JP2014181344A - TiFe HYDROGEN STORAGE ALLOY AND METHOD OF PRODUCING TiFe HYDROGEN STORAGE ALLOY - Google Patents

TiFe HYDROGEN STORAGE ALLOY AND METHOD OF PRODUCING TiFe HYDROGEN STORAGE ALLOY Download PDF

Info

Publication number
JP2014181344A
JP2014181344A JP2013054453A JP2013054453A JP2014181344A JP 2014181344 A JP2014181344 A JP 2014181344A JP 2013054453 A JP2013054453 A JP 2013054453A JP 2013054453 A JP2013054453 A JP 2013054453A JP 2014181344 A JP2014181344 A JP 2014181344A
Authority
JP
Japan
Prior art keywords
tife
hydrogen
hydrogen storage
storage alloy
strain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013054453A
Other languages
Japanese (ja)
Other versions
JP6238275B2 (en
Inventor
Zenji Hotta
善治 堀田
Etsuo Akiba
悦男 秋葉
Junko Matsuda
潤子 松田
Kaveh Edalati
エダラチ カベー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2013054453A priority Critical patent/JP6238275B2/en
Publication of JP2014181344A publication Critical patent/JP2014181344A/en
Application granted granted Critical
Publication of JP6238275B2 publication Critical patent/JP6238275B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To realize a hydrogen storage alloy which is inexpensive, requires no activation treatment at high temperatures and is capable of repeated absorption/emission of hydrogen.SOLUTION: A TiFe hydrogen storage alloy has hydrogen transfer paths which extend from the surface to the inside of the TiFe material and is lower in hydrogen transfer resistance than the surrounding TiFe material.

Description

本発明は、TiFe水素貯蔵合金、及びTiFe水素貯蔵合金の製造方法に関する。   The present invention relates to a TiFe hydrogen storage alloy and a method for producing a TiFe hydrogen storage alloy.

水素は、燃焼しても二酸化炭素を発生しないことから、重要なエネルギー源として注目されている。また、電力エネルギーの貯蔵媒体としても注目されている。しかしながら、水素の貯蔵輸送技術は、未だ確立されていない。また、水素脆性による容器の脆化、可燃性ガスであるため取り扱いが難しいこと等が問題点として指摘されている。   Hydrogen is attracting attention as an important energy source because it does not generate carbon dioxide when burned. It is also attracting attention as a storage medium for electric energy. However, hydrogen storage and transport technology has not yet been established. In addition, it has been pointed out as a problem that the container becomes brittle due to hydrogen embrittlement and difficult to handle because it is a flammable gas.

これら問題点を解決する材料として、水素貯蔵合金が注目されている。水素貯蔵合金は、吸収した水素を内部に貯蔵し、必要に応じて放出することが可能な材料である。水素貯蔵合金は、水素ガスの体積を1000分の1まで小さくして貯蔵できる。実用的には、室温付近で、大量、コンパクト及び迅速に、繰り返し水素の吸収及び放出が可能な材料であることが望ましい。   As a material for solving these problems, hydrogen storage alloys have attracted attention. A hydrogen storage alloy is a material capable of storing absorbed hydrogen therein and releasing it as needed. The hydrogen storage alloy can be stored with the volume of hydrogen gas reduced to 1/1000. In practice, it is desirable that the material be capable of repeatedly absorbing and releasing hydrogen in a large amount, compactly and rapidly near room temperature.

代表的な水素貯蔵合金として、Mg、MgNi、LaNi、及びTiFeが知られている(下記非特許文献1〜9参照)。 As typical hydrogen storage alloys, Mg, Mg 2 Ni, LaNi 5 , and TiFe are known (see Non-Patent Documents 1 to 9 below).

Schober, Wastlake, Scripta Metall. 15 (1981) 913Schober, Wastlake, Scripta Metall. 15 (1981) 913 Mizuno, Morozumi, J. Less-Common Met. 84 (1982) 237Mizuno, Morozumi, J. Less-Common Met. 84 (1982) 237 Kulshreshtha, Jayakumar, Bhatt, J. Mater. Sci. 28 (1993) 4229-4233Kulshreshtha, Jayakumar, Bhatt, J. Mater. Sci. 28 (1993) 4229-4233 Kulshreshtha, Sasikala, Suryanarayana, Singh, Iyer, Met. Res. Bull. 23 (1988) 333Kulshreshtha, Sasikala, Suryanarayana, Singh, Iyer, Met. Res. Bull. 23 (1988) 333 Lanyin, Fangjie, Deyou, Int. J. Hydrogen Energy 15 (1990) 259Lanyin, Fangjie, Deyou, Int. J. Hydrogen Energy 15 (1990) 259 Chung, Lee, Int. J. Hydrogen Energy 10 (1985) 537Chung, Lee, Int. J. Hydrogen Energy 10 (1985) 537 Zuchner, Kirch, J. Less-Common Met. 99 (1984) 143Zuchner, Kirch, J. Less-Common Met. 99 (1984) 143 Trudea, Dignard-Bailey, Schulz, Tessier, Zaluski, Ryan, Strom-Olsen, Nanostruct. Mater. 1 (1992) 457Trudea, Dignard-Bailey, Schulz, Tessier, Zaluski, Ryan, Strom-Olsen, Nanostruct. Mater. 1 (1992) 457 Zaluski, Tessier, Ryan, Donner, Zaluska, Storm-Olsen, Trudeau, Schulz, J. Mater. Res. 8 (1993) 3059Zaluski, Tessier, Ryan, Donner, Zaluska, Storm-Olsen, Trudeau, Schulz, J. Mater. Res. 8 (1993) 3059

しかしながら、上述した各種の水素貯蔵合金には、それぞれ問題点がある。まず、MgやMgNiは、水素の吸脱温度が室温よりもかなり高い。次に、LaNiは、Laがレアアース(レアメタル)であるため、非常に高価格であり、量産には不向きである。 However, the various hydrogen storage alloys described above have problems. First, Mg and Mg 2 Ni have a hydrogen adsorption / desorption temperature much higher than room temperature. Next, LaNi 5 is very expensive because La is a rare earth (rare metal) and is not suitable for mass production.

そして、TiFeは、水素貯蔵合金として用いる際に活性化処理が必要であった。この活性化処理とは、H雰囲気下で、高温(400℃以上)、高圧(数十気圧以上)状態を1〜2hr維持する処理である。また、一度大気中に曝して水素を放出した後は、再度の活性化処理が必要である。 And TiFe needed an activation process when using it as a hydrogen storage alloy. This activation treatment is a treatment for maintaining a high temperature (400 ° C. or higher) and high pressure (several tens of atmospheric pressure or higher) state for 1 to 2 hours in an H 2 atmosphere. In addition, once the hydrogen is released by exposure to the atmosphere, a reactivation process is necessary.

すなわち、TiFeを水素貯蔵合金として用いるには、高温高圧設備の設置が必要であり、安全性の確保に費用が必要である。また、TiFeを収容する容器は、室温、低圧で使用する容器であるにも関わらず、活性化のためだけに、容器を高温高圧仕様にしなければならない。   That is, in order to use TiFe as a hydrogen storage alloy, it is necessary to install high-temperature and high-pressure equipment, and costs are required to ensure safety. Moreover, although the container which accommodates TiFe is a container used at room temperature and a low pressure, it must be made into a high temperature high pressure specification only for activation.

この活性化に係る問題を解決すべく、各種の研究が行われている(非特許文献1〜9参照)。非特許文献1,2には、Tiの過剰添加について記載されている。非特許文献3〜6には、第3の元素(Sn,Mn,Fe,Ni,Pd,Pt)の添加について記載されている。非特許文献7には、HへのOの添加について記載されている。非特許文献8には、ナノ結晶粒化について記載されている。非特許文献9には、メカニカルミリングについて記載されている。 Various studies have been conducted to solve the problem related to activation (see Non-Patent Documents 1 to 9). Non-Patent Documents 1 and 2 describe excessive addition of Ti. Non-Patent Documents 3 to 6 describe the addition of a third element (Sn, Mn, Fe, Ni, Pd, Pt). Non-Patent Document 7 describes the addition of O 2 to H 2 . Non-Patent Document 8 describes nanocrystal graining. Non-Patent Document 9 describes mechanical milling.

しかしながら、非特許文献1〜9に記載の技術は、いずれも、TiFeを水素貯蔵合金として実用化するために十分な対策とは言い難かった。   However, none of the techniques described in Non-Patent Documents 1 to 9 are sufficient measures to put TiFe into practical use as a hydrogen storage alloy.

本発明は、前記課題に鑑みてなされたもので、安価で、高温の活性処理が不要であり、且つ繰り返し水素の吸収及び放出が可能なTiFe水素貯蔵合金、及びこのようなTiFe水素貯蔵合金の製造方法を提供することを目的とする。   The present invention has been made in view of the above problems, is inexpensive, does not require high-temperature activation treatment, and can repeatedly absorb and release hydrogen, and such a TiFe hydrogen storage alloy. An object is to provide a manufacturing method.

本発明の態様の1つは、材料表面から材料内部へ延在し、周囲の当該材料に比べて水素移動抵抗が低い水素移動路を有することを特徴とするTiFe水素貯蔵合金である。   One aspect of the present invention is a TiFe hydrogen storage alloy characterized by having a hydrogen transfer path extending from the material surface into the material and having a lower hydrogen transfer resistance than the surrounding material.

また、本発明の他の態様の1つは、TiFeを材料とし、材料表面から材料内部へ延在し、周囲の当該材料に比べて水素移動抵抗が低い水素移動路を形成する水素移動路形成工程を含むことを特徴とするTiFe水素貯蔵合金の製造方法である。   In another aspect of the present invention, a hydrogen transfer path is formed by using TiFe as a material, extending from the material surface to the inside of the material, and forming a hydrogen transfer path having a lower hydrogen transfer resistance than the surrounding material. It is a manufacturing method of the TiFe hydrogen storage alloy characterized by including a process.

上述したTiFe水素貯蔵合金は、他の物品や他の装置に組み込まれた状態で実施される等各種の態様を含む。また、上述したTiFe水素貯蔵合金の製造方法は、他の方法の一環として実施されたり各工程に対応する手段を備えたTiFe水素貯蔵合金の製造装置として実施されたりする等の各種の態様を含む。また、TiFe水素貯蔵合金の製造装置を備える製造システム、前述した製造方法の構成に対応した機能をコンピュータに実現させるプログラム、該プログラムを記録したコンピュータ読み取り可能な記録媒体、等としても実現可能である   The TiFe hydrogen storage alloy described above includes various aspects such as being implemented in a state of being incorporated in another article or another apparatus. Moreover, the manufacturing method of the TiFe hydrogen storage alloy mentioned above includes various aspects such as being implemented as a part of other methods or as a TiFe hydrogen storage alloy manufacturing apparatus equipped with means corresponding to each step. . Further, the present invention can be realized as a manufacturing system including a TiFe hydrogen storage alloy manufacturing apparatus, a program that causes a computer to realize functions corresponding to the configuration of the manufacturing method described above, a computer-readable recording medium that records the program, and the like.

本発明によれば、安価で、高温の活性処理が不要であり、且つ水素の吸収/放出が繰り返し可能な水素貯蔵合金、及び水素貯蔵合金の製造方法を提供することができる。   According to the present invention, it is possible to provide a hydrogen storage alloy that is inexpensive, does not require high-temperature activation treatment, and can repeatedly absorb and release hydrogen, and a method for producing the hydrogen storage alloy.

TiFe水素貯蔵合金の構造を説明する図である。It is a figure explaining the structure of a TiFe hydrogen storage alloy. 図1のデータに基づくTiFeの組成構造を示す模式図である。It is a schematic diagram which shows the composition structure of TiFe based on the data of FIG. TiFeの表面構造を説明する図である。It is a figure explaining the surface structure of TiFe. 歪み付与加工後のTiFe表面を低エネルギー走査型電子顕微鏡で観察した写真である。It is the photograph which observed the TiFe surface after distortion imparting processing with the low energy scanning electron microscope. 歪み付与加工の前後で変わる水素貯蔵特性を示す図である。It is a figure which shows the hydrogen storage characteristic which changes before and after a distortion provision process. 大気に曝したTiFe水素貯蔵合金の水素貯蔵特性の変化を示すグラフである。It is a graph which shows the change of the hydrogen storage characteristic of the TiFe hydrogen storage alloy exposed to air | atmosphere. 各種の程度で歪み付与加工を施したTiFe試料の、真空吸引前後での水素貯蔵特性を示す図である。It is a figure which shows the hydrogen storage characteristic before and behind vacuum suction of the TiFe sample which gave the distortion imparting process in various grades. 低い気圧範囲での水素貯蔵特性を示す図である。It is a figure which shows the hydrogen storage characteristic in a low atmospheric pressure range. TiFe水素貯蔵合金の製造方法の流れを示すフローチャートである。It is a flowchart which shows the flow of the manufacturing method of a TiFe hydrogen storage alloy. 歪み付与装置の一例に係る構成を説明する図である。It is a figure explaining the structure which concerns on an example of a distortion provision apparatus. 剪断応力とビッカース硬度との関係を示す図である。It is a figure which shows the relationship between a shear stress and Vickers hardness. 歪み付与加工とX線回折との関係を示す図である。It is a figure which shows the relationship between a distortion provision process and X-ray diffraction.

以下、下記の順序に従って本技術を説明する。
(1)第1の実施形態:
(2)第2の実施形態:
(3)まとめ:
Hereinafter, the present technology will be described in the following order.
(1) First embodiment:
(2) Second embodiment:
(3) Summary:

(1)第1の実施形態:
本実施形態に係るTiFe水貯蔵合金は、材料表面から材料内部へ延在し、周囲の当該材料に比べて水素移動抵抗が低い水素移動路を有する。このため、水素移動路を有さないTiFeに比べて、材料表面で発生する水素原子が材料内部へと容易に侵入して水素原子を材料内部に貯蔵することができる。逆に、材料内部に貯蔵された水素原子は、材料内部から材料表面へ容易に移動し、内部に貯蔵した水素を容易に放出することができる。
(1) First embodiment:
The TiFe water storage alloy according to the present embodiment extends from the material surface to the inside of the material, and has a hydrogen movement path having a lower hydrogen movement resistance than the surrounding material. For this reason, compared with TiFe which does not have a hydrogen movement path, the hydrogen atoms generated on the material surface can easily enter the material and store the hydrogen atoms in the material. Conversely, hydrogen atoms stored inside the material can easily move from the inside of the material to the surface of the material, and the hydrogen stored inside can be easily released.

図1は、TiFe水素貯蔵合金の構造を説明する図である。同図(a)は、TiFe中のTiの2p3/2軌道及び2p1/2軌道の結合エネルギーを示す図であり、同図(b)は、TiFe中のFeの2p3/2軌道及び2p1/2軌道の結合エネルギーを示す図である。 FIG. 1 is a diagram illustrating the structure of a TiFe hydrogen storage alloy. The figure (a) is a figure which shows the binding energy of 2p 3/2 orbit of Ti in TiFe and 2p 1/2 orbit, and the figure (b) shows the 2p 3/2 orbit of Fe in TiFe and It is a figure which shows the binding energy of 2p 1/2 orbit.

同図は、イオンエッチングを適宜に行いながら、エッチング時間毎に測定したXPS(X線光電子分光)のデータを示してある。なお、イオンエッチングには、アルゴンイオンを用い、加速電圧を3keVとし、Arによる電流が1.5μAとなる条件で行った。 This figure shows XPS (X-ray photoelectron spectroscopy) data measured at every etching time while appropriately performing ion etching. The ion etching was performed under the conditions that argon ions were used, the acceleration voltage was 3 keV, and the current by Ar + was 1.5 μA.

同図では、破線が後述する歪み付与加工処理前の結合エネルギーを示し、実線が歪み付与加工後の結合エネルギーを示す。歪み付与加工は、後述する歪み付与装置を用いて、室温(298K)、圧力6GPa、回転数10、で行い、後述する式(1)により表される約275の剪断歪みを与えた。なお、歪み付与加工前のTiFeには、1273Kで24時間のアニール処理を行ってある。   In the figure, the broken line indicates the binding energy before the strain imparting processing described later, and the solid line indicates the binding energy after the strain imparting processing. The strain applying process was performed at room temperature (298 K), a pressure of 6 GPa, and a rotation speed of 10 using a strain applying apparatus described later, and a shear strain of about 275 represented by the formula (1) described later was applied. The TiFe before the strain imparting process is annealed at 1273K for 24 hours.

同図(a)に示すように、TiFeに含まれるTi、TiO、TiOのそれぞれに係る結合エネルギーは、歪み付与加工処理の前後で変化が無い。また、同図(b)に示すように、TiFeに含まれるFe,FeO,Feのそれぞれに係る結合エネルギーも、歪み付与加工処理の前後で変化が無い。すなわち、TiFeの基本的な結晶構造は、歪み付与加工の前後で変化していないことが分かる。 As shown in FIG. 5A, the binding energy associated with each of Ti, TiO, and TiO 2 contained in TiFe does not change before and after the strain imparting processing. Further, as shown in FIG. 5B, the binding energy associated with each of Fe, FeO, and Fe 2 O 3 contained in TiFe is not changed before and after the strain imparting processing. That is, it can be seen that the basic crystal structure of TiFe does not change before and after the strain imparting process.

図2は、図1のデータに基づくTiFeの組成構造を示す模式図である。同図に示すように、図1のデータに基づくと、TiFeの表面から数nm〜数十nmは、TiO、及び、Fe又はFe3−xTi3+x、の組成が支配的であり、その下の数nmは、TiO、及び、Fe又はFeTi、の組成が支配的であり、その更に下は、TiFeの組成が支配的であるものと考えられる。 FIG. 2 is a schematic diagram showing the composition structure of TiFe based on the data of FIG. As shown in the figure, based on the data in FIG. 1, the composition of TiO 2 and Fe 2 O 3 or Fe 3 -x Ti 3 + x O y is dominated by several to several tens of nm from the surface of TiFe. It is considered that the composition of TiO 2 and Fe or Fe 2 Ti is dominant in the few nm below, and the composition of TiFe is dominant below that.

このように、TiFe表面には、TiO等の酸化膜が形成されている。従来は、TiFeの水素吸収に必要な活性化処理は、この酸化膜が水素の侵入を阻害することが原因と考えられていた。しかしながら、後述するように、本願発明者の研究によれば、TiFeに活性化処理が必要な理由は、酸化膜ではなく、TiFe内の水素拡散係数の低さにあると考えられる。 Thus, an oxide film such as TiO 2 is formed on the surface of TiFe. Conventionally, the activation treatment necessary for hydrogen absorption of TiFe has been considered to be caused by the fact that this oxide film inhibits the entry of hydrogen. However, as will be described later, according to the study of the present inventor, it is considered that the reason why TiFe needs to be activated is not the oxide film but the low hydrogen diffusion coefficient in TiFe.

図3は、TiFeの表面構造を説明する図である。図3(a)は、歪み付与加工前のTiFe表面を光学顕微鏡で観察した写真、図3(b)及び(e)は、歪み付与加工後のTiFe表面を透過型電子顕微鏡で観察した写真である。   FIG. 3 is a diagram for explaining the surface structure of TiFe. FIG. 3A is a photograph of the TiFe surface before strain imparting processing observed with an optical microscope, and FIGS. 3B and 3E are photographs of the TiFe surface after strain imparting processing observed with a transmission electron microscope. is there.

図3(c)及び(d)は、図3(b)の制限視野電子回折(SAED)の暗視野画像であり、図3(f)及び(g)は、図3(e)のSAEDの暗視野画像である。図3(h)は、厚さの中間点から取られた暗視野画像である。全ての暗視野画像は、SAEDパターン中に示した矢印で示す回折されたビームにより得られた。   3 (c) and 3 (d) are dark field images of the limited field electron diffraction (SAED) of FIG. 3 (b), and FIGS. 3 (f) and 3 (g) are diagrams of the SAED of FIG. 3 (e). It is a dark field image. FIG. 3H is a dark field image taken from the middle point of the thickness. All dark field images were obtained with a diffracted beam indicated by the arrows shown in the SAED pattern.

図3(a)に示すTiFeは、観察前に1273Kで24時間のアニール処理を行ってある。図3(b)〜(d)に示すTiFeは、後述する歪み付与装置を用いて、室温(298K)、圧力6GPa、N=0.25の条件で歪み付与加工を行ったものであり、図3(e)〜(h)に示すTiFeは、後述する歪み付与装置を用いて、室温(298K)、圧力6GPa、N=10の条件で歪み付与加工を行ったものである。   TiFe shown in FIG. 3A is annealed at 1273K for 24 hours before observation. TiFe shown in FIGS. 3 (b) to 3 (d) is obtained by performing strain imparting processing using a strain imparting apparatus described later under the conditions of room temperature (298K), pressure 6GPa, and N = 0.25. TiFe shown in 3 (e) to (h) is obtained by performing strain imparting processing using a strain imparting device described later under the conditions of room temperature (298K), pressure 6 GPa, and N = 10.

図3(a)に示す歪み付与加工前のTiFeは、平均粒度が750μm以下の微細構造を有する。図3(c)及び(d)に示すN=0.25の歪み付与加工後のTiFeには、図3(c)に観測される粗い結晶粒と、図3(d)に観測されるナノサイズの結晶粒とから成る異種混合の微細構造が形成されている。   TiFe before distortion imparting processing shown in FIG. 3A has a fine structure with an average particle size of 750 μm or less. The TiFe after strain imparting processing with N = 0.25 shown in FIGS. 3C and 3D includes coarse crystal grains observed in FIG. 3C and nano-crystals observed in FIG. A heterogeneous microstructure comprising crystal grains of a size is formed.

図3(e)〜(g)に示すN=10の歪み付与加工後のTiFeには、図中Aで示す領域に形成された粗い結晶粒と、図中Bで示す領域に形成されたナノサイズの結晶粒が形成されている。なお、図には示していないが、N=0.5の歪み付与加工後のTiFeも、図3(e)〜(g)と同様の結晶粒が観察された。   The Ti = N = 10 strained TiFe shown in FIGS. 3 (e) to 3 (g) has coarse crystal grains formed in the region indicated by A in the figure and nano particles formed in the region indicated by B in the figure. Size crystal grains are formed. Although not shown in the figure, the same crystal grains as in FIGS. 3E to 3G were also observed in TiFe after strain imparting processing with N = 0.5.

N=0.5及びN=10の歪み付与加工後のTiFeは、N=0.25の歪み付与加工後のTiFeの微細構造と比較して、ナノサイズの結晶粒のサイズが小さくなっている。   TiFe after straining with N = 0.5 and N = 10 has a smaller nanosized crystal grain size than the microstructure of TiFe after straining with N = 0.25 .

図3(h)に示す暗視野画像では、図3(e)〜(g)に示す試料表面の微細構造に比べて均質に見える。   The dark field image shown in FIG. 3 (h) looks more homogeneous than the fine structure of the sample surface shown in FIGS. 3 (e) to 3 (g).

図3(f)〜(h)中のSAEDパターン中の輪光は、歪み付与加工によってTiFeのビッカース硬度が飽和した状態において、アモルファス状又は中間レンジの規則相が存在することを示している。   The circular light in the SAED patterns in FIGS. 3 (f) to 3 (h) indicates that an amorphous or intermediate range ordered phase exists in a state where the Vickers hardness of TiFe is saturated by the strain imparting process.

図3(f)〜(h)中のSAEDパターンでは、(100)面に対応する超格子回折が欠如している。これは、歪み付与加工により、TiFe中に無秩序化が発生したことを示している。   In the SAED patterns in FIGS. 3F to 3H, the superlattice diffraction corresponding to the (100) plane is lacking. This indicates that disordering occurred in TiFe due to the strain imparting process.

図4は、TiFe表面を低エネルギー走査型電子顕微鏡で観察した写真である。図4(a)は歪み付与加工前のTiFe表面であり、図4(b)は歪み付与加工後のTiFe表面である。同図に示すTiFeには、後述する歪み付与装置を用いて、室温(298K)、圧力6GPa、回転数10、で行い、後述する式(1)により表される約275の剪断歪みを与えた。なお、歪み付与加工前のTiFeには、1273Kで24時間のアニール処理を行ってある。   FIG. 4 is a photograph of the TiFe surface observed with a low energy scanning electron microscope. FIG. 4A shows the TiFe surface before strain imparting processing, and FIG. 4B shows the TiFe surface after strain imparting processing. The TiFe shown in the figure was subjected to a shear strain of about 275 represented by the formula (1) described later, using a strain applying device described later at room temperature (298 K), a pressure of 6 GPa, and a rotation speed of 10. . The TiFe before the strain imparting process is annealed at 1273K for 24 hours.

同図からは、歪み付与加工後のTiFe表面に、数μmオーダーのFeに富んだ領域が局所的に形成されていることが分かる。このFeに富んだ領域の周囲に観察されるコントラストは、材料内部へ延びるクラックである。   From the figure, it can be seen that a region rich in Fe on the order of several μm is locally formed on the surface of TiFe after the strain imparting processing. The contrast observed around this Fe-rich region is a crack that extends into the material.

このクラックは、TiFe表面層の異相境界であり、TiFe表面から内部へと延在する線欠陥や面欠陥等の格子欠陥が形成されている。線欠陥や面欠陥等の格子欠陥は、格子欠陥の形成されていない周囲のTiFe材料に比べて、水素移動に係る抵抗(水素移動抵抗)が低い。   This crack is a heterogeneous boundary of the TiFe surface layer, and lattice defects such as line defects and surface defects extending from the TiFe surface to the inside are formed. Lattice defects such as line defects and surface defects have a lower resistance to hydrogen movement (hydrogen movement resistance) than surrounding TiFe materials where no lattice defects are formed.

このため、前記Feに富んだ領域の触媒作用により活性化された水素(水素原子)は、クラックが形成されていない場合に比べると、クラックを通じてTiFe内部に入り込みやすく、また、クラックを通じてTiFe内部から外部へと放出されやすい。このクラックは、本実施形態において、水素移動路を構成する。   For this reason, hydrogen (hydrogen atoms) activated by the catalytic action in the Fe-rich region is more likely to enter the TiFe through the crack, and from the inside of the TiFe through the crack, compared to the case where no crack is formed. Easily released to the outside. This crack constitutes a hydrogen transfer path in this embodiment.

図5は、歪み付与加工の前後で変わる水素貯蔵特性を示す図である。図5(a)は、歪み付与加工前のTiFeの水素貯蔵特性を示すグラフであり、図5(b)は、歪み付与加工後のTiFeの水素貯蔵特性を示すグラフである。これらグラフに示すデータは、水素雰囲気下で、縦軸に示す気圧を変えつつTiFe試料より放出された水素の体積を測定することにより得た。   FIG. 5 is a diagram showing the hydrogen storage characteristics that change before and after the strain imparting process. FIG. 5A is a graph showing the hydrogen storage characteristics of TiFe before strain imparting processing, and FIG. 5B is a graph showing the hydrogen storage characteristics of TiFe after strain imparting processing. The data shown in these graphs was obtained by measuring the volume of hydrogen released from the TiFe sample under a hydrogen atmosphere while changing the pressure shown on the vertical axis.

なお、歪み付与加工前のTiFeは、1273Kで24時間のアニール処理を行う事により、TiFe試料内部の格子欠陥や組成偏析をリセットした状態にしてある。歪み付与加工は、後述する歪み付与装置を用いて、室温(298K)、6GPa、回転速度1rpm、回転数10回、の条件で行った。   The TiFe before strain imparting processing is in a state in which lattice defects and compositional segregation inside the TiFe sample are reset by annealing for 24 hours at 1273K. The strain imparting process was performed under the conditions of room temperature (298K), 6 GPa, a rotational speed of 1 rpm, and a rotational speed of 10 using a strain imparting apparatus described later.

図5に示すように、TiFeは、気圧を上昇させても歪み付与加工前はほとんど水素貯蔵特性を示さないが、歪み付与加工後は、室温で、気圧の上昇に伴い非常に優れた水素貯蔵特性を示す。特に、約10MPaまで気圧を上昇させると、1.6〜1.7wt%の水素が吸収されることが確認された。また、歪み付与加工後のTiFeは、気圧の下降に伴い吸収した水素を放出していき、元の大気圧まで下降した時点で、吸収した水素の大半を放出する。   As shown in FIG. 5, TiFe shows almost no hydrogen storage property before strain imparting processing even when the atmospheric pressure is increased, but after hydrogen straining, it has excellent hydrogen storage with increasing atmospheric pressure at room temperature. Show properties. In particular, it was confirmed that 1.6 to 1.7 wt% of hydrogen was absorbed when the atmospheric pressure was increased to about 10 MPa. Further, TiFe after the strain imparting process releases absorbed hydrogen as the atmospheric pressure decreases, and releases most of the absorbed hydrogen when it decreases to the original atmospheric pressure.

図5に示す1st Cycleは、歪み付与加工後、最初に行った気圧の上昇及び下降時の水素貯蔵量の変動を示す。1st Cycleでは、約0.1から約1MPaへの気圧上昇時には水素貯蔵量が増加せず、約1MPaから約10MPaへの気圧上昇時には、徐々に水素貯蔵量が上昇していく。   1st Cycle shown in FIG. 5 shows the fluctuation | variation of the hydrogen storage amount at the time of the raise of the atmospheric | air pressure performed first after the distortion provision process, and the fall. In 1st Cycle, the hydrogen storage amount does not increase when the atmospheric pressure increases from about 0.1 to about 1 MPa, and the hydrogen storage amount gradually increases when the atmospheric pressure increases from about 1 MPa to about 10 MPa.

そして、約10MPaから約0.1MPaへの気圧下降時には、徐々に水素が放出されていくが、いったん約10MPaまで上昇させた気圧を約0.1MPa〜約0.001MPaまで下降させても、貯蔵された水素が完全には放出がされず、気圧上昇前の水素貯蔵状態には戻らない。   When the pressure drops from about 10 MPa to about 0.1 MPa, hydrogen is gradually released, but even if the pressure once increased to about 10 MPa is reduced to about 0.1 MPa to about 0.001 MPa, it is stored. The released hydrogen is not completely released and does not return to the hydrogen storage state before the pressure increase.

図5に示す2nd Cycleは、1st Cycleを終えた試料を30分間ほどロータリーポンプで排気した容器内に保持してから行った、気圧の上昇及び下降時の水素貯蔵量の変動を示す。2nd Cycleでは、約1MPa付近で水素貯蔵量が急激に約1.1wt%まで上昇し、その後、約1MPaから約10MPaへの気圧上昇時に徐々に水素貯蔵量が上昇していく。   2nd Cycle shown in FIG. 5 shows the fluctuation of the hydrogen storage amount at the time of rising and falling of the atmospheric pressure, which was performed after holding the sample after finishing the 1st cycle in a container evacuated by a rotary pump for about 30 minutes. In 2nd Cycle, the hydrogen storage amount suddenly rises to about 1.1 wt% in the vicinity of about 1 MPa, and then the hydrogen storage amount gradually rises when the atmospheric pressure increases from about 1 MPa to about 10 MPa.

そして、約10MPaから0.1MPaへの気圧下降により、貯蔵された水素がほぼ完全に放出がされて、ほぼ気圧上昇前の水素貯蔵状態に戻る。さらに、気圧を約0.0001MPaまで下降させると、より完全に気圧上昇前の水素貯蔵状態に戻る。   And by the pressure | voltage fall from about 10MPa to 0.1MPa, the stored hydrogen is discharge | released almost completely, and it returns to the hydrogen storage state before a pressure | voltage rise substantially. Further, when the atmospheric pressure is lowered to about 0.0001 MPa, the hydrogen storage state before the atmospheric pressure rises more completely.

図5に示す3rd Cycleは、2nd Cycleを終えた試料を30分間ほどロータリーポンプで排気した容器内に保持してから行った、気圧の上昇及び下降時の水素貯蔵量の変動を示す。約1MPa付近で水素貯蔵量が急激に約1.1wt%まで上昇し、その後、約1MPaから約10MPaへの気圧上昇時に徐々に水素貯蔵量が上昇していく。   3rd Cycle shown in FIG. 5 shows the fluctuation of the hydrogen storage amount at the time of the rise and fall of the atmospheric pressure, which was carried out after holding the sample after finishing the 2nd Cycle in a container evacuated by a rotary pump for about 30 minutes. In the vicinity of about 1 MPa, the hydrogen storage amount rapidly rises to about 1.1 wt%, and then the hydrogen storage amount gradually increases when the atmospheric pressure increases from about 1 MPa to about 10 MPa.

そして、約10MPaから0.1MPaへの気圧下降により、貯蔵された水素がほぼ完全に放出がされて、ほぼ気圧上昇前の水素貯蔵状態に戻る。さらに、気圧を約0.0001MPaまで下降させると、より完全に気圧上昇前の水素貯蔵状態に戻る。   And by the pressure | voltage fall from about 10MPa to 0.1MPa, the stored hydrogen is discharge | released almost completely, and it returns to the hydrogen storage state before a pressure | voltage rise substantially. Further, when the atmospheric pressure is lowered to about 0.0001 MPa, the hydrogen storage state before the atmospheric pressure rises more completely.

このように、歪み付与加工後、最初に行う気圧上昇及び下降処理では、歪み付与加工処理を行っていない従来のTiFeに比べると、水素吸収及び放出特性が優れているものの、2回目の気圧上昇及び下降処理は、更に水素の吸収及び放出特性が優れていることが分かる。   As described above, the pressure increase and decrease processing performed first after the strain imparting processing is superior in hydrogen absorption and release characteristics to the conventional TiFe that is not subjected to the strain imparting processing treatment, but the second pressure increase. It can be seen that the lowering treatment and the lowering treatment are further excellent in hydrogen absorption and release characteristics.

すなわち、2回目以降の気圧上昇及び下降処理の方が、低圧で迅速に水素が吸収され、気圧下降時は気圧の下降に対する水素放出の追随性が高く、1回目よりも2回目以降の方が、水素の吸収及び放出の気圧変動に対する追随性が向上することが分かる。また、1回目よりも2回目以降の方が、より完全に水素が放出されることが分かる。   That is, the pressure increase and decrease processes after the second time absorb hydrogen more quickly at a low pressure, and when the pressure decreases, the follow-up of the hydrogen release with respect to the pressure decrease is higher, and the second time and later processes than the first time. It can be seen that the followability of the hydrogen absorption and release to atmospheric pressure fluctuation is improved. It can also be seen that hydrogen is released more completely after the second time than when the first time.

図6は、大気に曝したTiFe水素貯蔵合金の水素貯蔵特性の変化を示すグラフである。同図に示す1st Cycle、2nd Cycle、及び3rd Cycleは、図5(b)に示すものと同様であり、同図に示す6th Cycleは、図中には示していないが、2nd,3rd Cycleと同様の条件で、これらCycleに続けて行った4th,5th Cycle後の試料を、約二ヶ月間、室温下でデシケーター中に保管し、その後、水素雰囲気下で、縦軸に示す気圧を変えつつ試料の重量を測定することにより得たデータである。   FIG. 6 is a graph showing changes in the hydrogen storage characteristics of a TiFe hydrogen storage alloy exposed to the atmosphere. The 1st Cycle, 2nd Cycle, and 3rd Cycle shown in the figure are the same as those shown in FIG. 5B, and the 6th Cycle shown in the figure is not shown in the figure, but the 2nd, 3rd Cycle and Under the same conditions, the samples after 4th and 5th cycles performed following these cycles are stored in a desiccator at room temperature for about two months, and then the pressure shown on the vertical axis is changed under a hydrogen atmosphere. This is data obtained by measuring the weight of the sample.

6th Cycleでは、約0.1MPaから約4MPaへの気圧上昇時は、水素貯蔵量は上昇せず、約4MPaから約10MPaへの気圧上昇時には、徐々に水素貯蔵量が上昇していく。   In 6th Cycle, when the atmospheric pressure increases from about 0.1 MPa to about 4 MPa, the hydrogen storage amount does not increase, and when the atmospheric pressure increases from about 4 MPa to about 10 MPa, the hydrogen storage amount gradually increases.

そして、約10MPaから約0.1MPaへの気圧下降時には、徐々に水素が放出されていくが、いったん約10MPaまで上昇させた気圧を約0.1MPa〜約0.001MPaまで下降させても、貯蔵された水素が完全には放出されず、気圧上昇前の水素貯蔵状態には戻らない。   When the pressure drops from about 10 MPa to about 0.1 MPa, hydrogen is gradually released, but even if the pressure once increased to about 10 MPa is reduced to about 0.1 MPa to about 0.001 MPa, it is stored. The released hydrogen is not completely released and does not return to the hydrogen storage state before the pressure increase.

なお、6th Cycleで用いたTiFeのように、空気中に長期間放置されたTiFe表面には、TiO等の表面酸化膜が形成される。従来の仮説では、この表面酸化膜が水素の侵入を阻害するため、TiFeの水素吸収時に活性化が必要であるとされていた。そこで、本願発明者らは、表面酸化膜の破壊により水素の侵入を容易化できるとの仮説に基づいて歪み付与加工を施したTiFeの水素貯蔵特性を調べていた。 A surface oxide film such as TiO 2 is formed on the surface of TiFe that has been left in the air for a long period of time, like TiFe used in the 6th cycle. According to the conventional hypothesis, since this surface oxide film inhibits the penetration of hydrogen, activation was necessary at the time of TiFe hydrogen absorption. Therefore, the inventors of the present application have investigated the hydrogen storage characteristics of TiFe subjected to strain imparting processing based on the hypothesis that hydrogen can be easily penetrated by breaking the surface oxide film.

しかしながら、図6に示すグラフによれば、表面酸化膜が復活したはずの6th CyclにおけるTiFeの水素吸収及び放出特性は、1st Cycleに比べて迅速性や完全性において劣るものの、従来の歪み付与加工を行っていないTiFeに比べるとはるかに優れた水素貯蔵特性を維持している。   However, according to the graph shown in FIG. 6, although the hydrogen absorption and release characteristics of TiFe in 6th Cycle where the surface oxide film should have been restored are inferior to the first cycle in terms of speed and completeness, conventional strain imparting processing Compared to TiFe that has not been subjected to hydrogenation, the hydrogen storage characteristics are far superior.

ここで、歪み付与加工では、試料に点欠陥(空孔等)や線欠陥(転移等)、面欠陥(結晶粒界等)等の格子欠陥が形成されることが知られている。このことから、歪み付与加工を行っていないTiFeにおいて、水素貯蔵に活性化が必要な理由は、表面酸化膜が水素侵入を阻害しているのではなく、試料表面から試料内部への水素移動度が低いためと考えられる。   Here, in the strain imparting process, it is known that lattice defects such as point defects (holes and the like), line defects (transitions and the like), and surface defects (crystal grain boundaries and the like) are formed in the sample. From this, in TiFe that has not been subjected to strain imparting processing, the reason why activation is necessary for hydrogen storage is that the surface oxide film does not inhibit hydrogen intrusion but the hydrogen mobility from the sample surface to the inside of the sample Is considered to be low.

すなわち、各種格子欠陥の導入により、試料表面のFe等によって触媒活性化された水素原子が、線欠陥や面欠陥を通して試料内部の格子欠陥へ移動して捕獲されるようになり、また、試料内部の格子欠陥に捕獲されていた水素が線欠陥や面欠陥を通して試料内部から試料表面へ容易に移動できるようになるものと考えられる。   That is, by introducing various lattice defects, hydrogen atoms that are catalytically activated by Fe or the like on the surface of the sample move to and are captured by lattice defects inside the sample through line defects or surface defects. It is considered that the hydrogen trapped in the lattice defects can easily move from the inside of the sample to the surface of the sample through the line defects and the surface defects.

図7は、各種の程度で歪み付与加工を施したTiFe試料の、真空吸引の前後での水素貯蔵特性を示す図である。図7(a)は、真空吸引前の水素貯蔵特性を示すグラフであり、図7(b)は、真空吸引後の水素貯蔵特性を示すグラフである。これらグラフに示すデータは、水素雰囲気下で、縦軸に示す気圧を変えつつ試料より放出された水素の体積を測定することにより横軸に示す水素の重量を得た。   FIG. 7 is a diagram showing hydrogen storage characteristics before and after vacuum suction of TiFe samples subjected to strain imparting processing at various degrees. FIG. 7A is a graph showing the hydrogen storage characteristics before vacuum suction, and FIG. 7B is a graph showing the hydrogen storage characteristics after vacuum suction. The data shown in these graphs was obtained by measuring the volume of hydrogen released from the sample while changing the atmospheric pressure shown on the vertical axis in a hydrogen atmosphere to obtain the weight of hydrogen shown on the horizontal axis.

図7(a)及び(b)に示すように、歪み付与加工の回転数がN=1/4,1の試料に比べて、N=10の方が水素放出は優れているが、N=10の試料に比べて、N=1の試料の方が水素吸収の絶対量が多い。この事実は、大量の歪みを付与しなくても、例えばN=1/4のような少量の歪みでも、本実施形態に係るTiFe水素吸蔵合金を実現できることを示す。すなわち、後述するHPT加工に限らず、圧延加工や押出加工等の一般的な歪み付与加工でも、本実施形態に係るTiFe水素吸蔵合金を実現できることが分かる。   As shown in FIGS. 7A and 7B, the hydrogen release is superior when N = 10 compared to the sample where the number of rotations of the strain imparting process is N = 1/4, 1, but N = Compared to 10 samples, the sample with N = 1 has a larger absolute amount of hydrogen absorption. This fact shows that the TiFe hydrogen storage alloy according to the present embodiment can be realized even with a small amount of strain such as N = 1/4 without applying a large amount of strain. That is, it is understood that the TiFe hydrogen storage alloy according to the present embodiment can be realized not only by the HPT process described later but also by a general strain imparting process such as a rolling process or an extrusion process.

ここで、試料を密閉して真空吸引器で1000Pa以下に減圧させると、図7(b)に示すように、水素の吸収開始前の水素貯蔵量が、ほぼ図7(a)の初期値と同等のレベルに戻る。このように、TiFeに貯蔵された水素は、真空吸引で脱離させることが可能であり、真空吸引で容易に脱離可能なエネルギーレベルの捕獲中心に捕獲されているものと考えられる。   Here, when the sample is sealed and depressurized to 1000 Pa or less with a vacuum aspirator, as shown in FIG. 7 (b), the hydrogen storage amount before the start of hydrogen absorption is substantially equal to the initial value of FIG. 7 (a). Return to equivalent level. Thus, it is considered that the hydrogen stored in TiFe can be desorbed by vacuum suction, and is captured by a trap center having an energy level that can be easily desorbed by vacuum suction.

なお、図8は、図5〜7よりも低い気圧範囲(0〜1MPa)での水素貯蔵特性を示す図である。同図に示すように、歪み付与加工を施したTiFeは、低圧でも水素吸収及び放出特性を持つことが分かる。   In addition, FIG. 8 is a figure which shows the hydrogen storage characteristic in the atmospheric | air pressure range (0-1 Mpa) lower than FIGS. As shown in the figure, it can be seen that TiFe subjected to strain imparting processing has hydrogen absorption and release characteristics even at a low pressure.

(2)第2の実施形態:
図9は、TiFe水素貯蔵合金の製造方法の流れを示すフローチャートである。同図に示す製造方法は、少なくとも水素移動路形成工程としての歪み付与工程(S10)を行う。
(2) Second embodiment:
FIG. 9 is a flowchart showing a flow of a manufacturing method of the TiFe hydrogen storage alloy. The manufacturing method shown in the figure performs at least a strain imparting step (S10) as a hydrogen transfer path forming step.

歪み付与工程(S10)においては、TiFeに歪みを与えて結晶粒径をサブミクロンレベル(1ミクロン以下)又はナノレベルに超微細化させる組織制御を行う。この歪み付与工程により試料に剪断歪みを定量的に与えることができる。また、歪み付与工程によって剪断歪みを与えられたTiFeは、材料の表面から内部へ連続的に形成された線欠陥や面欠陥等の格子欠陥を有する。   In the strain imparting step (S10), the microstructure is controlled so that TiFe is strained and the crystal grain size is reduced to a submicron level (1 micron or less) or nano level. By this strain applying step, a shear strain can be quantitatively applied to the sample. Further, TiFe given shear strain by the strain applying step has lattice defects such as line defects and surface defects continuously formed from the surface to the inside of the material.

歪みの付与は、試料に対して高圧を印加可能な様々な手法で行う事が可能であり、例えば、HPT(High-Pressure Torsion)法、HPS(High-Pressure Sliding)法、等を用いることができる。なお、以下ではHPT法を例に取って歪み付与工程(S10)について説明する。   The strain can be imparted by various methods capable of applying a high pressure to the sample. For example, an HPT (High-Pressure Torsion) method, an HPS (High-Pressure Sliding) method, or the like can be used. it can. In the following, the strain applying step (S10) will be described by taking the HPT method as an example.

図10は、HPT法で用いる歪み付与装置の一例に係る構成を説明する図である。同図に示す歪み付与装置100は、試料に対して、挟み込みによる負荷圧力(静水圧)とねじり変形による剪断応力とを同時に加える。   FIG. 10 is a diagram illustrating a configuration according to an example of a strain applying device used in the HPT method. The strain imparting apparatus 100 shown in the figure simultaneously applies a load pressure (hydrostatic pressure) due to pinching and a shear stress due to torsional deformation to a sample.

歪み付与装置100は、具体的には、対向配置した2つのアンビル10,20、押圧手段及び回転手段を備えている。なお、押圧手段及び回転手段については、図10では図示を省略している。   Specifically, the strain imparting device 100 includes two anvils 10 and 20 that are disposed to face each other, a pressing unit, and a rotating unit. The pressing means and the rotating means are not shown in FIG.

アンビル10,20は略円柱状であり、互いに対向しあう面11,21に、リング状の凹部12,22を有する。リング状の凹部12,22は、アンビル10,20の面11,21を所定の位置関係で対面させたときにリング状の空間を形成する位置にそれぞれ形成されている。なお、アンビル10,20に設ける凹部12,22の形状はリング状に限るものではなく、円形であっても良い。   The anvils 10 and 20 are substantially cylindrical, and have ring-shaped recesses 12 and 22 on the surfaces 11 and 21 facing each other. The ring-shaped recesses 12 and 22 are respectively formed at positions where ring-shaped spaces are formed when the surfaces 11 and 21 of the anvils 10 and 20 face each other in a predetermined positional relationship. In addition, the shape of the recessed parts 12 and 22 provided in the anvils 10 and 20 is not limited to the ring shape, and may be circular.

押圧手段は、支持基台を介してアンビル10,20の少なくとも一方に接続されており、面11,21を互いに近づける方向に応力を印加することができる。これにより、歪み付与装置100は、リング状の空間に配置された試料に対し、当該試料を圧縮する方向の応力を加えることができる。   The pressing means is connected to at least one of the anvils 10 and 20 via the support base, and can apply stress in a direction in which the surfaces 11 and 21 are brought closer to each other. Thereby, the distortion imparting apparatus 100 can apply the stress of the direction which compresses the said sample with respect to the sample arrange | positioned in ring-shaped space.

回転手段は、支持基台を介してアンビル10,20の少なくとも一方に接続されており、アンビル10,20のリング状の凹部12,22の中心を回転軸として、アンビル10,20を他方のアンビルに対して相対的に回転させることができる。これにより、歪み付与装置100は、凹部12,22の間に挟圧された試料に対して連続的にねじり変形を加えて、当該試料に剪断歪みを導入することができる。   The rotating means is connected to at least one of the anvils 10 and 20 through the support base, and the anvils 10 and 20 are used as the other anvil with the center of the ring-shaped recesses 12 and 22 of the anvils 10 and 20 as the rotation axis. Relative to each other. As a result, the strain imparting device 100 can continuously apply a torsional deformation to the sample sandwiched between the recesses 12 and 22 and introduce a shear strain to the sample.

なお、アンビル10,20の凹部12,22の底面13,23は、粗面とすることが好ましい。リング状の空間に試料を挟圧しながら回転力による歪みを加える際に、試料と底面13,23との接触部分が滑りにくくなることから、回転力を試料に伝えやすくなり、試料に対して効果的に歪みを加えることができるからである。   The bottom surfaces 13 and 23 of the recesses 12 and 22 of the anvils 10 and 20 are preferably roughened. When applying distortion due to rotational force while pinching the sample in the ring-shaped space, the contact portion between the sample and the bottom surfaces 13 and 23 becomes less slippery, which makes it easier to transmit the rotational force to the sample and is effective for the sample. This is because distortion can be added.

また、アンビル10,20の面11,21の凹部12,22よりも中心側には、アンビル10、20の回転軸と中心が一致した円形状凹部14,24が形成されている。これにより、試料にねじり変形を加える際に2つのアンビル10,20が接触して摩擦が生じる可能性を軽減している。   Further, circular recesses 14 and 24 whose centers coincide with the rotation axes of the anvils 10 and 20 are formed on the center side of the recesses 12 and 22 of the surfaces 11 and 21 of the anvils 10 and 20. This reduces the possibility that the two anvils 10 and 20 come into contact with each other and cause friction when the sample is torsionally deformed.

また、アンビル10,20のリング状の凹部12,22の深さの合計は、試料の厚みよりも小さくなるように構成することが好ましい。すなわち、凹部12,22の間に形成されるリング状の空間に試料を挟圧した状態で、面11,21の間に隙間25が形成される状態にすることが好ましい。   Moreover, it is preferable to comprise so that the sum total of the depth of the ring-shaped recessed parts 12 and 22 of the anvils 10 and 20 may become smaller than the thickness of a sample. That is, it is preferable that the gap 25 is formed between the surfaces 11 and 21 in a state where the sample is clamped in the ring-shaped space formed between the recesses 12 and 22.

これにより、歪み付与工程において、試料の微細化により試料厚みが徐々に薄くなったり、粉末試料の場合に、凹部の外に試料が漏出して凹部12,22の底面13,23の間隔が徐々に狭くなったりしても、面11,21が直接に接触して摩耗することを防止し、加える圧力を効率的に試料に伝えることができる。   As a result, in the strain imparting step, the sample thickness is gradually reduced due to the miniaturization of the sample, or in the case of a powder sample, the sample leaks out of the recess and the interval between the bottom surfaces 13 and 23 of the recesses 12 and 22 gradually increases. Even if it becomes narrow, the surfaces 11 and 21 can be prevented from coming into direct contact and worn, and the applied pressure can be efficiently transmitted to the sample.

以上のように構成された歪み付与装置100を用いて、空間Sに配置された試料に挟み込み圧力(通常1GPa以上)を加えながら、アンビル10,20を他方のアンビルに対して相対的に回転させると試料に剪断歪みを発生し、この剪断歪みによって結晶粒径をサブミクロンレベルに超微細化することができる。   Using the strain applying apparatus 100 configured as described above, the anvils 10 and 20 are rotated relative to the other anvil while applying a pressure (usually 1 GPa or more) to the sample placed in the space S. A shear strain is generated in the sample, and the crystal grain size can be made ultrafine to a submicron level by the shear strain.

ここで、歪み付与装置100が試料に加える剪断歪みのひずみ量εは、下記の式(1)で表すことができる。下記(1)式において、rは回転中心からの距離、Nは回転数、tは試料の厚み、をそれぞれ表す。   Here, the strain amount ε of the shear strain applied to the sample by the strain applying device 100 can be expressed by the following formula (1). In the following formula (1), r represents the distance from the rotation center, N represents the number of rotations, and t represents the thickness of the sample.

すなわち、歪み付与装置100が試料に与える剪断歪みγは、回転数N及び回転中心からの距離rに比例し、試料の厚みtに反比例する。更に言えば、試料に加えたねじり変形による剪断応力に比例し、試料の厚みtに反比例する。   That is, the shear strain γ applied to the sample by the strain applying device 100 is proportional to the rotation speed N and the distance r from the rotation center, and inversely proportional to the thickness t of the sample. More specifically, it is proportional to the shear stress due to torsional deformation applied to the sample and inversely proportional to the thickness t of the sample.

図11は、TiFeに対する剪断応力とビッカース硬度との関係を示す図である。同図に示す剪断応力は上述した歪み付与加工で加えたものであり、剪断応力γ(=P/S、P:付与荷重、S:断面積)に対応する回転数Nを併記してある。歪み付与加工には、比較のためにツールスチール製のアンビルとWC−11%Co製のアンビルを用いたが、いずれのアンビルを用いても同様の結果が得られている。   FIG. 11 is a diagram showing the relationship between the shear stress for TiFe and the Vickers hardness. The shear stress shown in the figure is added by the strain applying process described above, and the rotational speed N corresponding to the shear stress γ (= P / S, P: applied load, S: cross-sectional area) is also shown. For comparison, tool steel anvils and WC-11% Co anvils were used for comparison, but similar results were obtained using either anvil.

図11に示すように、TiFeのビッカース硬度は、初期は回転数Nの増加に伴って増加し、回転数N=1で約1050Hvに達する。回転数N=1を超えるとビッカース硬度は約1050Hvの飽和値で一定となる。なお、この飽和値はSPD(severe plastic deformation)処理された材料中に報告された最高値に相当し、この硬度変化の挙動は、ハフニウム等の高融点金属の挙動に類似する。   As shown in FIG. 11, the Vickers hardness of TiFe initially increases with an increase in the rotational speed N, and reaches about 1050 Hv at the rotational speed N = 1. When the rotational speed N = 1 is exceeded, the Vickers hardness becomes constant at a saturation value of about 1050 Hv. This saturation value corresponds to the highest value reported in a material treated with SPD (severe plastic deformation), and the behavior of this hardness change is similar to the behavior of refractory metals such as hafnium.

図12は、歪み付与加工とX線回折との関係を示す図である。図12(a)は、歪み付与加工の回転数NとX線回折との関係を示し、歪み付与加工前のTiFeのX線回折データと、各種の回転数の歪み付与加工後のTiFeのX線回折データを示してある。図12(b)は、歪み付与加工の回転数Nと(110)面の半値全幅(FWHM)との関係を示す図である。   FIG. 12 is a diagram showing the relationship between the strain imparting process and the X-ray diffraction. FIG. 12A shows the relationship between the rotational speed N of the strain imparting process and the X-ray diffraction, and the X-ray diffraction data of TiFe before the strain imparting process and the X of TiFe after the strain imparting process at various rotational speeds. Line diffraction data is shown. FIG. 12B is a diagram showing the relationship between the rotational speed N of the strain imparting process and the full width at half maximum (FWHM) of the (110) plane.

図12(a)に示すように、歪み付与加工後、Ti、Fe及びTiFeのピークは、目に見える形で検知されない。また、TiFeH及びTiFeHのピークは、歪み付与加工及びそれに続く水素吸収後、目に見える形で検出されない。水素化物が大気圧下で迅速に分解するためである。 As shown in FIG. 12 (a), the peaks of Ti, Fe and TiFe 2 are not detected in a visible manner after the strain imparting process. Also, TiFeH and TiFeH 2 peaks are not detected in a visible manner after straining and subsequent hydrogen absorption. This is because hydride decomposes rapidly under atmospheric pressure.

これは、歪み付与加工処理されたTiFeが空気中で非活性化されないことを示唆する。これに対し、歪み付与加工処理をせず、熱処理によって活性化して水素吸収させた従来のTiFeは、空気中で迅速に非活性化されるため、水素吸収によって試料内に形成された水素化物は大気中でも分解されない。   This suggests that the strain imparted TiFe is not deactivated in air. On the other hand, conventional TiFe activated by heat treatment and absorbed by hydrogen without performing strain imparting processing is quickly deactivated in the air, so the hydride formed in the sample by hydrogen absorption is Not decomposed in the atmosphere.

また,図12(a)に示すように、歪み付与加工処理前のTiFeに観測される(211)面のピーク強度は、歪み付与加工後のTiFeにおいて非常に小さくなり、代わりに(100)面のピーク強度が大きくなっている。これは、ディスク状の試料表面と平行な傾向がある滑り面のような構造が、歪み付与加工によって形成されたことを示唆している。   Further, as shown in FIG. 12A, the peak intensity of the (211) plane observed in TiFe before the strain imparting processing is very small in TiFe after the strain imparting processing, and instead the (100) plane. The peak intensity of is increased. This suggests that a structure such as a sliding surface, which tends to be parallel to the disk-shaped sample surface, was formed by the strain applying process.

また、図12(b)で定量的に示すように、図12(a)に示す(110)面の半値全幅は、上述したビッカース硬度の場合と同様に、歪みの増加に伴って増加し、回転数N=1を超えると、一定レベルに飽和している。この半値全幅のブロード化における特徴は、格子歪みの発生、格子欠陥の生成、結晶粒の微細化、を示している。これらは、全て水素貯蔵特性の向上に寄与する特徴である。   Further, as shown quantitatively in FIG. 12B, the full width at half maximum of the (110) plane shown in FIG. 12A increases as the strain increases, as in the case of the Vickers hardness described above. When the rotational speed N = 1 is exceeded, it is saturated to a certain level. The characteristics in the broadening of the full width at half maximum indicate the generation of lattice distortion, the generation of lattice defects, and the refinement of crystal grains. These are all features that contribute to the improvement of hydrogen storage characteristics.

(3)まとめ:
以上説明した実施形態によれば、TiFe材料の表面から内部へ延在し、周囲のTiFe材料に比べて水素移動抵抗が低い水素移動路を有するTiFe水素貯蔵合金を実現することができる。また、このようなTiFe水素貯蔵合金の製造方法や製造装置も実現できる。このTiFe水素貯蔵合金は、安価で、高温の活性処理が不要であり、且つ水素の吸収/放出が繰り返し可能である。
(3) Summary:
According to the embodiment described above, it is possible to realize a TiFe hydrogen storage alloy having a hydrogen movement path extending from the surface of the TiFe material to the inside and having a lower hydrogen movement resistance than the surrounding TiFe material. Moreover, the manufacturing method and manufacturing apparatus of such a TiFe hydrogen storage alloy are also realizable. This TiFe hydrogen storage alloy is inexpensive, does not require high temperature activation treatment, and can repeatedly absorb and release hydrogen.

なお、本発明は上述した実施形態に限られず、上述した実施形態の中で開示した各構成を相互に置換したり組み合わせを変更したりした構成、公知技術並びに上述した実施形態の中で開示した各構成を相互に置換したり組み合わせを変更したりした構成、等も含まれる。また,本発明の技術的範囲は上述した実施形態に限定されず,特許請求の範囲に記載された事項とその均等物まで及ぶものである。   Note that the present invention is not limited to the above-described embodiments, and the configurations disclosed in the above-described embodiments are interchanged with each other or the combinations thereof are changed, disclosed in the known technology, and in the above-described embodiments. A configuration in which each configuration is mutually replaced or a combination is changed is also included. Further, the technical scope of the present invention is not limited to the above-described embodiments, but extends to the matters described in the claims and equivalents thereof.

10…アンビル、11…面、12…凹部、13…底面、14…円形状凹部、20…アンビル、21…面、22…凹部、23…底面、24…円形状凹部、100…歪み付与装置 DESCRIPTION OF SYMBOLS 10 ... Anvil, 11 ... Surface, 12 ... Recess, 13 ... Bottom, 14 ... Circular recess, 20 ... Anvil, 21 ... Surface, 22 ... Recess, 23 ... Bottom, 24 ... Circular recess, 100 ... Strain imparting device

Claims (8)

材料表面から材料内部へ延在し、周囲の当該材料に比べて水素移動抵抗が低い水素移動路を有することを特徴とするTiFe水素貯蔵合金。   A TiFe hydrogen storage alloy characterized by having a hydrogen transfer path extending from the material surface to the inside of the material and having a lower hydrogen transfer resistance than the surrounding material. 前記水素移動路は、材料表面から材料内部へ延在する線欠陥又は面欠陥であることを特徴とする請求項1に記載のTiFe水素貯蔵合金。   The TiFe hydrogen storage alloy according to claim 1, wherein the hydrogen transfer path is a line defect or a plane defect extending from the material surface to the inside of the material. 前記水素移動路は、表面層の異相界面に形成されていることを特徴とする請求項1又は請求項2に記載のTiFe水素貯蔵合金。   The TiFe hydrogen storage alloy according to claim 1 or 2, wherein the hydrogen transfer path is formed at a heterogeneous interface of a surface layer. 活性化処理を行うことなく、前記材料表面に酸化膜が形成された状態で水素の吸収と放出の少なくとも一方が可能なことを特徴とする請求項1〜請求項3の何れか1項に記載のTiFe水素貯蔵合金。   4. The method according to claim 1, wherein at least one of absorption and release of hydrogen is possible in a state where an oxide film is formed on the surface of the material without performing an activation treatment. 5. TiFe hydrogen storage alloy. TiFeを材料とし、材料表面から材料内部へ延在し、周囲の当該材料に比べて水素移動抵抗が低い水素移動路を形成する水素移動路形成工程を含むことを特徴とするTiFe水素貯蔵合金の製造方法。   A TiFe hydrogen storage alloy characterized by including a hydrogen transfer path forming step that uses TiFe as a material, extends from the material surface to the inside of the material, and forms a hydrogen transfer path that has a lower hydrogen transfer resistance than the surrounding material. Production method. 前記水素移動路形成工程においては、TiFeに7以上の剪断歪みを加えることにより、前記TiFeの材料表面から材料内部へ延在する線欠陥又は面欠陥を前記水素移動路として形成することを特徴とする請求項5に記載のTiFe水素貯蔵合金の製造方法。   In the hydrogen transfer path forming step, by applying a shear strain of 7 or more to TiFe, a line defect or a plane defect extending from the TiFe material surface to the inside of the material is formed as the hydrogen transfer path. The method for producing a TiFe hydrogen storage alloy according to claim 5. 前記水素移動路形成工程の後に、水素の吸収工程と放出工程を少なくとも1回ずつ行う使用前処理工程を含むことを特徴とする請求項5又は請求項6に記載のTiFe水素貯蔵合金の製造方法。   The method for producing a TiFe hydrogen storage alloy according to claim 5 or 6, further comprising a pre-use treatment step in which a hydrogen absorption step and a release step are performed at least once after the hydrogen transfer path formation step. . 活性化処理を行わないことを特徴とする請求項5〜請求項7の何れか1項に記載のTiFe水素貯蔵合金の製造方法。   The method for producing a TiFe hydrogen storage alloy according to any one of claims 5 to 7, wherein an activation treatment is not performed.
JP2013054453A 2013-03-16 2013-03-16 Method for producing TiFe hydrogen storage alloy Active JP6238275B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013054453A JP6238275B2 (en) 2013-03-16 2013-03-16 Method for producing TiFe hydrogen storage alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013054453A JP6238275B2 (en) 2013-03-16 2013-03-16 Method for producing TiFe hydrogen storage alloy

Publications (2)

Publication Number Publication Date
JP2014181344A true JP2014181344A (en) 2014-09-29
JP6238275B2 JP6238275B2 (en) 2017-11-29

Family

ID=51700362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013054453A Active JP6238275B2 (en) 2013-03-16 2013-03-16 Method for producing TiFe hydrogen storage alloy

Country Status (1)

Country Link
JP (1) JP6238275B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114620676A (en) * 2020-12-11 2022-06-14 中国科学院大连化学物理研究所 Titanium-containing material catalytic modified magnesium-based hydrogen storage material and preparation method and application thereof
KR20220128523A (en) * 2021-03-11 2022-09-21 한국생산기술연구원 Method of manufacturing hydrogen storage alloys with reduced activation temperature, a hydrogen storage alloys with reduced activation temperature, and method of activating the hydrogen storage alloys

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01129936A (en) * 1987-11-13 1989-05-23 Sanyo Electric Co Ltd Manufacture of hydrogen occlusion alloy
JPH02240225A (en) * 1989-03-13 1990-09-25 Sanyo Electric Co Ltd Hydrogen storage alloy and its manufacture
JPH10265875A (en) * 1997-03-25 1998-10-06 Toshiba Corp Hydrogen storage alloy, its production and nickel-hydrogen secondary battery
JP2004011003A (en) * 2002-06-10 2004-01-15 Matsushita Electric Ind Co Ltd Hydrogen storage material and hydrogen storage vessel using the same
JP2004232073A (en) * 2003-02-03 2004-08-19 Nasu Denki Tekko Co Ltd Method of producing hydrogen storage alloy, and hydrogen storage alloy obtained by the production method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01129936A (en) * 1987-11-13 1989-05-23 Sanyo Electric Co Ltd Manufacture of hydrogen occlusion alloy
JPH02240225A (en) * 1989-03-13 1990-09-25 Sanyo Electric Co Ltd Hydrogen storage alloy and its manufacture
JPH10265875A (en) * 1997-03-25 1998-10-06 Toshiba Corp Hydrogen storage alloy, its production and nickel-hydrogen secondary battery
JP2004011003A (en) * 2002-06-10 2004-01-15 Matsushita Electric Ind Co Ltd Hydrogen storage material and hydrogen storage vessel using the same
JP2004232073A (en) * 2003-02-03 2004-08-19 Nasu Denki Tekko Co Ltd Method of producing hydrogen storage alloy, and hydrogen storage alloy obtained by the production method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114620676A (en) * 2020-12-11 2022-06-14 中国科学院大连化学物理研究所 Titanium-containing material catalytic modified magnesium-based hydrogen storage material and preparation method and application thereof
KR20220128523A (en) * 2021-03-11 2022-09-21 한국생산기술연구원 Method of manufacturing hydrogen storage alloys with reduced activation temperature, a hydrogen storage alloys with reduced activation temperature, and method of activating the hydrogen storage alloys
KR102456067B1 (en) 2021-03-11 2022-10-20 한국생산기술연구원 Method of manufacturing hydrogen storage alloys with reduced activation temperature, a hydrogen storage alloys with reduced activation temperature, and method of activating the hydrogen storage alloys

Also Published As

Publication number Publication date
JP6238275B2 (en) 2017-11-29

Similar Documents

Publication Publication Date Title
Edalati et al. High-pressure torsion of TiFe intermetallics for activation of hydrogen storage at room temperature with heterogeneous nanostructure
Kecskes et al. Grain size engineering of bcc refractory metals: Top-down and bottom-up—Application to tungsten
US11634797B2 (en) Sintered nanocrystalline alloys
Minamino et al. Microstructures and mechanical properties of bulk nanocrystalline Fe–Al–C alloys made by mechanically alloying with subsequent spark plasma sintering
Luo et al. Microstructure and performance of rare earth element-strengthened plasma-facing tungsten material
Akbarpour et al. Microstructure, grain growth, and hardness during annealing of nanocrystalline Cu powders synthesized via high energy mechanical milling
JP6238275B2 (en) Method for producing TiFe hydrogen storage alloy
Lang et al. Deciphering the role of second phase precipitates on early-stage surface morphology development of dispersion-strengthened W alloys under low energy He irradiation
Pasebani et al. Sintering Behavior of Lanthana‐Bearing Nanostructured Ferritic Steel Consolidated via Spark Plasma Sintering
Schneibel et al. Nano-scale oxide dispersoids by internal oxidation of Fe–Ti–Y intermetallics
Gupta et al. Synthesis, characterization and mechanical behaviour of an in situ consolidated nanocrystalline FeCrNi alloy
JP2005535785A (en) Reactive grinding method for producing hydrogen storage alloys
Zhang et al. The significance of self-annealing in two-phase alloys processed by high-pressure torsion
Butler et al. Effect of boron on microstructure and fracture of sintered ultrafine-grained tungsten
CN108754350A (en) A kind of oxide dispersion intensifying steel and preparation method thereof
TWI534076B (en) Hydrogen storage composite and method for manufacturing the same
Sim et al. Enhanced ductility of a bimodal grain structure Ti–22Al–25Nb alloy fabricated by spark plasma sintering
Hiroshi et al. Microstructure and mechanical property of nano-duplex materials produced by HRS process
Kuehster Processing of mayenite electride and its composites in spark plasma sintering
Miyoshi et al. Adhesion, friction, and wear in low-pressure and vacuum environments
Dymek et al. Mechanical alloying and high pressure processing of a TiAl‐V intermetallic alloy
Lillo et al. Consolidation of nanocrystalline Fe-1.6 wt% C via low temperature hot isostatic pressing
Klier et al. Effect of Boron on Microstructure and Fracture of Sintered Ultrafine-Grained Tungsten.
JP2005082447A (en) Hydrogen storage metal nitride
Charfeddine et al. Microstructure characterization of an aluminium alloy processed by milling followed by spark plasma sintering

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160316

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20160316

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170327

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20170327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170718

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171010

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171025

R150 Certificate of patent or registration of utility model

Ref document number: 6238275

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250