JP2019034866A - Graphite composite and manufacturing method of the same - Google Patents

Graphite composite and manufacturing method of the same Download PDF

Info

Publication number
JP2019034866A
JP2019034866A JP2017156501A JP2017156501A JP2019034866A JP 2019034866 A JP2019034866 A JP 2019034866A JP 2017156501 A JP2017156501 A JP 2017156501A JP 2017156501 A JP2017156501 A JP 2017156501A JP 2019034866 A JP2019034866 A JP 2019034866A
Authority
JP
Japan
Prior art keywords
graphite
graphite composite
alkali metal
sample
peak top
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017156501A
Other languages
Japanese (ja)
Other versions
JP6967397B2 (en
Inventor
洋平 後藤
Yohei Goto
洋平 後藤
尚一 竹中
Shoichi Takenaka
尚一 竹中
天能 浩次郎
Kojiro Tenno
浩次郎 天能
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Coke and Chemicals Co Ltd
Original Assignee
Kansai Coke and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Coke and Chemicals Co Ltd filed Critical Kansai Coke and Chemicals Co Ltd
Priority to JP2017156501A priority Critical patent/JP6967397B2/en
Publication of JP2019034866A publication Critical patent/JP2019034866A/en
Application granted granted Critical
Publication of JP6967397B2 publication Critical patent/JP6967397B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

To provide a graphite composite excellent in stability of crystal structure, and a manufacturing method of the same.SOLUTION: The graphite composite according to the present invention contains an alkali metal and has a peak top in the range of 26.7° to 28.0°of an X-ray diffraction angle(2θ) determined by an X-ray diffraction analysis of the graphite composite. Also, the manufacturing method according to the present invention comprises mixing of graphite and an alkali metal hydroxide, and heating of an obtained mixture at 600°C or higher.SELECTED DRAWING: Figure 1

Description

本発明は黒鉛複合体、及びその製造方法に関する。   The present invention relates to a graphite composite and a method for producing the same.

黒鉛を改良して導電材料、電極材料、触媒材料、ガス貯蔵材料、リチウムイオン二次電池の負極材料、ガスケット材料などに適した新材料の開発が行われている。例えば導電性に優れた材料として黒鉛のグラフェン層間にアルカリ金属、アルカリ土類金属や金属ハロゲン化物などの侵入物質(インターカレート)を挿入した黒鉛層間化合物(Graphite Intercalation Compound:GIC)が研究されている(特許文献1、非特許文献1)。   New materials suitable for conductive materials, electrode materials, catalyst materials, gas storage materials, negative electrode materials for lithium ion secondary batteries, gasket materials, etc. have been developed by improving graphite. For example, a graphite intercalation compound (GIC) in which an intrusion substance (intercalate) such as an alkali metal, an alkaline earth metal, or a metal halide is inserted between graphene layers of graphite is studied as a material having excellent conductivity. (Patent Document 1, Non-Patent Document 1).

特開昭62−138315号公報Japanese Patent Laid-Open No. 62-138315

松本里香、「黒鉛層間化合物の基礎と最近の話題」、粉体および粉末冶金Vol.58 No.3、粉体粉末冶金協会発行、2011年3月、第167〜175頁Rika Matsumoto, “Fundamentals of Graphite Intercalation Compounds and Recent Topics”, Powder and Powder Metallurgy Vol. 58 No. 3. Issued by the Powder and Powder Metallurgy Association, March 2011, pp. 167-175

従来提案されているGICのような黒鉛層間化合物は、空気と接触すると侵入物質の離脱や酸化などによって結晶構造が分解されてしまうため結晶構造の安定性に乏しく、例えば体積抵抗率や導電性などの各種特性に優れた材料として実用化が難しかった。   Conventionally proposed graphite intercalation compounds, such as GIC, have poor crystal structure stability due to the decomposition of the intruding substance or oxidation when contacted with air, such as volume resistivity and conductivity. It was difficult to put it into practical use as a material excellent in various properties.

本発明の目的は、結晶構造の安定性に優れた黒鉛複合体、及びその製造方法を提供することにある。   An object of the present invention is to provide a graphite composite having excellent crystal structure stability and a method for producing the same.

上記課題を解決し得た本発明とは、黒鉛とアルカリ金属との黒鉛複合体であって、X線回折分析して求められるX線回折角(2θ)26.7°〜28.0°の範囲に前記X線回折分析の最大強度のピークトップ、または2番目の強度のピークトップを有する黒鉛複合体である。   The present invention that has solved the above problems is a graphite composite of graphite and an alkali metal having an X-ray diffraction angle (2θ) of 26.7 ° to 28.0 ° determined by X-ray diffraction analysis. It is a graphite composite having the peak top of the maximum intensity of the X-ray diffraction analysis or the peak top of the second intensity in the range.

また本発明は、(1)上記アルカリ金属を1.0質量%以上含有する(2)上記黒鉛複合体をラマン分光分析して求められるラマン散乱スペクトルにおいて、1590cm-1〜1610cm-1の範囲にピークトップまたは波形の変曲点を有すること、(3)上記黒鉛複合体は、更に酸素、及び/又は水素を含むこと、(4)上記アルカリ金属に対する炭素の比率(モル比)が20.0未満であること、(5)上記アルカリ金属はカリウムであることは、いずれも好ましい実施形態である。 The present invention is, (1) in the alkali metal containing not less than 1.0 wt% (2) Raman scattering spectrum obtained by the graphite composite was Raman spectroscopy, in the range of 1590cm -1 ~1610cm -1 (3) The graphite composite further contains oxygen and / or hydrogen, and (4) the ratio of carbon to the alkali metal (molar ratio) is 20.0. It is a preferable embodiment that it is less than (5) and the alkali metal is potassium.

上記課題を解決し得た本発明に係る黒鉛複合体の製造方法は、黒鉛とアルカリ金属水酸化物とを混合し、得られた混合物を600℃以上で加熱することに要旨を有する。   The method for producing a graphite composite according to the present invention that has solved the above problems has a gist in that graphite and an alkali metal hydroxide are mixed, and the resulting mixture is heated at 600 ° C. or higher.

また本発明の製造方法は、(1)上記アルカリ金属水酸化物が水酸化カリウムであること、(2)上記混合前の黒鉛の結晶子の大きさLcが10nm以上であることはいずれも好ましい実施態様である。   In the production method of the present invention, (1) the alkali metal hydroxide is potassium hydroxide, and (2) the graphite crystallite size Lc before mixing is preferably 10 nm or more. This is an embodiment.

本発明によれば結晶構造の安定性に優れた黒鉛複合体、及びその製造方法を提供できる。したがって本発明により、例えば体積抵抗率や導電性などに優れた特性を有する材料を実用レベルで提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the graphite composite excellent in stability of crystal structure and its manufacturing method can be provided. Therefore, according to the present invention, for example, a material having excellent properties such as volume resistivity and conductivity can be provided at a practical level.

試料No.1〜4、8のX線回折結果を示すグラフである。Sample No. It is a graph which shows the X-ray-diffraction result of 1-4, 8. 試料No.6、7のX線回折結果を示すグラフである。Sample No. 6 is a graph showing X-ray diffraction results of 6 and 7. 試料No.1〜5、8のラマン散乱スペクトルを示すグラフである。Sample No. It is a graph which shows the Raman scattering spectrum of 1-5,8. 試料No.6〜8のラマン散乱スペクトルを示すグラフである。Sample No. It is a graph which shows the Raman scattering spectrum of 6-8. 試料No.1〜7のKOH/Cと、ラマン散乱スペクトルにおける1580cm-1付近のピーク強度に対する1600cm-1付近のピーク強度の比率(I1600/I1580)との関係を示す図である。Sample No. 1-7 and KOH / C of a diagram showing the relationship between the ratio of the peak intensity at around 1600 cm -1 to the peak intensity near 1580 cm -1 in the Raman scattering spectrum (I 1600 / I 1580). 試料No.4、8の相対圧と吸着量との関係を示すグラフである。Sample No. It is a graph which shows the relationship between the relative pressure of 4 and 8, and the adsorption amount. 試料No.8、9、11のX線回折結果を示すグラフである。Sample No. 8 is a graph showing X-ray diffraction results of 8, 9, and 11. 試料No.8、9、11の層間距離Lcと歩留り(%)との関係を示す図である。Sample No. It is a figure which shows the relationship between the interlayer distance Lc of 8, 9, and 11 and a yield (%). 試料No.9、10のX線回折結果を示すグラフである。Sample No. It is a graph which shows the X-ray-diffraction result of 9 and 10. 試料No.11、12のX線回折結果を示すグラフである。Sample No. It is a graph which shows the X-ray-diffraction result of 11 and 12. 試料No.1〜4、6〜8のKOH/Cと体積抵抗率との関係を示す図である。Sample No. It is a figure which shows the relationship between 1-4, 6-8 KOH / C, and volume resistivity. 荷重毎の体積抵抗率と密度を示すグラフである。It is a graph which shows the volume resistivity and density for every load. 試料No.1〜4、6〜8のKOH/Cと導電率との関係を示す図である。Sample No. It is a figure which shows the relationship between KOH / C of 1-4, 6-8, and electrical conductivity. 荷重毎の導電率と密度を示すグラフである。It is a graph which shows the electrical conductivity and density for every load.

本発明のアルカリ金属と黒鉛との黒鉛複合体(以下、「黒鉛複合体」という)をX線回折(XRD)分析すると、X線回折角(2θ)=26.7°〜28.0°の範囲(以下、「27°付近」という)にピークトップが存在する。従来の黒鉛やK−GIC等の既知の黒鉛層間化合物は上記範囲にピークトップがなく、したがって本発明の黒鉛複合体は新規な結晶構造を有する物質である。なお、黒鉛複合体はX線回折角(2θ)27°付近に存在する上記ピークトップは、X線回折分析の最大強度のピークトップ、または2番目の強度のピークトップである。またピークトップの位置は好ましくはX線回折角(2θ)=27.0°〜28.0°、より好ましくはX線回折角(2θ)=27.5°〜28.0°の範囲である。   X-ray diffraction (XRD) analysis of the graphite composite of the alkali metal and graphite of the present invention (hereinafter referred to as “graphite composite”) reveals that the X-ray diffraction angle (2θ) = 26.7 ° to 28.0 °. There is a peak top in the range (hereinafter referred to as “around 27 °”). Conventional graphite intercalation compounds such as graphite and K-GIC do not have a peak top in the above range, and therefore the graphite composite of the present invention is a substance having a novel crystal structure. The peak top existing in the vicinity of an X-ray diffraction angle (2θ) of 27 ° in the graphite composite is the peak top of the maximum intensity or the peak top of the second intensity in the X-ray diffraction analysis. The peak top position is preferably in the range of X-ray diffraction angle (2θ) = 27.0 ° to 28.0 °, more preferably X-ray diffraction angle (2θ) = 27.5 ° to 28.0 °. .

上記特徴を有する黒鉛複合体は結晶構造の安定性に優れた特性を有する。結晶構造の安定性とは、後記安定性試験の前後でX線回折角(2θ)27°付近の最大強度のピークトップ、または2番目の強度のピークトップ(以下、単に「ピークトップ」ということがある)の位置が変化しない(±0.1°の範囲内)ことをいう。好ましくは27°付近のピークトップの半値幅も変化しない(±0.1°の範囲内)ことである。このように27°付近のピークトップの結晶構造の安定性に優れた黒鉛複合体は大気下に放置しても結晶構造が分解されない点で空気に触れた瞬間に結晶構造が分解され、ピークトップの位置が変化するK−GIC等の従来の黒鉛層間化合物よりも優れた安定性を有している。特に27°付近にピークトップを有し、且つ該ピークトップの結晶構造が安定することで例えば体積抵抗率や導電性などに優れた特性を発揮できる。なお、本実施例の安定性試験は、製造直後の測定値と製造1か月後の測定値を対比しているが、製造直後の測定値を使用することに限定されず、任意の1か月前後の測定値でもよい。また測定前後においてピークトップの位置が、上記X線回折角(2θ)26.7°〜28.0°の範囲内、好ましくは上記好適な範囲内であることをいう。   The graphite composite having the above characteristics has excellent characteristics of crystal structure stability. The stability of the crystal structure means the peak top with the maximum intensity near the X-ray diffraction angle (2θ) of 27 ° before or after the stability test described later, or the peak top with the second intensity (hereinafter simply referred to as “peak top”). ) Is not changed (within ± 0.1 °). Preferably, the half width of the peak top around 27 ° does not change (within ± 0.1 °). Thus, the graphite composite excellent in stability of the crystal structure of the peak top near 27 ° is decomposed at the moment of exposure to air because the crystal structure is not decomposed even when left in the atmosphere, and the peak top It has a stability superior to that of a conventional graphite intercalation compound such as K-GIC in which the position of is changed. In particular, since it has a peak top in the vicinity of 27 ° and the crystal structure of the peak top is stabilized, characteristics excellent in, for example, volume resistivity and conductivity can be exhibited. In addition, although the stability test of a present Example has compared the measured value immediately after manufacture with the measured value after one month of manufacture, it is not limited to using the measured value immediately after manufacture, and is arbitrary 1 It may be measured before and after the month. Further, the peak top position before and after the measurement is within the range of the X-ray diffraction angle (2θ) of 26.7 ° to 28.0 °, preferably within the above-mentioned preferable range.

また結晶構造の安定性に優れた効果を有する黒鉛複合体は、上記27°付近のピークトップの半値幅が好ましくは3.0°以下、より好ましくは1.5°以下、更に好ましくは1.0°以下である。   In the graphite composite having an excellent effect on the stability of the crystal structure, the full width at half maximum of the peak top around 27 ° is preferably 3.0 ° or less, more preferably 1.5 ° or less, and still more preferably 1. 0 ° or less.

なお、本発明の黒鉛複合体をX線回折分析して求められるX線回折角(2θ)27°付近以外にもピークトップを有していてもよい。例えばピークトップ位置は、13°付近(12.0°〜14.0°)、21°付近(20.0°〜23.0°)、56°付近(55.0°〜58.0°)よりなる群から選ばれる少なくとも1または2以上に有していてもよい。   The graphite composite of the present invention may have a peak top other than the vicinity of 27 ° X-ray diffraction angle (2θ) obtained by X-ray diffraction analysis. For example, the peak top positions are around 13 ° (12.0 ° to 14.0 °), around 21 ° (20.0 ° to 23.0 °), around 56 ° (55.0 ° to 58.0 °). You may have at least 1 or 2 or more chosen from the group which consists of.

本発明の黒鉛複合体は、ラマン分光分析して求められるラマン散乱スペクトルにおいて1590cm-1〜1610cm-1(以下、「1600cm-1付近」という)の範囲にピークトップまたは波形の変曲点を有することが好ましく、より好ましくはピークトップを有することである。上記範囲に少なくとも散乱強度の波形に変曲点を有する黒鉛複合体は優れた結晶構造の安定性を示すが、上記範囲にピークトップを有する黒鉛複合体は、優れた結晶構造の安定性に加えて良好な体積抵抗率を示す。また該ピークトップの半値幅は好ましくは50cm-1以下、より好ましくは25cm-1以下である。 The graphite composite of the present invention has a peak top or waveform inflection point in a range of 1590 cm −1 to 1610 cm −1 (hereinafter referred to as “around 1600 cm −1 ”) in a Raman scattering spectrum obtained by Raman spectroscopic analysis. It is preferable to have a peak top. Graphite composites having an inflection point in the waveform of at least the scattering intensity in the above range show excellent crystal structure stability, while graphite composites having a peak top in the above range have excellent crystal structure stability. Show good volume resistivity. The half width of the peak top is preferably 50 cm −1 or less, more preferably 25 cm −1 or less.

また黒鉛複合体は1600cm-1付近に加えてラマン散乱スペクトルにおいて1580cm-1付近(1570cm-1〜1590cm-1未満)の範囲にもピークトップを有していてもよい。黒鉛複合体の1580cm-1付近のピークトップの強度(I1580)と1600cm-1付近のピークトップの強度(I1600)の関係は、好ましくはI1580≦I1600であり、より好ましくはI1580<I1600である。1600cm-1付近のピークトップの強度が高い程、より優れた体積抵抗率が得られる。 The graphite composite may have a peak top in the range of around 1580 cm -1 in Raman scattering spectra in addition to the vicinity of 1600 cm -1 (below 1570cm -1 ~1590cm -1). Relationship of the intensity of the peak top in the vicinity of 1580 cm -1 of the graphite composite (I 1580) and 1600 cm -1 vicinity of the peak top intensity (I 1600) is preferably I 1580I 1600, more preferably I 1580 <I 1600 . The higher the peak top strength around 1600 cm −1 , the better the volume resistivity.

黒鉛複合体はグラフェンが積層された結晶構造をベース骨格とすることが好ましい。黒鉛複合体にはベース骨格をなす炭素以外にアルカリ金属を黒鉛複合体100質量%に対して好ましくは1.0質量%以上、より好ましくは3.0質量%以上、更に好ましくは10.0質量%以上であって、好ましくは90質量%以下、より好ましくは80質量%以下、更に好ましくは70質量%以下含有する。また黒鉛複合体は好ましくは酸素及び/又は水素、より好ましくは酸素、および水素を含有する。また黒鉛複合体には更に他の元素(例えば鉄、ケイ素、アルミニウム)が含まれていてもよいし、残部不可避不純物で構成されていてもよい。黒鉛複合体には原料等に由来する微量(例えば黒鉛複合体100質量%に対して3質量%以下)の不純物が不可避不純物として含まれていてもよい。   The graphite composite preferably has a base skeleton with a crystal structure in which graphene is stacked. In the graphite composite, an alkali metal other than carbon forming the base skeleton is preferably 1.0% by mass or more, more preferably 3.0% by mass or more, further preferably 10.0% by mass with respect to 100% by mass of the graphite composite. % Or more, preferably 90% by mass or less, more preferably 80% by mass or less, and still more preferably 70% by mass or less. The graphite composite preferably contains oxygen and / or hydrogen, more preferably oxygen and hydrogen. Further, the graphite composite may further contain other elements (for example, iron, silicon, aluminum), or may be composed of the remaining inevitable impurities. The graphite composite may contain a small amount of impurities (for example, 3% by mass or less with respect to 100% by mass of the graphite composite) derived from the raw materials as inevitable impurities.

黒鉛複合体に含まれているアルカリ金属は黒鉛層間化合物(インターカレーション)を形成していてもよいし、形成していなくてもよい。また黒鉛複合体におけるアルカリ金属は、アルカリ金属単独、あるいは酸素、水素、炭素など任意の元素と結合していてもよい。   The alkali metal contained in the graphite composite may or may not form a graphite intercalation compound (intercalation). Further, the alkali metal in the graphite composite may be bonded to an alkali metal alone or any element such as oxygen, hydrogen, and carbon.

黒鉛複合体中の炭素、アルカリ金属、酸素、及び水素の合計100質量%(以下、「合計100質量%」という)に占めるアルカリ金属の割合は、好ましくは5質量%以上、より好ましくは10質量%以上、更に好ましくは15質量%以上、より更に好ましくは20質量%以上、最も好ましくは25質量%以上である。アルカリ金属の割合が高くなる程、黒鉛複合体の体積抵抗率などの特性が向上する傾向にあるため、上限は特に限定されないが、好ましくは90質量%以下、より好ましくは80質量%以下、更に好ましくは70質量%以下、より更に好ましくは50質量%以下である。   The proportion of alkali metal in the total 100 mass% (hereinafter referred to as “total 100 mass%”) of carbon, alkali metal, oxygen and hydrogen in the graphite composite is preferably 5 mass% or more, more preferably 10 mass. % Or more, more preferably 15% by mass or more, still more preferably 20% by mass or more, and most preferably 25% by mass or more. The higher the proportion of alkali metal, the more the characteristics such as volume resistivity of the graphite composite tend to improve, so the upper limit is not particularly limited, but is preferably 90% by mass or less, more preferably 80% by mass or less, and more Preferably it is 70 mass% or less, More preferably, it is 50 mass% or less.

黒鉛複合体中のアルカリ金属(M)に対する炭素(C)の比率([C/M]モル比)は好ましくは20.0未満、より好ましくは10.0未満、更に好ましくは5.0未満である。アルカリ金属の比率が高くなるほど結晶構造の安定性を維持しながら良好な体積抵抗率が得られる傾向にある。   The ratio of carbon (C) to alkali metal (M) in the graphite composite ([C / M] molar ratio) is preferably less than 20.0, more preferably less than 10.0, and even more preferably less than 5.0. is there. The higher the alkali metal ratio, the better the volume resistivity tends to be obtained while maintaining the stability of the crystal structure.

アルカリ金属は特に限定されないが、好ましくはカリウム、ルビジウム、セシウム、フランシウム、より好ましくはカリウムである。特にカリウムは黒鉛複合体の結晶構造の安定性向上に寄与すると共に、体積抵抗率向上に寄与するため好ましい。   The alkali metal is not particularly limited, but is preferably potassium, rubidium, cesium, francium, and more preferably potassium. In particular, potassium is preferable because it contributes to the improvement of the stability of the crystal structure of the graphite composite and the volume resistivity.

本発明の黒鉛複合体は黒色である。特に黒鉛複合体は空気接触前後で色調が変化せず、また大気下に放置しても色調が経時変化しない。一方、K−GICであるKC8は空気に触れる前は金褐色であるが、空気に触れた瞬間に結晶構造が破壊され、色調も黒色に変色するため結晶構造の安定性が低い。またこのような色調の変化に基づいて結晶構造の安定性を確認できる。 The graphite composite of the present invention is black. In particular, the color tone of the graphite composite does not change before and after contact with air, and the color tone does not change with time even if it is left in the atmosphere. On the other hand, KC 8 is a K-GIC is golden brown Before touching air, the crystal structure at the moment of contact with the air are destroyed and the color tone is low stability of the crystal structure to change color to black. Further, the stability of the crystal structure can be confirmed based on such a change in color tone.

上記構成を有する本発明の黒鉛複合体は結晶構造の安定性に優れているため、導電材料、電極材料、触媒材料、ガス貯蔵材料、リチウムイオン二次電池の負極材料、ガスケット材料など様々な産業分野において利用可能である。特にアルカリ金属の割合が高い黒鉛複合体は良好な体積抵抗率を有するため、導電材料や電極材料などの用途に好適である。   Since the graphite composite of the present invention having the above structure is excellent in stability of crystal structure, various industries such as conductive materials, electrode materials, catalyst materials, gas storage materials, negative electrode materials of lithium ion secondary batteries, gasket materials, etc. Available in the field. In particular, a graphite composite having a high alkali metal ratio has a good volume resistivity and is suitable for applications such as conductive materials and electrode materials.

以下、本発明の黒鉛複合体の製造方法について説明する。   Hereinafter, the manufacturing method of the graphite composite of this invention is demonstrated.

本発明の黒鉛複合体の製造方法は、黒鉛とアルカリ金属水酸化物とを混合し、得られた混合物を600℃以上で加熱処理することである。アルカリ金属水酸化物は好ましくは、水酸化カリウム、水酸化ルビジウム、水酸化セシウム、および水酸化フランシウムであり、これらは単独または2以上を組み合わせて用いてもよい。より好ましくは水酸化カリウムである。水酸化カリウムを用いると黒鉛複合体からカリウムが離脱せずに残存し、歩留り率が100%を超えて高くなるため好ましい。   The manufacturing method of the graphite composite of this invention is mixing graphite and an alkali metal hydroxide, and heat-treating the obtained mixture at 600 degreeC or more. The alkali metal hydroxide is preferably potassium hydroxide, rubidium hydroxide, cesium hydroxide, or francium hydroxide, and these may be used alone or in combination of two or more. More preferred is potassium hydroxide. It is preferable to use potassium hydroxide because potassium does not leave from the graphite composite, and the yield rate becomes higher than 100%.

原料として使用する黒鉛(原料黒鉛)は特に限定されず、天然黒鉛、人造黒鉛のいずれも使用可能である。天然黒鉛としては鱗片状黒鉛、塊状黒鉛、土状黒鉛、球状化黒鉛、薄片化黒鉛、膨張黒鉛、膨張化黒鉛が例示される。人造黒鉛としては各種炭素材を黒鉛化したものであり、例えば石油コークス、ピッチコークス、ピッチ系炭素繊維、木炭、砂糖炭、セルロース炭などを2500℃以上の高温で熱処理して結晶化させた黒鉛や、グラフェンシート、高配向性熱分解グラファイト(Highly oriented pyrolytic graphite:HOPG)が好ましい。   The graphite used as a raw material (raw material graphite) is not particularly limited, and either natural graphite or artificial graphite can be used. Examples of natural graphite include flaky graphite, lump graphite, earth graphite, spheroidized graphite, exfoliated graphite, expanded graphite, and expanded graphite. Artificial graphite is obtained by graphitizing various carbon materials. For example, graphite obtained by heat treatment of petroleum coke, pitch coke, pitch-based carbon fiber, charcoal, sugar charcoal, cellulose charcoal, etc. at a high temperature of 2500 ° C. or higher. Or a graphene sheet and highly oriented pyrolytic graphite (HOPG) are preferable.

またアルカリ金属の含有割合向上の観点から結晶子群が乱層構造よりもグラフェンが積層した結晶構造を有する黒鉛が好ましい。このような黒鉛としては天然黒鉛、易黒鉛化性炭素を高温熱処理した人造黒鉛が例示される。また結晶性が高い黒鉛が好ましく、例えば鱗片状黒鉛、塊状黒鉛が好ましい。   Further, from the viewpoint of improving the content ratio of the alkali metal, graphite having a crystal structure in which the crystallite group is laminated with graphene is preferable to the disordered layer structure. Examples of such graphite include natural graphite and artificial graphite obtained by heat-treating graphitizable carbon at high temperature. Moreover, graphite with high crystallinity is preferable, for example, scaly graphite and massive graphite are preferable.

原料黒鉛の結晶子が大きい程、歩留り率が向上する傾向にある。原料黒鉛の結晶子の大きさLcは好ましくは10nm以上、より好ましくは50nm以上、更に好ましくは100nm以上である。原料黒鉛の結晶子が成長している程、ピークシフトが生じて上記範囲にピークトップが得られやすくなると共に、歩留り率が向上して黒鉛複合体に含まれるアルカリ金属水酸化物に由来するアルカリ金属の割合も高くなる。上限は特に限定されないが、好ましくは10000nm以下、更に好ましくは8000nm以下である。   As the crystallite of the raw material graphite is larger, the yield rate tends to be improved. The crystallite size Lc of the raw graphite is preferably 10 nm or more, more preferably 50 nm or more, and still more preferably 100 nm or more. As the crystallite of the raw material graphite grows, a peak shift occurs, and it becomes easier to obtain a peak top in the above range, and the yield is improved and an alkali derived from an alkali metal hydroxide contained in the graphite composite The proportion of metal also increases. Although an upper limit is not specifically limited, Preferably it is 10,000 nm or less, More preferably, it is 8000 nm or less.

原料黒鉛のサイズ、形状は用途に応じて適宜調整すればよく、限定されない。原料黒鉛は公知の方法で破砕、選別してサイズを調整してもよいし、所定サイズの市販品を用いることもできる。例えば原料黒鉛のサイズは平均粒子径で好ましくは1μm以上、より好ましくは5μm以上、更に好ましくは10μm以上であって、好ましくは1000μm以下、より好ましくは500μm以下、更に好ましくは200μm以下、より更に好ましくは100μm以下である。また原料黒鉛としてグラフェンシートを考慮すると原料黒鉛が不定形の場合は最大径、シート状であれば1辺が好ましくは20cm以下、より好ましくは10cm以下、更に好ましくは5cm以下である。   The size and shape of the raw material graphite may be appropriately adjusted according to the application, and are not limited. The raw material graphite may be crushed and selected by a known method to adjust the size, or a commercial product of a predetermined size may be used. For example, the size of the raw graphite is preferably 1 μm or more, more preferably 5 μm or more, still more preferably 10 μm or more, preferably 1000 μm or less, more preferably 500 μm or less, still more preferably 200 μm or less, even more preferably in terms of average particle size. Is 100 μm or less. Further, considering the graphene sheet as the raw graphite, the maximum diameter is obtained when the raw graphite is indefinite, and one side is preferably 20 cm or less, more preferably 10 cm or less, and even more preferably 5 cm or less if the sheet graphite is in sheet form.

原料黒鉛とアルカリ金属水酸化物とを混合し、所定の温度で加熱することで、上記特異な結晶構造を有する黒鉛複合体が得られる。原料黒鉛とアルカリ金属水酸化物の混合方法は特に限定されない。混合は乾式混合、湿式混合のいずれでもよく、例えばボールミルやミキサー、ブレンダーなどで機械的に混合してもよいし、アルカリ金属水酸化物を水溶液として使用してもよく、その場合、加熱処理を行う前に予め水分を除去して乾燥させておくことが好ましい。   By mixing raw material graphite and alkali metal hydroxide and heating at a predetermined temperature, a graphite composite having the above-mentioned unique crystal structure can be obtained. The mixing method of raw material graphite and alkali metal hydroxide is not particularly limited. Mixing may be either dry mixing or wet mixing, for example, mechanical mixing with a ball mill, mixer, blender, or the like, or alkali metal hydroxide may be used as an aqueous solution. It is preferable to remove the moisture in advance and dry it before performing.

原料黒鉛とアルカリ金属水酸化物との混合比率は特に限定されないが、アルカリ金属水酸化物の比率を高めると、X線回折による上記特定範囲内に存在するピークトップの半値幅が狭くなると共に、良好な体積抵抗率が得られる。またラマンスペクトルにおいて1580cm-1付近の強度に対する1600cm-1付近の強度を高めることができる。したがってアルカリ金属水酸化物と原料黒鉛の質量比(アルカリ金属水酸化物/原料黒鉛)は好ましくは0.5以上、より好ましくは1.0以上、更に好ましくは1.5以上であって、好ましくは5.0以下、より好ましくは4.0以下、更に好ましくは3.0以下である。 The mixing ratio of the raw material graphite and the alkali metal hydroxide is not particularly limited, but when the ratio of the alkali metal hydroxide is increased, the half width of the peak top existing in the specific range by X-ray diffraction is narrowed, Good volume resistivity is obtained. Also it is possible to increase the strength in the vicinity of 1600 cm -1 to the intensity of near 1580 cm -1 in the Raman spectrum. Therefore, the mass ratio of the alkali metal hydroxide and the raw material graphite (alkali metal hydroxide / raw material graphite) is preferably 0.5 or more, more preferably 1.0 or more, and still more preferably 1.5 or more. Is 5.0 or less, more preferably 4.0 or less, and still more preferably 3.0 or less.

次に原料黒鉛とアルカリ金属水酸化物との混合物を不活性雰囲気下で加熱処理する。加熱温度が低すぎると原料黒鉛の結晶構造をほとんど変化させることができず、X線回折による上記特定範囲内にピークトップを有する黒鉛複合体を形成できない。したがって加熱温度(雰囲気温度)は600℃以上、好ましくは700℃以上、より好ましくは800℃以上であって、好ましくは1000℃以下、より好ましくは900℃以下、更に好ましくは800℃以下である。加熱過程の昇温条件は特に限定されず、例えば1℃/分〜20℃/分である。   Next, the mixture of raw material graphite and alkali metal hydroxide is heat-treated in an inert atmosphere. If the heating temperature is too low, the crystal structure of the raw material graphite can hardly be changed, and a graphite composite having a peak top within the specific range by X-ray diffraction cannot be formed. Accordingly, the heating temperature (atmosphere temperature) is 600 ° C. or higher, preferably 700 ° C. or higher, more preferably 800 ° C. or higher, preferably 1000 ° C. or lower, more preferably 900 ° C. or lower, and still more preferably 800 ° C. or lower. The temperature raising conditions in the heating process are not particularly limited and are, for example, 1 ° C./min to 20 ° C./min.

また上記加熱処理中の黒鉛の酸化を防止するために不活性雰囲気とすることが好ましい。不活性ガスとしては窒素、アルゴン、ヘリウムなどが例示される。   Further, an inert atmosphere is preferable in order to prevent oxidation of graphite during the heat treatment. Nitrogen, argon, helium etc. are illustrated as an inert gas.

上記温度域まで昇温後、当該温度で保持することで複合化が進行する。加熱保持時間は好ましくは1分以上、より好ましくは10分以上であって、好ましくは10時間以下、より好ましくは5時間以下である。   After increasing the temperature to the above temperature range, the composite proceeds by maintaining the temperature. The heat holding time is preferably 1 minute or more, more preferably 10 minutes or more, preferably 10 hours or less, more preferably 5 hours or less.

上記加熱処理には、ロータリーキルン、流動床炉、攪拌混合炉などの各種加熱炉を用いることができる。   For the heat treatment, various heating furnaces such as a rotary kiln, a fluidized bed furnace, and a stirring and mixing furnace can be used.

加熱処理後、黒鉛複合体を酸洗浄処理してもよい。洗浄液としては、塩酸、硝酸、硫酸、リン酸、炭酸などの無機酸;ギ酸、シュウ酸、マロン酸、コハク酸、酢酸、プロピオン酸などの有機酸を含有する酸洗浄液が例示され、単独、または2種以上を併用してもよい。黒鉛複合体を形成するアルカリ金属分を残存させつつ、黒鉛複合体の表面などに付着しているアルカリ金属分やその他の不純物を除去するため、酸洗浄液の酸濃度を調整したり、酸洗浄処理を複数回行ってもよい。無機酸を使用する場合、洗浄液中の無機酸濃度は好ましくは0.1mol/L以上、より好ましくは0.2mol/L以上、さらに好ましくは0.5mol/L以上である。無機酸を用いる場合の処理条件は、例えば無機酸含有洗浄液と黒鉛複合体とを混合して、50℃〜100℃の温度で、30分間〜120分間撹拌すればよい。また有機酸を用いる場合、洗浄液中の有機酸濃度は好ましくは1.0vol%以上、より好ましくは2.0vol%以上、さらに好ましくは5.0vol%以上であり、好ましくは100vol%以下、より好ましくは80vol%以下、さらに好ましくは60vol%以下である。有機酸を用いる場合の処理条件は、例えば有機酸含有洗浄液と黒鉛複合体とを混合して、20℃〜80℃の温度で、1分間〜120分間撹拌すればよい。   After the heat treatment, the graphite composite may be subjected to an acid cleaning treatment. Examples of the cleaning liquid include acid cleaning liquids containing inorganic acids such as hydrochloric acid, nitric acid, sulfuric acid, phosphoric acid, and carbonic acid; organic acids such as formic acid, oxalic acid, malonic acid, succinic acid, acetic acid, and propionic acid. Two or more kinds may be used in combination. In order to remove the alkali metal and other impurities adhering to the surface of the graphite composite while leaving the alkali metal that forms the graphite composite, the acid concentration of the acid cleaning solution is adjusted, or the acid cleaning treatment is performed. May be performed multiple times. When the inorganic acid is used, the concentration of the inorganic acid in the cleaning liquid is preferably 0.1 mol / L or more, more preferably 0.2 mol / L or more, and further preferably 0.5 mol / L or more. The treatment conditions in the case of using an inorganic acid may be, for example, mixing an inorganic acid-containing cleaning solution and a graphite complex and stirring at a temperature of 50 ° C. to 100 ° C. for 30 minutes to 120 minutes. When an organic acid is used, the concentration of the organic acid in the cleaning solution is preferably 1.0 vol% or more, more preferably 2.0 vol% or more, still more preferably 5.0 vol% or more, preferably 100 vol% or less, more preferably Is 80 vol% or less, more preferably 60 vol% or less. The processing conditions in the case of using an organic acid may be, for example, mixing an organic acid-containing cleaning solution and a graphite complex and stirring at a temperature of 20 ° C. to 80 ° C. for 1 minute to 120 minutes.

酸洗浄後、黒鉛複合体に残存する酸洗浄液を除去するために必要に応じて水洗浄処理を行ってもよい。好ましくは温水洗浄処理であり、温水洗浄処理の条件は、例えば50〜100℃の温水で30〜120分間洗浄処理することである。なお、各洗浄後ろ過などで洗浄液を分離・除去することが好ましい。   After the acid cleaning, a water cleaning treatment may be performed as necessary to remove the acid cleaning liquid remaining in the graphite composite. Preferably, it is a warm water washing process, and the conditions of the warm water washing process are, for example, a washing process for 30 to 120 minutes with warm water of 50 to 100 ° C. In addition, it is preferable to isolate | separate and remove a washing | cleaning liquid by filtration etc. after each washing | cleaning.

洗浄処理後、必要に応じて黒鉛複合体を乾燥処理してもよい。乾燥方法は限定されず、例えば20〜200℃で、0.5時間〜24時間乾燥させることが好ましい。   After the washing treatment, the graphite composite may be dried as necessary. A drying method is not limited, For example, it is preferable to dry at 20-200 degreeC for 0.5 hour-24 hours.

洗浄処理後に黒鉛複合体に含まれる不純物、すなわち上記選択したアルカリ金属以外の各種金属元素含有量は黒鉛複合体に対して合計で好ましくは1000ppm以下、より好ましくは100ppm以下である。なお、不純物は全く含まないことが望ましいが、コストや技術的な困難性を考慮すると0ppm超であってもよい。   The impurities contained in the graphite composite after the washing treatment, that is, the contents of various metal elements other than the selected alkali metal are preferably 1000 ppm or less, more preferably 100 ppm or less in total with respect to the graphite composite. Although it is desirable that no impurities are contained, it may be more than 0 ppm in consideration of cost and technical difficulty.

本発明の黒鉛複合体のサイズは特に限定されない。したがって用途に応じたサイズとなるように所定サイズの原料黒鉛を用いてもよいし、あるいは製造過程でサイズを調整してもよい。黒鉛複合体のサイズは例えば好ましくは10μm以上であって、好ましくは10mm以下である。   The size of the graphite composite of the present invention is not particularly limited. Therefore, raw material graphite having a predetermined size may be used so as to have a size according to the application, or the size may be adjusted during the manufacturing process. The size of the graphite composite is, for example, preferably 10 μm or more and preferably 10 mm or less.

以上、本発明の製造方法によって上記特性を満足する黒鉛複合体を得ることができる。   As mentioned above, the graphite composite which satisfies the said characteristic can be obtained with the manufacturing method of this invention.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明は下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited by the following examples, and is implemented with appropriate modifications within a range that can meet the purpose described above and below. Of course, any of these is also included in the technical scope of the present invention.

試料No.1〜7
原料黒鉛として鱗片状黒鉛(平均粒子径120μm)を用いた。原料黒鉛50gにアルカリ金属水酸化物として水酸化カリウムが表1に示す質量比(KOH/C)となるように添加、混合して混合物(原料黒鉛混合物)を得た。
Sample No. 1-7
Scaly graphite (average particle size 120 μm) was used as the raw material graphite. A mixture (raw material graphite mixture) was obtained by adding and mixing potassium hydroxide as an alkali metal hydroxide in 50 g of raw material graphite so as to have a mass ratio (KOH / C) shown in Table 1.

次いで得られた原料黒鉛混合物を加熱炉に収容して窒素雰囲気下で10℃/minで昇温し、表1に示す加熱温度、及び保持時間で加熱処理を行った。   Next, the obtained raw graphite mixture was placed in a heating furnace, heated at 10 ° C./min in a nitrogen atmosphere, and heat-treated at the heating temperature and holding time shown in Table 1.

得られた加熱処理物を5.25質量%の塩酸(60℃)に添加して100℃で1時間加熱後、ろ過することにより塩酸洗浄を行った。塩酸洗浄処理後、60℃の温水に塩酸洗浄物を添加し、100℃で1時間加熱後、ろ過をすることにより温水洗浄を行った。温水洗浄後、大気中で乾燥させて黒鉛複合体を得た。得られた黒鉛複合体を試料No.1〜7とした。   The obtained heat-treated product was added to 5.25 mass% hydrochloric acid (60 ° C.), heated at 100 ° C. for 1 hour, and then filtered to perform hydrochloric acid washing. After washing with hydrochloric acid, the washed hydrochloric acid was added to 60 ° C. warm water, heated at 100 ° C. for 1 hour, and then filtered to perform warm water washing. After washing with warm water, it was dried in the air to obtain a graphite composite. The obtained graphite composite was sample No. 1-7.

試料No.8
試料No.1で使用した原料黒鉛を試料No.8とした。
Sample No. 8
Sample No. The raw material graphite used in Sample No. 1 It was set to 8.

試料No.9〜12
黒鉛化されていない炭素材(ニードルコークス:平均粒子径5μm)を1700℃、または2100℃で加熱処理(加熱保持時間:2時間)して得られた試料をそれぞれ試料No.9、11とした。また試料No.9、11と水酸化カリウムをKOH/C=2.0の質量比で混合した後、試料No.4と同様にして加熱処理、酸洗浄、温水洗浄した後、乾燥させて得られた試料をそれぞれ試料No.10、12とした。
Sample No. 9-12
Samples obtained by heat-treating a non-graphitized carbon material (needle coke: average particle size 5 μm) at 1700 ° C. or 2100 ° C. (heat holding time: 2 hours) are respectively sample Nos. 9 and 11. Sample No. 9, 11 and potassium hydroxide were mixed at a mass ratio of KOH / C = 2.0. In the same manner as in No. 4, heat treatment, acid washing, hot water washing, and drying were performed. 10 and 12.

<カリウム含有量>
試料を混酸分解してカリウムの含有量を測定した。具体的には有害金属測定用97%硫酸10mL、有害金属測定用60%硝酸30mLの混酸に試料0.1gを加えた後、試料が完全に融解するまで加熱し、得られた溶解液に含まれるカリウムの割合をICP発光分光分析法(Thermo Fisher Scientific社製「iCAP6000」)により測定した。結果を表2に示す。
<Potassium content>
The sample was subjected to mixed acid decomposition to measure the potassium content. Specifically, after adding 0.1 g of the sample to a mixed acid of 97 mL of 97% sulfuric acid for measuring harmful metals and 30 mL of 60% nitric acid for measuring harmful metals, it is heated until the sample is completely melted and contained in the resulting solution. The percentage of potassium produced was measured by ICP emission spectroscopy (“iCAP6000” manufactured by Thermo Fisher Scientific). The results are shown in Table 2.

<炭素、水素、窒素、酸素含有量>
試料の有機元素分析を行い、炭素、水素、窒素の含有量を有機元素分析装置(ジェイ・サイエンス・ラボ社製MACRO CORDER JM1000HCN)を用いて測定した。また酸素含有量は各測定結果に基づいて算出(100−(C+H+N+K))した。結果を表2に示す。
<Carbon, hydrogen, nitrogen, oxygen content>
The sample was subjected to organic elemental analysis, and the carbon, hydrogen, and nitrogen contents were measured using an organic elemental analyzer (MACRO CORDER JM1000HCN manufactured by J Science Laboratories). The oxygen content was calculated based on each measurement result (100− (C + H + N + K)). The results are shown in Table 2.

<歩留り>
試料No.8の質量を基準(100%)として各試料の歩留り率を算出した。結果を表2に示す。
<Yield>
Sample No. The yield rate of each sample was calculated based on the mass of 8 as a reference (100%). The results are shown in Table 2.

<X線回折分析>
X線回折装置(PANalytical社製X‘Pert PRO)に300μm以下に解砕した試料1gを充填し、試料の(002)面を下記条件でX線回折分析した。X線回折スペクトルを分析して、回折角2θのピークトップの位置とその半値幅、及び平均面間隔d(Å)を決定した。また強度が最大のピークトップを100として相対強度を算出した。
ターゲット:CuKα線
管電圧、及び電流:45kV、40mA
走査速度:4.7°/分
サンプリング幅:0.05°
発散スリット:0.5°
発散縦制限スリット:0.04rad
散乱スリット:0.5°
受光スリット:77μm
<X-ray diffraction analysis>
An X-ray diffractometer (X'Pert Pro manufactured by PANalytical) was filled with 1 g of the sample crushed to 300 μm or less, and the (002) plane of the sample was subjected to X-ray diffraction analysis under the following conditions. The X-ray diffraction spectrum was analyzed to determine the position of the peak top at the diffraction angle 2θ, the half width thereof, and the average interplanar distance d (Å). The relative intensity was calculated with the peak top having the maximum intensity as 100.
Target: CuKα line Tube voltage and current: 45 kV, 40 mA
Scanning speed: 4.7 ° / min Sampling width: 0.05 °
Divergent slit: 0.5 °
Divergence length restriction slit: 0.04 rad
Scattering slit: 0.5 °
Light receiving slit: 77 μm

<ラマン分光分析>
20kNの外力をかけペレット状に成形した試料をラマン分光分析装置(堀場製作所社製LabRAM ARAMIS)にセットしてレーザー光を照射して測定した。レーザーの照射位置を変えて10回測定し、それらの平均値を採用した。
分光器:焦点距離=380mm
検出器:分解能(1800μmのスリット幅)0.73cm-1
測定範囲:1000〜2000cm-1
レーザー出力:30mW
レーザー光の波長:532nm
照射時間:10s
積算回数:3回
照射径:1μm
ラマン散乱スペクトルからDバンド:1350cm-1付近(1320〜1360cm-1未満)、Gバンド:1580cm-1付近(1570〜1590cm-1)、および1600cm-1付近(1590〜1610cm-1)のバンドのピーク高さを求めると共に、最大ピークの半値幅を決定した。結果を表3に示す。
<Raman spectroscopy>
A sample formed into a pellet shape by applying an external force of 20 kN was set in a Raman spectroscopic analyzer (LabRAM ARAMIS manufactured by Horiba, Ltd.) and irradiated with laser light for measurement. The measurement was performed 10 times while changing the laser irradiation position, and the average value was adopted.
Spectrometer: Focal length = 380mm
Detector: Resolution (1800 μm slit width) 0.73 cm −1
Measurement range: 1000 to 2000 cm −1
Laser power: 30mW
Laser light wavelength: 532 nm
Irradiation time: 10s
Integration count: 3 times Irradiation diameter: 1 μm
D band Raman scattering spectrum: 1350 cm (less than 1320~1360Cm -1) -1 vicinity, G band: 1580 cm -1 vicinity (1570~1590cm -1), and 1600cm around -1 bands of (1590~1610cm -1) The peak height was determined and the half width of the maximum peak was determined. The results are shown in Table 3.

<体積抵抗率>
試料の体積抵抗率を粉体抵抗測定システム(三菱化学アナリテック社製、「MCP−PD51型」)を用いて測定した。試料2gをプローブシリンダー内に投入した後、プローブピストンによって試料の加圧を行い、20kNに達するまで4kN加圧する毎に体積抵抗率を測定した。測定結果から体積抵抗率(Ω・cm)とその密度(g/cm3)との関係を求めると共に12、16、20kNの3点を2次関数で近似させた一定密度(2.15g/cm3)での体積抵抗率、及びNo.8を基準として体積抵抗率減少率を算出し、表5に記載した。
<Volume resistivity>
The volume resistivity of the sample was measured using a powder resistance measurement system (“MCP-PD51 type” manufactured by Mitsubishi Chemical Analytech Co., Ltd.). After putting 2 g of the sample into the probe cylinder, the sample was pressurized by the probe piston, and the volume resistivity was measured each time the pressure was increased by 4 kN until reaching 20 kN. From the measurement results, the relationship between the volume resistivity (Ω · cm) and the density (g / cm 3 ) was obtained, and a constant density (2.15 g / cm) obtained by approximating three points of 12, 16, and 20 kN with a quadratic function. 3 ) and volume resistivity in No. 3 ). The volume resistivity reduction rate was calculated based on 8 and listed in Table 5.

<導電率>
上記体積抵抗率の逆数から導電率を算出した。
<Conductivity>
The conductivity was calculated from the reciprocal of the volume resistivity.

<混合前の原料黒鉛の結晶子の大きさLc>
試料に対し20質量%の標準シリカ(三津和化学薬品社製、純度99.9%)を混合し、上記X線回折分析と同様の手順で10°〜35°の範囲で測定した。得られた測定結果を炭素構造解析ソフトウェア(Carbon analyzaer2004 Ver.3.51A)を用いて、炭素の(002)面回折ピークより算出した結晶子サイズ(Lc)を算出した。この際、標準シリカによる補正を行った。
<Size Lc of crystallite of raw graphite before mixing>
20% by mass of standard silica (manufactured by Mitsuwa Chemical Co., Ltd., purity: 99.9%) was mixed with the sample, and measurement was performed in the range of 10 ° to 35 ° in the same procedure as the above X-ray diffraction analysis. The crystallite size (Lc) calculated from the (002) plane diffraction peak of carbon was calculated from the obtained measurement results using carbon structure analysis software (Carbon analyzer 2004 Ver. 3.51A). At this time, correction with standard silica was performed.

<水蒸気吸着等温線>
試料の水蒸気吸着等温線を蒸気吸着測定装置(マイクロトラック・ベル社製「BELSORP−max」)を用いて温度25℃で測定した。結果を図6に示す。
<Water vapor adsorption isotherm>
The water vapor adsorption isotherm of the sample was measured at a temperature of 25 ° C. using a vapor adsorption measuring device (“BELSORP-max” manufactured by Microtrack Bell). The results are shown in FIG.

<安定性試験>
上記製造後3日以内に測定した試料No.1〜4、8のX線結晶解析結果と大気中に1ヶ月間、常温放置した後で再度X線結晶解析を行った結果とを対比して大気下での結晶構造の安定性を評価した。XRDのピーク位置のずれが±0.1°以下である場合を大気下安定性に優れると評価した。結果を表4に示す。
<Stability test>
Sample No. measured within 3 days after the production. The stability of the crystal structure in the atmosphere was evaluated by comparing the X-ray crystallographic results of 1-4 and 8 with the results of X-ray crystallographic analysis again after standing at room temperature for 1 month in the air. . The case where the deviation of the XRD peak position was ± 0.1 ° or less was evaluated as being excellent in atmospheric stability. The results are shown in Table 4.

Figure 2019034866
Figure 2019034866

Figure 2019034866
Figure 2019034866

表2から次のことがわかる。水酸化カリウム混合後、800℃で加熱処理した試料No.1〜5は製造段階で水酸化カリウムの質量比(KOH/C)を高くするほど、黒鉛複合体に含まれる水酸化カリウム由来物、すなわち、カリウム、酸素、及び水素の割合が上昇した。一方、黒鉛複合体に占める水酸化カリウム由来物の割合が高くなるほど、炭素の割合は低下した。また試料No.1〜5は歩留りが上昇しており、この結果から水酸化カリウムの質量比(KOH/C)を高くすれば、炭素の消失量を上回るペースで水酸化カリウム由来物が黒鉛複合体に含有されることがわかる。また水酸化カリウムの質量比(KOH/C)を1.5以上とした試料No.3〜5は、C/K(モル比)が8未満であり、従来の黒鉛層間化合物(ステージ1構造のK−GIC(KC8))よりもカリウムの比率が高かった。そして図11からは水酸化カリウムの比率を高くする程、体積抵抗率が低下した黒鉛複合体が得られることがわかる。同様に図13からは水酸化カリウムの比率を高くする程、導電率が向上した黒鉛複合体が得られることがわかる。 Table 2 shows the following. After mixing with potassium hydroxide, heat treatment was performed at 800 ° C. Sample No. In 1-5, as the mass ratio of potassium hydroxide (KOH / C) was increased in the production stage, the proportions of potassium hydroxide-derived substances contained in the graphite composite, that is, potassium, oxygen, and hydrogen increased. On the other hand, the higher the proportion of the potassium hydroxide-derived material in the graphite composite, the lower the proportion of carbon. Sample No. From 1 to 5, the yield is increased. From this result, if the mass ratio of potassium hydroxide (KOH / C) is increased, potassium hydroxide-derived substances are contained in the graphite composite at a pace exceeding the loss of carbon. I understand that Sample No. 1 with a mass ratio of potassium hydroxide (KOH / C) of 1.5 or more was used. 3 to 5 had a C / K (molar ratio) of less than 8 and a higher potassium ratio than the conventional graphite intercalation compound (K-GIC (KC 8 ) of stage 1 structure). From FIG. 11, it can be seen that a graphite composite having a reduced volume resistivity is obtained as the ratio of potassium hydroxide is increased. Similarly, it can be seen from FIG. 13 that the higher the proportion of potassium hydroxide, the more the graphite composite with improved conductivity.

一方、600℃で加熱処理した試料No.6、7はKOH/Cにおける水酸化カリウムの割合を2倍(1.0から2.0)にしても黒鉛複合体に含まれるカリウムの割合、及び歩留りが低下した。しかしながら体積抵抗率と導電率は試料No.6、7でほぼ同等の値であり、黒鉛よりも優れていた。また試料No.6、7と加熱温度が異なる試料No.2、4との比較からカリウムの割合や歩留りは加熱温度が影響していることがわかる。すなわち、加熱温度を高めると表3、表4に示す様に原料黒鉛の結晶構造が変化し、それに伴ってカリウムの割合や歩留りが変化していることがわかる。   On the other hand, the sample No. 1 heat-treated at 600 ° C. In Nos. 6 and 7, even when the ratio of potassium hydroxide in KOH / C was doubled (1.0 to 2.0), the ratio of potassium contained in the graphite composite and the yield decreased. However, the volume resistivity and conductivity are the same as in sample No. 6 and 7 were almost the same value, which was superior to graphite. Sample No. Sample Nos. 6 and 7 differing in heating temperature. From the comparison with 2 and 4, it can be seen that the heating temperature has an influence on the potassium ratio and yield. That is, when the heating temperature is increased, the crystal structure of the raw graphite is changed as shown in Tables 3 and 4, and the proportion and yield of potassium are changed accordingly.

処理温度以外が同じである試料No.2、4と試料No.6、7を比べると処理温度の違いにより、黒鉛複合体に含まれるカリウムの割合や歩留り率の傾向が異なるが、表4、図1、2に示すように両者はX線回折2θが26.7〜28.0の範囲に強度が最大のピークトップを有している点で共通しており、体積抵抗率及び導電率は従来の黒鉛(試料No.8)よりも優れていた。黒鉛複合体中のK含有量が多い試料No.2、4は試料No.6、7よりも優れた体積抵抗率及び導電率を有していた。また図12、14に示すように負荷荷重を増加して黒鉛複合体の密度が高くなる程、体積抵抗率、導電性共に向上する傾向を示した。また製造時の水酸化カリウム比が同じである試料No.2と6、試料No.4と7を比べた結果、水酸化カリウム混合後の加熱温度を高くすることで27°付近のピークが広角側にシフトした黒鉛複合体が得られると共に、体積抵抗率がより一層良好な黒鉛複合体が得られることがわかる。   Sample No. which is the same except for the processing temperature. 2, 4 and Sample No. 6 and 7, the tendency of the ratio of the potassium contained in the graphite composite and the yield rate differ depending on the treatment temperature. However, as shown in Table 4 and FIGS. It is common in that it has a peak top with the maximum strength in the range of 7 to 28.0, and the volume resistivity and conductivity were superior to the conventional graphite (sample No. 8). Sample No. with high K content in the graphite composite. 2 and 4 are sample Nos. It had a volume resistivity and conductivity superior to those of 6 and 7. Further, as shown in FIGS. 12 and 14, the volume resistivity and conductivity tended to improve as the load was increased and the density of the graphite composite was increased. In addition, the sample No. having the same potassium hydroxide ratio at the time of production was used. 2 and 6, sample no. As a result of comparing 4 and 7, a graphite composite in which the peak near 27 ° is shifted to the wide-angle side by increasing the heating temperature after mixing with potassium hydroxide is obtained, and the graphite composite with a better volume resistivity is obtained. It turns out that a body is obtained.

Figure 2019034866
Figure 2019034866

Figure 2019034866
Figure 2019034866

X線回折分析の結果を示す表4、図1、図2より次のことがわかる。まず、試料No.1〜7はいずれも試料No.8とは異なるX線回折パターンを有しており、黒鉛複合体の結晶構造は黒鉛から変化していることがわかる。特に試料No.1〜7は黒鉛の最大強度のピークトップよりも広角側(27°付近:26.7°〜28.0°の間)に最大強度のピークトップを有していた。水酸化カリウムの質量比(KOH/C)を1.5以上とし、黒鉛複合体中のK含有量が25.0質量%以上である試料No.3〜5は27°付近のピークがより一層シャープになっており、結晶子が成長していることがわかる。   The following can be seen from Table 4, FIGS. 1 and 2 showing the results of X-ray diffraction analysis. First, sample no. Nos. 1 to 7 are all sample Nos. 8 has an X-ray diffraction pattern different from that of FIG. 8, and it can be seen that the crystal structure of the graphite composite is changed from that of graphite. In particular, sample no. 1 to 7 had a peak top with the maximum strength on the wide angle side (around 27 °: between 26.7 ° and 28.0 °) from the peak top with the maximum strength of graphite. Sample No. 2 in which the mass ratio of potassium hydroxide (KOH / C) was 1.5 or more and the K content in the graphite composite was 25.0 mass% or more. In 3-5, the peak near 27 ° is sharper, and it can be seen that crystallites are growing.

試料No.1〜5は黒鉛複合体中の水酸化カリウム由来物の割合が高くなるほどX線回折角(2θ)27°付近の最大強度のピークトップがよりシャープになる傾向を示すと共にX線回折角(2θ)のピークトップを27°付近、及び56°付近(55.0°〜58.0°)に有し、且つ、相対強度が27°付近>56°付近である点で一致している。また試料No.1〜5と試料No.6〜7はX線回折角(2θ)27°付近に最大強度を有すると共に、56°付近にもピークトップを有する点で共通しており、更に表1に示す様にカリウムを含む黒鉛複合体である点で共通している。   Sample No. Nos. 1 to 5 show that the peak top of the maximum intensity near the X-ray diffraction angle (2θ) of 27 ° tends to become sharper as the proportion of the potassium hydroxide-derived material in the graphite composite increases, and the X-ray diffraction angle (2θ ) In the vicinity of 27 ° and 56 ° (55.0 ° to 58.0 °), and the relative intensity is in the vicinity of 27 °> 56 °. Sample No. 1-5 and sample no. 6 to 7 are common in that they have a maximum intensity near an X-ray diffraction angle (2θ) of 27 ° and also have a peak top near 56 °. Further, as shown in Table 1, a graphite composite containing potassium is used. It is common in that.

一方、試料No.10、12は原料黒鉛時の熱処理温度が低かったために黒鉛が十分に結晶化されておらず、そのため水酸化カリウムと混合して加熱処理してもX線回折角(2θ)27°付近に最大強度のピークトップ、または2番目の強度のピークトップは出現しなかった。試料No.9〜12は黒鉛の最大強度のピークトップよりも狭角側に最大強度のピークトップを有していた。また試料No.9〜12は体積抵抗率、導電率も十分ではなかった。なお、試料No.9〜12も安定性試験の前後でピークトップの位置は変化していないが、27°付近にピークトップを有していない点で、比較例に相当する。   On the other hand, sample No. In Nos. 10 and 12, since the heat treatment temperature at the time of the raw material graphite was low, the graphite was not sufficiently crystallized. Therefore, even when mixed with potassium hydroxide and heat-treated, the maximum X-ray diffraction angle (2θ) was around 27 °. No intensity peak top or second intensity peak top appeared. Sample No. 9-12 had the peak top of the maximum intensity on the narrow angle side from the peak top of the maximum intensity of graphite. Sample No. 9-12 were not sufficient in volume resistivity and electrical conductivity. Sample No. 9 to 12 also correspond to the comparative example in that the peak top position does not change before and after the stability test, but does not have a peak top in the vicinity of 27 °.

試料をラマンスペクトル分析した結果を示す表3、図3〜5から次のことがわかる。試料No.8は1600cm-1付近のピークトップはないが、試料No.1〜7は1600cm-1付近にピークトップを有していた。また水酸化カリウムの質量比(KOH/C)を高くする程、1600cm-1付近の強度が強くなり、特に試料No.3〜5では1600cm-1付近のピークトップの強度が1580cm-1付近のピークトップの強度よりも高かった。また1600cm-1付近のピークトップの強度は加熱処理温度600℃よりも800℃の方が高くなっていた。これらの結果から、加熱処理温度を高くすると共に、水酸化カリウムの質量比(KOH/C)を高くすれば、1600cm-1付近により高強度のピークトップが得られることがわかる。 The following can be understood from Table 3 and FIGS. 3 to 5 showing the results of Raman spectrum analysis of the sample. Sample No. 8 has no peak top near 1600 cm −1, but sample no. 1-7 had a peak top in the vicinity of 1600 cm −1 . Further, as the mass ratio of potassium hydroxide (KOH / C) is increased, the strength near 1600 cm −1 is increased. The intensity of the peak top in the vicinity of 3-5 at 1600 cm -1 is higher than the intensity of the peak top in the vicinity of 1580 cm -1. The intensity of the peak top near 1600 cm −1 was higher at 800 ° C. than the heat treatment temperature of 600 ° C. From these results, it can be seen that if the heat treatment temperature is increased and the mass ratio of potassium hydroxide (KOH / C) is increased, a peak top with a higher intensity can be obtained in the vicinity of 1600 cm −1 .

また1580cm-1付近と1600cm-1付近のピーク強度比(I1600/I1580)を示す図5からは、800℃で処理した試料No.1〜5のうち、試料No.3〜5に示す様にKOHの割合を1.5以上にすると、該強度比が100以上となり、1600cm-1付近のピークトップの強度が1580cm-1のピークトップの強度よりも高くなった。 Also from Figure 5 showing 1580 cm -1 and near 1600 cm -1 vicinity of the peak intensity ratio of the (I 1600 / I 1580), the samples were treated with 800 ° C. No. 1-5, sample no. When the ratio of KOH to 1.5 or more as shown in 3-5, it said intensity ratio becomes more than 100, the intensity of the peak top in the vicinity of 1600 cm -1 is higher than the intensity of the peak top of the 1580 cm -1.

黒鉛複合体の大気下安定性を調べた結果を示す表4から次のことがわかる。試料No.1〜7はX線回折角(2θ)27°付近のピークトップの位置が製造後と1ヶ月経過後とでほぼ同一(±0.1°以内)であり、結晶構造が維持されていることがわかる。   Table 4 showing the results of examining the stability of the graphite composite in the atmosphere shows the following. Sample No. For Nos. 1 to 7, the peak top position near the X-ray diffraction angle (2θ) of 27 ° is almost the same (within ± 0.1 °) after production and after one month, and the crystal structure is maintained. I understand.

Figure 2019034866
Figure 2019034866

黒鉛複合体の体積抵抗率を調べた結果を示す表5、図11から次のことがわかる。水酸化カリウムの質量比(KOH/C)が高い程、体積抵抗率が向上する傾向を示しており、いずれも黒鉛よりも優れた体積抵抗率を示した。また水酸化カリウム添加後の加熱温度は600℃よりも800℃の方がより優れた体積抵抗率低減効果を発揮した。体積抵抗率と密度の関係をプロットした図12においても同様の傾向を示した。   The following can be seen from Table 5 and FIG. 11 showing the results of examining the volume resistivity of the graphite composite. The higher the mass ratio of potassium hydroxide (KOH / C) is, the higher the volume resistivity tends to be, and the volume resistivity is superior to that of graphite. Moreover, the heating temperature after addition of potassium hydroxide exhibited a more excellent volume resistivity reduction effect at 800 ° C. than at 600 ° C. The same tendency was shown also in FIG. 12 which plotted the relationship between volume resistivity and density.

黒鉛複合体の水蒸気吸着量を調べた結果を示す図6から次のことがわかる。黒鉛である試料No.8はほとんど吸着性を有していなかった。一方、黒鉛複合体は吸着等温線が示す様に吸着側と離脱側がほぼ一致するという特異な吸着性能を有するため、黒鉛とは構造だけでなく特性も異なることがわかる。   The following can be understood from FIG. 6 showing the results of examining the water vapor adsorption amount of the graphite composite. Sample No. which is graphite. 8 had almost no adsorptivity. On the other hand, the graphite composite has a unique adsorption performance in which the adsorption side and the separation side almost coincide with each other as shown by the adsorption isotherm.

原料黒鉛として結晶化度が低い炭素材料を用いた場合について検討した結果、以下のことがわかった。図7に示す様に炭素材料を高温で処理した試料No.9(1700℃)、試料No.11(2100℃)のX線回折パターンはほぼ同じ波形であるが、試料No.8のピークトップよりも狭角側に存在していた。ピークトップの半値幅は炭素材の熱処理温度が高くなる程、シャープになる傾向を示した。図8に示す様に熱処理温度が高くなる程、結晶化度(黒鉛化度)も高くなり、層間隔Lcも広がることがわかる。また図9、10に示す様に結晶化度の低い水酸化カリウムを混合後、800℃で加熱処理した試料No.10、12は、試料No.9、11と比べて既存のピークトップの強度が著しく減少していると共に、該ピークトップの横軸方向の位置に変化はなかった。これらの結果から黒鉛化度が低い材料を使用しても新たな結晶構造は得られず、むしろ賦活の進行によって結晶構造が破壊され、黒鉛複合体は得られないことがわかる。   As a result of examining the case of using a carbon material having a low crystallinity as raw material graphite, the following was found. As shown in FIG. 9 (1700 ° C.), Sample No. 11 (2100 ° C.) has almost the same waveform. It was present at a narrower angle than the peak top of 8. The half width at the peak top tended to become sharper as the heat treatment temperature of the carbon material increased. As shown in FIG. 8, it can be seen that the higher the heat treatment temperature, the higher the crystallinity (graphitization) and the greater the layer spacing Lc. As shown in FIGS. 9 and 10, after mixing potassium hydroxide having a low crystallinity, the sample No. 1 was heated at 800 ° C. 10 and 12 are sample Nos. Compared with 9 and 11, the intensity of the existing peak top was remarkably reduced, and the position of the peak top in the horizontal axis direction did not change. From these results, it can be seen that even if a material having a low graphitization degree is used, a new crystal structure cannot be obtained. Rather, the crystal structure is destroyed by the progress of activation, and a graphite complex cannot be obtained.

表2から水酸化カリウムについて次のことがわかる。試料No.2(KOH/C=1.0)、試料No.4(KOH/C=2.0)は歩留りが100%を超えると共に、水酸化カリウムの質量比(KOH/C)が高くなる程、歩留りも向上した。また表5に示す様に試料No.2、4、はいずれも大気下での結晶構造の安定性を有している。使用するアルカリ金属水酸化物によって歩留りに違いが生じるが、試料No.2、4はいずれも優れた結晶構造安定性、及び体積抵抗に優れた効果を有し、特に試料No.2、4は導電性にも優れた効果を有している。   Table 2 shows the following about potassium hydroxide. Sample No. 2 (KOH / C = 1.0), Sample No. In 4 (KOH / C = 2.0), the yield exceeded 100%, and as the mass ratio of potassium hydroxide (KOH / C) increased, the yield improved. As shown in Table 5, sample No. 2 and 4 have stability of the crystal structure in the atmosphere. The yield differs depending on the alkali metal hydroxide used. Nos. 2 and 4 both have excellent crystal structure stability and excellent volume resistance. 2 and 4 have the effect which was excellent also in electroconductivity.

Claims (9)

黒鉛とアルカリ金属との黒鉛複合体であって、X線回折分析して求められるX線回折角(2θ)26.7°〜28.0°の範囲に前記X線回折分析の最大強度のピークトップ、または2番目の強度のピークトップを有する黒鉛複合体。   A graphite composite of graphite and alkali metal, wherein the peak of the maximum intensity of the X-ray diffraction analysis is in the range of X-ray diffraction angle (2θ) 26.7 ° to 28.0 ° determined by X-ray diffraction analysis Graphite composite having a top or peak top of second strength. 前記アルカリ金属を1.0質量%以上含有する請求項1に記載の黒鉛複合体。   The graphite composite according to claim 1, containing 1.0% by mass or more of the alkali metal. 前記黒鉛複合体をラマン分光分析して求められるラマン散乱スペクトルにおいて、1590cm-1〜1610cm-1の範囲にピークトップまたは波形の変曲点を有するものである請求項1または2に記載の黒鉛複合体。 In Raman scattering spectra obtained the graphite composite by Raman spectroscopic analysis, graphite composite according to claim 1 or 2, one having an inflection point of the peak top or waveform in a range of 1590cm -1 ~1610cm -1 body. 前記黒鉛複合体は、更に酸素、及び/又は水素を含むものである請求項1〜3のいずれかに記載の黒鉛複合体。   The graphite composite according to any one of claims 1 to 3, wherein the graphite composite further contains oxygen and / or hydrogen. 前記アルカリ金属に対する炭素の比率(モル比)が20.0未満である請求項1〜4のいずれかに記載の黒鉛複合体。   The graphite composite according to any one of claims 1 to 4, wherein a ratio (molar ratio) of carbon to the alkali metal is less than 20.0. 前記アルカリ金属はカリウムである請求項1〜5のいずれかに記載の黒鉛複合体。   The graphite composite according to claim 1, wherein the alkali metal is potassium. 黒鉛とアルカリ金属水酸化物とを混合し、得られた混合物を600℃以上で加熱することを特徴とする黒鉛とアルカリ金属との黒鉛複合体の製造方法。   A method for producing a graphite composite of graphite and alkali metal, comprising mixing graphite and an alkali metal hydroxide and heating the resulting mixture at 600 ° C. or higher. 前記アルカリ金属水酸化物は水酸化カリウムである請求項7に記載の黒鉛複合体の製造方法。   The method for producing a graphite composite according to claim 7, wherein the alkali metal hydroxide is potassium hydroxide. 前記混合前の黒鉛の結晶子の大きさLcが10nm以上である請求項7または8に記載の黒鉛複合体の製造方法。   The method for producing a graphite composite according to claim 7 or 8, wherein a size Lc of graphite crystallites before mixing is 10 nm or more.
JP2017156501A 2017-08-14 2017-08-14 Graphite complex and its manufacturing method Active JP6967397B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017156501A JP6967397B2 (en) 2017-08-14 2017-08-14 Graphite complex and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017156501A JP6967397B2 (en) 2017-08-14 2017-08-14 Graphite complex and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2019034866A true JP2019034866A (en) 2019-03-07
JP6967397B2 JP6967397B2 (en) 2021-11-17

Family

ID=65636844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017156501A Active JP6967397B2 (en) 2017-08-14 2017-08-14 Graphite complex and its manufacturing method

Country Status (1)

Country Link
JP (1) JP6967397B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09249407A (en) * 1996-03-14 1997-09-22 Toyota Central Res & Dev Lab Inc Graphite composite material and its production
JP2003321216A (en) * 2002-04-26 2003-11-11 Hitachi Powdered Metals Co Ltd Graphite-based hydrogen-occluding material and method for producing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09249407A (en) * 1996-03-14 1997-09-22 Toyota Central Res & Dev Lab Inc Graphite composite material and its production
JP2003321216A (en) * 2002-04-26 2003-11-11 Hitachi Powdered Metals Co Ltd Graphite-based hydrogen-occluding material and method for producing the same

Also Published As

Publication number Publication date
JP6967397B2 (en) 2021-11-17

Similar Documents

Publication Publication Date Title
JP5647435B2 (en) Carbon nanotube and method for producing the same
JP5227800B2 (en) Fluorination of multi-layer carbon nanomaterials
JP2015147723A (en) Production method of graphite oxide and application thereof
JP2015517971A (en) Surface-modified low surface area graphite, its production method and its use
JP2018531871A (en) Method for producing Na3V2 (PO4) 2F3 particulate matter
JP2018531871A5 (en)
Liu et al. In situ synthesis of MXene with tunable morphology by electrochemical etching of MAX phase prepared in molten salt
Chiang et al. A novel synthesis of α-MoO3 nanobelts and the characterization
Poh et al. Transition metal‐depleted graphenes for electrochemical applications via reduction of CO2 by lithium
WO2015131933A1 (en) Method of producing graphene by exfoliation of graphite
JP2018039719A (en) Method of producing activated nano-porous carbon
Pinakov et al. Structure and supercapacitor properties of few-layer low-fluorinated graphene materials
Chen et al. Growth of single-crystal α-MnO2 nanorods on multi-walled carbon nanotubes
Roh et al. Carbon lattice structures in nitrogen-doped reduced graphene oxide: Implications for carbon-based electrical conductivity
JP3540085B2 (en) Carbonaceous material for battery electrode, method for producing the same, electrode structure, and battery
Iurchenkova et al. Supercapacitor behavior of carbon‐manganese oxides nanocomposites synthesized by carbon arc
Tang et al. Oxidation of acetylene black by nitric acid in hermetically sealed condition
KR101760649B1 (en) Metal­heteroatom Functionalized Carbon Structures and the Method for Manufacturing the Same
Tang et al. TiO 2 nanotubes grown on graphene sheets as advanced anode materials for high rate lithium ion batteries
JP6967397B2 (en) Graphite complex and its manufacturing method
JP6424476B2 (en) Conductive material
Tamayo et al. Characterization of polymer-derived ceramers subjected to wet-etching and the evolution of the carbon phase during thermal conversion
JP6890947B2 (en) Aluminum silicate complex
JP2021008382A (en) Method for producing defect reduction carbon material
RU2370437C1 (en) Method of producing carbon anode material

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20190123

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210309

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210422

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210928

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211025

R150 Certificate of patent or registration of utility model

Ref document number: 6967397

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150