合、10%以上の集電効果の向上が認められている。
【0022】
しかしながら、上述した電極の構成を実現させるためには、バリ1aの硬さを150Hv(ビッカース硬さ)以下にする必要性がある。これは、例えば負電極E1の場合、上記二次電池Bの充電によって活物質2の粉末の体積が膨張する場合にバリ1aの硬さが150Hv以上であると電極芯材1と活物質2の粒子の接合が悪くなって電極Eの表面へ浮きやすくなり、浮いた活物質2の粉末は逃げ場を失い、バリ1aとセパレータ3の間に入り込み、セパレータ3を突き破って正電極E2と接触することによって、二次電池B内で短絡が発生してしまう。また二次電池Bの放電の繰り返しによって活物質2の粉末が収縮・膨張する場合には、次第に活物質2から剥離したバリ1aの先端が活物質2の表面から突出した状態となり、このバリ1aの硬さが150Hv以上であるとセパレータ3を突き破ってしまうので同様に二次電池B内で短絡が発生する原因となる。つまり、バリ1aの硬さを150Hv以下とすることで活物質2が膨張し、バリ1aとセパレータ3との間に入り込んでしまった場合であってもバリ1aが変形するのでセパレータ3を突き破ることが減少する。また、活物質2が収縮し、バリ1aが活物質2の表面から突出した状態となっても、バリ1aが変形することによってセパレータ3を突き破ることが減少する。バリ1aの硬さを150Hv以下にするために電極芯材1を加熱処理し、電極心材1自体を150Hv以下に加工する。
【0023】
図3は、電極芯材1に用いる材料の種類及びビッカース硬さの違いによってどの程度の頻度で二次電池B内において短絡が発生するかの実験結果を表した比較対照表である。この図が示すように、電極芯材1の材質が鉄箔であってもニッケル箔であっても共に硬さが150Hv以下であると二次電池B内の短絡発生頻度が少なくなっている。
【0024】
また、バリ1aが貫通孔1bから活物質2の表面に露出する位置まで届くように形成されているので、バリ1aとバリ1aの間に入り込んで電極芯材1に固着された活物質2は従来の電極よりも電極芯材1に対する固着力が向上する。そのため活物質2の剥離あるいは脱落を抑止することが可能である。そのため、図3の円筒に形状設定された二次電池Bを組み立てるために負電極E1と正電極E2がセパレータ3を挟んで巻回させることによって負電極E1に応力がかかる場合であっても、活物質2はより確実に電極心材1に固着された状態を維持することが可能である。
【0025】
なお、本発明は上記実施形態においてバリ1aが形成された電極芯材1を負電極E1に用いたが正電極E2に用いても良い。この場合、例えば、活物質2は水酸化ニッケルを用いる。また、電極芯材1にバリ1aを設けず、外部から集電性のある突出部を設置しても良い。
【0026】
上記実施形態において、平板の電極芯材1を用いたが、例えば電極Eが巻回される方向に対し、直角方向に湾曲している電極芯材1を用いても良い。この場合であっても、バリ1aは貫通孔1bから活物質の表面まで届くように形成する。また、貫通孔1bは略長方形でなく例えば略正方形や略楕円形でも良い。
【0027】
【発明の効果】
以上説明したように、本発明によれば、表面及び裏面に粉末状の活物質を所定厚で固着した電極芯材であって、電極心材に設けられた突出部の先端が前記活物質の表面に露出して設置されるので、電極の集電効率を向上させることにより電池の性能を向上させることができる。
【図面の簡単な説明】
【図1】本発明の一実施形態に係わる電極Eの構成図であり、(a)は側面図、(b)は正面図である。
【図2】本発明の一実施形態に係わる円筒に形状設定された二次電池Bの斜視図である。
【図3】電極芯材1の材料の違いによる二次電池B内においての短絡発生頻度の比較図である。
【符号の説明】
1……電極芯材
1a……バリ(突出部)
1b……貫通孔(孔)
2……活物質
3……セパレータ(絶縁材)
4……電槽(負極端子)
5……正極端子
6……封口板
E1……負電極
E2……正電極
B……二次電池
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a battery and its electrode core material, positive electrode, and negative electrode.
[0002]
Problems to be solved by the prior art and the invention
For example, in an electrode of a secondary battery, active material powder is fixed to an electrode core material by a rolling process. The electrode core material receives electrons from the negative electrode active material, and after the electrons work, the electrons are passed to the positive electrode via the electrolytic solution. This series of operations has a function as a battery. However, since the active material fixed by the rolling process has a certain thickness, there is a difference in the distance from each active material powder to the electrode core material when considering individual powder particles of the active material powder. . In other words, the conditions for transferring electrons to the electrode core material are changed. Therefore, there is a problem that the current collection efficiency of the entire electrode is deteriorated. In particular, since the active material is often in the form of particles, and the contact resistance of the particles is large, the influence of the distance to the electrode core material increases.
[0003]
The present invention has been made in view of the above-described problems, and has as its object to improve the performance of a battery by improving the current collection efficiency of an electrode.
[0004]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides, as a first means relating to an electrode core material of a battery, an electrode core material in which a powdered active material is fixed to a front surface and a back surface with a predetermined thickness, Is adopted in which the tip of the projection provided on the surface of the active material is exposed to the surface of the active material. Thereby, the distance from the active material powder having poor conditions for transferring electrons from the electrode core material to the electrode core material is shortened, and the current collection efficiency of the entire electrode is improved.
[0005]
As a second means relating to the electrode core material of the battery, in the first means, the protrusion is a burr having a hole provided by locally pressing the electrode core material from one or both surfaces of the electrode core material. Means is adopted. Thus, for example, by providing a projection that is set in a predetermined shape on a roller that performs a rolling process, the projection can be easily formed.
[0006]
As a third means relating to the electrode core material of the battery, in the above first or second means, a means is employed in which the protrusion has a hardness of 150 Hv (Vickers hardness) or less. Thus, for example, it is possible to prevent the insulating material from being damaged due to the negative electrode active material rising to the tip of the protruding portion due to volume expansion during charging of the negative electrode active material. In addition, it is possible to prevent the tip of the protruding portion protruding due to volume shrinkage during discharge of the negative electrode active material from penetrating the insulating material.
[0007]
As the first means relating to the positive electrode of the battery, in the means relating to the electrode core material of any one of the first to third batteries, means for fixing a positive electrode active material on the front surface and the back surface of the electrode core material is employed. . Thereby, the above-mentioned electrode core material can be used as a positive electrode.
[0008]
As a second means relating to the positive electrode of the battery, a means in which the positive electrode active material is nickel hydroxide in the first means is employed. This allows the electrode core material to be used as a positive electrode of a rechargeable secondary battery.
[0009]
As the first means relating to the negative electrode of the battery, in the means relating to the electrode core material of any one of the first to third batteries, means for fixing a negative electrode active material on the front surface and the back surface of the electrode core material is employed. . Thereby, the above-mentioned electrode core material can be used as a negative electrode.
[0010]
As the second means relating to the negative electrode of the battery, in the first means, the means in which the negative electrode active material is a hydrogen storage alloy is employed. This allows the electrode core material to be used as a positive electrode of a rechargeable secondary battery.
[0011]
As a first means relating to the battery, in the means relating to the first or second positive electrode, there is provided a means in which the positive electrode is mounted in the battery case in a state of being alternately stacked with the negative electrode with an insulating material interposed therebetween. adopt. Thus, a small battery can be formed without the positive electrode touching the negative electrode and causing a short circuit.
[0012]
As a second means relating to the battery, in the means relating to the first or second positive electrode, the positive electrode is spirally wound in a state of being overlapped with the negative electrode with an insulating material interposed therebetween and mounted in the battery case. Means is adopted. As a result, the positive electrode touches the negative electrode, and the electrode can be housed in the cylindrical battery case without causing a short circuit.
[0013]
As a third means relating to the battery, in the means relating to the first or second negative electrode, there is provided a means in which the negative electrode is mounted in the battery case in a state of being alternately laminated with the positive electrode with an insulating material interposed therebetween. adopt. This makes it possible to form a small battery without the negative electrode touching the positive electrode and causing a short circuit.
[0014]
As a fourth means relating to the battery, in the means relating to the first or second negative electrode, the negative electrode is spirally wound in a state of being overlapped with the positive electrode with an insulating material interposed therebetween and mounted in the battery case. Means is adopted. As a result, the negative electrode touches the positive electrode, and the electrode can be housed in the cylindrical battery case without causing a short circuit.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of a battery according to the present invention, an electrode core material thereof, a positive electrode and a negative electrode will be described with reference to the drawings.
[0016]
1A and 1B are configuration diagrams of the electrode E, wherein FIG. 1A is a side view and FIG. 1B is a front view. Reference numeral 1 is an electrode core material, 1a is a burr, 1b is a through hole, 2 is an active material, and E is an electrode.
[0017]
The electrode core material 1 is, for example, a 50 μm-thick foil-shaped flat plate, and has an active material 2 fixed to a front surface and a back surface with a predetermined thickness. The burr (projection) 1 a has a tip exposed on the surface of the active material 2, and a substantially rectangular through hole (hole) provided by locally pressing the electrode core 1 from one or both surfaces. 1) It is formed so as to reach from the short side of 1b to the surface of the active material 2. The hardness of the electrode core 1 is set to 150 Hv or less, that is, the hardness of the burr 1a is set to 150 Hv (Vickers hardness) or less. The through holes 1b are provided in the electrode core 1 at predetermined intervals. The active material 2 is a negative electrode active material when the electrode E is used for the negative electrode E1, and a positive electrode active material when the electrode E is used for the positive electrode E2. It is fixed to a certain thickness. For example, when the electrode E is used in a nickel metal hydride battery, the negative electrode active material is a hydrogen storage alloy powder, and the positive electrode active material is a nickel hydroxide powder.
[0018]
FIG. 2 is a perspective view of a secondary battery B on which the electrodes E in FIG. E1 is a negative electrode, E2 is a positive electrode, 3 is a separator (insulating material), 4 is a battery case (negative electrode terminal), 5 is a positive electrode terminal, and 6 is a sealing plate.
[0019]
The negative electrode E1 and the positive electrode E2 are multiply wound with the separator 3 interposed therebetween and housed in a cylindrical battery case (negative electrode terminal) 4, and the battery case 4 is filled with an electrolytic solution. An opening is formed at the upper end of the container 4, and the opening is provided with a positive electrode terminal 5 at the center and sealed by a sealing plate 6 insulated from the container 4. Further, the negative electrode E1 is connected to the battery case 4, the positive electrode E2 is connected to the positive electrode terminal 5, and the negative electrode E1 and the positive electrode E2 form a series circuit via the electrolytic solution.
[0020]
Next, the operation of the battery and the electrode core material, the positive electrode, and the negative electrode in the present embodiment will be described.
[0021]
For example, in the case of the negative electrode E1, a hydrogen storage alloy powder is used for the active material 2. The powder of the active material 2 located at the point A on the surface of the negative electrode E1 has a shorter distance to the electrode core 1 as compared with the case where the electrode core 1 is not provided with the burr 1a. The hydrogen storage alloy powder makes it easier to pass electrons to the burr 1a, that is, to the electrode core 1. On the contrary, at the point A 'on the surface of the negative electrode E1 symmetrically positioned with respect to the electrode core 1, the through hole 1b is provided in the electrode core 1 so that the electrode core 1 However, even when this point is taken into consideration, the power collection efficiency is improved when viewed from the whole of the negative electrode E1. Generally, since the active material 2 is a powder and has a large resistance on the surface of the powder, the effect of the proximity of the conductor increases. According to an experiment, when the distance between one burr 1a formed in one substantially rectangular through hole 1b and the other burr 1a is set to about four times the thickness of the electrode, the current collecting effect is improved by 10% or more. It recognized.
[0022]
However, in order to realize the above-described electrode configuration, it is necessary to reduce the hardness of the burr 1a to 150 Hv (Vickers hardness) or less. For example, in the case of the negative electrode E1, when the volume of the powder of the active material 2 expands due to the charging of the secondary battery B, if the hardness of the burr 1a is 150 Hv or more, the electrode core material 1 and the active material 2 The bonding of the particles becomes poor and the particles of the active material 2 easily float on the surface of the electrode E. The powder of the floating active material 2 loses its escape area, enters between the burr 1 a and the separator 3, breaks through the separator 3, and comes into contact with the positive electrode E 2. As a result, a short circuit occurs in the secondary battery B. Further, when the powder of the active material 2 shrinks and expands due to the repetition of the discharge of the secondary battery B, the tip of the burr 1a gradually peeled off from the active material 2 gradually protrudes from the surface of the active material 2, and this burr 1a If the hardness is more than 150 Hv, the separator 3 will be pierced, which also causes a short circuit in the secondary battery B. That is, when the hardness of the burr 1a is set to 150 Hv or less, the active material 2 expands, and even if the burr 1a enters between the burr 1a and the separator 3, the burr 1a is deformed. Decrease. Further, even when the active material 2 shrinks and the burrs 1 a protrude from the surface of the active material 2, it is less likely that the burrs 1 a deform and break through the separator 3. The electrode core material 1 is subjected to a heat treatment to reduce the hardness of the burr 1a to 150 Hv or less, and the electrode core material 1 itself is processed to 150 Hv or less.
[0023]
FIG. 3 is a comparative control table showing experimental results of how often a short circuit occurs in the secondary battery B depending on the type of material used for the electrode core material 1 and the difference in Vickers hardness. As shown in this figure, regardless of whether the material of the electrode core material 1 is iron foil or nickel foil, if the hardness is 150 Hv or less, the frequency of occurrence of short circuit in the secondary battery B is reduced.
[0024]
Also, since the burr 1a is formed so as to reach the position exposed from the through hole 1b to the surface of the active material 2, the active material 2 that enters between the burr 1a and the burr 1a and is fixed to the electrode core 1 is The fixing force to the electrode core 1 is improved as compared with the conventional electrode. Therefore, peeling or falling off of the active material 2 can be suppressed. Therefore, even when stress is applied to the negative electrode E1 by assembling the negative electrode E1 and the positive electrode E2 with the separator 3 interposed therebetween in order to assemble the secondary battery B having a cylindrical shape in FIG. The active material 2 can more reliably maintain the state of being fixed to the electrode core 1.
[0025]
In the present invention, the electrode core 1 on which the burrs 1a are formed is used for the negative electrode E1 in the above embodiment, but may be used for the positive electrode E2. In this case, for example, the active material 2 uses nickel hydroxide. In addition, the electrode core 1 may not be provided with the burrs 1a, but may be provided with a projecting portion having a current collecting property from the outside.
[0026]
In the above embodiment, the flat electrode core material 1 is used. However, for example, the electrode core material 1 curved in a direction perpendicular to the direction in which the electrode E is wound may be used. Even in this case, the burr 1a is formed so as to reach the surface of the active material from the through hole 1b. Further, the through hole 1b is not limited to a substantially rectangular shape, and may be, for example, a substantially square or substantially elliptical shape.
[0027]
【The invention's effect】
As described above, according to the present invention, an electrode core material in which a powdery active material is fixed to a front surface and a back surface with a predetermined thickness, and a tip of a protruding portion provided on the electrode core material has a front surface of the active material. In this case, the performance of the battery can be improved by improving the current collection efficiency of the electrode.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of an electrode E according to an embodiment of the present invention, where (a) is a side view and (b) is a front view.
FIG. 2 is a perspective view of a cylindrical secondary battery B according to an embodiment of the present invention.
FIG. 3 is a comparison diagram of the frequency of occurrence of short circuits in the secondary battery B due to the difference in the material of the electrode core material 1.
[Explanation of symbols]
1 ... Electrode core material 1a ... Burr (projection)
1b: Through-hole (hole)
2 Active material 3 Separator (insulating material)
4 ... Battery case (negative electrode terminal)
5 Positive electrode terminal 6 Sealing plate E1 Negative electrode E2 Positive electrode B Secondary battery

Claims (11)

表面及び裏面に粉末状の活物質(2)を所定厚で固着した電極芯材であって、
電極芯材(1)に設けられた突出部(1a)の先端が前記活物質(2)の表面に露出して設置されることを特徴とする電極芯材。
An electrode core material in which a powdered active material (2) is fixed at a predetermined thickness on the front and back surfaces,
An electrode core material, wherein a tip of a protruding portion (1a) provided on an electrode core material (1) is installed so as to be exposed on a surface of the active material (2).
前記突出部(1a)は前記電極芯材(1)のいずれか片面あるいは両面から局所的に押圧することにより設けられた孔(1b)が有するバリであることを特徴とする請求項1記載の電極芯材。The said protrusion part (1a) is a burr which the hole (1b) provided by pressing locally from either one side or both sides of the said electrode core material (1) is a burr. Electrode core material. 前記突出部(1a)は150Hv(ビッカース硬さ)以下の硬度であることを特徴とする請求項1または2記載の電極芯材。The electrode core according to claim 1 or 2, wherein the protrusion (1a) has a hardness of 150 Hv (Vickers hardness) or less. 前記電極芯材(1)の表面及び裏面に正極活物質を固着することを特徴とした請求項1〜3いずれかに記載の正電極。The positive electrode according to any one of claims 1 to 3, wherein a positive electrode active material is fixed to a front surface and a rear surface of the electrode core (1). 前記正極活物質は、水酸化ニッケルであることを特徴とする請求項4記載の正電極。The positive electrode according to claim 4, wherein the positive electrode active material is nickel hydroxide. 前記電極芯材(1)の表面及び裏面に負極活物質を固着することを特徴とした請求項1〜3いずれかに記載の負電極。The negative electrode according to any one of claims 1 to 3, wherein a negative electrode active material is fixed to a front surface and a rear surface of the electrode core (1). 前記負極活物質は、水素吸蔵合金であることを特徴とする請求項6記載の負電極。The negative electrode according to claim 6, wherein the negative electrode active material is a hydrogen storage alloy. 請求項4または5記載の正電極は絶縁材(3)を挟んで負電極と交互に積層した状態で電槽(4)内に実装していることを特徴とする電池。A battery, wherein the positive electrode according to claim 4 or 5 is mounted in the battery case (4) in a state of being alternately laminated with the negative electrode with the insulating material (3) interposed therebetween. 請求項4または5記載の正電極は絶縁材(3)を挟んで負電極と重ねた状態で渦巻き状に巻回して電槽(4)内に実装していることを特徴とする電池。A battery, wherein the positive electrode according to claim 4 or 5 is spirally wound and mounted in a battery case (4) in a state where the positive electrode overlaps the negative electrode with the insulating material (3) interposed therebetween. 請求項6または7記載の負電極は絶縁材(3)を挟んで正極と交互に積層した状態で電槽(4)内に実装していることを特徴とする電池。The battery according to claim 6, wherein the negative electrode is mounted in the battery case in a state where the negative electrode is alternately stacked with the positive electrode with the insulating material interposed therebetween. 請求項6または7記載の負電極は絶縁材(3)を挟んで正電極と重ねた状態で渦巻き状に巻回して電槽(4)内に実装していることを特徴とする電池。8. A battery, wherein the negative electrode according to claim 6 or 7 is spirally wound and mounted in a battery case (4) in a state of being overlapped with the positive electrode with the insulating material (3) interposed therebetween.
JP2002177653A 2002-06-18 2002-06-18 Battery and its electrode core material, positive electrode and negative electrode Expired - Fee Related JP4576785B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002177653A JP4576785B2 (en) 2002-06-18 2002-06-18 Battery and its electrode core material, positive electrode and negative electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002177653A JP4576785B2 (en) 2002-06-18 2002-06-18 Battery and its electrode core material, positive electrode and negative electrode

Publications (2)

Publication Number Publication Date
JP2004022418A true JP2004022418A (en) 2004-01-22
JP4576785B2 JP4576785B2 (en) 2010-11-10

Family

ID=31175632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002177653A Expired - Fee Related JP4576785B2 (en) 2002-06-18 2002-06-18 Battery and its electrode core material, positive electrode and negative electrode

Country Status (1)

Country Link
JP (1) JP4576785B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0218860A (en) * 1988-07-06 1990-01-23 Bridgestone Corp Battery
JPH0315157A (en) * 1989-06-13 1991-01-23 Ricoh Co Ltd Sheet-form electrode
JP2002198055A (en) * 2000-08-30 2002-07-12 Isao Matsumoto Paste-like thin electrode for battery, its manufacturing method and secondary battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0218860A (en) * 1988-07-06 1990-01-23 Bridgestone Corp Battery
JPH0315157A (en) * 1989-06-13 1991-01-23 Ricoh Co Ltd Sheet-form electrode
JP2002198055A (en) * 2000-08-30 2002-07-12 Isao Matsumoto Paste-like thin electrode for battery, its manufacturing method and secondary battery

Also Published As

Publication number Publication date
JP4576785B2 (en) 2010-11-10

Similar Documents

Publication Publication Date Title
JP4243409B2 (en) Lithium secondary battery
JP5275298B2 (en) Secondary battery
CN210535760U (en) Electrode assembly and secondary battery
JP4292223B2 (en) Secondary battery
JP5101613B2 (en) Safety kit for secondary battery
JP4526996B2 (en) Lithium ion secondary battery
JP2001229913A (en) Sealed battery
CN112310409A (en) Electrode assembly and secondary battery
CN111628135B (en) Sealed battery and battery pack
JP2005203374A (en) Secondary battery
KR20080008245A (en) Electrode assembly having stable lead-tap joint and electrochemical cell containing them
WO2005020351A1 (en) Cylindrical cell and manufacturing method thereof
JP2006019140A (en) Battery pack
JP2006080066A (en) Lithium-ion secondary battery
JP2005310577A (en) Coin type secondary battery
WO2020177599A1 (en) Secondary battery
CN208078090U (en) Electrode, battery core, battery and electronic equipment
JP2004022418A (en) Battery, and its electrode core member, positive electrode and negative electrode
JP2020024827A (en) Bipolar battery and manufacturing method of bipolar battery
JP4794138B2 (en) Assembled battery
JP2002313311A (en) Lithium secondary battery
JPH09134729A (en) Nonaqueous electrolyte battery
KR101285898B1 (en) Secondary battery
JPS63166151A (en) Silver oxide-lithium battery
JP2013062222A (en) Secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050317

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080708

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091006

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100727

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100809

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees