JP2003322604A - Method of monitoring turbidity in water and turbidity monitoring device - Google Patents

Method of monitoring turbidity in water and turbidity monitoring device

Info

Publication number
JP2003322604A
JP2003322604A JP2002131313A JP2002131313A JP2003322604A JP 2003322604 A JP2003322604 A JP 2003322604A JP 2002131313 A JP2002131313 A JP 2002131313A JP 2002131313 A JP2002131313 A JP 2002131313A JP 2003322604 A JP2003322604 A JP 2003322604A
Authority
JP
Japan
Prior art keywords
turbidity
water
ultrasonic
reflection intensity
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002131313A
Other languages
Japanese (ja)
Inventor
Satoshi Inagaki
聡 稲垣
Katsunori Yamaki
克則 山木
Kuniyoshi Nakagome
國喜 中込
Shingo Akiyama
真吾 秋山
Masahiro Tanaka
昌宏 田中
Takeshi Iketani
毅 池谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2002131313A priority Critical patent/JP2003322604A/en
Publication of JP2003322604A publication Critical patent/JP2003322604A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of monitoring turbidity in water capable of measuring a 3-D distribution of the turbidity and a conveying capacity of a turbid particle in a short time, and also capable of precisely controlling the turbidity generated by a work, and to provide a turbidity watching device. <P>SOLUTION: On an observation boat 3 an ADCP 5 is placed on a side 7 of the boat, a GPS 20 and a computer 19 are placed. Positional information of the observation boat 3 with regard to horizontal direction is obtained by the GPS 20 while moving over the sea. At the same time, a ultrasound beam 11 is emitted from ADCP 5 toward the bottom 17, flow speed 21 for each depth and each intensity of reflection wave 14 are obtained from Doppler shift of reflection wave 14 reflected by each layer of floating micro particle 15 in the water. Next to that the 3-D distribution turbidity is estimated by using the computer 19 from the positional information of the observation boat 3 and the intensity of reflection wave 14. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、水中の濁り監視方
法および濁り監視装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a turbidity monitoring method and turbidity monitoring device in water.

【0002】[0002]

【従来の技術】海工事などで発生する濁りが工事海域外
に流出すると、周辺環境に様々な問題が発生し、工事の
工程に影響を及ぼす場合がある。そのため、工事で発生
する濁りを計測する必要がある。従来、濁りの計測に
は、主に、(1)濁度計を用いる方法や、(2)採水し
たサンプルの濁度を測定する方法が使用されている。
2. Description of the Related Art When turbidity generated during sea construction flows out of the construction area, various problems may occur in the surrounding environment, affecting the construction process. Therefore, it is necessary to measure the turbidity generated during construction. Conventionally, for the measurement of turbidity, (1) a method using a turbidimeter and (2) a method for measuring the turbidity of a sample taken are mainly used.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、
(1)、(2)の方法とも、鉛直方向や水平方向の濁度
分布を計測するのではなく、水中の1点の濁度を計測す
るため、工事海域において三次元的に分布する濁りを測
定することが不可能である。
[Problems to be Solved by the Invention] However,
Both methods (1) and (2) do not measure the turbidity distribution in the vertical or horizontal direction, but measure the turbidity at one point in water. It is impossible to measure.

【0004】本発明は、このような問題に鑑みてなされ
たもので、その目的とするところは、三次元的な濁りの
分布や濁り粒子の輸送量を短時間に計測し、工事で出る
濁りを詳細に管理することができる水中の濁り監視方法
および濁り監視装置を提供することにある。
The present invention has been made in view of the above problems, and an object thereof is to measure the three-dimensional distribution of turbidity and the transport amount of turbid particles in a short time, and to measure the turbidity generated during construction. An object of the present invention is to provide a turbidity monitoring method and turbidity monitoring device for underwater, which can control water in detail.

【0005】[0005]

【課題を解決するための手段】前述した目的を達成する
ための第1の発明は、超音波ドップラー流速計を移動さ
せつつ、前記超音波ドップラー流速計から発射されて水
中の微粒子で反射された超音波の反射強度および前記超
音波ドップラー流速計の位置情報を取得し、前記反射強
度と前記位置情報から、前記微粒子の三次元的な分布を
推定することを特徴とする水中の濁り監視方法である。
The first invention for achieving the above-mentioned object is to move the ultrasonic Doppler velocimeter while being emitted from the ultrasonic Doppler velocimeter and reflected by fine particles in water. Obtaining the ultrasonic reflection intensity and the position information of the ultrasonic Doppler velocimeter, from the reflection intensity and the position information, a three-dimensional distribution of the fine particles is estimated by a method for monitoring turbidity in water is there.

【0006】超音波ドップラー流速計(ADCP)は、
水上で移動可能な観測船等に設置される。超音波ドップ
ラー流速計は、水中に複数の超音波ビームを発信し、鉛
直方向の各層の微粒子で反射させて水深毎の流速を計測
すると同時に、反射した超音波の反射強度を水深毎に取
得する。微粒子とは、例えば、浮遊土砂等である。超音
波ドップラー流速計の超音波の周波数は、水深により変
化させる。
Ultrasonic Doppler anemometry (ADCP)
It will be installed on an observation ship that can move on the water. An ultrasonic Doppler velocimeter emits multiple ultrasonic beams in water, reflects the particles in each layer in the vertical direction to measure the flow velocity at each water depth, and at the same time acquires the reflection intensity of the reflected ultrasonic waves at each water depth. . The fine particles are, for example, suspended earth and sand. The ultrasonic frequency of the ultrasonic Doppler anemometer is changed according to the water depth.

【0007】さらに、観測船には、位置情報を取得する
ために、例えばGPS(汎地球測位システム)等の設備
が設置される。GPS等で観測した水平方向の位置情報
と超音波ドップラー流速計で観測した鉛直方向の各層の
微粒子による反射波の反射強度は、コンピュータ等に送
られ、微粒子の三次元的な分布が推定される。また、超
音波ドップラー流速計で測定した流速と、推定された微
粒子の三次元的な分布等から、水中の微粒子の輸送量が
算出される。
Further, equipment such as GPS (Global Positioning System) is installed on the observation ship in order to acquire position information. The horizontal position information observed by GPS etc. and the reflection intensity of the reflected wave by the particles in each layer in the vertical direction observed by the ultrasonic Doppler velocimeter are sent to a computer etc. to estimate the three-dimensional distribution of the particles. . Further, the transport amount of the fine particles in water is calculated from the flow velocity measured by the ultrasonic Doppler velocity meter, the estimated three-dimensional distribution of the fine particles, and the like.

【0008】第1の発明では、超音波ドップラー流速計
を移動しつつ、超音波ドップラー流速計から発射されて
水中の微粒子で反射された超音波の反射強度を取得す
る。また、超音波ドップラー流速計の位置情報も取得す
る。そして、取得した反射強度と位置情報から、水中の
微粒子の三次元的な分布を推定する。さらに、超音波ド
ップラー流速計で計測された流速を用いて微粒子の輸送
量を算出することができる。
In the first invention, while the ultrasonic Doppler velocimeter is moved, the reflection intensity of the ultrasonic waves emitted from the ultrasonic Doppler velocimeter and reflected by the fine particles in the water is acquired. Also, the position information of the ultrasonic Doppler velocity meter is acquired. Then, the three-dimensional distribution of fine particles in water is estimated from the acquired reflection intensity and position information. Further, the transport rate of the fine particles can be calculated using the flow velocity measured by the ultrasonic Doppler velocity meter.

【0009】第2の発明は、超音波ドップラー流速計
と、前記超音波ドップラー流速計を移動させる移動手段
と、前記超音波ドップラー流速計の位置情報を取得する
手段と、前記超音波ドップラー流速計から発射されて水
中の微粒子で反射された超音波の反射強度と前記位置情
報から、前記微粒子の三次元的な分布を推定する手段と
を具備することを特徴とする水中の濁り監視装置であ
る。
A second invention is an ultrasonic Doppler velocimeter, a moving means for moving the ultrasonic Doppler velocimeter, a means for acquiring position information of the ultrasonic Doppler velocimeter, and the ultrasonic Doppler velocimeter. A device for monitoring turbidity in water, comprising: means for estimating a three-dimensional distribution of the particles from the reflection intensity of the ultrasonic waves emitted from the object and reflected by the particles in the water and the position information. .

【0010】移動手段には、例えば観測船を使用し、観
測船の舷側等に超音波ドップラー流速計を設置する。ま
た、超音波ドップラー流速計の水平方向の位置情報を取
得する手段として、観測船にGPS等を設置する。さら
に、水中の各層に浮遊する微粒子で反射された超音波の
反射強度と超音波ドップラー流速計の位置情報から微粒
子の三次元的な分布を推定し、超音波ドップラー流速計
で計測された流速と推定された微粒子の分布から微粒子
の輸送量を算出する手段として、コンピュータ等を用い
る。
As the moving means, for example, an observation ship is used, and an ultrasonic Doppler velocimeter is installed on the side of the observation ship. Further, a GPS or the like is installed on the observation ship as a means for acquiring the horizontal position information of the ultrasonic Doppler velocity meter. Furthermore, the three-dimensional distribution of the particles is estimated from the reflection intensity of the ultrasonic waves reflected by the particles suspended in each layer of water and the position information of the ultrasonic Doppler velocimeter, and the velocity measured by the ultrasonic Doppler velocimeter is calculated. A computer or the like is used as a means for calculating the transport amount of fine particles from the estimated distribution of fine particles.

【0011】第2の発明では、観測船等を移動させつ
つ、超音波ドップラー流速計の位置情報をGPS等で取
得する。超音波ドップラー流速計は、複数の超音波ビー
ムを発信し、水中の微粒子で反射させて流速を計測する
と同時に、水中の微粒子で反射した反射波の反射強度を
取得する。そして、超音波ドップラー流速計の位置情報
と超音波の反射強度から、コンピュータ等を用いて、微
粒子の三次元的な分布を推定する。さらに、超音波ドッ
プラー流速計で計測された流速を用いて微粒子の輸送量
を算出する。
In the second aspect of the invention, the position information of the ultrasonic Doppler velocity meter is acquired by GPS or the like while moving the observation ship or the like. The ultrasonic Doppler velocimeter emits a plurality of ultrasonic beams and reflects the reflected waves by fine particles in water to measure the flow velocity, and at the same time acquires the reflection intensity of the reflected wave reflected by the fine particles in water. Then, from the position information of the ultrasonic Doppler velocimeter and the reflection intensity of the ultrasonic waves, the three-dimensional distribution of the particles is estimated using a computer or the like. Further, the transport amount of the fine particles is calculated using the flow velocity measured by the ultrasonic Doppler velocity meter.

【0012】[0012]

【発明の実施の形態】以下、図面に基づいて、本発明の
実施の形態を詳細に説明する。図1は、濁り監視装置1
の概要図である。濁り監視装置1は、観測船3、ADC
P(超音波ドップラー流速計)5、コンピュータ19、
GPS20等で構成される。ADCP5は、例えば、観
測船3の舷7側等に設置される。コンピュータ19、G
PS20は、例えば、観測船3上に設置される。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described in detail below with reference to the drawings. FIG. 1 is a turbidity monitoring device 1
FIG. The turbidity monitoring device 1 includes an observation ship 3 and an ADC.
P (Ultrasonic Doppler velocity meter) 5, computer 19,
It is composed of GPS 20 and the like. The ADCP 5 is installed, for example, on the port 7 side of the observation ship 3. Computer 19, G
The PS 20 is installed on the observation ship 3, for example.

【0013】観測船3は、ADCP5を任意の位置に移
動させる。図1に示すように、ADCP5からは、複数
本の超音波ビーム11が水底7に向けて発射される。矢
印Aに示す方向に発射された超音波ビーム11は、測定
セル13の位置に浮遊する微粒子15で矢印Bの方向に
反射される。ADCP5は、この反射波14のドップラ
ーシフトで、測定セル13を含む水平面でのADCP5
の直下の流速21を測定する。
The observation ship 3 moves the ADCP 5 to an arbitrary position. As shown in FIG. 1, a plurality of ultrasonic beams 11 are emitted from the ADCP 5 toward the water bottom 7. The ultrasonic beam 11 emitted in the direction indicated by the arrow A is reflected in the direction indicated by the arrow B by the fine particles 15 floating at the position of the measurement cell 13. ADCP5 is the Doppler shift of this reflected wave 14, and ADCP5 on the horizontal plane including the measurement cell 13
The flow velocity 21 immediately below is measured.

【0014】流速21を測定すると同時に、ADCP5
は、超音波ビーム11の矢印B方向の反射波14の反射
強度を取得する。図1では、鉛直方向の1つの層の測定
セル13のみを図示したが、ADCP5から発射された
超音波ビーム11は鉛直方向の各層の測定セル13中に
浮遊する微粒子15で反射され、ADCP5は鉛直方向
の各層毎の流速21と、反射波14の反射強度を同時に
取得する。ADCP5を用いて測定された水深毎の流速
21および反射波14の反射強度は、コンピュータ19
に入力される。
At the same time as measuring the flow velocity 21, ADCP5
Acquires the reflection intensity of the reflected wave 14 of the ultrasonic beam 11 in the direction of arrow B. In FIG. 1, only the measurement cell 13 of one layer in the vertical direction is shown, but the ultrasonic beam 11 emitted from the ADCP 5 is reflected by the fine particles 15 suspended in the measurement cell 13 of each layer in the vertical direction, and the ADCP 5 is The flow velocity 21 for each layer in the vertical direction and the reflection intensity of the reflected wave 14 are simultaneously acquired. The flow velocity 21 and the reflection intensity of the reflected wave 14 for each water depth measured using ADCP5 are calculated by the computer 19
Entered in.

【0015】観測船3に設置されたGPS20は、AD
CP5の位置情報を取得する。濁り監視装置1では、濁
り全体の分布を網羅できるように、濁り発生源を中心に
経過時間ごとに観測船3の航行範囲を広げながら、AD
CP5による流速21と反射波14の反射強度の観測
と、GPS20によるADCP5の位置の観測とが行わ
れる。GPS20を用いて取得されたADCP5の位置
情報は、コンピュータ19に入力され、表示画面に表示
される。
The GPS 20 installed on the observation ship 3 uses AD
The position information of CP5 is acquired. The turbidity monitoring device 1 expands the navigation range of the observation ship 3 at each elapsed time centering on the turbidity source so as to cover the entire turbidity distribution.
Observation of the flow velocity 21 and the reflection intensity of the reflected wave 14 by CP5 and observation of the position of ADCP5 by GPS20 are performed. The positional information of ADCP5 acquired using GPS20 is input into the computer 19 and displayed on the display screen.

【0016】図2は、GPS20で観測された観測船3
の軌跡25、すなわちADCP5の位置情報を示す図で
ある。図2では、例えば、横軸が東西方向の位置を、縦
軸が南北方向の位置を示す。観測船3の軌跡25に示す
曲線から枝分かれした複数の直線31は、枝分かれ位置
においてADCP5で測定された、水中9の所定の層で
の流速21と流向を示す。
FIG. 2 shows the observation ship 3 observed by GPS20.
It is a figure which shows the locus 25 of, ie, the positional information on ADCP5. In FIG. 2, for example, the horizontal axis indicates the position in the east-west direction, and the vertical axis indicates the position in the north-south direction. A plurality of straight lines 31 branched from the curve indicated by the locus 25 of the observation ship 3 indicate the flow velocity 21 and the flow direction in a predetermined layer of the water 9 measured by the ADCP 5 at the branch position.

【0017】図2に示す例では、投入地点27から水中
に投入された土砂等の濁り29aが、時間の経過ととも
に南西方向の流れで濁り29b、29c、29d、29
eに示す位置に運ばれる。観測船3の軌跡25は、海上
の観測船3が待機位置23から矢印Cに示す方向に移動
を開始し、その後、濁り29a、29b、29c、29
d、29e上を往復しながら通過したことを示す。
In the example shown in FIG. 2, the turbidity 29a of earth and sand or the like thrown into the water from the throwing point 27 becomes turbid with the flow in the southwest direction with the passage of time 29b, 29c, 29d, 29.
It is carried to the position shown in e. The locus 25 of the observation ship 3 starts to move from the standby position 23 in the direction indicated by the arrow C to the observation ship 3 on the sea, and then becomes cloudy 29a, 29b, 29c, 29.
It shows that the vehicle passed through d and 29e while reciprocating.

【0018】図3は、観測船3の軌跡25に示す位置お
よび時刻での超音波反射強度を示す図である。横軸は時
刻を、縦軸は水深を示す。横軸に示す時刻は、図2に示
す観測船3の軌跡25、すなわちADCP5での反射強
度の測定位置に対応し、観測船3の走行中には距離に換
算可能である。例えば、図3の待機中33に示す時間帯
には、観測船3は図2に示す待機位置23で待機中であ
る。また、図3の走行中35a、35b、35c、35
d、35eに示す時間帯には、観測船3は図2に示す濁
り29a、29b、29c、29d、29eのある海上
を横切って走行中である。
FIG. 3 is a diagram showing the ultrasonic reflection intensity at the position and time indicated by the trajectory 25 of the observation ship 3. The horizontal axis represents time and the vertical axis represents water depth. The time shown on the horizontal axis corresponds to the locus 25 of the observation ship 3 shown in FIG. 2, that is, the measurement position of the reflection intensity at the ADCP 5, and can be converted into a distance while the observation ship 3 is traveling. For example, in the time zone indicated by the waiting state 33 in FIG. 3, the observation ship 3 is on standby at the waiting position 23 shown in FIG. In addition, while running 35a, 35b, 35c, 35 of FIG.
During the time zones indicated by d and 35e, the observation ship 3 is traveling across the sea with the turbidities 29a, 29b, 29c, 29d and 29e shown in FIG.

【0019】凡例36は、超音波反射強度と図3中の表
示パターンの対応関係を示す。ADCP5で取得された
超音波反射強度と、GPS20で取得された位置情報を
入力されたコンピュータ19は、観測船3の軌跡25に
示す位置および時刻での水中9の反射波14の反射強度
を、凡例36に示すような表示パターンを用いて、表示
画面に表示させる。
Legend 36 shows the correspondence between the ultrasonic wave reflection intensity and the display pattern in FIG. The computer 19 to which the ultrasonic wave reflection intensity acquired by ADCP5 and the position information obtained by GPS20 are input, the reflection intensity of the reflected wave 14 of the underwater 9 at the position and time indicated by the trajectory 25 of the observation ship 3 It is displayed on the display screen using the display pattern shown in the legend 36.

【0020】図4は、採水分析で求めたS.S.(浮遊
粒子)濃度とADCP信号反射強度との関係を示す図で
ある。縦軸は採水分析で求めたS.S.(浮遊粒子)濃
度を、横軸はADCP5で観測されたADCP信号反射
強度を示す。点37は、表層、中層、低層の各位置で採
取したサンプルのS.S.濃度と、同じ位置での超音波
反射強度とを示す。
FIG. 4 shows the S. S. It is a figure which shows the relationship between (suspended particle) density | concentration and ADCP signal reflection intensity. The vertical axis represents the S.I. determined by water sampling analysis. S. The (suspended particle) concentration is shown, and the horizontal axis shows the ADCP signal reflection intensity observed in ADCP5. The point 37 is the S.E. of the sample collected at each position of the surface layer, the middle layer, and the low layer. S. The density and the ultrasonic reflection intensity at the same position are shown.

【0021】直線39は、点37に示すデータの相関直
線である。表層、中層、低層のいずれにおいても、水中
9で採取したサンプルのS.S.濃度と、同じ位置での
超音波ビーム11の反射波14の反射強度との間には、
同様の相関関係が見られる。微粒子15からの超音波反
射強度は、粒子径及び粒子間の距離(密度)が影響する
と考えられ、直線39の関係から、コンピュータ19等
を用いて、ADCP5で観測した超音波反射強度(図
3)をS.S.濃度に換算した推定値が求められる。
The straight line 39 is a correlation straight line of the data indicated by the point 37. The S.I. of the sample collected in water 9 was used for each of the surface layer, the middle layer, and the lower layer. S. Between the density and the reflection intensity of the reflected wave 14 of the ultrasonic beam 11 at the same position,
Similar correlations are seen. It is considered that the ultrasonic wave reflection intensity from the fine particles 15 is influenced by the particle diameter and the distance (density) between particles, and from the relationship of the straight line 39, the ultrasonic wave reflection intensity observed by the ADCP 5 using the computer 19 or the like (see FIG. 3). ) To S. S. An estimated value converted into concentration is obtained.

【0022】図5は、空港島41とその北西に設置され
たシルトフェンス43付近の流速と流向の分布例を示す
図、図6は、図5に示す表示範囲45の濁り分布の予測
例を示す図である。図5に示す複数の線の長さは流速
を、向きは流向を示す。
FIG. 5 is a diagram showing an example of distribution of flow velocity and flow direction near the airport island 41 and the silt fence 43 installed in the northwest of the island, and FIG. 6 is an example of prediction of turbidity distribution in the display range 45 shown in FIG. FIG. The lengths of the plurality of lines shown in FIG. 5 indicate the flow velocity, and the direction indicates the flow direction.

【0023】図5に示すような流速および流向のデータ
と、ある時点での濁りの分布から、コンピュータ19等
を用いて、土砂等の微粒子15の輸送量が算出され、任
意の時間や水深の濁り範囲の予測が行われる。予測結果
は、図6に示すように、各濃度のS.S.濃度に対応す
る複数の表示パターンを用いて表示画面に表示される。
From the data of flow velocity and flow direction as shown in FIG. 5 and the distribution of turbidity at a certain time, the transport amount of the fine particles 15 such as earth and sand is calculated by using the computer 19 or the like, and the transport time of any time and water depth The turbidity range is predicted. The prediction results are shown in FIG. S. It is displayed on the display screen using a plurality of display patterns corresponding to the densities.

【0024】図5に示す流速および流向のデータには、
例えば、濁り監視装置1のADCP5で観測された流速
・流向や、潮汐、風、河川流入等を考慮して算出した流
速・流向が用いられる。濁りの分布のデータには、濁り
監視装置1で観測された微粒子15の濃度分布や、土運
船から土砂が投下される時刻、位置等の情報が用いられ
る。
The flow velocity and flow direction data shown in FIG.
For example, the flow velocity and flow direction observed by the ADCP 5 of the turbidity monitoring device 1 and the flow velocity and flow direction calculated in consideration of tide, wind, river inflow, and the like are used. For the turbidity distribution data, information such as the concentration distribution of the fine particles 15 observed by the turbidity monitoring apparatus 1 and the time and position at which the earth and sand are dropped from the earthmoving ship are used.

【0025】次に、濁り監視装置1の動作について説明
する。濁り監視装置1を用いて三次元的に濁りを監視す
るには、観測船3は、図2に示すように、濁り全体の分
布を網羅できるよう、濁り発生源を中心に経過時間ごと
に航行範囲を広げながら航行する。図2に示す例では、
観測船3が待機位置23で待機している間に、土運船等
を用いて濁り発生源となる投入地点27から土砂等の微
粒子15を投入した。観測船3は、周囲の水面まで濁り
が現れるまで待機を続けた後、矢印Cに示す方向に移動
を開始し、水中9に発生した濁り29aの上方の海上を
通過した。
Next, the operation of the turbidity monitoring device 1 will be described. In order to monitor turbidity three-dimensionally using the turbidity monitoring device 1, as shown in FIG. 2, the observation ship 3 sails around the turbidity source at each elapsed time so that the entire turbidity distribution can be covered. Sail while expanding the range. In the example shown in FIG.
While the observation ship 3 was standing by at the standby position 23, a fine particle 15 such as earth and sand was charged from a charging point 27, which is a source of turbidity, by using a soil carrier or the like. The observation ship 3 continued to wait until turbidity appeared on the surrounding water surface, then started moving in the direction indicated by arrow C, and passed over the turbidity 29a generated in the water 9 above the sea.

【0026】次に、観測船3は矢印Dに示す方向に方向
転換し、濁り29aが南西方向の流れで濁り29bに示
す位置に運ばれるのに合わせて、濁り29bの上方の海
上を通過した。さらに、観測船3は、矢印E、矢印F、
矢印Gに示す方向に方向転換を繰り返し、南西に運ばれ
た濁り29c、29d、29eの上方の海上を通過し
た。
Next, the observation ship 3 turned in the direction indicated by the arrow D, and passed over the sea above the turbidity 29b as the turbidity 29a was carried to the position indicated by the turbidity 29b by the flow in the southwest direction. . Further, the observation ship 3 has arrows E, F,
The direction was repeatedly changed in the direction indicated by the arrow G, and it passed over the sea above the turbidities 29c, 29d, and 29e carried to the southwest.

【0027】図1に示すように、投入位置27での土砂
投入直後から、観測船3が海上を移動を続ける間、観測
船3の舷7に設置したADCP5から水底7に向けて複
数の超音波ビーム11を発射する。矢印Aに示す方向に
発射された超音波ビーム11は、鉛直方向の各層の測定
セル13内に浮遊する微粒子15により、矢印Bの方向
に反射される。
As shown in FIG. 1, while the observation ship 3 continues to move over the sea immediately after the sediment is loaded at the loading position 27, a plurality of superconducting areas from the ADCP 5 installed on the port 7 of the observation ship 3 toward the bottom 7 of the water. The sound wave beam 11 is emitted. The ultrasonic beam 11 emitted in the direction indicated by the arrow A is reflected in the direction indicated by the arrow B by the fine particles 15 floating in the measurement cell 13 of each layer in the vertical direction.

【0028】ADCP5は、矢印Bの方向に反射された
反射波14のドップラーシフトで、鉛直方向の各層につ
いて、測定セル13を含む水平面でのADCP5の直下
の流速21を測定する。同時に、ADCP5は各層に浮
遊する微粒子15による反射波14の反射強度を取得す
る。そして、水深毎の流速21および反射波14の反射
強度の情報をコンピュータ19に送る。
ADCP5 is the Doppler shift of the reflected wave 14 reflected in the direction of arrow B, and for each layer in the vertical direction, the flow velocity 21 immediately below ADCP5 in the horizontal plane including the measurement cell 13 is measured. At the same time, the ADCP 5 acquires the reflection intensity of the reflected wave 14 due to the fine particles 15 floating in each layer. Then, information on the flow velocity 21 and the reflection intensity of the reflected wave 14 for each water depth is sent to the computer 19.

【0029】濁り監視装置1は、ADCP5で水深毎の
流速21と反射波14の反射強度を測定すると同時に、
観測船3上に設置されたGPS20で観測船3の移動の
軌跡、すなわちADCP5の位置情報を取得して、位置
情報のデータをコンピュータ19に送る。
The turbidity monitoring device 1 measures the flow velocity 21 and the reflection intensity of the reflected wave 14 at each water depth with the ADCP 5, and at the same time,
The GPS 20 installed on the observation ship 3 acquires the locus of movement of the observation ship 3, that is, the position information of the ADCP 5, and sends the position information data to the computer 19.

【0030】コンピュータ19は、入力された位置情報
に基づいて、図2に示すように、観測船3の軌跡25を
表示画面に表示する。図2に示すように、表示画面に、
ADCP5から入力された流速21等のデータを直線3
1を用いて同時に表示してもよい。観測船3の軌跡25
は、ADCP5の水平方向の測定位置を示す。観測船3
の軌跡25から枝分かれした直線31の長さは、枝分か
れ位置での水中9の流速21を示し、直線31の向き
は、枝分かれ位置での流向を示す。
The computer 19 displays the trajectory 25 of the observation ship 3 on the display screen, as shown in FIG. 2, based on the input position information. As shown in FIG. 2, on the display screen,
The data such as the flow velocity 21 input from ADCP5 is converted into a straight line 3
You may display simultaneously using 1. Track 25 of observation ship 3
Indicates the horizontal measurement position of ADCP5. Observation ship 3
The length of the straight line 31 branched from the locus 25 of 3 indicates the flow velocity 21 of the water 9 at the branch position, and the direction of the straight line 31 indicates the flow direction at the branch position.

【0031】図2に示すようなADCP5の位置情報、
および、超音波ビーム11の反射波14の反射強度を取
得した後、コンピュータ19は、反射波14の反射強度
とその測定位置との関係を整理し、図3に示すようなグ
ラフを表示画面に表示する。
Position information of ADCP5 as shown in FIG.
Then, after acquiring the reflection intensity of the reflected wave 14 of the ultrasonic beam 11, the computer 19 sorts out the relationship between the reflection intensity of the reflected wave 14 and its measurement position, and displays a graph as shown in FIG. 3 on the display screen. indicate.

【0032】図3に示す例では、待機中33の後半以降
の時間帯に、超音波反射強度の高い部分34が観測され
た。これは、投入地点27で土砂が投入された後、投入
地点27から待機位置23に向かって水底17を這うよ
うに動いてきた濁りを捉えている。また、高い超音波反
射強度が観測された走行中35a、35b、35c、3
5d、35eの時間帯には、観測船3は図2に示す濁り
29a、29b、29c、29d、29eの上を走行し
ていた。
In the example shown in FIG. 3, a portion 34 having a high ultrasonic reflection intensity was observed in the time zone after the latter half of the waiting 33. This captures the turbidity that has moved from the input point 27 to the standby position 23 and crawling on the water bottom 17 after the earth and sand have been input at the input point 27. In addition, during running 35a, 35b, 35c, 3 where high ultrasonic reflection intensity was observed.
During the time periods of 5d and 35e, the observation ship 3 was traveling over the turbidities 29a, 29b, 29c, 29d and 29e shown in FIG.

【0033】図3から、超音波反射強度の高い部分が濁
りの存在する位置に対応すると考えられる。また、最初
に発生した強い濁り29aは、時間が経過して、濁り2
9b、29c、29d、29eの位置に移動するにつれ
て薄まっていくことがわかる。さらに、水深の浅い水表
面から見える濁りの範囲より、水深の深い部分の方がよ
り広い範囲に濁りが広がっていることがわかる。
From FIG. 3, it is considered that the portion having high ultrasonic reflection intensity corresponds to the position where turbidity exists. In addition, the strong turbidity 29a generated first becomes turbidity 2 as time passes.
It can be seen that as it moves to the positions of 9b, 29c, 29d, and 29e, it becomes thinner. Furthermore, it can be seen that the turbidity spreads to a wider area in the deep water portion than in the turbidity area seen from the shallow water surface.

【0034】コンピュータ19は、図4に示すような、
S.S.濃度とADCP信号反射強度との相関から、反
射波14の反射強度をS.S.濃度に換算する。ADC
P5は、観測船3で水平方向に移動しながら鉛直方向の
各層における反射強度を取得しているため、三次元的な
濃度分布が推定される。
The computer 19, as shown in FIG.
S. S. From the correlation between the density and the ADCP signal reflection intensity, the reflection intensity of the reflected wave 14 is S. S. Convert to concentration. ADC
Since P5 acquires the reflection intensity in each layer in the vertical direction while moving in the horizontal direction on the observation ship 3, a three-dimensional concentration distribution is estimated.

【0035】さらに、コンピュータ19は、ADCP5
で測定した流速21等、または、潮汐、風、河川流入等
の条件を考慮して算出した流速と流向の分布を用いて、
必要に応じて、図5に示すような画面を表示画面に表示
する。また、流速および流向と、ADCP5で観測した
ある時点での濁りの分布や、土砂を投入する位置等の濁
りについての情報から、土砂等の微粒子15の輸送量を
算出し、任意の時間や水深の濁り範囲の予測を行い、図
6に示すような表示パターンを用いて表示画面に表示す
る。
Further, the computer 19 uses the ADCP5
Using the distribution of flow velocity and flow direction calculated in consideration of conditions such as tidal, wind, river inflow, etc.
A screen as shown in FIG. 5 is displayed on the display screen as needed. In addition, the transport amount of the fine particles 15 such as sediment is calculated from the flow velocity and flow direction, and the turbidity distribution at a certain time observed by ADCP5 and the turbidity such as the position at which the sediment is put, and the transport amount of the fine particles 15 such as sediment is calculated at any time and water depth. The turbidity range of No. 1 is predicted and displayed on the display screen using the display pattern as shown in FIG.

【0036】濁りの分布を予測する対象範囲および対象
時刻は、任意に設定できる。必要に応じて、濁り分布の
経時変化の予測結果を、図6に示すような表示パターン
を用いて連続して表示してもよい。
The target range and target time for predicting the turbidity distribution can be set arbitrarily. If necessary, the prediction result of the change with time of the turbidity distribution may be continuously displayed using a display pattern as shown in FIG.

【0037】このように、本実施の形態では、ADCP
5を取り付けた観測船3を水平方向に移動させつつ、濁
度の基となる微粒子15からの超音波反射強度を連続観
測する。ADCP5が、水平方向に移動しつつ、鉛直方
向の各層の超音波反射強度を同時に測定するため、三次
元的な濁りの濃度分布を短時間に計測することができ
る。また、ADCP5で計測した流速21を用いて微粒
子15の輸送量を算出して濃度分布を予測し、工事で出
る濁りを高度に管理することができる。
As described above, in the present embodiment, ADCP is used.
The ultrasonic reflection intensity from the fine particles 15, which is the basis of the turbidity, is continuously observed while moving the observation ship 3 equipped with 5 in the horizontal direction. Since the ADCP 5 moves in the horizontal direction and simultaneously measures the ultrasonic reflection intensity of each layer in the vertical direction, it is possible to measure the three-dimensional turbidity concentration distribution in a short time. In addition, the flow rate 21 measured by ADCP5 is used to calculate the transport amount of the fine particles 15 to predict the concentration distribution, and turbidity generated during construction can be highly controlled.

【0038】なお、図1では、観測船3の舷7にADC
P5を設置したが、ADCP5の設置位置はこれに限ら
ず、船底に設置したり、海面を曳航してもよい。また、
コンピュータ19の設置位置は観測船3上に限らず、G
PS20やADCP5からのデータを受信できる他の場
所に設置してもよい。
Incidentally, in FIG. 1, the ADC is provided on the port 7 of the observation ship 3.
Although P5 is installed, the installation position of ADCP5 is not limited to this, and it may be installed at the bottom of the ship or towed on the sea surface. Also,
The installation position of the computer 19 is not limited to the observation ship 3
You may install in the other place which can receive the data from PS20 and ADCP5.

【0039】ADCP5で取得される反射波14の反射
強度は、薄い濁りに敏感に反応する傾向があり、定量的
な濁度の把握には、濁度計を併用することが望ましい。
The reflection intensity of the reflected wave 14 obtained by the ADCP 5 tends to be sensitive to thin turbidity, and it is desirable to use a turbidimeter together for quantitative grasp of turbidity.

【0040】[0040]

【発明の効果】以上、詳細に説明したように、本発明に
よれば、三次元的な濁りの分布や濁り粒子の輸送量を短
時間に計測し、工事で出る濁りを詳細に管理することが
できる水中の濁り監視方法および濁り監視装置を提供で
きる。
As described above in detail, according to the present invention, the three-dimensional distribution of turbidity and the transport amount of turbid particles are measured in a short time, and the turbidity generated during construction is managed in detail. It is possible to provide a turbidity monitoring method and a turbidity monitoring device in water.

【図面の簡単な説明】[Brief description of drawings]

【図1】濁り監視装置1の概要図FIG. 1 is a schematic diagram of a turbidity monitoring device 1.

【図2】GPS20で観測された観測船3の軌跡25、
すなわちADCP5の位置情報を示す図
FIG. 2 is a trajectory 25 of the observation ship 3 observed by the GPS 20,
That is, a diagram showing the position information of ADCP5

【図3】観測船3の軌跡25に示す位置および時刻での
超音波反射強度を示す図
FIG. 3 is a diagram showing ultrasonic wave reflection intensity at a position and time indicated by a locus 25 of the observation ship 3.

【図4】採水分析で求めたS.S.(浮遊粒子)濃度と
ADCP信号反射強度との関係を示す図
FIG. 4 shows the S. S. The figure which shows the relationship between (suspended particle) concentration and ADCP signal reflection intensity.

【図5】空港島41とその北西に設置されたシルトフェ
ンス43付近の流速と流向の分布例を示す図
FIG. 5 is a diagram showing an example of the distribution of the flow velocity and the flow direction near the airport island 41 and the silt fence 43 installed in the northwest of the airport island 41.

【図6】図5に示す表示範囲45の濁り分布の予測例を
示す図
6 is a diagram showing an example of prediction of turbidity distribution in the display range 45 shown in FIG.

【符号の説明】[Explanation of symbols]

1………濁り監視装置 3………船 5………ADCP 11………超音波ビーム 15………微粒子 19………コンピュータ 20………GPS 21………流速 23………観測船3の軌跡 29a、29b、29c、29d、29e………濁り 1 ... turbidity monitoring device 3 ... Ship 5 ......... ADCP 11 ………… Ultrasonic beam 15 …… ... fine particles 19 ……… Computer 20 ... GPS 21 ......... Flow velocity 23 .... Track of observation ship 3 29a, 29b, 29c, 29d, 29e ...

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G01S 15/96 G01S 15/96 (72)発明者 中込 國喜 東京都港区元赤坂一丁目2番7号 鹿島建 設株式会社内 (72)発明者 秋山 真吾 東京都港区元赤坂一丁目2番7号 鹿島建 設株式会社内 (72)発明者 田中 昌宏 東京都港区元赤坂一丁目2番7号 鹿島建 設株式会社内 (72)発明者 池谷 毅 東京都港区元赤坂一丁目2番7号 鹿島建 設株式会社内 Fターム(参考) 2G047 AA02 BA03 BC03 BC05 GA19 GH09 GJ02 5J062 AA01 BB08 CC07 HH01 5J083 AA02 AB20 AC02 AC28 AD01 AE10 AF16 BE38 EA18 Front page continuation (51) Int.Cl. 7 identification code FI theme code (reference) G01S 15/96 G01S 15/96 (72) Inventor Kuniyoshi Nakagome 1-2-7 Moto-Akasaka, Minato-ku, Tokyo Kashima Ken Incorporated Co., Ltd. (72) Inventor Shingo Akiyama 1-2-7 Moto-Akasaka, Minato-ku, Tokyo Kashima Construction In-corporation (72) Inventor Masahiro Tanaka 1-2-7 Moto-Akasaka, Minato-ku, Tokyo Kashima Ken Incorporated Co., Ltd. (72) Inventor Takeshi Iketani 1-2-7 Moto-Akasaka, Minato-ku, Tokyo Kashima Construction Co., Ltd. F-term (reference) 2G047 AA02 BA03 BC03 BC05 GA19 GH09 GJ02 5J062 AA01 BB08 CC07 HH01 5J083 AA02 AB20 AC02 AC28 AD01 AE10 AF16 BE38 EA18

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 超音波ドップラー流速計を移動させつ
つ、前記超音波ドップラー流速計から発射されて水中の
微粒子で反射された超音波の反射強度および前記超音波
ドップラー流速計の位置情報を取得し、 前記反射強度と前記位置情報から、前記微粒子の三次元
的な分布を推定することを特徴とする水中の濁り監視方
法。
1. While moving the ultrasonic Doppler velocimeter, the reflection intensity of ultrasonic waves emitted from the ultrasonic Doppler velocimeter and reflected by fine particles in water and position information of the ultrasonic Doppler velocimeter are acquired. A method for monitoring turbidity in water, comprising estimating a three-dimensional distribution of the fine particles from the reflection intensity and the position information.
【請求項2】 前記超音波ドップラー流速計で計測され
た流速を用いて前記微粒子の輸送量を算出することを特
徴とする請求項1記載の水中の濁り監視方法。
2. The method for monitoring turbidity in water according to claim 1, wherein the transport amount of the fine particles is calculated by using a flow velocity measured by the ultrasonic Doppler velocity meter.
【請求項3】 超音波ドップラー流速計と、 前記超音波ドップラー流速計を移動させる移動手段と、 前記超音波ドップラー流速計の位置情報を取得する手段
と、 前記超音波ドップラー流速計から発射されて水中の微粒
子で反射された超音波の反射強度と前記位置情報から、
前記微粒子の三次元的な分布を推定する手段と、を具備
することを特徴とする水中の濁り監視装置。
3. An ultrasonic Doppler velocimeter, moving means for moving the ultrasonic Doppler velocimeter, means for acquiring position information of the ultrasonic Doppler velocimeter, and being emitted from the ultrasonic Doppler velocimeter. From the reflection intensity of the ultrasonic waves reflected by the fine particles in the water and the position information,
Means for estimating the three-dimensional distribution of the fine particles, and a device for monitoring turbidity in water.
【請求項4】 前記超音波ドップラー流速計で計測され
た流速を用いて前記微粒子の輸送量を算出する手段をさ
らに具備することを特徴とする請求項3記載の水中の濁
り監視装置。
4. The underwater turbidity monitoring apparatus according to claim 3, further comprising means for calculating a transport amount of the fine particles by using a flow velocity measured by the ultrasonic Doppler velocity meter.
JP2002131313A 2002-05-07 2002-05-07 Method of monitoring turbidity in water and turbidity monitoring device Pending JP2003322604A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002131313A JP2003322604A (en) 2002-05-07 2002-05-07 Method of monitoring turbidity in water and turbidity monitoring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002131313A JP2003322604A (en) 2002-05-07 2002-05-07 Method of monitoring turbidity in water and turbidity monitoring device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006283405A Division JP4342546B2 (en) 2006-10-18 2006-10-18 Turbidity monitoring method and turbidity monitoring device in water

Publications (1)

Publication Number Publication Date
JP2003322604A true JP2003322604A (en) 2003-11-14

Family

ID=29543993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002131313A Pending JP2003322604A (en) 2002-05-07 2002-05-07 Method of monitoring turbidity in water and turbidity monitoring device

Country Status (1)

Country Link
JP (1) JP2003322604A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006226904A (en) * 2005-02-18 2006-08-31 Water Resources Environment Technology Center Acoustic concentration measuring device for suspended solids
JP2007513341A (en) * 2003-11-24 2007-05-24 エムジーディー・テクノロジーズ,インコーポレイテッド Apparatus and method for analyzing fluid motion and fluid component
JP2012047664A (en) * 2010-08-30 2012-03-08 Daido Steel Co Ltd Method for measuring insoluble substance concentration of liquid by ultrasonic wave
CN102673744A (en) * 2012-05-25 2012-09-19 杨卓 Hydrology remote control power-driven ship
CN102785763A (en) * 2011-05-20 2012-11-21 中国科学院海洋研究所 ADCP (Acoustic Doppler Current Profiler) installation system applied to floating platform
CN106525961A (en) * 2016-11-03 2017-03-22 中国海洋大学 Method for detecting water turbidity through ultrasonic wave
CN107110761A (en) * 2014-12-16 2017-08-29 细胞动力学责任有限公司 The device of the particle suspended in real time in analysis fluid and the method for analyzing the particle
CN114459732A (en) * 2022-04-11 2022-05-10 自然资源部第一海洋研究所 Comprehensive observation device for tidal flat water and sand power environment
CN115655994A (en) * 2022-09-15 2023-01-31 浙江天禹信息科技有限公司 Ultrasonic measurement method and system for silt in water area

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007513341A (en) * 2003-11-24 2007-05-24 エムジーディー・テクノロジーズ,インコーポレイテッド Apparatus and method for analyzing fluid motion and fluid component
JP2006226904A (en) * 2005-02-18 2006-08-31 Water Resources Environment Technology Center Acoustic concentration measuring device for suspended solids
JP2012047664A (en) * 2010-08-30 2012-03-08 Daido Steel Co Ltd Method for measuring insoluble substance concentration of liquid by ultrasonic wave
CN102785763B (en) * 2011-05-20 2014-12-10 中国科学院海洋研究所 ADCP (Acoustic Doppler Current Profiler) installation system applied to floating platform
CN102785763A (en) * 2011-05-20 2012-11-21 中国科学院海洋研究所 ADCP (Acoustic Doppler Current Profiler) installation system applied to floating platform
CN102673744B (en) * 2012-05-25 2015-03-11 杨卓 Hydrology remote control power-driven ship
CN102673744A (en) * 2012-05-25 2012-09-19 杨卓 Hydrology remote control power-driven ship
CN107110761A (en) * 2014-12-16 2017-08-29 细胞动力学责任有限公司 The device of the particle suspended in real time in analysis fluid and the method for analyzing the particle
CN106525961A (en) * 2016-11-03 2017-03-22 中国海洋大学 Method for detecting water turbidity through ultrasonic wave
CN114459732A (en) * 2022-04-11 2022-05-10 自然资源部第一海洋研究所 Comprehensive observation device for tidal flat water and sand power environment
CN114459732B (en) * 2022-04-11 2022-06-28 自然资源部第一海洋研究所 Comprehensive observation device for tidal flat water and sand power environment
CN115655994A (en) * 2022-09-15 2023-01-31 浙江天禹信息科技有限公司 Ultrasonic measurement method and system for silt in water area
CN115655994B (en) * 2022-09-15 2023-09-19 浙江天禹信息科技有限公司 Ultrasonic measurement method and system for sediment in water area

Similar Documents

Publication Publication Date Title
Thorne et al. Analysis of acoustic measurements of suspended sediments
JP4415192B2 (en) Riverbed measuring device
Simpson Discharge measurements using a broad-band acoustic Doppler current profiler
MX2011012512A (en) System and method of using autonomous underwater vehicle to facilitate seismic data acquisition.
JP2003322604A (en) Method of monitoring turbidity in water and turbidity monitoring device
Brown et al. The use of autonomous vehicles for spatially measuring mean velocity profiles in rivers and estuaries
JP4165201B2 (en) Underwater resource exploration method and apparatus
JP4342546B2 (en) Turbidity monitoring method and turbidity monitoring device in water
JP3562494B2 (en) Sonar detection range prediction visualization system, method and program
Abreu et al. Automatic interface for AUV mission planning and supervision
CN114910024A (en) Underwater sludge thickness detection method and system
Cheng et al. Complete velocity distribution in river cross-sections measured by acoustic instruments
CN115032695B (en) Submarine cable tracking type detection method based on acoustic side reflection
CN107229053A (en) A kind of river seawater body three-dimensional velocity detection method and device of alignment system auxiliary
CN108873058A (en) A kind of submarine seismograph model machine and measurement method
CN113608225A (en) Method for calculating depth of buried target under water based on synthetic aperture sonar
Zatsepin et al. Studies of the hydrophysical processes over the shelf and upper part of the continental slope of the Black Sea with the use of traditional and new observation techniques
RU2464205C1 (en) Method of seadrome preparation for boatplane takeoff and surfacing
RU2521717C1 (en) Method of passive acoustic monitoring of demersal gas-liquid flows
KR101526733B1 (en) Scour phenomenon detecting device and scour phenomenon detecting method using the same
JP3808055B2 (en) Mound formation input position prediction method, system, program, and mound formation input management method
RU2736231C1 (en) Method for determining sound velocity distribution
CN113359182B (en) Device, method and system for quickly searching and positioning deep-sea hydrothermal nozzle
Van Craenenbroeck et al. Application of Modern Survey Techniques in Today's Dredging Practice
JP3552918B2 (en) Ocean dilution and release equipment for carbon dioxide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050111

A977 Report on retrieval

Effective date: 20060220

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060307

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060426

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060822

A521 Written amendment

Effective date: 20061020

Free format text: JAPANESE INTERMEDIATE CODE: A523

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Effective date: 20061026

Free format text: JAPANESE INTERMEDIATE CODE: A911

A912 Removal of reconsideration by examiner before appeal (zenchi)

Effective date: 20061215

Free format text: JAPANESE INTERMEDIATE CODE: A912