JP2003321216A - Graphite-based hydrogen-occluding material and method for producing the same - Google Patents

Graphite-based hydrogen-occluding material and method for producing the same

Info

Publication number
JP2003321216A
JP2003321216A JP2002126295A JP2002126295A JP2003321216A JP 2003321216 A JP2003321216 A JP 2003321216A JP 2002126295 A JP2002126295 A JP 2002126295A JP 2002126295 A JP2002126295 A JP 2002126295A JP 2003321216 A JP2003321216 A JP 2003321216A
Authority
JP
Japan
Prior art keywords
graphite
hydrogen
hydrogen storage
storage material
pulverization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002126295A
Other languages
Japanese (ja)
Inventor
Minoru Shirohige
稔 白髭
Junichi Iida
淳一 飯田
Hitoshi Ito
仁 伊藤
Junji Katamura
淳二 片村
Mikio Kawai
幹夫 川合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Resonac Corp
Original Assignee
Hitachi Powdered Metals Co Ltd
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Powdered Metals Co Ltd, Nissan Motor Co Ltd filed Critical Hitachi Powdered Metals Co Ltd
Priority to JP2002126295A priority Critical patent/JP2003321216A/en
Publication of JP2003321216A publication Critical patent/JP2003321216A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Abstract

<P>PROBLEM TO BE SOLVED: To achieve a graphite-based hydrogen-occluding material which can effectively occlude hydrogen, is lightweight, can be repeatedly used and easily produced, and to achieve a method for producing the same. <P>SOLUTION: The graphite-based hydrogen-occluding material comprises a graphite-based material which occludes and releases hydrogen, wherein the graphite-based material is at least ground and activated to have a specific surface area of 400 m<SP>2</SP>/g or more and a volume of pores having a radius of 5 nm or less of 0.3 cm<SP>3</SP>/g or more. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明が属する技術分野】この発明は、黒鉛系の水素吸
蔵材料及びその製造方法に関するものである。なお、本
明細書において、Ni、Pt、Pd、K、Li等は元素
記号である。
TECHNICAL FIELD The present invention relates to a graphite-based hydrogen storage material and a method for producing the same. In the present specification, Ni, Pt, Pd, K, Li and the like are element symbols.

【0002】固体高分子型燃料電池の開発競争が活発に
繰り広げられる中、実用化のためコストが低く、特に輸
送用機器への車載を検討されているものは軽量で、吸蔵
密度が高く、水素の充填、放出速度の速い水素吸蔵材料
を用いた水素貯蔵法の開発が望まれている。現在、水素
を輸送用機器に車載する方法としては、高圧ガス、液体
水素、水素吸蔵合金、炭素系材料の4種類の方法が提案
されている。ここで、高圧ガスを車に搭載することは天
然ガス(メタン)自動車で実用化されており、200気
圧まで圧縮されボンベに蓄えられる。したがって、燃料
電池自動車に水素ボンベを用いることは本質的に問題な
く、水素貯蔵量を増やすため350気圧にし充填量を増
やすことが検討されている。しかし、ボンベは高圧に耐
えるために厚肉化され重量が増大するという問題を抱え
ている。次に、液体水素による輸送貯蔵では、水素の沸
点(−253℃)より低温にすることで液化水素を製造
できる。液化水素は、気体と比べて体積が約800分の
1であるため水素の優れた貯蔵方法である。しかし、水
素の気化熱が小さいことに起因する気化(ボイルオ
フ)、超低温に耐える容器を要する点などが課題とな
る。これに対し、水素吸蔵合金による輸送貯蔵として
は、Ni−水素電池にも使用されている希土類系合金の
LaNi が代表的である。この材料の水素吸蔵量は
1.4wt%程度である。また、最近はTiとVを基本
とした合金中で体心立方(BCC)構造を持つ固溶体相
が水素吸蔵性に優れていることが分かり、検討が進めら
れている。その一方で、近年、炭素系材料を用いた水素
吸蔵の研究が盛んに行われている。炭素系材料として
は、活性炭、グラファイト層間化合物、カーボンナノチ
ューブ(CNT)、グラファイトナノファイバー(GN
F)、フラーレン類などであり、常温での吸蔵・放出特
性、製造コスト、量産性や収率などに課題を有している
が、その課題を克服すべく更なる検討が進められてい
る。具体的には次の通りである。
[0002] Amidst the active development competition of polymer electrolyte fuel cells, the cost is low for practical use. Especially, those which are considered to be mounted on transportation equipment are lightweight, have a high storage density, and have a high hydrogen content. It is desired to develop a hydrogen storage method using a hydrogen storage material having a high filling and releasing rate of hydrogen. At present, four types of methods have been proposed as a method for mounting hydrogen on a transportation device, including high-pressure gas, liquid hydrogen, a hydrogen storage alloy, and a carbon-based material. Here, mounting high-pressure gas on a car has been put to practical use in a natural gas (methane) car, and compressed to 200 atm and stored in a cylinder. Therefore, using a hydrogen cylinder in a fuel cell vehicle is essentially no problem, and it has been considered to increase the filling amount to 350 atm in order to increase the hydrogen storage amount. However, the cylinder has a problem that it is thickened to withstand high pressure and its weight increases. Next, in transport storage using liquid hydrogen, liquefied hydrogen can be produced by lowering the temperature below the boiling point of hydrogen (−253 ° C.). Liquefied hydrogen is an excellent method for storing hydrogen because it has a volume of about 1/800 that of gas. However, there are problems such as vaporization (boil-off) due to the small heat of vaporization of hydrogen and the need for a container that can withstand ultra-low temperatures. On the other hand, LaNi 5, which is a rare earth alloy also used in Ni-hydrogen batteries, is typical for transportation and storage by hydrogen storage alloys. The hydrogen storage capacity of this material is about 1.4 wt%. Further, recently, in an alloy based on Ti and V, it has been found that a solid solution phase having a body-centered cubic (BCC) structure is excellent in hydrogen storage property, and studies have been advanced. On the other hand, in recent years, research on hydrogen storage using a carbon-based material has been actively conducted. Carbon-based materials include activated carbon, graphite intercalation compounds, carbon nanotubes (CNT), graphite nanofibers (GN).
F), fullerenes, and the like, which have problems in storage / release characteristics at room temperature, manufacturing cost, mass productivity, yield, etc., but further studies are being made to overcome these problems. Specifically, it is as follows.

【0003】炭素系材料のうち、CNTを用いる水素吸
蔵法は最も注目され、水素吸蔵合金の吸蔵能よりも優れ
た4〜10wt%前後の吸蔵能達成の報告もなされてい
る。単層CNTは、炭素原子が六角網目状に配列した一
枚のグラフェンシートが丸まった直径が数〜数十nmの
円筒状であり、それらがバンドル状(束状)になった構
造を取ることが多く、チューブ内部あるいはチューブ間
は強い物理ポテンシャルが作用し、そこに多量の水素分
子が物理吸着するとされている。多層CNTは、グラフ
ェンシートが同心円状に等間隔に多層に重なったもの
で、チューブ壁が多層であるため水素分子と接触する表
面炭素原子の割合は少なくなるが、グラフェンシート間
隔に水素が進入すれば高い水素吸蔵機能が期待できると
されている。また、多層CNTの合成法の発達により配
向度が高いものも合成され、その結果、高い水素吸蔵量
の報告がなされている。なお、特開2001−2201
01号公報には、CNT、GNFおよび活性炭などの細
孔を有する炭素材料に水素を吸蔵させる技術が提案され
ている。しかし、一般的にナノチュープでは、高い水素
吸蔵は液体窒素付近の低温で達成可能であり、常温での
吸蔵能は0.2〜0.4wt%と低く、又、実用化のた
めには大幅なコスト低減、生産能力の向上など課題が多
い。特開2001−302224号公報では、水素雰囲
気中で黒鉛を機械的に粉砕し、ナノ構造化された黒鉛に
水素を貯蔵させる提案もなされ、7.4wt%の水素放
出が確認されている。水素雰囲気中で黒鉛を粉砕するこ
とで、水素を共有結合、また、共有結合なしで黒鉛粒子
内に貯蔵することを特徴とするものであり、大きな吸蔵
性が確認されている。この技術は、文献(炭素 TAN
SO 2001「No.200」pp261〜268)
にも詳述されている。一例を挙げると、『ナノ構造化グ
ラファイト内部の水素量は、ミリング処理時間の増加、
すなわち欠陥構造の発展に伴って著しく増加し、80時
間後の水素量は7.4wt%にも達することがわかる。
80時間のミリング処理後の比表面積はわずかに10m
/gのオーダーであり、試料表面での物理吸着量は極
めて少ない。また、質量数2の水素分子の昇温脱離スペ
クトルは、およそ600K、950Kで始まる2つピー
クを示した。』など、興味深い解析がなされている。し
かし、実際の使用に際しては、水素放出温度の低温化と
サイクル性(繰り返しの使用)の確保が必要である。水
素雰囲気での水素吸蔵性は、粉砕によって生じるダング
リングボンド、構造欠陥が推進力になっているとされ、
水素の存在位置は、中性子回析実験より黒鉛のダングリ
ングボンドと結合している水素、もう一つは黒鉛層間に
位置する水素であることが報告されている。従って、一
度加熱し水素を放出させた材料に水素を入れる場合、加
圧では水素がほとんど入らず(0.2wt%)、また、
再度水素雰囲気で粉砕するにしても、黒鉛の結晶子が小
さくなっており、アモルファス化した状態であるため、
水素の吸蔵がほとんど認められないことが問題である。
従って、水素雰囲気中での粉砕では、放出温度が高いこ
とと繰り返しの使用ができないことが問題である。
Among the carbonaceous materials, the hydrogen storage method using CNT has received the most attention, and it has been reported that the storage capacity of about 4 to 10 wt%, which is superior to the storage capacity of hydrogen storage alloys, is achieved. The single-walled CNT has a structure in which a single graphene sheet in which carbon atoms are arranged in a hexagonal mesh is a cylindrical shape having a rolled diameter of several to several tens of nm, and they are bundled (bundle-shaped). It is said that a strong physical potential acts inside or between the tubes, and a large amount of hydrogen molecules are physically adsorbed there. Multilayer CNTs are graphene sheets that are concentrically stacked in multiple layers at equal intervals. Since the tube wall is multilayer, the proportion of surface carbon atoms that come into contact with hydrogen molecules is small, but hydrogen enters the graphene sheet spacing. It is said that a high hydrogen storage function can be expected. Further, due to the development of the synthesis method of multi-walled CNT, those having a high degree of orientation have been synthesized, and as a result, a high hydrogen storage amount has been reported. Incidentally, JP-A-2001-2201
No. 01 publication proposes a technique of storing hydrogen in a carbon material having pores such as CNT, GNF and activated carbon. However, in general, in nanotubes, high hydrogen storage can be achieved at a low temperature near liquid nitrogen, and the storage capacity at room temperature is as low as 0.2 to 0.4 wt%, and it is significantly large for practical use. There are many issues such as cost reduction and improvement of production capacity. Japanese Patent Laid-Open No. 2001-302224 proposes to mechanically pulverize graphite in a hydrogen atmosphere to store hydrogen in the nanostructured graphite, and confirms that hydrogen is released at 7.4 wt%. It is characterized by crushing graphite in a hydrogen atmosphere to store hydrogen in the graphite particles covalently or non-covalently, and a large storage property has been confirmed. This technology is based on the literature (Carbon TAN
SO 2001 "No. 200" pp261-268)
Are also detailed. To give an example, “The amount of hydrogen in the nanostructured graphite increases with the milling time,
That is, it can be seen that the hydrogen content remarkably increases with the development of the defect structure, and the hydrogen content after 80 hours reaches 7.4 wt%.
Specific surface area is only 10m after milling for 80 hours
It is on the order of 2 / g, and the physical adsorption amount on the sample surface is extremely small. Further, the thermal desorption spectrum of the hydrogen molecule having a mass number of 2 showed two peaks starting at approximately 600K and 950K. , Etc., an interesting analysis is made. However, in actual use, it is necessary to lower the hydrogen release temperature and ensure cycleability (repeated use). It is said that hydrogen storage in a hydrogen atmosphere is driven by dangling bonds and structural defects caused by pulverization.
It has been reported from the neutron diffraction experiment that hydrogen is located in the hydrogen bonded to the dangling bond of graphite, and the other is located between the graphite layers. Therefore, when hydrogen is added to a material that has been heated and released, hydrogen hardly enters under pressure (0.2 wt%).
Even if it is pulverized again in a hydrogen atmosphere, the crystallites of graphite are small, and since it is in an amorphous state,
The problem is that hydrogen storage is hardly observed.
Therefore, in the pulverization in a hydrogen atmosphere, there are problems that the release temperature is high and it cannot be repeatedly used.

【0004】[0004]

【発明が解決しようとする課題】以上のような炭素系材
料は、貯蔵・放出条件によっては水素貯蔵合金よりも高
い水素吸蔵能を示すが、放出温度が高かったり、吸蔵メ
カニズム上、繰り返しの使用ができなかったり、製法
上、大量生産ができない等問題が多い。そこで、この発
明は、大量の水素を効率的に吸蔵させることができ、軽
量で、繰り返し使用でき、作製も容易な黒鉛系水素吸蔵
材料及びその製造方法を提供することを目的としたもの
である。
The above-mentioned carbon-based materials have higher hydrogen storage capacity than hydrogen storage alloys depending on the storage and release conditions, but they have a high release temperature and are repeatedly used due to the storage mechanism. There are many problems such as not being able to do it, and being unable to mass-produce due to the manufacturing method. Therefore, the present invention is intended to provide a graphite-based hydrogen storage material that can efficiently store a large amount of hydrogen, is lightweight, can be repeatedly used, and is easy to manufacture, and a method for producing the same. .

【0005】[0005]

【課題を解決するための手段】本発明者らは、上記目的
を達成するため、原料としては入手・製造が容易な黒鉛
を用い、黒鉛の構造を如何に利用するか、黒鉛の表面活
性を如何に利用するかの観点から鋭意研究を重ねた結
果、結晶性の良い黒鉛を用い、粉砕と賦活とを組み合わ
せることで、高い水素吸蔵性を達成できることを見出
し、発明に至った。すなわち、発明の黒鉛系水素吸蔵材
料は、水素を吸蔵・放出する黒鉛系材料において、該黒
鉛系材料が少なくとも粉砕及び賦活されて、比表面積が
400m/g以上、半径5nm以下の細孔の容積が
0.3cm /g以上になっていることを特徴として
いる。
[Means for Solving the Problems] In order to achieve the above-mentioned object, the present inventors have used graphite, which is easy to obtain and manufacture, as a raw material, how to utilize the structure of graphite, and to determine the surface activity of graphite. As a result of earnest researches from the viewpoint of how to utilize it, they found that a high hydrogen storage property can be achieved by using graphite having good crystallinity and combining pulverization and activation. That is, the graphite-based hydrogen storage material of the invention is a graphite-based material that absorbs and releases hydrogen, and has a specific surface area of 400 m 2 / g or more and a radius of 5 nm or less, which is obtained by pulverizing and activating the graphite-based material. It is characterized in that the volume is 0.3 cm 3 / g or more.

【0006】以上の発明は請求項2〜7のようにより詳
細に特定可能である。 ・請求項2の発明は前記黒鉛系水素吸蔵材料を結晶特徴
から特定したもので、レーザーラマン分光分析により得
られるDバンドと呼ばれるアモルファス化した黒鉛に起
因する1360cm−1 付近のスペクトル強度(I
1360)と、Gバンドと呼ばれる黒鉛の結晶質炭素に
起因する1575cm−1付近のスペクトル強度(I
1575)とのピーク高さ比(I1360
1575)を示すR値が0.70以上である。 ・請求項3と7の発明は、前記黒鉛系材料がPt、P
d、Ni、K、Li、Ti、V、Cr、Mn、Fe、C
o、Zr、Nbの何れか1種以上を含有することで、単
位重量(質量)当たりの水素吸蔵量をより増大できるこ
とを特定したものである。 ・請求項4の発明は、以上の黒鉛系水素吸蔵材料を製造
方法から捉えたもので、天然黒鉛、人造黒鉛、メソフェ
ーズピッチ系黒鉛の何れか一種以上の原料黒鉛を用い、
第一のプロセスとして粉砕処理して黒鉛の結晶子の大き
さを小さくした後、第二のプロセスとして賦活処理する
ことにより作製することを特徴としている。 ・請求項5と6の発明は、前記製造方法の細部を特定し
たもので、黒鉛系原料は結晶性の高いものが良く、粉砕
前の黒鉛の(110)面の結晶子の大きさが25nm以
上、(002)面の結晶子の大きさが20nm以上のも
のを用いること、粉砕処理では粉砕後の黒鉛の(11
0)面の結晶子の大きさが1nm以上、(002)面の
結晶子の大きさが1〜70nmの範囲にすることが必須
となる。
The above inventions can be specified in more detail as in claims 2 to 7. The invention of claim 2 specifies the graphite-based hydrogen storage material from the crystal characteristics, and the spectral intensity (I) near 1360 cm −1 due to amorphized graphite called D band obtained by laser Raman spectroscopy.
1360 ) and the spectral intensity (I) near 1575 cm −1 due to the crystalline carbon of graphite called the G band.
1575 ) and the peak height ratio (I 1360 /
The R value indicating I 1575 ) is 0.70 or more. -In the inventions of claims 3 and 7, the graphite material is Pt or P.
d, Ni, K, Li, Ti, V, Cr, Mn, Fe, C
It is specified that the hydrogen storage amount per unit weight (mass) can be further increased by containing at least one of o, Zr, and Nb. -The invention of claim 4 is obtained by capturing the above graphite-based hydrogen storage material from the manufacturing method, and uses one or more raw material graphite of natural graphite, artificial graphite, or mesophase pitch-based graphite,
The first process is pulverization to reduce the size of graphite crystallites, and then the second process is activation treatment. The inventions of claims 5 and 6 specify the details of the production method, and the graphite-based raw material is preferably one having high crystallinity, and the size of the crystallite on the (110) plane of the graphite before pulverization is 25 nm. As described above, the crystallite size of the (002) plane should be 20 nm or more.
It is essential that the crystallite size of the (0) plane is 1 nm or more and the crystallite size of the (002) plane is 1 to 70 nm.

【0007】[0007]

【発明の実施の形態】以下、発明の黒鉛系水素吸蔵材料
及び製造方法を説明する。発明の黒鉛系水素吸蔵材料
は、結晶性の高い黒鉛を用い、第一のプロセスとして粉
砕処理にて黒鉛の結晶子の大きさを小さくした後、第二
のプロセスとして賦活処理にて、材料の細孔や比表面積
などを最適形態に調整したことが第一の特徴である。ま
ず、水素吸蔵量の多い黒鉛系材料の考え方として、黒鉛
内に水素を吸蔵するサイト(層間、細孔等)を創製する
ことが必要である。この点から、本発明者らは、試験を
重ねたところ、粉砕処理を行っていない結晶性の高い黒
鉛を賦活処理しても比表面積が増加せず、細孔構造の発
達もほとんど見られないこと、比表面積の高い黒鉛系水
素吸蔵材料の調整には第一のプロセスとして粉砕処理で
黒鉛の結晶子を小さく(7nm以下)し、また、黒鉛表
面の黒鉛化度を下げた後に、第二のプロセスとして賦活
処理を施すことが最も好ましいとの確証を得た。すなわ
ち、この発明では、結晶性の高い原料黒鉛を用い、その
比表面積を上げ、細孔構造、層間をより有効に活用、つ
まり水素が吸蔵しやすいサイトとして、水素分子や水素
原子が物理的および化学的に吸着しやすい細孔径および
結晶構造を有する黒鉛系水素吸蔵材料を提供するもので
ある。水素吸蔵の化学的ポテンシャルとしては、黒鉛の
粉砕過程で生じるダングリングボンドや格子欠陥などで
生じる活性点と、賦活処理で生じる黒鉛表面官能基との
水素吸着特性を利用したものである。具体的には、第一
のプロセスとして粉砕処理と第二のプロセスとして賦活
処理とを所定条件で組み合わせることによって、黒鉛の
粉砕により生じる活性な細孔構造が賦活処理で更にミク
ロ構造部分(ミクロ孔)として発達し水素が吸蔵しやす
い物理的吸着サイトを形成したものである。
BEST MODE FOR CARRYING OUT THE INVENTION The graphite-based hydrogen storage material and the manufacturing method of the present invention will be described below. The graphite-based hydrogen storage material of the invention uses graphite having high crystallinity, and after reducing the crystallite size of graphite by pulverization treatment as the first process, it is activated by the second process. The first feature is that the pores and the specific surface area are adjusted to the optimum shape. First, as a concept of a graphite material having a large hydrogen storage capacity, it is necessary to create sites (interlayers, pores, etc.) for storing hydrogen in graphite. From this point, the inventors of the present invention have conducted repeated tests and found that the specific surface area does not increase even when the highly crystalline graphite that has not been subjected to the pulverization treatment is activated, and that the pore structure is hardly developed. That is, the first process for adjusting a graphite-based hydrogen storage material having a high specific surface area is to reduce the crystallites of graphite by grinding (7 nm or less), and after reducing the graphitization degree of the graphite surface, It was confirmed that it is most preferable to carry out activation treatment as the process. That is, in the present invention, the raw material graphite having high crystallinity is used, the specific surface area thereof is increased, the pore structure and the interlayer are more effectively utilized, that is, hydrogen molecules and hydrogen atoms are physically and physically The present invention provides a graphite-based hydrogen storage material having a pore size and a crystal structure that are easily chemically adsorbed. The chemical potential for hydrogen storage utilizes the hydrogen adsorption characteristics of active points generated by dangling bonds and lattice defects generated during the pulverization process of graphite and the functional groups of the graphite surface generated during activation treatment. Specifically, by combining the pulverization treatment as the first process and the activation treatment as the second process under predetermined conditions, the active pore structure generated by the pulverization of graphite is converted into the microstructure portion (micropore) by the activation treatment. ) Is formed as a physical adsorption site where hydrogen is easily absorbed.

【0008】ここで、原料黒鉛、つまり粉砕前の黒鉛と
しては結晶性の高いものが望ましく、(110)面の結
晶子の大きさが25nm以上、(002)面の結晶子の
大きさが20nm以上のものを用いることである。これ
は、粉砕効果として、特に粉砕処理過程での細孔の容積
向上が期待でき、粉砕時間も短くでき、好ましい態様で
ある。具体的な原料黒鉛としては、鱗片状黒鉛、鱗状黒
鉛、土状黒鉛などの天然黒鉛、コークスなどを焼成して
製造する人造黒鉛、メソフェーズピッチを原料として焼
成するメソフェーズピッチ系黒鉛など結晶性の発達した
黒鉛が好適である。
Here, the raw material graphite, that is, the graphite before crushing, is preferably one having high crystallinity, and the crystallite size of the (110) plane is 25 nm or more, and the crystallite size of the (002) plane is 20 nm. The above is used. This is a preferable mode because, as a crushing effect, it is expected that the volume of pores in the crushing process can be improved, and the crushing time can be shortened. Specific raw material graphite includes natural graphite such as scaly graphite, scaly graphite, and earth graphite, artificial graphite produced by firing coke, mesophase pitch-based graphite that is fired from mesophase pitch as a raw material, and crystallinity development. Graphite is preferred.

【0009】粉砕処理では、水素吸蔵として最適な範囲
が存在し、その範囲は、粉砕後の黒鉛の(110)面の
結晶子の大きさが1nm以上、(002)面の結晶子の
大きさが1〜70nmの範囲に収めることである。これ
は、例えば、結晶性の高い原料黒鉛が粉砕により結晶子
の大きさが減少し、それに伴い比表面積、細孔容積が増
大するが、(110)面および(002)面の結晶子の
大きさが1nm以下となるような長時間の粉砕では、ナ
ノ粒子、結晶子の縮合等により、逆に比表面積、細孔容
積の減少を招き、水素貯蔵性能が低下するためである。
なお、粉砕処理において、粉砕機としてはボールミル、
振動ミル、遊星ボールミル、ジェットミルなどが好適で
ある。また、粉砕雰囲気は大気、アルゴン、窒素、水
素、真空粉砕などが適用される。
In the crushing treatment, there is an optimum range for hydrogen absorption, and the range is such that the size of crystallites on the (110) plane of graphite after crushing is 1 nm or more and the size of crystallites on the (002) plane. Is within the range of 1 to 70 nm. This is because, for example, the raw material graphite having high crystallinity reduces the size of the crystallites by pulverization, and accordingly the specific surface area and the pore volume increase. This is because, in the case of pulverization for a long time such that the particle size becomes 1 nm or less, the specific surface area and the pore volume are conversely reduced due to the condensation of nanoparticles, crystallites, etc., and the hydrogen storage performance deteriorates.
In the crushing process, a ball mill is used as the crusher,
A vibration mill, a planetary ball mill, a jet mill and the like are suitable. As the crushing atmosphere, air, argon, nitrogen, hydrogen, vacuum crushing, or the like is applied.

【0010】賦活処理では、水蒸気賦活、炭素ガス賦
活、酸素賦活、薬品賦活法が適用可能であり、粉砕後の
黒鉛材料の結晶性を残したまま、比表面積を所定値まで
高くする。これは、前途のごとく結晶性の高い原料黒鉛
であっても、第二のプロセスの賦活処理だけでは比表面
積が上がらず、第一のプロセスである粉砕によって適度
に結晶子の大きさを小さくし、又、黒鉛表面のアモルフ
ァス化が適度になる条件で粉砕した後、第二のプロセス
の賦活処理を施すことで、水素吸着用として最も優れた
比表面積の高い黒鉛系材料を調整可能にするためであ
る。
In the activation treatment, steam activation, carbon gas activation, oxygen activation and chemical activation can be applied, and the specific surface area is increased to a predetermined value while the crystallinity of the graphite material after pulverization remains. This is because even if it is a raw material graphite having high crystallinity as in the future, the specific surface area cannot be increased only by the activation process of the second process, and the size of the crystallite is appropriately reduced by pulverization which is the first process. In order to adjust the graphite material with the highest specific surface area for hydrogen adsorption, it is possible to adjust the graphite surface by pulverizing it under the condition that the amorphization of the graphite surface becomes appropriate and then performing the activation process of the second process. Is.

【0011】賦活処理の詳細は以下の通りである。水蒸
気賦活では、黒鉛試料を水蒸気の存在化で750℃程度
で反応を進行させる。炭素ガス賦活では、炭素ガスの存
在化で850℃程度で反応を進行させる。薬品賦活法で
は、粉砕後の黒鉛に賦活薬品を均等に含浸させて、不活
性ガス雰囲気中で加熱し、薬品の脱水及び酸化反応によ
り微細な細孔を形成する。薬品賦活の中でも水酸化カリ
ウムを用いたKOH賦活の場合は、KOHを黒鉛量の4
倍量用いて、不活性ガス中で700℃で、1時間反応さ
せることである。賦活処理の後、黒鉛表面には表面酸化
物が形成されるが、その構造は水酸基、カルボキシル
基、カルボニル基などである。これらは水素吸蔵(試
験)に際し、真空加熱脱気される。このようにして、賦
活後は、黒鉛が表面活性を発現し、水素の物理的および
化学的吸着特性が向上される。
The details of the activation treatment are as follows. In steam activation, the graphite sample is allowed to react at about 750 ° C. in the presence of steam. In carbon gas activation, the reaction proceeds at about 850 ° C. in the presence of carbon gas. In the chemical activation method, graphite after pulverization is uniformly impregnated with an activation chemical and heated in an inert gas atmosphere to form fine pores by dehydration and oxidation reaction of the chemical. In the case of KOH activation using potassium hydroxide among chemical activation, KOH is added to the graphite amount of 4
The reaction is carried out in an inert gas at 700 ° C. for 1 hour in a double amount. After the activation treatment, a surface oxide is formed on the surface of graphite, the structure of which is a hydroxyl group, a carboxyl group, a carbonyl group or the like. These are vacuum-heated and deaerated during hydrogen storage (test). In this way, after activation, the graphite exhibits surface activity and the physical and chemical adsorption properties of hydrogen are improved.

【0012】発明の第二の特徴は、以上のようにして得
られる黒鉛系水素吸蔵材料として、比表面積が400m
/g以上、半径5nm以下の細孔の容積が0.3cm
/g以上、また、結晶性の尺度となるR値が0.70
以上に形成されていることである。ここで、水素吸蔵特
性は比表面積が大きいほど良好な傾向にあるが、水素吸
蔵・放出特性からは、比表面積が400m/g以上で
あることと、半径5nm以下の細孔の容積が0.3cm
/g以上であることが水素吸蔵量を増大し、また水素
を安定して吸蔵したり放出するために必須となる。
The second feature of the invention is that the graphite-based hydrogen storage material obtained as described above has a specific surface area of 400 m.
Volume of pores with a radius of 2 / g or more and a radius of 5 nm or less is 0.3 cm
3 / g or more, and the R value, which is a measure of crystallinity, is 0.70
It is formed as described above. Here, the hydrogen storage characteristics tend to be better as the specific surface area is larger, but from the hydrogen storage / release characteristics, the specific surface area is 400 m 2 / g or more and the volume of pores with a radius of 5 nm or less is 0 or less. .3 cm
3 / g or more is essential to increase the hydrogen storage amount and to stably store and release hydrogen.

【0013】結晶性の尺度となるR値は、レーザーラマ
ン分光分析より1575cm−1付近と、1360cm
−1付近のラマンバンドの強度比(R=I1360/I
15 75)から算出される値であり、通常、このR値を
構造のパラメーターにしている。例えば、天然黒鉛では
1575cm−1付近に一本のラマンバンドが存在する
のに対し、結晶性が低いものでは1575〜1600c
−1にシフトしたバンドの他、1355〜1360c
−1のバンドは炭素網状平面を形成する二次元六方格
子に起因するものであり、1360cm−1のバンドは
構造欠陥によって六方格子の対称性が低下したか、失わ
れたことに起因するもである。したがって、1360c
−1付近のバンド強度が強いものほど炭素欠陥の構造
が多いことになる。また、レーザーラマン分光分析は、
材料の表層から数10nmの深さ方向の情報が得られる
ものであり、バルクの結晶構造が得られるX線回折より
求めた結晶子の大きさとは、必ずしも相関関係にない。
例えば、結晶性の高い黒鉛を粉砕したものでも粉体表層
から格子欠陥やアモルファス化が進行した場合では、X
線回折で評価する結晶性は高いにもかかわらず、レーザ
ーラマン分光分析で評価する結晶性が低いことがある。
このため、水素吸蔵材料の特定としては両者の解析を同
時に行うことが重要である。特に、黒鉛のような層状結
晶は粉砕から生じるクラックや格子欠陥が黒鉛の表層部
分から発生し、また、アモルファス化も同時に進行する
虞のあるときにはなおさらである。このような点から、
本発明者らは、粉砕後また粉砕及び賦活後の黒鉛試料の
表面状態を結晶構造的に把握することが水素吸蔵材の調
製には有効と判断し、種々の材料を試作して、水素が吸
蔵されやすい最適なR値を試験的に検証した。すなわ
ち、この発明はその試験結果より、上記の粉砕処理及び
賦活処理条件にて得られる黒鉛系水素吸蔵材料として、
結晶性の尺度となるR値を0.70以上にすることで、
水素が吸蔵しやすく吸蔵量を増大可能にしたものであ
る。
The R value, which is a measure of crystallinity, was found to be around 1575 cm -1 and 1360 cm by laser Raman spectroscopic analysis.
Raman band intensity ratio near −1 (R = I 1360 / I
15 75 ), and this R value is usually used as a structural parameter. For example, in natural graphite, one Raman band exists near 1575 cm −1 , whereas in the case of low crystallinity, 1575 to 1600 c
1355 to 1360c in addition to the band shifted to m -1
The band of m −1 is due to the two-dimensional hexagonal lattice forming the carbon mesh plane, and the band of 1360 cm −1 is due to the reduction or loss of the symmetry of the hexagonal lattice due to structural defects. Is. Therefore, 1360c
The stronger the band intensity around m −1 , the more the structure of carbon defects. In addition, laser Raman spectroscopic analysis
Information in the depth direction of several tens of nm can be obtained from the surface layer of the material, and there is not necessarily a correlation with the size of the crystallite obtained by X-ray diffraction for obtaining the bulk crystal structure.
For example, even when crushed graphite having high crystallinity is used, when lattice defects or amorphization progresses from the powder surface layer, X
Although the crystallinity evaluated by line diffraction is high, the crystallinity evaluated by laser Raman spectroscopy may be low.
Therefore, it is important to analyze both of them simultaneously in order to specify the hydrogen storage material. In particular, layered crystals such as graphite are even more prone to cracks and lattice defects generated from pulverization from the surface layer portion of graphite, and the possibility of amorphization at the same time. From this point,
The present inventors determined that grasping the surface state of the graphite sample after crushing or after crushing and activation in terms of crystal structure is effective for the preparation of the hydrogen storage material, and produced various materials as prototypes to test the hydrogen content. The optimum R value that is easily occluded was experimentally verified. That is, the present invention, from the test results, as a graphite-based hydrogen storage material obtained under the above pulverization treatment and activation treatment conditions,
By setting the R value, which is a measure of crystallinity, to 0.70 or more,
Hydrogen is easily absorbed, and the amount of absorbed hydrogen can be increased.

【0014】発明の第三の特徴は、以上の黒鉛系水素吸
蔵材料として、Pt、Pd、Ni、K、Liの何れか1
種以上を含有されていることである。この点は、試験か
ら、これらを含有することにより、水素吸蔵量が含有し
ないときと比べ1.1〜1.8倍程度まで増加でき、水
素吸蔵量を増大したり水素放出特性を向上する上で効果
的であることが確認された。また、Ti、V、Cr、M
n、Fe、Co、Zr、Nbの何れか1種以上を含有し
ていても良い。なぜならば、カーボンへの水素吸蔵は、
水素分子状態より原子状水素の方が小さいため、より良
好な水素吸蔵性能が得られるからであり、水素分子を原
子状水素へ分解する金属としては、一般に水素吸蔵合金
の主成分であるTi、V、Zr、Nbの元素、及び原子
番号57〜71のランタノイドに属する金属元素、また
はこれらの合金も有効である。Ti、V、Zr、Nbよ
りは水素との親和力は弱まるが、上記金属存在下におい
てはCr、Mn、Fe、Coを混ぜた合金を添加するこ
とも有効である。Pt、Pd、Ni、K、Li等を粉砕
および賦活処理後の黒鉛材料に含有させる方法として
は、含浸法、沈着法、イオン交換法、粉砕、混合真空焼
成などの手法が適用可能である。次に、以上の発明を実
施例を挙げ更に明らかにする。
The third feature of the present invention is that any one of Pt, Pd, Ni, K and Li is used as the above graphite hydrogen storage material.
That is, it contains more than one species. This point shows from the tests that by containing these, the hydrogen storage amount can be increased to about 1.1 to 1.8 times as compared with the case where the hydrogen storage amount is not contained, and the hydrogen storage amount can be increased and the hydrogen release characteristics can be improved. It was confirmed to be effective. Also, Ti, V, Cr, M
It may contain any one or more of n, Fe, Co, Zr, and Nb. Because, hydrogen absorption in carbon is
Since atomic hydrogen is smaller than the hydrogen molecule state, it is possible to obtain better hydrogen storage performance.As a metal that decomposes hydrogen molecules into atomic hydrogen, Ti, which is the main component of hydrogen storage alloys, is generally used. V, Zr, and Nb elements, metal elements belonging to the lanthanoids with atomic numbers 57 to 71, or alloys thereof are also effective. Although the affinity for hydrogen is weaker than Ti, V, Zr, and Nb, it is also effective to add an alloy containing Cr, Mn, Fe, and Co in the presence of the above metals. As a method of incorporating Pt, Pd, Ni, K, Li and the like into the graphite material after pulverization and activation treatment, methods such as an impregnation method, a deposition method, an ion exchange method, pulverization, and mixed vacuum firing can be applied. Next, the above invention will be further clarified with reference to Examples.

【0015】[0015]

【実施例】(実施例1〜4)この実施例は、発明対象と
なる黒鉛系水素吸蔵材料およびその有効性を調べたもの
で、原料黒鉛として天然黒鉛を用い、粉砕及び賦活処理
条件を変えたときの一例である。 〈試料の調製〉、この実施例では、天然黒鉛として、平
均粒径18μmの鱗片状黒鉛を使用し、ボールミルを用
いて適当な時間粉砕した後、賦活処理(上記した水蒸気
賦活またはKOH賦活)によりメソ孔及びミクロ孔を発
達させることにより、表1中の各試料(実施例1〜4)
を作製した。表1において、比較例1は前記鱗片状黒鉛
を粉砕せず、賦活処理により作製した試料である。比較
例2は粉砕後の賦活処理を省略した試料である。細孔構
造、R値、X線回折分析、水素吸蔵量・放出量の測定方
法は以下の通りである。 〈細孔構造の測定〉、各試料の比表面積[m /g]
の測定は、窒素吸着法を用い、解析にはBrunauer-Emmet
t-TellerによるBET式より求めた(準拠規格:ISO
9277)。細孔分布の測定は、液体窒素温度におけ
る毛管凝縮を利用するもので、Kelvinの式が基礎とな
る。吸着平衡圧を広い範囲にわたり変えて吸着等温線を
描き、解析すると細孔分布が求まる。この細孔分布の解
析方法は、Barett、JoyerおよびHalendaによって提案さ
れた方法(BJH法)により解析した。細孔径と細孔容
積の関係を把握し、細孔半径0.85nmから5nmま
での細孔容積を積算して求め、細孔半径5nm以下の細
孔容積とした。なお、比表面積、細孔系分布(細孔径及
び細孔容積)の測定装置はマイクロメトリックス社製の
ASAP2010を使用した。 〈R値〉、このR値は、顕微ラマン分光器にて、各試料
(賦活後の試料)のラマンスペクトルを計測し、Dバン
ドと呼ばれるアモルファス化した黒鉛に起因する136
0cm−1 付近のスペクトル強度(I1360)と、
Gバンドと呼ばれる黒鉛の結晶質炭素に起因する157
5cm−1付近のスペクトル強度(I15 75)との相
対的強度比つまりピーク高さ比(I1360/I
1575)を算出し、黒鉛化度の評価に用いた。このラ
マン分析装置には日本分光製NR-1800を使用し
た。 〈X線回折分析〉、X線回折装置を用いて、学振法より
各試料(粉砕前と粉砕後の各試料)の結晶子の大きさ
(La,Lc)を求めた。測定装置はマックサイエンス
社製のMXP18VAHFを使用した。
EXAMPLES (Examples 1 to 4) In this example, the graphite-based hydrogen storage material to be invented and its effectiveness were investigated. Natural graphite was used as the raw material graphite, and the grinding and activation treatment conditions were changed. This is an example of when <Preparation of sample> In this example, flake graphite having an average particle size of 18 μm was used as natural graphite, and after crushing for a suitable time using a ball mill, activation treatment (steam activation or KOH activation as described above) was performed. Each sample in Table 1 (Examples 1-4) by developing mesopores and micropores
Was produced. In Table 1, Comparative Example 1 is a sample produced by activation treatment without crushing the scaly graphite. Comparative Example 2 is a sample in which the activation treatment after pulverization is omitted. The methods for measuring the pore structure, R value, X-ray diffraction analysis, and hydrogen storage / release amount are as follows. <Measurement of pore structure>, specific surface area of each sample [m 2 / g]
Was measured by the nitrogen adsorption method, and Brunauer-Emmet was used for the analysis.
Obtained from BET formula by t-Teller (Compliant standard: ISO
9277). The measurement of pore size distribution utilizes capillary condensation at liquid nitrogen temperature and is based on the Kelvin equation. When the adsorption equilibrium pressure is changed over a wide range and the adsorption isotherm is drawn and analyzed, the pore distribution can be obtained. The method of analyzing the pore distribution was analyzed by the method proposed by Barett, Joyer and Halenda (BJH method). The relationship between the pore diameter and the pore volume was grasped, and the pore volumes with pore radii of 0.85 nm to 5 nm were integrated to obtain the pore volume of 5 nm or less. ASAP2010 manufactured by Micrometrics was used as a measuring device for the specific surface area and the pore system distribution (pore diameter and pore volume). <R value> This R value is due to amorphous graphite called D band obtained by measuring the Raman spectrum of each sample (sample after activation) with a Raman microscope.
Spectrum intensity (I 1360 ) near 0 cm −1 ,
157 due to crystalline carbon of graphite called G band
Relative intensity ratio to the spectral intensity (I 15 75 ) near 5 cm −1, that is, peak height ratio (I 1360 / I).
1575 ) was calculated and used for evaluation of the degree of graphitization. As the Raman analyzer, NR-1800 manufactured by JASCO Corporation was used. <X-ray diffraction analysis> Using an X-ray diffractometer, the crystallite size (La, Lc) of each sample (each sample before crushing and each sample after crushing) was determined by the Gakushin method. MXP18VAHF manufactured by Mac Science Co. was used as a measuring device.

【0016】〈試料評価〉、実施例および比較例の各試
料はJIS7201、7203に準じた試験方法によ
り、水素吸蔵量と水素放出量の測定を行った。この測定
では、各試料を精秤した後、試料管に入れて真空排気し
た後、12Mpaまで水素圧を上げて水素吸蔵量[wt
%]を測定した。また、次に常温まで戻して水素放出量
を確認した。サイクル特性は前記の吸蔵、放出を5回繰
り返した後の水素吸蔵量[wt%]を測定した。以上の
試料構成及びその評価結果を表1に示した。評価中、○
は発明範囲のもの、△と×は発明の範囲外のものであ
る。
<Evaluation of Samples> The samples of Examples and Comparative Examples were measured for hydrogen storage amount and hydrogen release amount by the test method according to JIS7201 and 7203. In this measurement, each sample was precisely weighed, put in a sample tube and evacuated, and then the hydrogen pressure was increased to 12 MPa to increase the hydrogen storage amount [wt.
%] Was measured. Further, the temperature was returned to room temperature and the amount of hydrogen released was confirmed. As the cycle characteristics, the hydrogen storage amount [wt%] was measured after repeating the above storage and release five times. Table 1 shows the above sample structure and the evaluation results thereof. During evaluation, ○
Is within the scope of the invention, and Δ and x are outside the scope of the invention.

【0017】[0017]

【表1】 [Table 1]

【0018】表1において、比較例1のものは粉砕処理
を行わない例であり、賦活処理後に比表面積が大きくな
らず、又、半径5nm以下の細孔容積が小さすぎて水素
吸蔵量が少ない。比較例2のものは、実施例1や2に対
し賦活処理を行わない例であり、粉砕だけだと比表面積
が発明範囲まで大きくなるが、R値が小さくなって水素
吸蔵量が少ない。これに対し、実施例1〜5は粉砕及び
賦活処理した発明例である。このうち、実施例1と2の
ものは、賦活処理を水蒸気賦活とKOH賦活で行った例
であり、賦活処理としてKOH賦活の方が比表面積、R
値、半径5nm以下の細孔容積が共に増大し、水素吸蔵
能及びサイクル特性が向上される。実施例3と4のもの
は、実施例2に対し粉砕時間を変えたもので、粉砕時間
によって比表面積、R値、半径5nm以下の細孔容積、
それに伴う水素吸蔵能及びサイクル特性が多少変動する
が、比較例1や2のものに比べ数段向上できることが分
かる。これらにより、黒鉛系水素吸蔵材料としては、黒
鉛を粉砕した後、賦活処理を施して、比表面積を400
/g以上にするとともに、半径5nm以下の細孔の
容積が0.3cm/g以上、また結晶性の尺度となる
R値が0.70以上にすることが最も好ましい態様とな
る。
In Table 1, Comparative Example 1 is an example in which the pulverization treatment is not performed, the specific surface area does not increase after the activation treatment, and the pore volume with a radius of 5 nm or less is too small, and the hydrogen storage amount is small. . Comparative Example 2 is an example in which activation treatment is not performed on Examples 1 and 2, and although pulverization alone increases the specific surface area to the invention range, the R value is small and the hydrogen storage amount is small. On the other hand, Examples 1 to 5 are examples of the invention in which pulverization and activation treatment are performed. Of these, Examples 1 and 2 are examples in which the activation treatment was performed by steam activation and KOH activation. KOH activation as the activation treatment is more specific surface area, R
Value and pore volume with a radius of 5 nm or less are both increased, and hydrogen storage capacity and cycle characteristics are improved. In Examples 3 and 4, the crushing time was changed from that of Example 2, and the specific surface area, the R value, and the pore volume with a radius of 5 nm or less depending on the crushing time,
Although the hydrogen storage capacity and the cycle characteristics fluctuate to some extent with this, it can be seen that the hydrogen storage capacity and the cycle characteristics can be improved several times as compared with those of Comparative Examples 1 and 2. With these, as the graphite-based hydrogen storage material, after crushing graphite, activation treatment is performed to obtain a specific surface area of 400.
The most preferable embodiment is that the volume of pores having a radius of 5 nm or less is 0.3 cm 3 / g or more, and the R value that is a measure of crystallinity is 0.70 or more, in addition to m 2 / g or more.

【0019】(実施例5〜7)この実施例は、原料黒鉛
とその結晶子の大きさ、粉砕後の結晶子の大きさによる
影響を調べた一例である。 〈試料の調製〉、この原料黒鉛としては、比較例3と実
施例5は人造黒鉛であるが、比較例3は結晶子が小さく
結晶性の悪い原料であり、実施例5はそれよりも結晶子
が大きい原料である。実施例6、7と比較例4は結晶子
が大きいメソフェーズピッチ系黒鉛(実施例6)、鱗片
状黒鉛(実施例7と比較例4)である。各試料原料はボ
ールミルを用いて粉砕処理した。この粉砕では、比較例
3と実施例5が約3時間、実施例6と7は約96時間、
比較例4は約1.5時間粉砕した。その後、各試料は、
賦活処理(上記したKOH賦活)によりメソ孔及びミク
ロ孔を発達させ、表2中の各試料(実施例5〜7、比較
例3と4)として調整した。なお、細孔構造、R値、X
線回折分析、水素吸蔵量・放出量の測定方法と、試料評
価については上記した実施例の場合と同じ。以上の試料
構成及びその評価結果を表2に示した。評価中、○は発
明範囲のもの、△と×は発明の範囲外のものである。
(Examples 5 to 7) This example is an example in which the influence of the size of the raw material graphite and its crystallites and the size of the crystallites after crushing was examined. <Preparation of Sample> As the raw material graphite, Comparative Example 3 and Example 5 are artificial graphites, but Comparative Example 3 is a raw material having a small crystallite and poor crystallinity, and Example 5 is more crystalline than that. Child is a big raw material. Examples 6 and 7 and Comparative Example 4 are mesophase pitch graphite having a large crystallite (Example 6) and flake graphite (Example 7 and Comparative Example 4). Each sample raw material was pulverized using a ball mill. In this pulverization, Comparative Example 3 and Example 5 are about 3 hours, Examples 6 and 7 are about 96 hours,
Comparative Example 4 was crushed for about 1.5 hours. After that, each sample
Mesopores and micropores were developed by the activation treatment (KOH activation described above), and prepared as samples (Examples 5 to 7 and Comparative Examples 3 and 4) in Table 2. The pore structure, R value, X
The line diffraction analysis, the method of measuring the hydrogen storage amount / release amount, and the sample evaluation are the same as those in the above-mentioned examples. Table 2 shows the above sample structure and the evaluation results thereof. During the evaluation, ◯ is in the range of the invention, and Δ and x are out of the range of the invention.

【0020】[0020]

【表2】 [Table 2]

【0021】表2において、比較例3と実施例5の比較
からは原料黒鉛の結晶子の大きさが、比較例4と実施例
7の比較からは粉砕後の結晶子の大きさが共に水素吸蔵
量を向上するために重要となる。また、賦活後の比表面
積が少なくとも400m/g以上、半径5nm以下の
細孔の容積が0.3cm/g以上、また結晶子の結晶
性の尺度となるR値が少なくとも0.70以上のもので
は、それ以外のものよりも水素吸蔵量及びサイクル特性
共に大幅に向上されることが分かる。これらにより、黒
鉛系水素吸蔵材料としては、原料黒鉛を粉砕及び賦活処
理するとしても、原料黒鉛の結晶子の大きさが(01
1)面で25nm以上、(002)面で20nm以上に
すること、粉砕後の結晶子の大きさが(011)面で1
nm以上、(002)面で1〜70nm以の範囲に調整
することが最も好ましい態様となる。
In Table 2, from the comparison between Comparative Example 3 and Example 5, the crystallite size of the raw graphite is hydrogen, and from the comparison between Comparative Example 4 and Example 7, the crystallite size after pulverization is hydrogen. It is important for improving the storage capacity. Further, the specific surface area after activation is at least 400 m 2 / g or more, the volume of pores having a radius of 5 nm or less is 0.3 cm 3 / g or more, and the R value which is a measure of crystallinity of crystallite is at least 0.70 or more. It can be seen that, in the case of the above-mentioned ones, both the hydrogen storage amount and the cycle characteristics are significantly improved as compared with the other ones. As a result, even if the raw graphite is crushed and activated, the crystallite size of the raw graphite is (01
25 nm or more on the 1) plane and 20 nm or more on the (002) plane, and the size of the crystallite after pulverization is 1 on the (011) plane.
The most preferable mode is to adjust the thickness of the film in the range of 1 nm to 70 nm in the (002) plane.

【0022】(実施例8〜12)この実施例は、Pt、
Pd、Ni、K、Liを黒鉛に含有したときの効果を調
べたときのもので、Pt担持、Pd担持、およびNi担
持黒鉛の調製は上記実施例1の賦活処理後の試料を用い
た例である。含有方法は、HPtCI、PdC
、又は、Ni(NOを純水に溶解させた後、
実施例1の賦活処理後の試料を投入して十分に混合し、
含浸させ、乾燥させた。その後、400℃で水素還元
し、黒鉛凝集体表面にPt、PdまたはNiを分散させ
た。K、Liの分散についてはステンレス容器内に実施
例1の賦活処理後の試料を入れ、真空脱気した後、Kに
ついては280℃、Liについては420℃まで昇温さ
せ、KまたはLiを各試料黒鉛に分散させた。これら各
試料の含有元素と分散(含有)量(質量%)及びその評
価結果を表3に示した。表3からは、実施例8〜12の
全てが実施例1の試料構成より、水素吸蔵量及びサイク
ル特性共に向上できることが分かる。特に、Ptを含有
した実施例8のものでは水素吸蔵量で1.8倍、サイク
ル特性つまり吸蔵、放出を5回繰り返した後の水素吸蔵
量で約1.6倍程度まで増大され、改善効果が顕著であ
る。
(Examples 8 to 12) In this example, Pt,
The effect of containing Pd, Ni, K, and Li in graphite was examined, and Pt-supported, Pd-supported, and Ni-supported graphite was prepared by using the sample after the activation treatment of Example 1 described above. Is. The content method is H 2 PtCI 6 , PdC
After dissolving I 2 or Ni (NO 3 ) 2 in pure water,
The sample after the activation treatment of Example 1 was charged and thoroughly mixed,
Impregnated and dried. Then, hydrogen reduction was performed at 400 ° C. to disperse Pt, Pd or Ni on the surface of the graphite aggregate. For the dispersion of K and Li, the sample after the activation treatment of Example 1 was placed in a stainless steel container, degassed in vacuum, and then heated to 280 ° C. for K and 420 ° C. for Li, and K or Li was changed to It was dispersed in sample graphite. Table 3 shows the contained elements, the amount of dispersion (content) (mass%), and the evaluation results of each of these samples. From Table 3, it can be seen that all of Examples 8 to 12 can improve both the hydrogen storage amount and the cycle characteristics as compared with the sample configuration of Example 1. In particular, in Example 8 containing Pt, the hydrogen storage amount was increased to 1.8 times, and the cycle characteristic, that is, the hydrogen storage amount after repeating storage and release 5 times was increased to about 1.6 times. Is remarkable.

【0023】[0023]

【表3】 [Table 3]

【0024】[0024]

【発明の効果】以上のように、発明の黒鉛系水素吸蔵材
料及びその製造方法は、原料として入手および製造が容
易な結晶性の高い黒鉛を用い、粉砕と賦活処理とを組み
合わせて所定特定値に調整することで、物理的および化
学的に高い水素吸蔵性を容易似達成できる。これによ
り、この発明は、大量の水素を効率的に吸蔵でき、軽量
で、繰り返し使用できる上、製造方法も容易であり製造
費を抑えて実用化に寄与できる。
INDUSTRIAL APPLICABILITY As described above, the graphite-based hydrogen storage material and the method for producing the same according to the present invention use graphite having high crystallinity, which is easy to obtain and manufacture, as a raw material, and a predetermined specific value obtained by combining pulverization and activation treatment. By adjusting to, it is possible to easily achieve a physically and chemically high hydrogen storage capacity. As a result, the present invention can efficiently store a large amount of hydrogen, is light in weight, can be repeatedly used, and has a simple manufacturing method, which can reduce the manufacturing cost and contribute to practical use.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 飯田 淳一 千葉県香取郡多古町水戸1番地 日立粉末 冶金株式会社内 (72)発明者 伊藤 仁 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内 (72)発明者 片村 淳二 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内 (72)発明者 川合 幹夫 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内 Fターム(参考) 4G066 AA02B AA04B AA13D AA14D BA20 BA23 BA24 BA26 BA31 BA38 FA18 4G140 AA02 AA36 AA48 4G146 AA02 AA16 AB01 AC04A AC04B AC07A AC07B AC16A AC16B AD02 AD32 BA02 BA23    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Junichi Iida             Hitachi Powder, 1 Mito, Tako-cho, Katori-gun, Chiba Prefecture             Within Metallurgical Co., Ltd. (72) Inventor Hitoshi Ito             Nissan, Takaracho, Kanagawa-ku, Yokohama-shi, Kanagawa Nissan             Inside the automobile corporation (72) Inventor Junji Katamura             Nissan, Takaracho, Kanagawa-ku, Yokohama-shi, Kanagawa Nissan             Inside the automobile corporation (72) Inventor Mikio Kawai             Nissan, Takaracho, Kanagawa-ku, Yokohama-shi, Kanagawa Nissan             Inside the automobile corporation F-term (reference) 4G066 AA02B AA04B AA13D AA14D                       BA20 BA23 BA24 BA26 BA31                       BA38 FA18                 4G140 AA02 AA36 AA48                 4G146 AA02 AA16 AB01 AC04A                       AC04B AC07A AC07B AC16A                       AC16B AD02 AD32 BA02                       BA23

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 水素を吸蔵・放出する黒鉛系材料におい
て、該黒鉛系材料が少なくとも粉砕及び賦活されて、比
表面積が400m /g以上、半径5nm以下の細孔
の容積が0.3cm /g以上になっていることを特
徴とする黒鉛系水素吸蔵材料。
1. A graphite material capable of occluding and releasing hydrogen, wherein the graphite material is pulverized and activated at least, and the volume of pores having a specific surface area of 400 m 2 / g or more and a radius of 5 nm or less is 0.3 cm 3. / G or more, a graphite-based hydrogen storage material, characterized in that.
【請求項2】 前記黒鉛系材料がレーザーラマン分光分
析により得られるDバンドと呼ばれるアモルファス化し
た黒鉛に起因する1360cm−1 付近のスペクトル
強度(I1360)と、Gバンドと呼ばれる黒鉛の結晶
質炭素に起因する1575cm−1付近のスペクトル強
度(I1575)とのピーク高さ比(I1360/I
1575)を示すR値が0.70以上である請求項1に
記載の黒鉛系水素吸蔵材料。
2. The spectral intensity (I 1360 ) near 1360 cm −1 due to amorphized graphite called D band in which the graphite-based material is obtained by laser Raman spectroscopy, and crystalline carbon of graphite called G band. Due to the peak intensity ratio (I 1360 / I) to the spectral intensity (I 1575 ) near 1575 cm −1.
The graphite-based hydrogen storage material according to claim 1, which has an R value of 1575 ) of 0.70 or more.
【請求項3】 前記黒鉛系材料にPt、Pd、Ni、
K、Li、Ti、V、Cr、Mn、Fe、Co、Zr、
Nbの何れか一種以上の元素を含有している請求項1又
は2に記載の黒鉛系水素吸蔵材料。
3. The graphite material contains Pt, Pd, Ni,
K, Li, Ti, V, Cr, Mn, Fe, Co, Zr,
The graphite-based hydrogen storage material according to claim 1, which contains any one or more elements of Nb.
【請求項4】 天然黒鉛、人造黒鉛、メソフェーズピッ
チ系黒鉛の何れか一種以上の原料黒鉛を用い、第一のプ
ロセスとして粉砕処理して黒鉛の結晶子の大きさを小さ
くした後、第二のプロセスとして賦活処理することによ
り請求項1又は2に記載のものに作製することを特徴と
する黒鉛系水素吸蔵材料の製造方法。
4. A natural graphite, artificial graphite, or mesophase pitch-based graphite is used as a raw material, and the first process is pulverization to reduce the crystallite size of the graphite, followed by the second process. A method for producing a graphite-based hydrogen storage material, which is produced as described in claim 1 or 2 by performing activation treatment as a process.
【請求項5】 前記粉砕前の黒鉛の(110)面の結晶
子の大きさが25nm以上、(002)面の結晶子の大
きさが20nm以上のものである請求項4に記載の黒鉛
系水素吸蔵材料の製造方法。
5. The graphite-based material according to claim 4, wherein the size of the crystallites on the (110) plane of the graphite before pulverization is 25 nm or more and the size of the crystallites on the (002) plane is 20 nm or more. Manufacturing method of hydrogen storage material.
【請求項6】 前記粉砕後の黒鉛の(110)面の結晶
子の大きさが1nm以上、(002)面の結晶子の大き
さが1〜70nmの範囲になっている請求項4、5に記
載の黒鉛系水素吸蔵材料の製造方法。
6. The crystallite size of the (110) plane of the crushed graphite is 1 nm or more, and the crystallite size of the (002) plane is in the range of 1 to 70 nm. The method for producing the graphite-based hydrogen storage material according to 1.
【請求項7】 前記賦活処理した後、第三のプロセスと
してPt、Pd、Ni、K、Li、Ti、V、Cr、M
n、Fe、Co、Zr、Nbの何れか一種以上の元素を
含有処理する請求項4、5、6に記載の黒鉛系水素吸蔵
材料の製造方法。
7. A Pt, Pd, Ni, K, Li, Ti, V, Cr, M as a third process after the activation treatment.
The method for producing a graphite-based hydrogen storage material according to claim 4, wherein the treatment is carried out containing at least one element selected from n, Fe, Co, Zr and Nb.
JP2002126295A 2002-04-26 2002-04-26 Graphite-based hydrogen-occluding material and method for producing the same Pending JP2003321216A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002126295A JP2003321216A (en) 2002-04-26 2002-04-26 Graphite-based hydrogen-occluding material and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002126295A JP2003321216A (en) 2002-04-26 2002-04-26 Graphite-based hydrogen-occluding material and method for producing the same

Publications (1)

Publication Number Publication Date
JP2003321216A true JP2003321216A (en) 2003-11-11

Family

ID=29540753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002126295A Pending JP2003321216A (en) 2002-04-26 2002-04-26 Graphite-based hydrogen-occluding material and method for producing the same

Country Status (1)

Country Link
JP (1) JP2003321216A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004067166A1 (en) * 2003-01-31 2004-08-12 Japan Science And Technology Agency Hydrogen storage material and method for producing same
WO2006019013A1 (en) * 2004-08-18 2006-02-23 Kuraray Chemical Co., Ltd Transpiration fuel gas adsorbent and process for producing the same
WO2012173345A3 (en) * 2011-06-16 2013-04-04 인하대학교 산학협력단 Method for preparing graphite powder composite supported by transition metal particles for storing hydrogen
JP2019034866A (en) * 2017-08-14 2019-03-07 関西熱化学株式会社 Graphite composite and manufacturing method of the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004067166A1 (en) * 2003-01-31 2004-08-12 Japan Science And Technology Agency Hydrogen storage material and method for producing same
US8178471B2 (en) 2003-01-31 2012-05-15 Japan Science And Technology Agency Hydrogen storage materials and process for the preparation of the same
WO2006019013A1 (en) * 2004-08-18 2006-02-23 Kuraray Chemical Co., Ltd Transpiration fuel gas adsorbent and process for producing the same
WO2012173345A3 (en) * 2011-06-16 2013-04-04 인하대학교 산학협력단 Method for preparing graphite powder composite supported by transition metal particles for storing hydrogen
US20140117279A1 (en) * 2011-06-16 2014-05-01 Inha-Industry Partnership Institute Method for preparing graphite powder composite supported by transition metal particles for storing hydrogen
US9663359B2 (en) 2011-06-16 2017-05-30 Inha-Industry Partnership Institute Method for preparing graphite powder composite supported by transition metal particles for storing hydrogen
JP2019034866A (en) * 2017-08-14 2019-03-07 関西熱化学株式会社 Graphite composite and manufacturing method of the same

Similar Documents

Publication Publication Date Title
Mohan et al. Hydrogen storage in carbon materials—A review
Tian et al. Mg-based composites for enhanced hydrogen storage performance
EP1209119B1 (en) Hydrogen storage using carbon-metal hybrid compositions
Zhang et al. Recent advances in improving performances of the lightweight complex hydrides Li-Mg-NH system
Ichikawa et al. Composite materials based on light elements for hydrogen storage
Chen et al. Hydrogen storage by KOH-modified multi-walled carbon nanotubes
Reddy et al. Synthesis and hydrogen storage properties of different types of boron nitride nanostructures
Hwang et al. Synthesis and hydrogen storage of carbon nanofibers
Yong et al. Hydrogen storage behavior of Mg-based alloy catalyzed by carbon-cobalt composites
Kaskun et al. Improved hydrogen adsorption of ZnO doped multi-walled carbon nanotubes
Konarova et al. Porous MgH2/C composite with fast hydrogen storage kinetics
Huang et al. Hydrogen storage in cobalt-embedded ordered mesoporous carbon
Baca et al. Effect of Pd loading on hydrogen storage properties of disordered mesoporous hollow carbon spheres
Manoharan et al. Investigation of solid state hydrogen storage performances of novel NaBH4/Ah-BN nanocomposite as hydrogen storage medium for fuel cell applications
Desai et al. A critical review on improving hydrogen storage properties of metal hydride via nanostructuring and integrating carbonaceous materials
Vinayan et al. Hydrogen storage studies of palladium decorated nitrogen doped graphene nanoplatelets
Aramini et al. Addition of transition metals to lithium intercalated fullerides enhances hydrogen storage properties
Zhang et al. Enhanced hydrogen storage performances of LiBH4 modified with three-dimensional porous fluorinated graphene
Chawla et al. Hydrogenation properties and kinetic study of MgH 2-x wt% AC nanocomposites prepared by ball milling
Lee et al. Influence of CO2 activation on hydrogen storage behaviors of platinum-loaded activated carbon nanotubes
Campesi et al. In situ synthesis and hydrogen storage properties of PdNi alloy nanoparticles in an ordered mesoporous carbon template
Wang et al. Sustainable synthesis of Co NPs@ Graphited carbon microspheres as an efficient electrocatalyst for the oxygen-evolution reaction
Juárez et al. Preparation and characterization of activated CMK‐1 with Zn and Ni species applied in hydrogen storage
Luxembourg et al. Hydrogen storage capacity at high pressure of raw and purified single wall carbon nanotubes produced with a solar reactor
Flamina et al. Hydrogen storage in Nickel dispersed boron doped reduced graphene oxide