JP2004011003A - Hydrogen storage material and hydrogen storage vessel using the same - Google Patents

Hydrogen storage material and hydrogen storage vessel using the same Download PDF

Info

Publication number
JP2004011003A
JP2004011003A JP2002169030A JP2002169030A JP2004011003A JP 2004011003 A JP2004011003 A JP 2004011003A JP 2002169030 A JP2002169030 A JP 2002169030A JP 2002169030 A JP2002169030 A JP 2002169030A JP 2004011003 A JP2004011003 A JP 2004011003A
Authority
JP
Japan
Prior art keywords
hydrogen storage
hydrogen
powder
storage alloy
storage material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002169030A
Other languages
Japanese (ja)
Inventor
Yoshio Morita
盛田 芳雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2002169030A priority Critical patent/JP2004011003A/en
Publication of JP2004011003A publication Critical patent/JP2004011003A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hydrogen storage material of high capacity in which the quantity of hydrogen effectively dischargeable to the outside at a room temperature is more increased than the conventional case. <P>SOLUTION: The hydrogen storage material comprises hydrogen storage alloy powder, C element-containing crystal powder, hydrogen compound powder or Mg powder. The hydrogen storage alloy powder, the C element-containing crystal powder, the hydrogen compound powder or the Mg powder are mutually joined in a mixed state. The crystals of the hydrogen storage alloy, the crystals comprising the C element, the crystals of the hydrogen compound or the crystals of the Mg are all held. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、水素吸蔵材料およびそれを用いた水素貯蔵容器に関する。
【0002】
【従来の技術】
近年、環境問題ならびにエネルギー問題の観点から、燃料電池自動車、定置用燃料電池、および携帯用燃料電池への適用を目指した燃料電池技術の開発が活発化している。燃料電池の種類としては多種知られているが、なかでも燃料として水素を用い、酸化剤として空気もしくは酸素を用いる固体高分子型燃料電池の商品化がなされつつある。
【0003】
水素の燃料電池への供給方法に関しては、水素源から逐次水素を発生させて供給する方法と、貯蔵された水素を徐々に供給する方法がある。水素の発生方法としては、水の電気分解や、化石燃料の改質が挙げられ、水素の貯蔵方法としては、高圧水素あるいは液体水素にして貯蔵する方法や、水素貯蔵材料に水素を吸蔵させる貯蔵方法がある。
【0004】
燃料電池の広範囲の普及のためには、室温低圧動作が可能で、高容量かつ外部からのエネルギー供給が殆ど必要ない水素供給装置が必要不可欠である。特に、燃料電池自動車ならびに携帯用燃料電池においては、こういった性能の水素供給装置が威力を発揮する。上記を鑑みると、従来の水素供給方法のなかでは、水素貯蔵材料に水素を吸蔵させ、これを徐々に燃料電池に供給する方法が有力候補となる。
【0005】
水素貯蔵材料については、水素吸蔵合金、炭素元素を含む結晶粉末、水素化合物(ケミカルハイドライド)などが有望である。
例えば、V(バナジウム)含有水素吸蔵合金の場合、室温動作では、2.5重量%の水素を貯蔵可能である。
また、300℃以上の高温動作では、Mg金属が7重量%程度の水素を貯蔵可能であることが確かめられている。
また、炭素は、室温以下で、7重量%程度の水素を吸蔵することが知られているが、室温では吸蔵した水素を放出しない。また、水素化合物は、室温での放出速度が極めて遅く、実用的でないうえ、水素化合物の再生も困難である。
すなわち、室温動作が可能な水素貯蔵材料としては、水素吸蔵合金が実用的であるが、外部に有効に取り出せる水素の吸蔵量は、水素吸蔵合金の2.5重量%までが限界である。
【0006】
【発明が解決しようとする課題】
本発明は、燃料電池に用いる水素貯蔵部として有望な水素貯蔵材料が有する上記問題を鑑みてなされたものであり、室温で外部に有効に取り出せる水素の吸蔵量を従来以上に高めた水素貯蔵材料、およびそれを用いた水素貯蔵容器を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明は、水素吸蔵合金粉末および炭素元素を含む結晶粉末からなる水素貯蔵材料であって、前記水素吸蔵合金粉末と前記炭素元素を含む結晶粉末とは、混合された状態で互いに接合されており、前記水素吸蔵合金の結晶および前記炭素元素を含む結晶は、いずれも維持されている水素貯蔵材料に関する。
本発明は、また、水素吸蔵合金粉末および水素化合物粉末からなる水素貯蔵材料であって、前記水素吸蔵合金粉末と前記水素化合物粉末とは、混合された状態で互いに接合されており、前記水素吸蔵合金の結晶および前記水素化合物の結晶は、いずれも維持されている水素貯蔵材料に関する。
本発明は、また、水素吸蔵合金粉末およびMg粉末からなる水素貯蔵材料であって、前記水素吸蔵合金粉末と前記Mg粉末とは、混合された状態で互いに接合されており、前記水素吸蔵合金の結晶および前記Mgの結晶は、いずれも維持されている水素貯蔵材料に関する。
本発明は、また、上記の水素貯蔵材料からなる水素貯蔵容器に関する。
【0008】
【発明の実施の形態】
実施の形態1
本実施の形態にかかる水素貯蔵材料は、水素吸蔵合金粉末と、C元素を含む結晶粉末とを混合して接合し、一体化させたものである。C元素を含む結晶粉末は、通常、室温では吸蔵した水素を放出しないが、これを水素吸蔵合金粉末と一体化することにより、室温でも、その全てまたは一部を外部に有効に取り出すことができるようになる。この現象は、水素吸蔵合金には、気体水素分子を水素原子に分解して固体中に取り込むのを促進する作用と、固体中の水素原子を水素分子として放出するのを促進する作用があることに基づいている。従って、最大で、水素吸蔵合金が吸蔵する水素とC元素を含む結晶粉末が吸蔵する水素の合計量を、室温において放出させることが可能となり、外部に有効に取り出せる水素の貯蔵量を従来以上に高めることができる。
【0009】
水素吸蔵合金には、(1)希土類元素と、NiまたはCoとを、原子比1:5で含む六方晶を主相とする希土類含有水素吸蔵合金(例えばLaNi、LaCo、PrNi、PrCoなど)、(2)遷移金属と、Tiおよび/またはZrとを、原子比(1.5〜2):1で含むラーベス相を主相とするラーベス相含有水素吸蔵合金(例えばTiMn1.5、ZrMn、Ti0.7Zr0.3Mnなど)、(3)bcc相を主相とするV含有水素吸蔵合金(例えばVTi0.01、Ti0.25Cr0.350.4など)、(4)TiFe、(5)TiCo、(6)CaNiなどを用いることができる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。これらのうちでは、C元素を含む結晶粉末と一体化しやすいことや、水素の吸蔵および放出を促進する作用が強いことから、LaNiが特に好ましい。
【0010】
水素吸蔵合金粉末の平均粒径は、10〜100μmであることが好ましい。水素吸蔵合金粉末の平均粒径が大きすぎると、C元素を含む結晶粉末との一体化が困難になるとともに、水素吸蔵合金の気体水素分子を水素原子に分解して固体中に取り込むのを促進する作用と、固体中の水素原子を水素分子として放出するのを促進する作用が十分にC元素を含む結晶粉末に行き渡らない。一方、水素吸蔵合金粉末の平均粒径が小さすぎると、合金粉末の表面酸化により、一体化による水素の吸蔵・放出の活性化が困難となる。
【0011】
C元素を含む結晶粉末には、例えばカーボンナノチューブ、カーボンナノファイバー、フラーレン、黒鉛などを用いることができるが、これらに限定されるものではない。これらは単独で、用いてもよく、2種以上を組み合わせて用いてもよい。これらのうちでは、水素吸蔵量が多いことから、カーボンナノチューブが特に好ましい。
【0012】
C元素を含む結晶粉末の平均粒径は、100μm以下であることが好ましい。C元素を含む結晶粉末の平均粒径が大きすぎると、水素吸蔵合金粉末との一体化が困難になるとともに、水素吸蔵合金の気体水素分子を水素原子に分解して固体中に取り込むのを促進する作用と、固体中の水素原子を水素分子として放出するのを促進する作用が十分にC元素を含む結晶粉末に行き渡らない。
【0013】
混合された水素吸蔵合金粉末とC元素を含む結晶粉末とを一体化する方法としては、高圧プレス法、メカニカルアロイング法等が挙げられる。これらの方法によれば、水素吸蔵合金の結晶とC元素を含む結晶のそれぞれが維持された状態の一体化物(水素吸蔵材料)を得ることができる。
高圧プレス法では、例えばAr雰囲気下で100トン/cm程度の圧力を混合物に印加することが好ましい。また、メカニカルアロイング法は、Ar雰囲気下で行うことが好ましく、10ヘルツ程度の振動数で10時間程度実施することが好ましい。
【0014】
水素吸蔵合金粉末と混合するC元素を含む結晶粉末の量は、水素吸蔵合金粉末100体積部あたり100〜1000体積部であることが好ましい。C元素を含む結晶粉末の量が多すぎると、水素吸蔵合金の気体水素分子を水素原子に分解して固体中に取り込むのを促進する作用と、固体中の水素原子を水素分子として放出するのを促進する作用が十分にC元素を含む結晶粉末に行き渡らない。一方、C元素を含む結晶粉末の量が少なすぎると、外部に有効に取り出せる水素の貯蔵量の大きな水素貯蔵材料を得ることができない。
【0015】
次に、上記水素貯蔵材料からなる水素貯蔵容器について、図1を参照しながら説明する。水素貯蔵容器は、図1に示すように、水素吸蔵合金粉末とC元素を含む結晶粉末とを混合して接合し、一体化させた水素貯蔵材料1を、水素を密封可能な材料からなる容器2に充填することにより、得ることができる。容器2には、水素の注入と排出を行うための水素流通管3、および容器内の水素圧を制御するための水素圧制御弁4を設ければよい。
【0016】
実施の形態2
本実施の形態にかかる水素貯蔵材料は、水素吸蔵合金粉末と、水素化物粉末とを混合して接合し、一体化させたものである。
水素化物粉末は、通常、室温では吸蔵した水素の放出が極めて遅く、実用的には殆ど放出できないが、これを水素吸蔵合金粉末と一体化することにより、室温でも水素を迅速に外部に有効に取り出すことができるようになる。この現象は、水素吸蔵合金には、気体水素分子を水素原子に分解して固体中に取り込むのを促進する作用と、固体中の水素原子を水素分子として放出するのを促進する作用があることに基づいている。従って、最大で、水素吸蔵合金が吸蔵する水素と水素化物粉末が吸蔵する水素の合計量を、室温において迅速に放出させることが可能となり、外部に有効に取り出せる水素の貯蔵量を従来以上に高めることができる。また、水素放出後に、元の水素化物を再生する水素化反応も、水素吸蔵合金の作用により促進される。
【0017】
水素吸蔵合金には、実施の形態1で述べた水素吸蔵合金と同様のものを用いることができるが、これらのうちでは、水素化物粉末と一体化しやすいことや、水素の吸蔵および放出を促進する作用が強いことから、LaNiが特に好ましい。
【0018】
水素化物には、式:A(Aはアルカリ金属またはアルカリ土類金属、Bは硼素またはアルミニウム、Hは水素であり、0≦x≦10、0≦y≦20、1≦z≦30であり、xとyは同時に0になることはない)で表される化合物を用いることが好ましい。このような水素化物として、例えばLiAlH、LiBH、NaAlH、NaBHなどを挙げることができるが、これらに限定されるものではない。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。
【0019】
水素化物粉末の平均粒径は、100μm以下であることが好ましい。水素化物粉末の平均粒径が大きすぎると、一体化が困難になるとともに、水素吸蔵合金の気体水素分子を水素原子に分解して固体中に取り込むのを促進する作用と、固体中の水素原子を水素分子として放出するのを促進する作用が十分に水素化物粉末に行き渡らない。
【0020】
混合された水素吸蔵合金粉末と水素化物粉末とを一体化する方法としては、高圧プレス法、メカニカルアロイング法等が挙げられる。これらの方法によれば、水素吸蔵合金の結晶と水素化物の結晶のそれぞれが維持された状態の一体化物(水素吸蔵材料)を得ることができる。高圧プレス法やメカニカルアロイング法の条件は、実施の形態1の場合と同様である。
【0021】
水素吸蔵合金粉末と混合する水素化物粉末の量は、水素吸蔵合金粉末100体積部あたり100〜1000体積部であることが好ましい。水素化物粉末の量が多すぎると、水素吸蔵合金の気体水素分子を水素原子に分解して固体中に取り込むのを促進する作用と、固体中の水素原子を水素分子として放出するのを促進する作用が十分に水素化物粉末に行き渡らない。一方、水素化物粉末の量が少なすぎると、外部に有効に取り出せる水素の貯蔵量の大きな水素貯蔵材料を得ることができない。
【0022】
なお、上記水素貯蔵材料からなる水素貯蔵容器については、水素吸蔵合金粉末と水素化物粉末とを混合して接合し、一体化させた水素貯蔵材料を用いること以外、実施の形態1と同様にして得ることができる。
【0023】
実施の形態3
本実施の形態にかかる水素貯蔵材料は、水素吸蔵合金粉末と、Mg粉末とを混合して接合し、一体化させたものである。
Mg粉末は、通常、室温では吸蔵した水素を放出できないが、これを水素吸蔵合金粉末と一体化することにより、室温でも水素を外部に有効に取り出すことができるようになる。この現象は、水素吸蔵合金には、気体水素分子を水素原子に分解して固体中に取り込むのを促進する作用と、固体中の水素原子を水素分子として放出するのを促進する作用があることに基づいている。従って、最大で、水素吸蔵合金が吸蔵する水素とMg粉末が吸蔵する水素の合計量を、室温において迅速に放出させることが可能となり、外部に有効に取り出せる水素の貯蔵量を従来以上に高めることができる。
【0024】
水素吸蔵合金には、実施の形態1で述べた水素吸蔵合金と同様のものを用いることができるが、これらのうちでは、Mg粉末と一体化しやすいことや、水素の吸蔵および放出を促進する作用が強いことから、LaNiが特に好ましい。
【0025】
混合された水素吸蔵合金粉末とMg粉末とを一体化する方法としては、高圧プレス法、メカニカルアロイング法等が挙げられる。これらの方法によれば、水素吸蔵合金の結晶とMg結晶のそれぞれが維持された状態の一体化物(水素吸蔵材料)を得ることができる。高圧プレス法やメカニカルアロイング法の条件は、実施の形態1の場合と同様である。
【0026】
Mg粉末の平均粒径は、1〜100μmであることが好ましい。Mg粉末の平均粒径が大きすぎると、一体化が困難になるとともに、水素吸蔵合金の気体水素分子を水素原子に分解して固体中に取り込むのを促進する作用と、固体中の水素原子を水素分子として放出するのを促進する作用が十分にMg粉末に行き渡らない。一方、Mg粉末の平均粒径が小さすぎると、水素吸蔵合金と接合させる際に発火することがある。
【0027】
水素吸蔵合金粉末と混合するMg粉末の量は、水素吸蔵合金粉末100体積部あたり100〜1000体積部であることが好ましい。Mg粉末の量が多すぎると、水素吸蔵合金の気体水素分子を水素原子に分解して固体中に取り込むのを促進する作用と、固体中の水素原子を水素分子として放出するのを促進する作用が十分にMg粉末に行き渡らない。一方、Mg粉末の量が少なすぎると、外部に有効に取り出せる水素の貯蔵量の大きな水素貯蔵材料を得ることができない。
【0028】
なお、上記水素貯蔵材料からなる水素貯蔵容器については、水素吸蔵合金粉末とMg粉末とを混合して接合し、一体化させた水素貯蔵材料を用いること以外、実施の形態1と同様にして得ることができる。
【0029】
【実施例】
以下、本発明を実施例に基づいてより具体的に説明するが、本発明はこれらに限定されるものではない。
【0030】
《実施例1》
実施の形態1にかかる水素貯蔵材料の一例を用いて、図1に示したような水素貯蔵容器を作製した。
(i)水素貯蔵材料の調製
水素貯蔵材料A1
平均粒径50μmのLaNi粉末(100重量部のLaNiあたりの水素貯蔵量は1.2重量部)20体積部と、平均内径0.1μm、平均長1μmのカーボンナノチューブ(カーボンナノチューブ100重量部あたりの水素貯蔵量は7.6重量部)80体積部とを混合し、得られた混合物を、メカニカルアロイング法(条件:振動数10ヘルツで10時間稼働)により、一体化して、水素貯蔵材料A1を得た。得られた水素貯蔵材料をX線回折法により分析したところ、LaNiに特有のピークおよびカーボンナノチューブに特有のピークが観測された。このことから、LaNiとカーボンナノチューブは、それぞれ独自の結晶を保持していることが確認できた。
【0031】
水素貯蔵材料A2
平均粒径60μmのVTi0.01粉末(100重量部のVTi0.01あたりの水素貯蔵量は2.4重量部)20体積部と、平均内径0.1μm、平均長1μmのカーボンナノチューブ(カーボンナノチューブ100重量部あたりの水素貯蔵量は7.6重量部)80体積部とを混合し、得られた混合物を、メカニカルアロイング法(条件:振動数10ヘルツで10時間稼働)により、一体化して、水素貯蔵材料A2を得た。得られた水素貯蔵材料をX線回折法により分析したところ、VTi0.01に特有のピークおよびカーボンナノチューブに特有のピークが観測された。このことから、LaNiとカーボンナノチューブは、それぞれ独自の結晶を保持していることが確認できた。
【0032】
(ii)水素貯蔵容器の作製およびその評価
得られた水素貯蔵材料A1を、内容積が10cmのステンレス鋼製の方形容器に充填し、容器を密封した。次いで、室温下、この容器内に、容器内圧が10MPaで平衡になるまで水素を供給した。そして、同じく室温下で、容器内から水素の排気を行った。その結果、水素貯蔵材料A1の100重量部あたり、3.8重量部の水素を室温下で有効に取り出すことができた。
また、同様の操作を水素貯蔵材料A2についても行ったところ、水素貯蔵材料A2の100重量部あたり、4.9重量部の水素を室温下で有効に取り出すことができた。
【0033】
以上のように、本発明によれば、室温で外部に有効に取り出せる水素量を従来以上に高めた高容量の水素貯蔵材料が得られる。そして、これを内包した水素貯蔵容器によれば、室温で低エネルギーで燃料電池を稼動することができる。
【0034】
《実施例2》
実施の形態2にかかる水素貯蔵材料の一例を用いて、図1に示したような水素貯蔵容器を作製した。
(i)水素貯蔵材料の調製
水素貯蔵材料B1
平均粒径50μmのLaNi粉末(100重量部のLaNiあたりの水素貯蔵量は1.2重量部)20体積部と、平均粒径10μmのLiAlH(100重量部のLiAlHあたりの水素貯蔵量は8.0重量部)80体積部とを混合し、得られた混合物を、高圧プレス法(条件:Ar雰囲気下、100トン/cmの圧力を印加)により、一体化して、水素貯蔵材料B1を得た。得られた水素貯蔵材料をX線回折法により分析したところ、LaNiに特有のピークおよびLiAlHに特有のピークが観測された。このことから、LaNiとLiAlHは、それぞれ独自の結晶を保持していることが確認できた。
【0035】
水素貯蔵材料B2
平均粒径60μmのVTi0.01粉末(100重量部のVTi0.01あたりの水素貯蔵量は2.4重量部)20体積部と、平均粒径10μmのLiAlH80体積部とを混合し、得られた混合物を、高圧プレス法(条件:Ar雰囲気下、100トン/cmの圧力を印加)により、一体化して、水素貯蔵材料B2を得た。得られた水素貯蔵材料をX線回折法により分析したところ、VTi0.01に特有のピークおよびLiAlHに特有のピークが観測された。このことから、LaNiとLiAlHは、それぞれ独自の結晶を保持していることが確認できた。
【0036】
(ii)水素貯蔵容器の作製およびその評価
水素貯蔵材料A1の代わりに、水素貯蔵材料B1を用いたこと以外、実施例1と同様の水素貯蔵容器を作製し、同様の評価を行った。その結果、水素貯蔵材料B1の100重量部あたり、3.3重量部の水素を室温下で有効に取り出すことができた。
また、同様の操作を水素貯蔵材料B2についても行ったところ、水素貯蔵材料B2の100重量部あたり、4.5重量部の水素を室温下で有効に取り出すことができた。
【0037】
以上のように、水素化物を用いることによっても、室温で外部に有効に取り出せる水素量を従来以上に高めた高容量の水素貯蔵材料が得られる。そして、これを内包した水素貯蔵容器によれば、室温で低エネルギーで燃料電池を稼動することができる。
【0038】
《実施例3》
実施の形態3にかかる水素貯蔵材料の一例を用いて、図1に示したような水素貯蔵容器を作製した。
(i)水素貯蔵材料の調製
水素貯蔵材料C1
平均粒径50μmのLaNi粉末(100重量部のLaNiあたりの水素貯蔵量は1.2重量部)20体積部と、平均粒径10μmのMg粉末(Mg粉末100重量部あたりの水素貯蔵量は6.5重量部)80体積部とを混合し、得られた混合物を、メカニカルアロイング法(条件:振動数10ヘルツで10時間稼働)により、一体化して、水素貯蔵材料C1を得た。得られた水素貯蔵材料をX線回折法により分析したところ、LaNiに特有のピークおよびMgに特有のピークが観測された。このことから、LaNiとMgは、それぞれ独自の結晶を保持していることが確認できた。
【0039】
水素貯蔵材料C2
平均粒径60μmのVTi0.01粉末(100重量部のVTi0.01あたりの水素貯蔵量は2.4重量部)20体積部と、平均粒径10μmのMg粉末80体積部とを混合し、得られた混合物を、メカニカルアロイング法(条件:振動数10ヘルツで10時間稼働)により、一体化して、水素貯蔵材料C2を得た。得られた水素貯蔵材料をX線回折法により分析したところ、VTi0.01に特有のピークおよびMgに特有のピークが観測された。このことから、LaNiとMgは、それぞれ独自の結晶を保持していることが確認できた。
【0040】
(ii)水素貯蔵容器の作製およびその評価
水素貯蔵材料A1の代わりに、水素貯蔵材料C1を用いたこと以外、実施例1と同様の水素貯蔵容器を作製し、同様の評価を行った。その結果、水素貯蔵材料C1の100重量部あたり、3.6重量部の水素を室温下で有効に取り出すことができた。
また、同様の操作を水素貯蔵材料C2についても行ったところ、水素貯蔵材料C2の100重量部あたり、4.6重量部の水素を室温下で有効に取り出すことができた。
【0041】
以上のように、Mg粉末を用いることによっても、室温で外部に有効に取り出せる水素量を従来以上に高めた高容量の水素貯蔵材料が得られる。そして、これを内包した水素貯蔵容器によれば、室温で低エネルギーで燃料電池を稼動することができる。
【0042】
なお、上記実施例1〜3では、水素吸蔵合金とC元素を含む結晶との組み合わせ、水素吸蔵合金と水素化物との組み合わせ、そして水素吸蔵合金とMgの組み合わせの場合について述べたが、水素吸蔵合金粉末と、C元素を含む結晶粉末、水素化物粉末およびMg粉末より選ばれる3種もしくは2種とを組み合わせても、同様の効果が得られることは言うまでもない。本発明は、これらの場合も包含するものである。
【0043】
【発明の効果】
以上説明したように、本発明によれば、室温で外部に有効に取り出せる水素量を従来以上に高めた高容量の水素貯蔵材料が得られる。従って、高容量かつコンパクトな水素貯蔵容器が得られる。
【図面の簡単な説明】
【図1】本発明の水素貯蔵容器の一例の断面図である。
【符号の説明】
1 水素貯蔵材料
2  容器
3  水素流通管
4  水素圧制御弁
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a hydrogen storage material and a hydrogen storage container using the same.
[0002]
[Prior art]
2. Description of the Related Art In recent years, development of fuel cell technology aimed at application to fuel cell vehicles, stationary fuel cells, and portable fuel cells has been active from the viewpoint of environmental problems and energy problems. Although various types of fuel cells are known, among them, a polymer electrolyte fuel cell using hydrogen as a fuel and air or oxygen as an oxidant is being commercialized.
[0003]
As a method of supplying hydrogen to the fuel cell, there are a method of sequentially generating and supplying hydrogen from a hydrogen source and a method of gradually supplying stored hydrogen. Examples of the method of generating hydrogen include electrolysis of water and reforming of fossil fuels. Examples of the method of storing hydrogen include a method of storing high-pressure hydrogen or liquid hydrogen, and a method of storing hydrogen in a hydrogen storage material. There is a way.
[0004]
For widespread use of fuel cells, a hydrogen supply device that can operate at low pressure at room temperature, has high capacity, and requires little external energy supply is indispensable. In particular, in a fuel cell vehicle and a portable fuel cell, a hydrogen supply device having such performance is effective. In view of the above, among the conventional hydrogen supply methods, a method in which hydrogen is stored in the hydrogen storage material and gradually supplied to the fuel cell is a promising candidate.
[0005]
As a hydrogen storage material, a hydrogen storage alloy, a crystal powder containing a carbon element, a hydrogen compound (chemical hydride) and the like are promising.
For example, in the case of a hydrogen storage alloy containing V (vanadium), 2.5% by weight of hydrogen can be stored at room temperature operation.
Further, it has been confirmed that Mg metal can store about 7% by weight of hydrogen in a high-temperature operation of 300 ° C. or higher.
It is known that carbon absorbs about 7% by weight of hydrogen at room temperature or lower, but does not release the stored hydrogen at room temperature. In addition, the release rate of hydrogen compounds at room temperature is extremely slow, which is not practical, and the regeneration of hydrogen compounds is also difficult.
That is, as a hydrogen storage material capable of operating at room temperature, a hydrogen storage alloy is practical, but the amount of hydrogen that can be effectively extracted to the outside is limited to 2.5% by weight of the hydrogen storage alloy.
[0006]
[Problems to be solved by the invention]
The present invention has been made in view of the above problems of a hydrogen storage material that is promising as a hydrogen storage unit used in a fuel cell, and has a hydrogen storage material with an increased storage amount of hydrogen that can be effectively extracted to the outside at room temperature. , And a hydrogen storage container using the same.
[0007]
[Means for Solving the Problems]
The present invention is a hydrogen storage material comprising a hydrogen storage alloy powder and a crystal powder containing a carbon element, wherein the hydrogen storage alloy powder and the crystal powder containing the carbon element are bonded to each other in a mixed state. The crystal of the hydrogen storage alloy and the crystal containing the carbon element both relate to a maintained hydrogen storage material.
The present invention also relates to a hydrogen storage material comprising a hydrogen storage alloy powder and a hydrogen compound powder, wherein the hydrogen storage alloy powder and the hydrogen compound powder are joined to each other in a mixed state, The crystal of the alloy and the crystal of the hydride both relate to a maintained hydrogen storage material.
The present invention is also a hydrogen storage material comprising a hydrogen storage alloy powder and a Mg powder, wherein the hydrogen storage alloy powder and the Mg powder are joined to each other in a mixed state, The crystal and the Mg crystal both relate to a maintained hydrogen storage material.
The present invention also relates to a hydrogen storage container made of the above hydrogen storage material.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiment 1
The hydrogen storage material according to the present embodiment is obtained by mixing and joining a hydrogen storage alloy powder and a crystal powder containing the C element. The crystal powder containing the C element does not usually release the occluded hydrogen at room temperature, but by integrating this with the hydrogen storage alloy powder, all or a part thereof can be effectively taken out even at room temperature. Become like This phenomenon is due to the fact that the hydrogen storage alloy has a function of promoting the decomposition of gaseous hydrogen molecules into hydrogen atoms and taking them into the solid, and a function of promoting the release of hydrogen atoms in the solids as hydrogen molecules. Based on Therefore, at the maximum, the total amount of hydrogen absorbed by the hydrogen storage alloy and the hydrogen absorbed by the crystal powder containing the C element can be released at room temperature, and the amount of hydrogen that can be effectively extracted to the outside can be increased more than before. Can be enhanced.
[0009]
The hydrogen storage alloy includes (1) a rare earth-containing hydrogen storage alloy having a hexagonal main phase containing a rare earth element and Ni or Co at an atomic ratio of 1: 5 (for example, LaNi 5 , LaCo 5 , PrNi 5 , PrCo 5 ), (2) a Laves phase-containing hydrogen storage alloy (e.g., TiMn 1.2) having a Laves phase as a main phase containing a transition metal and Ti and / or Zr at an atomic ratio (1.5-2): 1. 5 , ZrMn 2 , Ti 0.7 Zr 0.3 Mn 2 ), (3) V-containing hydrogen storage alloy having a bcc phase as a main phase (for example, VTi 0.01 , Ti 0.25 Cr 0.35 V 0) .4 ), (4) TiFe, (5) TiCo, (6) CaNi 5 and the like. These may be used alone or in combination of two or more. Among these, LaNi 5 is particularly preferable because it is easily integrated with the crystal powder containing the C element and has a strong effect of promoting the absorption and release of hydrogen.
[0010]
The average particle size of the hydrogen storage alloy powder is preferably 10 to 100 μm. If the average particle size of the hydrogen storage alloy powder is too large, it becomes difficult to integrate with the crystal powder containing the C element, and it promotes the decomposition of gaseous hydrogen molecules of the hydrogen storage alloy into hydrogen atoms and incorporation into the solid. And the action of promoting the release of hydrogen atoms in solids as hydrogen molecules are not sufficiently distributed to the crystal powder containing the C element. On the other hand, if the average particle size of the hydrogen storage alloy powder is too small, activation of storage and release of hydrogen by integration becomes difficult due to surface oxidation of the alloy powder.
[0011]
As the crystal powder containing the C element, for example, carbon nanotubes, carbon nanofibers, fullerene, graphite, and the like can be used, but are not limited thereto. These may be used alone or in combination of two or more. Among these, carbon nanotubes are particularly preferred because of their large hydrogen storage capacity.
[0012]
The average particle size of the crystal powder containing the element C is preferably 100 μm or less. If the average particle size of the crystal powder containing the C element is too large, it becomes difficult to integrate with the hydrogen storage alloy powder, and promotes the decomposition of gaseous hydrogen molecules of the hydrogen storage alloy into hydrogen atoms and incorporation into the solid. And the action of promoting the release of hydrogen atoms in solids as hydrogen molecules are not sufficiently distributed to the crystal powder containing the C element.
[0013]
Examples of a method for integrating the mixed hydrogen storage alloy powder and the crystal powder containing the C element include a high-pressure pressing method and a mechanical alloying method. According to these methods, it is possible to obtain an integrated product (hydrogen storage material) in which the crystal of the hydrogen storage alloy and the crystal containing the C element are maintained.
In the high-pressure pressing method, for example, it is preferable to apply a pressure of about 100 tons / cm 2 to the mixture in an Ar atmosphere. Further, the mechanical alloying method is preferably performed in an Ar atmosphere, and is preferably performed at a frequency of about 10 Hertz for about 10 hours.
[0014]
The amount of the crystal powder containing the C element mixed with the hydrogen storage alloy powder is preferably 100 to 1000 parts by volume per 100 parts by volume of the hydrogen storage alloy powder. If the amount of the crystal powder containing the C element is too large, the action of decomposing gaseous hydrogen molecules of the hydrogen storage alloy into hydrogen atoms and promoting the incorporation into the solid, and the effect of releasing the hydrogen atoms in the solid as hydrogen molecules. Does not sufficiently spread to the crystal powder containing the C element. On the other hand, if the amount of the crystal powder containing the C element is too small, it is not possible to obtain a hydrogen storage material having a large storage amount of hydrogen that can be effectively extracted to the outside.
[0015]
Next, a hydrogen storage container made of the hydrogen storage material will be described with reference to FIG. As shown in FIG. 1, the hydrogen storage container is a container made of a material capable of sealing hydrogen by mixing and joining a hydrogen storage alloy powder and a crystal powder containing an element C to form an integrated hydrogen storage material. 2 can be obtained. The container 2 may be provided with a hydrogen flow pipe 3 for injecting and discharging hydrogen and a hydrogen pressure control valve 4 for controlling the hydrogen pressure in the container.
[0016]
Embodiment 2
The hydrogen storage material according to the present embodiment is obtained by mixing and joining together a hydrogen storage alloy powder and a hydride powder.
The hydride powder normally releases hydrogen absorbed at room temperature very slowly and practically hardly releases it. However, by integrating this with the hydrogen storage alloy powder, hydrogen can be quickly and effectively externally added even at room temperature. You will be able to take it out. This phenomenon is due to the fact that the hydrogen storage alloy has a function of promoting the decomposition of gaseous hydrogen molecules into hydrogen atoms and taking them into the solid, and a function of promoting the release of hydrogen atoms in the solids as hydrogen molecules. Based on Therefore, at the maximum, the total amount of hydrogen stored by the hydrogen storage alloy and hydrogen stored by the hydride powder can be rapidly released at room temperature, and the amount of hydrogen that can be effectively extracted to the outside is increased more than before. be able to. In addition, the hydrogenation reaction for regenerating the original hydride after releasing hydrogen is also promoted by the action of the hydrogen storage alloy.
[0017]
As the hydrogen storage alloy, those similar to the hydrogen storage alloy described in Embodiment 1 can be used. Among them, the hydrogen storage alloy is easily integrated with the hydride powder and promotes the storage and release of hydrogen. LaNi 5 is particularly preferred because of its strong action.
[0018]
The hydride has the formula: A x B y H z (A is an alkali metal or alkaline earth metal, B is boron or aluminum, H is hydrogen, 0 ≦ x ≦ 10, 0 ≦ y ≦ 20, 1 ≦ z ≦ 30, and x and y do not become 0 at the same time). Examples of such a hydride include, but are not limited to, LiAlH 4 , LiBH 4 , NaAlH 4 , and NaBH 4 . These may be used alone or in combination of two or more.
[0019]
The average particle size of the hydride powder is preferably 100 μm or less. If the average particle size of the hydride powder is too large, the integration becomes difficult, and the action of accelerating the decomposition of gaseous hydrogen molecules of the hydrogen storage alloy into hydrogen atoms and incorporation into the solid, and the effect of hydrogen atoms in the solid Does not sufficiently spread to the hydride powder.
[0020]
Examples of a method for integrating the mixed hydrogen storage alloy powder and the hydride powder include a high-pressure pressing method and a mechanical alloying method. According to these methods, it is possible to obtain an integrated product (hydrogen storage material) in which the crystal of the hydrogen storage alloy and the crystal of the hydride are maintained. The conditions of the high-pressure pressing method and the mechanical alloying method are the same as those in the first embodiment.
[0021]
The amount of the hydride powder mixed with the hydrogen storage alloy powder is preferably 100 to 1000 parts by volume per 100 parts by volume of the hydrogen storage alloy powder. If the amount of the hydride powder is too large, it promotes the action of decomposing gaseous hydrogen molecules of the hydrogen storage alloy into hydrogen atoms and taking them into the solid, and the action of releasing hydrogen atoms in the solid as hydrogen molecules. The action does not spread well to the hydride powder. On the other hand, if the amount of the hydride powder is too small, it is not possible to obtain a hydrogen storage material having a large storage amount of hydrogen that can be effectively extracted to the outside.
[0022]
In addition, about the hydrogen storage container which consists of said hydrogen storage material, it mixes and joins a hydrogen storage alloy powder and a hydride powder, and is the same as that of Embodiment 1 except using the integrated hydrogen storage material. Obtainable.
[0023]
Embodiment 3
The hydrogen storage material according to the present embodiment is obtained by mixing and joining a hydrogen storage alloy powder and a Mg powder.
Usually, Mg powder cannot release the stored hydrogen at room temperature, but by integrating this with the hydrogen storage alloy powder, hydrogen can be effectively extracted to the outside even at room temperature. This phenomenon is due to the fact that the hydrogen storage alloy has a function of promoting the decomposition of gaseous hydrogen molecules into hydrogen atoms and taking them into the solid, and a function of promoting the release of hydrogen atoms in the solids as hydrogen molecules. Based on Therefore, at a maximum, the total amount of hydrogen absorbed by the hydrogen storage alloy and hydrogen absorbed by the Mg powder can be rapidly released at room temperature, and the amount of hydrogen that can be effectively extracted to the outside can be increased more than before. Can be.
[0024]
As the hydrogen storage alloy, those similar to the hydrogen storage alloy described in Embodiment 1 can be used. Among them, the hydrogen storage alloy is easily integrated with the Mg powder and has an effect of promoting the storage and release of hydrogen. Is strong, and LaNi 5 is particularly preferable.
[0025]
Examples of a method for integrating the mixed hydrogen storage alloy powder and the Mg powder include a high-pressure pressing method and a mechanical alloying method. According to these methods, an integrated body (hydrogen storage material) in which the crystal of the hydrogen storage alloy and the Mg crystal are maintained can be obtained. The conditions of the high-pressure pressing method and the mechanical alloying method are the same as those in the first embodiment.
[0026]
The average particle size of the Mg powder is preferably 1 to 100 μm. If the average particle size of the Mg powder is too large, integration becomes difficult, and the action of decomposing gaseous hydrogen molecules of the hydrogen storage alloy into hydrogen atoms and promoting the incorporation into the solid is achieved. The effect of promoting release as hydrogen molecules is not sufficiently distributed to the Mg powder. On the other hand, if the average particle size of the Mg powder is too small, ignition may occur at the time of joining with the hydrogen storage alloy.
[0027]
The amount of the Mg powder mixed with the hydrogen storage alloy powder is preferably 100 to 1,000 parts by volume per 100 parts by volume of the hydrogen storage alloy powder. If the amount of Mg powder is too large, the action of promoting decomposition of gaseous hydrogen molecules of the hydrogen storage alloy into hydrogen atoms and taking them into the solid, and the action of promoting the release of hydrogen atoms in the solid as hydrogen molecules Does not reach the Mg powder sufficiently. On the other hand, if the amount of the Mg powder is too small, it is not possible to obtain a hydrogen storage material having a large storage amount of hydrogen that can be effectively extracted to the outside.
[0028]
The hydrogen storage container made of the above hydrogen storage material is obtained in the same manner as in Embodiment 1, except that the hydrogen storage alloy powder and the Mg powder are mixed and joined, and the integrated hydrogen storage material is used. be able to.
[0029]
【Example】
Hereinafter, the present invention will be described more specifically with reference to Examples, but the present invention is not limited thereto.
[0030]
<< Example 1 >>
Using an example of the hydrogen storage material according to the first embodiment, a hydrogen storage container as shown in FIG. 1 was manufactured.
(I) Preparation of hydrogen storage material Hydrogen storage material A1
20 parts by volume of LaNi 5 powder having an average particle diameter of 50 μm (the hydrogen storage amount per 100 parts by weight of LaNi 5 is 1.2 parts by weight) and carbon nanotubes having an average inner diameter of 0.1 μm and an average length of 1 μm (100 parts by weight of carbon nanotubes) 80 parts by volume), and the resulting mixture was integrated by a mechanical alloying method (conditions: operating at a frequency of 10 Hz for 10 hours) to obtain a hydrogen storage amount. Material A1 was obtained. When the obtained hydrogen storage material was analyzed by an X-ray diffraction method, a peak specific to LaNi 5 and a peak specific to carbon nanotube were observed. From this, it was confirmed that LaNi 5 and carbon nanotube each retain their own crystals.
[0031]
Hydrogen storage material A2
20 parts by volume of VTi 0.01 powder having an average particle diameter of 60 μm (the hydrogen storage amount per 100 parts by weight of VTi 0.01 is 2.4 parts by weight), and carbon nanotubes (carbon nanotubes having an average inner diameter of 0.1 μm and an average length of 1 μm) 80 parts by volume of hydrogen per 100 parts by weight of nanotubes) and the resulting mixture was integrated by mechanical alloying (conditions: operating at a frequency of 10 Hz for 10 hours). Thus, a hydrogen storage material A2 was obtained. When the obtained hydrogen storage material was analyzed by an X-ray diffraction method, a peak specific to VTi 0.01 and a peak specific to carbon nanotube were observed. From this, it was confirmed that LaNi 5 and carbon nanotube each retain their own crystals.
[0032]
(Ii) Production of hydrogen storage container and evaluation thereof The obtained hydrogen storage material A1 was filled in a stainless steel rectangular container having an internal volume of 10 cm 3 , and the container was sealed. Next, hydrogen was supplied into the container at room temperature until the internal pressure of the container was equilibrated at 10 MPa. Then, hydrogen was evacuated from the inside of the container at the same room temperature. As a result, 3.8 parts by weight of hydrogen per 100 parts by weight of the hydrogen storage material A1 could be effectively extracted at room temperature.
When the same operation was performed on the hydrogen storage material A2, 4.9 parts by weight of hydrogen per 100 parts by weight of the hydrogen storage material A2 could be effectively taken out at room temperature.
[0033]
As described above, according to the present invention, it is possible to obtain a high-capacity hydrogen storage material in which the amount of hydrogen that can be effectively extracted to the outside at room temperature is higher than before. Then, according to the hydrogen storage container containing the fuel cell, the fuel cell can be operated at room temperature with low energy.
[0034]
<< Example 2 >>
Using an example of the hydrogen storage material according to the second embodiment, a hydrogen storage container as shown in FIG. 1 was manufactured.
(I) Preparation of hydrogen storage material Hydrogen storage material B1
20 parts by volume of LaNi 5 powder having an average particle size of 50 μm (hydrogen storage amount per 100 parts by weight of LaNi 5 is 1.2 parts by weight), and LiAlH 4 having an average particle size of 10 μm (hydrogen storage per 100 parts by weight of LiAlH 4) (The amount is 8.0 parts by weight) and 80 parts by volume, and the obtained mixture is integrated by a high-pressure pressing method (condition: applying a pressure of 100 tons / cm 2 under an Ar atmosphere) to store hydrogen. Material B1 was obtained. When the obtained hydrogen storage material was analyzed by an X-ray diffraction method, a peak specific to LaNi 5 and a peak specific to LiAlH 4 were observed. From this, it was confirmed that LaNi 5 and LiAlH 4 each retain their own crystals.
[0035]
Hydrogen storage material B2
20 parts by volume of VTi 0.01 powder having an average particle diameter of 60 μm (the hydrogen storage amount per 100 parts by weight of VTi 0.01 is 2.4 parts by weight) and 80 parts by volume of LiAlH 4 having an average particle diameter of 10 μm are mixed. The obtained mixture was integrated by a high-pressure press method (condition: applying a pressure of 100 ton / cm 2 under an Ar atmosphere) to obtain a hydrogen storage material B2. When the obtained hydrogen storage material was analyzed by the X-ray diffraction method, a peak specific to VTi 0.01 and a peak specific to LiAlH 4 were observed. From this, it was confirmed that LaNi 5 and LiAlH 4 each retain their own crystals.
[0036]
(Ii) Production of hydrogen storage container and its evaluation A hydrogen storage container similar to that of Example 1 was produced except that hydrogen storage material B1 was used instead of hydrogen storage material A1, and the same evaluation was performed. As a result, 3.3 parts by weight of hydrogen per 100 parts by weight of the hydrogen storage material B1 could be effectively extracted at room temperature.
When the same operation was performed on the hydrogen storage material B2, 4.5 parts by weight of hydrogen per 100 parts by weight of the hydrogen storage material B2 could be effectively extracted at room temperature.
[0037]
As described above, by using a hydride, a high-capacity hydrogen storage material in which the amount of hydrogen that can be effectively extracted to the outside at room temperature is higher than before can be obtained. Then, according to the hydrogen storage container containing the fuel cell, the fuel cell can be operated at room temperature with low energy.
[0038]
<< Example 3 >>
Using an example of the hydrogen storage material according to the third embodiment, a hydrogen storage container as shown in FIG. 1 was manufactured.
(I) Preparation of hydrogen storage material Hydrogen storage material C1
20 parts by volume of LaNi 5 powder having an average particle diameter of 50 μm (hydrogen storage amount per 100 parts by weight of LaNi 5 is 1.2 parts by weight), and Mg powder having an average particle diameter of 10 μm (hydrogen storage amount per 100 parts by weight of Mg powder) (6.5 parts by weight) and 80 parts by volume, and the obtained mixture was integrated by a mechanical alloying method (conditions: operating at a frequency of 10 Hz for 10 hours) to obtain a hydrogen storage material C1. . When the obtained hydrogen storage material was analyzed by an X-ray diffraction method, a peak specific to LaNi 5 and a peak specific to Mg were observed. From this, it was confirmed that LaNi 5 and Mg each had their own crystals.
[0039]
Hydrogen storage material C2
20 parts by volume of VTi 0.01 powder having an average particle diameter of 60 μm (the hydrogen storage amount per 100 parts by weight of VTi 0.01 is 2.4 parts by weight) and 80 parts by volume of Mg powder having an average particle diameter of 10 μm are mixed. The obtained mixture was integrated by a mechanical alloying method (condition: operated at a frequency of 10 Hz for 10 hours) to obtain a hydrogen storage material C2. When the obtained hydrogen storage material was analyzed by an X-ray diffraction method, a peak specific to VTi 0.01 and a peak specific to Mg were observed. From this, it was confirmed that LaNi 5 and Mg each had their own crystals.
[0040]
(Ii) Production of hydrogen storage container and its evaluation A hydrogen storage container similar to that of Example 1 was produced except that hydrogen storage material C1 was used instead of hydrogen storage material A1, and the same evaluation was performed. As a result, 3.6 parts by weight of hydrogen per 100 parts by weight of the hydrogen storage material C1 could be effectively extracted at room temperature.
When the same operation was performed on the hydrogen storage material C2, 4.6 parts by weight of hydrogen per 100 parts by weight of the hydrogen storage material C2 could be effectively extracted at room temperature.
[0041]
As described above, even by using Mg powder, a high-capacity hydrogen storage material in which the amount of hydrogen that can be effectively extracted to the outside at room temperature is higher than before can be obtained. Then, according to the hydrogen storage container containing the fuel cell, the fuel cell can be operated at room temperature with low energy.
[0042]
In the first to third embodiments, the case of the combination of the hydrogen storage alloy and the crystal containing the element C, the combination of the hydrogen storage alloy and the hydride, and the combination of the hydrogen storage alloy and Mg has been described. It goes without saying that the same effect can be obtained by combining the alloy powder with three or two kinds selected from the crystal powder containing the C element, the hydride powder and the Mg powder. The present invention covers these cases.
[0043]
【The invention's effect】
As described above, according to the present invention, it is possible to obtain a high-capacity hydrogen storage material in which the amount of hydrogen that can be effectively extracted to the outside at room temperature is higher than before. Therefore, a high capacity and compact hydrogen storage container can be obtained.
[Brief description of the drawings]
FIG. 1 is a sectional view of an example of a hydrogen storage container of the present invention.
[Explanation of symbols]
1 hydrogen storage material 2 container 3 hydrogen flow pipe 4 hydrogen pressure control valve

Claims (6)

水素吸蔵合金粉末および炭素元素を含む結晶粉末からなる水素貯蔵材料であって、前記水素吸蔵合金粉末と前記炭素元素を含む結晶粉末とは、混合された状態で互いに接合されており、前記水素吸蔵合金の結晶および前記炭素元素を含む結晶が、いずれも維持されている水素貯蔵材料。A hydrogen storage material comprising a hydrogen storage alloy powder and a crystal powder containing a carbon element, wherein the hydrogen storage alloy powder and the crystal powder containing a carbon element are bonded to each other in a mixed state, and A hydrogen storage material in which both an alloy crystal and a crystal containing the carbon element are maintained. 水素吸蔵合金粉末および水素化合物粉末からなる水素貯蔵材料であって、前記水素吸蔵合金粉末と前記水素化合物粉末とは、混合された状態で互いに接合されており、前記水素吸蔵合金の結晶および前記水素化合物の結晶が、いずれも維持されている水素貯蔵材料。A hydrogen storage material comprising a hydrogen storage alloy powder and a hydrogen compound powder, wherein the hydrogen storage alloy powder and the hydrogen compound powder are bonded to each other in a mixed state, and the crystal of the hydrogen storage alloy and the hydrogen A hydrogen storage material in which all of the compound crystals are maintained. 水素吸蔵合金粉末およびMg粉末からなる水素貯蔵材料であって、前記水素吸蔵合金粉末と前記Mg粉末とは、混合された状態で互いに接合されており、前記水素吸蔵合金の結晶および前記Mgの結晶が、いずれも維持されている水素貯蔵材料。A hydrogen storage material comprising a hydrogen storage alloy powder and a Mg powder, wherein the hydrogen storage alloy powder and the Mg powder are bonded to each other in a mixed state, and a crystal of the hydrogen storage alloy and a crystal of the Mg However, hydrogen storage materials are all maintained. 前記水素吸蔵合金が、(1)希土類元素と、NiまたはCoとを、原子比1:5で含む六方晶を主相とする希土類含有水素吸蔵合金、(2)遷移金属と、Tiおよび/またはZrとを、原子比(1.5〜2):1で含むラーベス相を主相とするラーベス相含有水素吸蔵合金、(3)bcc相を主相とするV含有水素吸蔵合金、(4)TiFe、(5)TiCoおよび(6)CaNiよりなる群から選ばれた少なくとも1種である請求項1〜3のいずれかに記載の水素貯蔵材料。The hydrogen storage alloy includes: (1) a rare earth element-containing hydrogen storage alloy having a hexagonal main phase containing a rare earth element and Ni or Co at an atomic ratio of 1: 5, (2) a transition metal, Ti and / or A Laves phase-containing hydrogen storage alloy having a Laves phase as a main phase containing Zr at an atomic ratio (1.5 to 2): 1, (3) a V-containing hydrogen storage alloy having a bcc phase as a main phase, (4) TiFe, (5) TiCo and (6) a hydrogen storage material according to claim 1 is at least one selected from the group consisting of CaNi 5. 前記水素化合物が、式:A(Aはアルカリ金属またはアルカリ土類金属、Bは硼素またはアルミニウム、Hは水素であり、0≦x≦10、0≦y≦20、1≦z≦30であり、xとyは同時に0になることはない)で表される化合物である請求項2記載の水素貯蔵材料。The hydrogen compound has the formula: A x B y H z (A is an alkali metal or an alkaline earth metal, B is boron or aluminum, H is hydrogen, 0 ≦ x ≦ 10, 0 ≦ y ≦ 20, 1 ≦ 3. The hydrogen storage material according to claim 2, wherein z ≦ 30 and x and y do not become 0 at the same time. 請求項1〜5のいずれかに記載の水素貯蔵材料からなる水素貯蔵容器。A hydrogen storage container comprising the hydrogen storage material according to claim 1.
JP2002169030A 2002-06-10 2002-06-10 Hydrogen storage material and hydrogen storage vessel using the same Pending JP2004011003A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002169030A JP2004011003A (en) 2002-06-10 2002-06-10 Hydrogen storage material and hydrogen storage vessel using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002169030A JP2004011003A (en) 2002-06-10 2002-06-10 Hydrogen storage material and hydrogen storage vessel using the same

Publications (1)

Publication Number Publication Date
JP2004011003A true JP2004011003A (en) 2004-01-15

Family

ID=30435780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002169030A Pending JP2004011003A (en) 2002-06-10 2002-06-10 Hydrogen storage material and hydrogen storage vessel using the same

Country Status (1)

Country Link
JP (1) JP2004011003A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005288262A (en) * 2004-03-31 2005-10-20 Furukawa Electric Co Ltd:The Hydrogen storage body and hydrogen storage vessel
CN100391589C (en) * 2006-07-11 2008-06-04 南开大学 Composite hydrogen storage material contg. magnesium-transition metals oxides, prepn. method and application thereof
JP2014181344A (en) * 2013-03-16 2014-09-29 Zenji Hotta TiFe HYDROGEN STORAGE ALLOY AND METHOD OF PRODUCING TiFe HYDROGEN STORAGE ALLOY
CN110950302A (en) * 2019-12-16 2020-04-03 中盈志合吉林科技股份有限公司 Hydrogen storage alloy containing cobalt oxide and cobalt boron of carbon fiber micron tube and preparation method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005288262A (en) * 2004-03-31 2005-10-20 Furukawa Electric Co Ltd:The Hydrogen storage body and hydrogen storage vessel
JP4550462B2 (en) * 2004-03-31 2010-09-22 古河電気工業株式会社 Hydrogen storage body, hydrogen storage container, and pressure adjustment method in hydrogen storage container
CN100391589C (en) * 2006-07-11 2008-06-04 南开大学 Composite hydrogen storage material contg. magnesium-transition metals oxides, prepn. method and application thereof
JP2014181344A (en) * 2013-03-16 2014-09-29 Zenji Hotta TiFe HYDROGEN STORAGE ALLOY AND METHOD OF PRODUCING TiFe HYDROGEN STORAGE ALLOY
CN110950302A (en) * 2019-12-16 2020-04-03 中盈志合吉林科技股份有限公司 Hydrogen storage alloy containing cobalt oxide and cobalt boron of carbon fiber micron tube and preparation method thereof
CN110950302B (en) * 2019-12-16 2021-05-11 中盈志合吉林科技股份有限公司 Hydrogen storage alloy containing cobalt oxide and cobalt boron of carbon fiber micron tube and preparation method thereof

Similar Documents

Publication Publication Date Title
Sakintuna et al. Metal hydride materials for solid hydrogen storage: a review
David An overview of advanced materials for hydrogen storage
Khafidz et al. The kinetics of lightweight solid-state hydrogen storage materials: A review
US6596055B2 (en) Hydrogen storage using carbon-metal hybrid compositions
Wiswall Hydrogen storage in metals
Kleperis et al. Electrochemical behavior of metal hydrides
CN105734323B (en) A kind of nano Mg base reversible hydrogen storage composite and preparation method thereof
Nagar et al. Recent developments in state-of-the-art hydrogen energy technologies–review of hydrogen storage materials
US6328821B1 (en) Modified magnesium based hydrogen storage alloys
Song et al. Influence of titanium on the hydrogen storage characteristics of magnesium hydride: a first principles investigation
US6491866B1 (en) High storage capacity, fast kinetics, long cycle-life, hydrogen storage alloys
US20050079129A1 (en) Rapid chemical charging of metal hydrides
Dutta et al. The synthesis and hydrogenation behaviour of some new composite storage materials: Mg-xwt% FeTi (Mn) and La2Mg17-xwt% LaNi5
Suda et al. Fluorinated metal hydrides for the catalytic hydrolysis of metal-hydrogen complexes
Chao et al. Hydrogen storage in interstitial metal hydrides
US7833473B2 (en) Material for storage and production of hydrogen, and related methods and apparatus
JP2004011003A (en) Hydrogen storage material and hydrogen storage vessel using the same
JP2005526678A (en) High capacity calcium lithium based hydrogen storage material and process
JP2008013375A (en) Composite material of hydride, and hydrogen storage material
JP2002097535A (en) Hydrogen absorbing alloy
Dutta et al. Synthesis and hydrogen storage characteristics of the composite alloy La2Mg17-x wt% MmNi4. 5Al0. 5
Jurczyk et al. Materials overview for hydrogen storage
JP2005186058A (en) Magnesium-based hydrogen occluding material and lithium-based hydrogen occluding material
Nowak et al. Solid-State Hydrides
Ozsevgin et al. Material-based Hydrogen Storage Projection