JP2003314936A - Cooling device - Google Patents

Cooling device

Info

Publication number
JP2003314936A
JP2003314936A JP2002115863A JP2002115863A JP2003314936A JP 2003314936 A JP2003314936 A JP 2003314936A JP 2002115863 A JP2002115863 A JP 2002115863A JP 2002115863 A JP2002115863 A JP 2002115863A JP 2003314936 A JP2003314936 A JP 2003314936A
Authority
JP
Japan
Prior art keywords
heat
temperature
heating element
heat storage
medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002115863A
Other languages
Japanese (ja)
Inventor
Shigeo Aoyama
繁男 青山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP2002115863A priority Critical patent/JP2003314936A/en
Publication of JP2003314936A publication Critical patent/JP2003314936A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cooling device for inhibiting the partial rise of temperature in a heating element such as a CPU in an electronic apparatus. <P>SOLUTION: The heat is stored in a micro-emulsion ME as a latent heat storage medium as (sensible heat amount + latent heat amount) without operating a heat medium pump PM and a blast fan FN, when a temperature of a heating element CPU is less than a first set temperature Ts1, and the operation of the heat medium pump PM and the blast fan FN is started when the temperature of the heating element CPU is the first set temperature Ts1 or more, to thermally transfer the micro-emulsion ME to a heat exchanger for heat radiation HEX2 through an endothermal heat exchanger HEX1 on the heating element CPU, whereby the heating processing of the heating element CPU is performed with minimum electric power. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ディスクトップ型
パソコン等に代表されるCPU等の発熱体を備えた電子
機器において、特にCPU等の発熱体における局所的温
度上昇を抑制するための冷却装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electronic device including a heating element such as a CPU represented by a desktop type personal computer and the like, and particularly to a cooling device for suppressing a local temperature rise in the heating element such as the CPU. It is about.

【0002】[0002]

【従来の技術】コンピュータを代表とする電子機器の冷
却装置については、近年、さまざまな取組みがなされて
おり、例えば、登実3063836号公報に示されてい
るような冷却装置の基本的な技術について以下に述べ
る。
2. Description of the Related Art In recent years, various efforts have been made for cooling devices for electronic equipment represented by computers. For example, regarding the basic technology of cooling devices as disclosed in Noboru 3063836. It will be described below.

【0003】上記従来の冷却装置は図5に示すように、
冷却管路11、ポンプ12、放熱片13、及び放熱板1
4で構成され、冷却管路11内部を冷却液が流動可能と
され、ポンプ12が冷却管路11間に連接されて冷却管
路11内の冷却液を流動させて冷却液循環回路が形成さ
れている。
As shown in FIG. 5, the conventional cooling device described above is
Cooling line 11, pump 12, heat dissipation piece 13, and heat dissipation plate 1
4, the cooling liquid is allowed to flow inside the cooling pipe 11, and the pump 12 is connected between the cooling pipes 11 to flow the cooling liquid in the cooling pipe 11 to form a cooling liquid circulation circuit. ing.

【0004】そして、放熱片13が放熱したい発熱体C
PU上に設置され、放熱片13内部に管路が設けられて
冷却管路11と連接し、放熱板14がケース30上、或
いはケース30外に設置され、放熱板14内部に管路が
設けられて冷却管路と連接されている。
Then, the heat generating element C which the heat dissipating piece 13 wants to dissipate heat.
It is installed on PU, the pipe is provided inside the heat dissipation piece 13 and is connected to the cooling pipe 11, the heat dissipation plate 14 is installed on the case 30 or outside the case 30, and the pipe is provided inside the heat dissipation plate 14. And is connected to the cooling pipe.

【0005】以上のように構成された冷却装置では、冷
却液の循環により熱がケース30或いはケース30外に
送られ、発熱体CPUの温度を下げられるという効果を
有している。
The cooling device configured as described above has an effect that heat is sent to the case 30 or the outside of the case 30 by the circulation of the cooling liquid to lower the temperature of the heating element CPU.

【0006】[0006]

【発明が解決しようとする課題】しかしながら上記従来
の冷却装置では、放熱用に使用している放熱板では自然
対流による放熱であるために放熱量に限界があること、
更に熱媒体の熱輸送に際して顕熱のみによるものである
ことより、近年の演算処理の高性能化等に伴う発熱体か
らの発熱量増大に対して、十分に発熱量を処理できず、
発熱体の温度上昇を抑制できないという問題があった。
However, in the above-mentioned conventional cooling device, the heat dissipation plate used for heat dissipation has a limit in the amount of heat dissipation due to natural convection.
Furthermore, since the heat transfer of the heat medium is due only to sensible heat, it is not possible to sufficiently process the heat generation amount against the increase in heat generation amount from the heating element due to the high performance of the arithmetic processing in recent years.
There is a problem that the temperature rise of the heating element cannot be suppressed.

【0007】そこで、本発明は従来の課題を解決するも
ので、熱媒体として潜熱蓄熱媒体を使用し、発熱体が所
定温度未満では潜熱蓄熱媒体に(顕熱量+潜熱量)とし
て蓄熱し、発熱体が所定温度以上の場合に熱媒体搬送手
段、及び放熱用熱交換手段を随時、運転開始することに
より、発熱体の発熱処理を最小電力で対応し得る冷却装
置を提供することを目的とする。
Therefore, the present invention solves the conventional problems by using a latent heat storage medium as a heat medium, and when the heating element is below a predetermined temperature, the latent heat storage medium stores heat as (sensible heat amount + latent heat amount) to generate heat. An object of the present invention is to provide a cooling device capable of coping with heat generation processing of a heat generating element with minimum power by starting operation of a heat medium conveying means and a heat radiating heat exchanging means at any time when a body is at a predetermined temperature or higher. .

【0008】[0008]

【課題を解決するための手段】この目的を達成するた
め、請求項1に記載の発明は、潜熱蓄熱媒体を循環させ
る熱媒体循環手段と、集積回路部品からなる発熱体に対
して熱的に接触して、発熱体における発生熱を内部に存
在する潜熱蓄熱媒体へ熱移動させる吸熱用熱交換手段
と、吸熱用熱交換手段を介して発熱体より吸熱した潜熱
蓄熱媒体の熱を空気中へ熱移動させる放熱用熱交換手段
と、放熱用熱交換手段の近傍に設置した送風手段とが設
置され、熱媒体循環手段、吸熱用熱交換手段、及び放熱
用熱交換手段は順次連通されて閉回路を形成して内部を
潜熱蓄熱媒体が循環し、また、発熱体に対して熱的に接
触して発熱体の温度を検出する第1温度検出手段と、検
出した温度信号を処理する温度信号処理手段と、送風手
段の運転/停止を行う送風手段制御装置と、熱媒体搬送
手段の運転/停止を行う熱媒体搬送手段制御装置とから
なり、第1温度検出手段により検出した温度が第1所定
温度以上に達した時点で熱媒体循環手段、及び送風手段
の運転を開始する第1制御装置を備えたことを特徴とす
るものである。
In order to achieve this object, the invention as set forth in claim 1 provides a heat medium circulating means for circulating a latent heat storage medium, and a heat generating element composed of integrated circuit parts thermally. The heat of the endothermic heat storage medium, which comes into contact with the heat generating element to transfer the heat generated in the heat generating element to the latent heat storage medium existing inside, and the heat of the latent heat storage medium absorbed by the heat generating element via the heat absorbing heat exchange means to the air. A heat radiating heat exchanging means for transferring heat and a blowing means installed near the heat radiating heat exchanging means are installed, and the heat medium circulating means, the heat absorbing heat exchanging means, and the heat radiating heat exchanging means are sequentially connected and closed. First temperature detecting means for forming a circuit, in which the latent heat storage medium circulates, and in thermal contact with the heating element to detect the temperature of the heating element; and temperature signal for processing the detected temperature signal. Operates / stops processing means and blower means The air medium control device and the heat medium transportation device control device that operates / stops the heat medium transportation device. When the temperature detected by the first temperature detection device reaches or exceeds the first predetermined temperature, the heat medium circulation device. , And a first control device for starting the operation of the blower means.

【0009】これにより、発熱体の発熱は吸熱用熱交換
手段により潜熱蓄熱媒体へ吸熱され、冷却装置の内部全
体に充填されている潜熱蓄熱媒体温度がその融点以下の
場合、潜熱蓄熱媒体は固相の状態で温度上昇していき、
潜熱蓄熱媒体の融点に達すると、温度一定のまま固相か
ら液相へと相変化が生じて潜熱蓄熱媒体の保有量に応じ
た潜熱量が潜熱蓄熱媒体に蓄熱される。
As a result, the heat of the heating element is absorbed by the latent heat storage medium by the heat exchange means for heat absorption, and when the temperature of the latent heat storage medium filled in the entire cooling device is below its melting point, the latent heat storage medium is solid. The temperature rises in the phase state,
When the melting point of the latent heat storage medium is reached, a phase change occurs from the solid phase to the liquid phase while the temperature is constant, and the latent heat amount corresponding to the amount of the latent heat storage medium is stored in the latent heat storage medium.

【0010】即ち、発熱体の発熱量が潜熱蓄熱媒体の有
する最大蓄熱量以下の場合は、熱媒体循環手段、及び送
風手段を運転することなく、発熱体の発熱処理を行うこ
とができ、省エネルギー化に寄与できる。
That is, when the calorific value of the heating element is equal to or less than the maximum heat storage amount of the latent heat storage medium, the heat generating process of the heating element can be performed without operating the heat medium circulating means and the blowing means, thus saving energy. Can contribute to

【0011】そして、発熱体の発熱量が増加して潜熱蓄
熱媒体が完全に液相へと変化し、その後、液相の状態で
第1所定温度以上に達した時点で熱媒体循環手段、及び
送風手段の運転を開始することにより、潜熱蓄熱媒体が
放熱用熱交換手段へ搬送され、そこで放熱用熱交換手段
を介して強制対流熱伝達により潜熱蓄熱媒体から空気中
へ放熱される。その結果、発熱体からの発熱量増大に対
して、発熱体の温度上昇を抑制することができる。
Then, the amount of heat generated by the heating element increases and the latent heat storage medium completely changes to the liquid phase. After that, when the temperature reaches the first predetermined temperature or higher in the state of the liquid phase, the heat medium circulating means, and By starting the operation of the air blowing means, the latent heat storage medium is conveyed to the heat radiating heat exchange means, where it is radiated into the air by forced convection heat transfer via the heat radiating heat exchange means. As a result, it is possible to suppress an increase in the temperature of the heating element with respect to an increase in the amount of heat generated by the heating element.

【0012】また、請求項2に記載の発明は、請求項1
記載の発明に加えて、吸熱用熱交換手段の出口配管付近
に対して熱的に接触して吸熱用熱交換手段の温度を検出
する第2温度検出手段を設置し、第1制御装置に替わっ
て、第1温度検出手段による検出温度が第1所定温度以
上に達した時点で熱媒体搬送手段の運転を開始し、さら
に第2温度検出手段による検出温度が第2所定温度以上
に達した時点で送風手段の運転を開始する第2制御装置
を備えたことを特徴とするものである。
The invention described in claim 2 is the same as claim 1.
In addition to the invention described above, a second temperature detecting means for detecting the temperature of the heat absorbing heat exchanging means by thermally contacting with the vicinity of the outlet pipe of the heat absorbing heat exchanging means is installed, and the second controller is replaced with the first controller. Then, when the temperature detected by the first temperature detecting means reaches the first predetermined temperature or higher, the operation of the heat medium carrying means is started, and when the temperature detected by the second temperature detecting means reaches the second predetermined temperature or higher. It is characterized by comprising a second control device for starting the operation of the blowing means.

【0013】これにより、発熱体の発熱は吸熱用熱交換
手段により潜熱蓄熱媒体へ吸熱され、冷却装置の内部全
体に充填されている潜熱蓄熱媒体温度がその融点以下の
場合、潜熱蓄熱媒体は固相の状態で温度上昇していき、
やがて潜熱蓄熱媒体の融点に達すると、温度一定のまま
固相から液相へと相変化が生じて潜熱蓄熱媒体の保有量
に応じた潜熱量が潜熱蓄熱媒体に蓄熱される。
As a result, the heat generated by the heating element is absorbed by the latent heat storage medium by the heat absorbing heat exchange means, and when the temperature of the latent heat storage medium filled in the entire cooling device is below its melting point, the latent heat storage medium is solid. The temperature rises in the phase state,
When the melting point of the latent heat storage medium is reached, a phase change occurs from the solid phase to the liquid phase with the temperature kept constant, and the latent heat storage medium stores a latent heat amount corresponding to the amount of the latent heat storage medium.

【0014】即ち、発熱体の発熱量が潜熱蓄熱媒体の有
する最大蓄熱量以下の場合は、熱媒体循環手段、及び送
風手段を運転することなく、発熱体の発熱処理を行うこ
とができ、省エネルギー化に寄与できる。
That is, when the calorific value of the heating element is equal to or less than the maximum heat storage amount of the latent heat storage medium, the heating process of the heating element can be performed without operating the heat medium circulating means and the blowing means, thus saving energy. Can contribute to

【0015】そして、発熱体の発熱量が増加して潜熱蓄
熱媒体が完全に液相へと変化し、その後、液相の状態で
第1所定温度以上に達した時点で熱媒体循環手段の運転
を開始することにより、送風手段を運転することなく、
熱媒体循環手段のみにより冷却装置内部の全ての潜熱蓄
熱媒体がほぼ均一な温度分布となり、最小電力にて潜熱
蓄熱媒体の保有し得る熱容量を有効に利用することがで
きる。
Then, the amount of heat generated by the heating element is increased, the latent heat storage medium is completely changed to the liquid phase, and thereafter, when the temperature reaches the first predetermined temperature or higher in the state of the liquid phase, the operation of the heat medium circulation means is started. By operating the air blower,
All the latent heat storage medium inside the cooling device has a substantially uniform temperature distribution only by the heat medium circulation means, and the heat capacity that the latent heat storage medium can hold can be effectively utilized with the minimum power.

【0016】更に、発熱体の発熱量が増加して潜熱蓄熱
媒体の温度が第2所定温度以上に達した時点で送風手段
の運転を開始することにより、潜熱蓄熱媒体が放熱用熱
交換手段へ強制的に搬送され、そこで放熱用熱交換手段
を介して強制対流熱伝達により潜熱蓄熱媒体から空気中
へ放熱される。その結果、発熱体からの発熱量増大に対
して放熱量を増大させることにより、発熱体の温度上昇
を抑制することができる。
Further, the operation of the blower means is started when the amount of heat generated by the heating element increases and the temperature of the latent heat storage medium reaches or exceeds the second predetermined temperature, whereby the latent heat storage medium is transferred to the heat radiating heat exchange means. It is forcibly conveyed and is radiated from the latent heat storage medium into the air by forced convection heat transfer through the heat radiating heat exchange means. As a result, it is possible to suppress the temperature rise of the heat generating element by increasing the heat radiation amount with respect to the heat generation amount of the heat generating element.

【0017】以上より、発熱体からの発熱量増大に対し
て、発熱体の温度が比較的低い場合はできるだけ省電力
にて発熱処理を行い、発熱体の温度が比較的高い場合の
み、熱媒体循環手段、及び送風手段を運転することによ
り、発熱体の温度レベルに応じた省エネルギー運転、か
つ熱媒体循環手段、及び送風手段の長寿命化を実現でき
る。
As described above, when the temperature of the heating element is relatively low against the increase in the amount of heat generated by the heating element, heat generation processing is performed with the least possible power consumption, and only when the temperature of the heating element is relatively high, the heating medium is heated. By operating the circulation means and the air blowing means, it is possible to realize energy-saving operation according to the temperature level of the heating element and to extend the life of the heat medium circulation means and the air blowing means.

【0018】また、請求項3に記載の発明は、請求項1
または請求項2のいずれか一項に記載の発明における潜
熱蓄熱媒体として、水の中に、蓄熱材料であるアルカン
類材料を滴状に微細化して分散したマイクロエマルジョ
ン、または水と、蓄熱材料であるアルカン類材料をメラ
ミン樹脂等の非水溶性の高分子膜でカプセル化したマイ
クロカプセルとの混合溶液を用いることを特徴とするも
のである。
The invention described in claim 3 is the same as claim 1.
Alternatively, as the latent heat storage medium in the invention according to any one of claims 2 to 3, a microemulsion in which an alkane material that is a heat storage material is atomized and dispersed in water, or water and a heat storage material are used. It is characterized by using a mixed solution of microcapsules obtained by encapsulating a certain alkane material with a water-insoluble polymer film such as melamine resin.

【0019】これにより、潜熱蓄熱媒体として安定な特
性を有し、熱容量が増加するという利点を確保しなが
ら、かつ水成分も有していることより熱輸送性も確保で
き、その結果、熱媒体循環手段による搬送が可能とな
る。
As a result, the latent heat storage medium has stable characteristics and the advantage that the heat capacity is increased, and at the same time, the heat transportability can be secured because it also has the water component. As a result, the heat medium is obtained. It becomes possible to carry by the circulation means.

【0020】また、水成分を連続相とし、潜熱蓄熱材料
を分散相とすることにより、発熱体の温度が低く、潜熱
蓄熱媒体の温度が潜熱蓄熱材料の融点よりも低い場合に
おいても、潜熱蓄熱材料のみが固相となり、0℃以上で
ある限り、水成分が固相となることがない。
By using the water component as the continuous phase and the latent heat storage material as the dispersed phase, even when the temperature of the heating element is low and the temperature of the latent heat storage medium is lower than the melting point of the latent heat storage material, the latent heat storage material is stored. Only the material becomes a solid phase, and as long as it is 0 ° C. or higher, the water component does not become a solid phase.

【0021】従って、潜熱蓄熱媒体の温度が潜熱蓄熱材
料の融点よりも低い場合においても、潜熱蓄熱媒体とし
ての流動性は確保できるために、吸熱用熱交換手段、放
熱用熱交換手段、熱媒体搬送手段、及びそれぞれを連通
する配管内部において自然対流による熱移動が可能とな
る。
Therefore, even when the temperature of the latent heat storage medium is lower than the melting point of the latent heat storage material, since the fluidity as the latent heat storage medium can be secured, the heat absorption heat exchange means, the heat radiation heat exchange means, and the heat medium. Heat can be transferred by natural convection inside the transfer means and inside the pipes that communicate with each other.

【0022】また、請求項4に記載の発明は、請求項3
に記載の発明に加えて、上部に入口配管を設置し、底部
から内側上部へ所定長さの出口配管を突出させた、潜熱
蓄熱媒体を貯留する熱媒体貯留手段を、放熱用熱交換手
段と吸熱用熱交換手段とを連通する配管中に設置したこ
とを特徴とするものである。
The invention according to claim 4 is the same as claim 3
In addition to the invention described in, the inlet pipe is installed in the upper part, the outlet pipe of a predetermined length is projected from the bottom to the upper inside, the heat medium storage means for storing the latent heat storage medium, and the heat exchange means for heat dissipation. It is characterized in that it is installed in a pipe communicating with the heat exchange means for heat absorption.

【0023】これにより、潜熱蓄熱媒体の温度変化によ
る体積変化が生じた場合においても、熱媒体貯留手段の
保有する内容積により、潜熱蓄熱媒体の体積変化を吸収
することができる。
As a result, even if the volume change of the latent heat storage medium due to the temperature change occurs, the volume change of the latent heat storage medium can be absorbed by the internal volume held by the heat medium storage means.

【0024】また、潜熱蓄熱材料であるアルカン類材料
の密度は一般に水より小さいため、熱媒体貯留手段内部
において、アルカン類材料と水成分が分離した場合、熱
媒体貯留手段内の上部側に分布しやすくなるが、熱媒体
貯留手段の底部から内側上部へ所定長さの配管を突出さ
せることにより、水成分のみが流出することなく、潜熱
蓄熱材料であるアルカン類材料を含んだ潜熱蓄熱媒体と
して熱媒体循環手段へ流出させることが可能になる。
Further, since the density of the alkane material which is the latent heat storage material is generally smaller than that of water, when the alkane material and the water component are separated inside the heat medium storage means, they are distributed on the upper side in the heat medium storage means. Although it is easier to do, by projecting a pipe of a predetermined length from the bottom of the heat medium storage means to the upper inside, as a latent heat storage medium containing an alkane material that is a latent heat storage material, only the water component does not flow out. It becomes possible to flow out to the heat medium circulation means.

【0025】また、請求項5に記載の発明は、請求項4
記載の発明に加えて、潜熱蓄熱媒体を構成する潜熱蓄熱
材料の融点は第1所定温度より低く、かつ潜熱蓄熱材料
の融点と第1所定温度との差を略20K以内としたこと
を特徴とするものである。
The invention described in claim 5 is the same as claim 4
In addition to the invention described above, the melting point of the latent heat storage material that constitutes the latent heat storage medium is lower than the first predetermined temperature, and the difference between the melting point of the latent heat storage material and the first predetermined temperature is within about 20K. To do.

【0026】これにより、発熱体の発熱量が増加した場
合において、潜熱蓄熱媒体の温度が潜熱蓄熱材料の融点
より低い時点で熱媒体循環手段を運転させることによ
り、潜熱蓄熱媒体の温度分布を均一にしておくことがで
きる。
Thus, when the amount of heat generated by the heating element is increased, the heat medium circulating means is operated at a time when the temperature of the latent heat storage medium is lower than the melting point of the latent heat storage material, so that the temperature distribution of the latent heat storage medium is made uniform. You can keep it.

【0027】一方、潜熱蓄熱媒体の温度が潜熱蓄熱材料
の融点より大幅に低い時点、例えば融点より略20Kを
越える低い温度レベルでは発熱体にとって支障のない程
度であり、このような僅かな温度上昇においては発熱体
を冷却する必要はない。
On the other hand, at the time when the temperature of the latent heat storage medium is significantly lower than the melting point of the latent heat storage material, for example, at a low temperature level of about 20 K or less than the melting point, there is no problem for the heating element and such a slight temperature rise. In, it is not necessary to cool the heating element.

【0028】従って、潜熱蓄熱材料の融点が、熱媒体循
環手段を運転開始させる第1所定温度より低く、かつ第
1所定温度との差を略20K以内とすることにより、発
熱体の発熱量が増加して冷却の必要性が発生した場合の
みにおいて、熱媒体循環手段を運転させることにより、
省エネルギー化、及び熱媒体循環手段の長寿命化を図り
ながら発熱体の冷却を行うことができる。
Therefore, when the melting point of the latent heat storage material is lower than the first predetermined temperature at which the heat medium circulating means is started and the difference from the first predetermined temperature is within approximately 20K, the heat generation amount of the heating element is increased. Only by increasing the need for cooling, by operating the heat medium circulating means,
It is possible to cool the heating element while saving energy and prolonging the life of the heat medium circulating means.

【0029】[0029]

【発明の実施の形態】以下、本発明による冷却装置の実
施の形態について図面を参照しながら説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of a cooling device according to the present invention will be described below with reference to the drawings.

【0030】(実施の形態1)図1に本発明の実施の形
態1による冷却装置の要部概略図を示すが、従来例と同
一構成部分については同一符号を付して詳細な説明を省
略する。尚、図1中の黒矢印は潜熱蓄熱媒体流動方向を
示し、白抜き矢印は空気の流動方向を示す。
(Embodiment 1) FIG. 1 shows a schematic view of a main part of a cooling device according to Embodiment 1 of the present invention. The same components as those of the conventional example are designated by the same reference numerals and detailed description thereof will be omitted. To do. The black arrow in FIG. 1 indicates the flow direction of the latent heat storage medium, and the white arrow indicates the flow direction of air.

【0031】本実施の形態の冷却装置は図1に示すよう
に、熱媒体ポンプPM、吸熱用熱交換器HEX1、放熱
用熱交換器HEX2、及び貯留容器TKで構成され、順
次、接続配管TBにより連通されて閉回路を形成し、接
続配管TB内部では潜熱蓄熱媒体としてマイクロエマル
ジョンMEを流動させて循環回路が形成されている。
As shown in FIG. 1, the cooling device of the present embodiment comprises a heat medium pump PM, a heat absorbing heat exchanger HEX1, a heat radiating heat exchanger HEX2, and a storage container TK, which are sequentially connected to a connecting pipe TB. To form a closed circuit, and a microemulsion ME as a latent heat storage medium is caused to flow inside the connection pipe TB to form a circulation circuit.

【0032】そして、吸熱用熱交換器HEX1は、演算
処理素子等の発熱体CPUの上面に対して熱的に接触し
ており、発熱体CPUからの発生熱を潜熱蓄熱媒体であ
るマイクロエマルジョンMEへ熱移動させ、放熱用熱交
換器HEX2は発熱体CPUより吸熱して循環するマイ
クロエマルジョンMEの保有熱を空気中へ熱移動させる
もので、放熱用熱交換器HEX2近傍には空気Airへ
の放熱を促進するための送風ファンFNが設置されてい
る。
The heat absorbing heat exchanger HEX1 is in thermal contact with the upper surface of the heating element CPU such as an arithmetic processing element, and the heat generated from the heating element CPU is a microemulsion ME which is a latent heat storage medium. The heat radiating heat exchanger HEX2 absorbs heat from the heating element CPU and circulates the heat of the circulating microemulsion ME into the air. The heat radiating heat exchanger HEX2 transfers heat to the air near the heat radiating heat exchanger HEX2. A blower fan FN is installed to promote heat dissipation.

【0033】また、貯留容器TKは、放熱用熱交換器H
EX1と吸熱用熱交換器HEX2とを連通する配管中に
設置され、貯留容器TKの上部に放熱用熱交換器HEX
1からの入口配管TB1を設置し、底部において内側上
部へ所定長さLだけ出口配管TB2を突出させている。
Further, the storage container TK is provided with a heat radiating heat exchanger H.
The heat exchanger HEX for heat radiation is installed in a pipe that communicates the EX1 and the heat exchanger HEX2 for heat absorption, and is installed in the upper part of the storage container TK.
The inlet pipe TB1 from No. 1 is installed, and the outlet pipe TB2 is protruded by a predetermined length L toward the inner upper part at the bottom.

【0034】また、潜熱蓄熱媒体であるマイクロエマル
ジョンMEとしては、水の中に、蓄熱材料としてアルカ
ン類材料、例えばオクタコサン(C↓2↓8H↓5↓
8,融点;61.5℃)を滴状に微細化して分散して作
成したものが使用可能である。
As the microemulsion ME which is a latent heat storage medium, an alkane material such as octacosan (C ↓ 2 ↓ 8H ↓ 5 ↓) is used as a heat storage material in water.
(8, melting point; 61.5 ° C.) can be used by making it into fine droplets and dispersing.

【0035】更に、発熱体CPUの温度を検出する第1
温度検出手段Th1を発熱体CPU側面に熱的に接触さ
せて設置され、第1温度検出手段Th1より得られる温
度信号を処理する温度信号処理手段Thcalと、送風
ファンFNの運転/停止を行う送風ファン制御装置FN
cntと、熱媒体ポンプPMの運転/停止を行う熱媒体
ポンプ制御装置PMcntとからなり、第1温度検出手
段Th1による検出温度Tcの大小に応じて送風ファン
FN、及び熱媒体ポンプPM、各々の運転/停止を制御
する第1制御装置Cnt1を備えている。
Further, the first for detecting the temperature of the heating element CPU
The temperature detection means Th1 is installed so as to be in thermal contact with the side surface of the heating element CPU, and the temperature signal processing means Thcal for processing the temperature signal obtained from the first temperature detection means Th1 and the blower fan for operating / stopping the blower fan FN. Fan controller FN
cnt and a heat medium pump control device PMcnt for operating / stopping the heat medium pump PM. The blower fan FN and the heat medium pump PM are respectively arranged according to the detected temperature Tc by the first temperature detecting means Th1. A first control device Cnt1 for controlling start / stop is provided.

【0036】そして、第1温度検出手段Th1より発熱
体CPUの表面温度Tcを検出し、潜熱蓄熱媒体マイク
ロエマルジョンMEの潜熱蓄熱材料であるオクタコサン
の融点Tmが61.5℃であることより、第1設定温度
Ts1=80℃とし、即ち潜熱蓄熱材料の融点Tmは第
1設定温度Ts1より低く、かつ潜熱蓄熱材料の融点T
mと第1設定温度Ts1との差は20K以内としてい
る。
The surface temperature Tc of the heating element CPU is detected by the first temperature detecting means Th1, and the melting point Tm of octacosan, which is the latent heat storage material of the latent heat storage medium microemulsion ME, is 61.5 ° C. 1 set temperature Ts1 = 80 ° C., that is, the melting point Tm of the latent heat storage material is lower than the first set temperature Ts1 and the melting point T of the latent heat storage material
The difference between m and the first set temperature Ts1 is within 20K.

【0037】以上のように構成された実施の形態1によ
る冷却装置の動作内容について図2に示すフローチャー
トを用いて説明する。
The operation contents of the cooling device according to the first embodiment configured as described above will be described with reference to the flowchart shown in FIG.

【0038】まず、ある電子機器において発熱体CPU
の冷却装置が運転開始された後、step1にて温度検
出時間間隔INTがΔτ以上となるまで繰り返しにより
待機し、温度検出時間間隔INTがΔτ以上になった時
点でstep2において発熱体CPUの表面温度Tcを
検出する。
First, in a certain electronic device, a heating element CPU
After the cooling device is started up, it waits repeatedly until the temperature detection time interval INT becomes Δτ or more at step 1, and when the temperature detection time interval INT becomes Δτ or more, at step 2, the surface temperature of the heating element CPU Detect Tc.

【0039】そして、step3において発熱体CPU
の表面温度Tcと第1設定温度Ts1とを比較し、Tc
<Ts1の場合はstep4に移行して、熱媒体ポンプ
PM:停止(OFF)、送風ファンFN:停止(OF
F)としてstep1へ戻り、逆にTc≧Ts1の場合
はstep5に移行する。
Then, in step 3, the heating element CPU
Surface temperature Tc of the first and the first set temperature Ts1 are compared, and Tc
<If Ts1, shift to step 4, heat medium pump PM: stop (OFF), blower fan FN: stop (OF
As F), the process returns to step 1, and conversely, if Tc ≧ Ts1, the process proceeds to step 5.

【0040】step5において、発熱体CPUの表面
温度Tcと上限温度Ts0(例えば、Ts0=90℃)
とを比較し、Tc<Ts0の場合はstep6に移行し
て、熱媒体ポンプPM:運転(ON)、送風ファンF
N:運転(ON)としてstep1へ戻り、逆にTc≧
Ts0の場合は、運転継続は危険と判断し、step7
に移行して発熱体CPUを保護するべく電子機器の運転
を停止する。
In step 5, the surface temperature Tc of the heating element CPU and the upper limit temperature Ts0 (for example, Ts0 = 90 ° C.)
And when Tc <Ts0, the process proceeds to step 6, and the heat medium pump PM: operation (ON), blower fan F
N: Operation (ON) is returned to step 1, and conversely Tc ≧
In the case of Ts0, it is judged that it is dangerous to continue driving, and step7
Then, the operation of the electronic device is stopped to protect the heating element CPU.

【0041】以上の制御において、まず、発熱体CPU
による発熱の伴う電子機器等の冷却装置運転中におい
て、発熱体CPUの検出温度Tcが第1設定温度Ts1
より低い場合は、冷却の必要がないと判断し、送風ファ
ンFN、及び熱媒体ポンプPMを動作させない。
In the above control, first, the heating element CPU
During the operation of the cooling device such as an electronic device that generates heat due to, the detected temperature Tc of the heating element CPU is the first set temperature Ts1.
If it is lower, it is determined that cooling is not necessary, and the blower fan FN and the heat medium pump PM are not operated.

【0042】この時、発熱体CPUの発熱は吸熱用熱交
換器HEX1により潜熱蓄熱媒体であるマイクロエマル
ジョンMEへ吸熱され、冷却装置の内部全体に充填され
ているマイクロエマルジョンMEの温度がその融点Tm
以下の場合、マイクロエマルジョンMEは固相の状態で
温度上昇していき、潜熱蓄熱材料の融点Tmに達する
と、温度一定のまま固相から液相へと相変化が生じて潜
熱蓄熱材料の保有量に応じた潜熱量がマイクロエマルジ
ョンMEに蓄熱される。
At this time, the heat generated by the heating element CPU is absorbed by the heat-absorbing heat exchanger HEX1 into the microemulsion ME which is a latent heat storage medium, and the temperature of the microemulsion ME filling the entire inside of the cooling device is its melting point Tm.
In the following cases, the temperature of the microemulsion ME rises in the solid phase state, and when the melting point Tm of the latent heat storage material is reached, a phase change occurs from the solid phase to the liquid phase while the temperature is constant, and the latent heat storage material is retained. A latent heat amount according to the amount is stored in the microemulsion ME.

【0043】即ち、発熱体CPUの発熱量がマイクロエ
マルジョンMEの有する最大蓄熱量以下の場合は、熱媒
体ポンプPM、及び送風ファンFNを運転することな
く、発熱体CPUの発熱処理を行うことができ、省エネ
ルギー化に寄与できる。
That is, when the heat generation amount of the heating element CPU is less than the maximum heat storage amount of the microemulsion ME, the heat generation process of the heating element CPU can be performed without operating the heat medium pump PM and the blowing fan FN. It can contribute to energy saving.

【0044】次に、発熱体CPUの発熱量が増加してマ
イクロエマルジョンMEの潜熱蓄熱材料が完全に液相へ
と変化し、その後、液相の状態で第1設定温度Ts1以
上に達した時点で熱媒体ポンプPM、及び送風ファンF
Nの運転を開始する。
Next, when the calorific value of the heating element CPU increases and the latent heat storage material of the microemulsion ME completely changes to the liquid phase, and thereafter, when the temperature reaches the first set temperature Ts1 or higher in the liquid phase state. The heat medium pump PM and the blower fan F
Start operation of N.

【0045】これにより、マイクロエマルジョンMEが
吸熱熱交換器HEX1と放熱用熱交換器HEX2との間
を循環し、吸熱熱交換器HEX1で吸熱した熱を放熱用
熱交換器HEX2において管内/管外側強制対流熱伝達
によりマイクロエマルジョンMEから空気中へ放熱され
る。その結果、発熱体CPUからの発熱量増大に対し
て、発熱体CPUの温度上昇を抑制することができる。
As a result, the microemulsion ME circulates between the heat-absorption heat exchanger HEX1 and the heat-dissipation heat exchanger HEX2, and the heat absorbed by the heat-absorption heat exchanger HEX1 is taken inside / outside the heat-dissipation heat exchanger HEX2. Heat is dissipated from the microemulsion ME into the air by forced convection heat transfer. As a result, it is possible to suppress an increase in the temperature of the heating element CPU with respect to an increase in the amount of heat generated by the heating element CPU.

【0046】また、潜熱蓄熱媒体であるマイクロエマル
ジョンMEとしては、水の中に、蓄熱材料としてアルカ
ン類材料であるオクタコサンを滴状に微細化して分散し
て作成したものを使用することにより、熱媒体として安
定な特性を有し、熱容量が増加するという利点を確保し
ながら、かつ水成分も有していることより熱輸送性も確
保でき、その結果、熱媒体ポンプPMによる潜熱搬送が
可能となる。
Further, as the microemulsion ME which is a latent heat storage medium, a microemulsion ME which is prepared by finely dispersing and dispersing octacosane which is an alkane-type material as a heat storage material in water is used. It has stable characteristics as a medium and secures the advantage that the heat capacity increases, and at the same time, it can secure heat transportability because it also has a water component. As a result, latent heat transfer by the heat medium pump PM is possible. Become.

【0047】そして、水成分を連続相とし、潜熱蓄熱材
料を分散相とすることにより、発熱体CPUの温度が低
く、マイクロエマルジョンMEの温度が潜熱蓄熱材料の
融点Tmよりも低い場合においても、潜熱蓄熱材料オク
タコサンのみが固相となり、0℃以上である限り、水成
分が固相となることがない。
By using the water component as the continuous phase and the latent heat storage material as the dispersed phase, even when the temperature of the heating element CPU is low and the temperature of the microemulsion ME is lower than the melting point Tm of the latent heat storage material, Only the latent heat storage material octacosan becomes a solid phase, and the water component does not become a solid phase as long as it is 0 ° C. or higher.

【0048】従って、潜熱蓄熱媒体マイクロエマルジョ
ンMEの温度が潜熱蓄熱材料の融点Tmよりも低い場合
においても、マイクロエマルジョンMEとしての流動性
は確保できるために、吸熱用熱交換器HEX1、放熱用
熱交換器HEX2、熱媒体ポンプPM、及びそれぞれを
連通する配管内部TBにおいて自然対流による熱移動が
可能となる。
Therefore, even when the temperature of the latent heat storage medium microemulsion ME is lower than the melting point Tm of the latent heat storage material, since the fluidity of the microemulsion ME can be secured, the heat exchanger for heat absorption HEX1 and the heat for heat radiation Heat transfer by natural convection becomes possible in the exchanger HEX2, the heat medium pump PM, and the pipe inside TB communicating with each other.

【0049】更に、貯留容器TKを設置することによ
り、潜熱蓄熱媒体マイクロエマルジョンMEの温度変化
による体積変化が生じた場合においても、貯留容器TK
の内容積により、潜熱蓄熱媒体マイクロエマルジョンM
Eの体積変化を吸収することができる。
Furthermore, by installing the storage container TK, even when the volume of the latent heat storage medium microemulsion ME changes due to temperature change, the storage container TK
Depending on the inner volume of the latent heat storage medium microemulsion M
The volume change of E can be absorbed.

【0050】かつ、潜熱蓄熱材料であるアルカン類材料
の密度は一般に水より小さいため、貯留容器TK内部に
おいて、アルカン類材料と水成分WTが分離した場合、
貯留容器TK内の上部側にアルカン類材料が分布しやす
くなるが、貯留容器TKの底部から内側上部へ所定長さ
Lの接続配管TB2を突出させることにより、水成分W
Tのみが流出することなく、潜熱蓄熱材料であるアルカ
ン類材料を均一に含んだマイクロエマルジョンMEとし
て熱媒体ポンプPMへ流出させることが可能になる。
Since the density of the alkane material which is the latent heat storage material is generally smaller than that of water, when the alkane material and the water component WT are separated inside the storage container TK,
Although the alkane material is likely to be distributed on the upper side in the storage container TK, the water component W can be formed by projecting the connection pipe TB2 having a predetermined length L from the bottom of the storage container TK to the upper inside.
Only T does not flow out, and it becomes possible to flow out to the heat medium pump PM as a microemulsion ME uniformly containing the alkanes material which is a latent heat storage material.

【0051】以上のように、実施の形態1の冷却装置
は、電子機器等の運転に際して、発熱体CPUの冷却に
必要なエネルギーを最小限に抑制しながら、発熱体CP
Uの温度上昇に対して冷却が必要な場合には潜熱蓄熱媒
体、及び空気Airの強制対流により放熱され、かつ発
熱体CPUの温度上昇を抑制することができる。
As described above, the cooling device according to the first embodiment suppresses the energy required for cooling the heating element CPU to a minimum when operating the electronic device or the like, while maintaining the heating element CP.
When cooling is required with respect to the temperature rise of U, heat is radiated by the latent heat storage medium and forced convection of the air Air, and the temperature rise of the heating element CPU can be suppressed.

【0052】また、熱媒体としてマイクロエマルジョン
MEを利用することより安定な特性を有し、熱容量が増
加するという利点を確保しながら、かつ水成分も有して
いることより流動性、及び熱輸送性も確保することが可
能となる。
Further, the use of the microemulsion ME as the heat medium has more stable characteristics and secures the advantage that the heat capacity is increased, and since it also has the water component, it has fluidity and heat transport. It is also possible to secure the property.

【0053】更に、貯留容器TKを設置することによ
り、潜熱蓄熱媒体の温度変化による体積変化が生じた場
合においても、貯留容器TKの内容積により、潜熱蓄熱
媒体の体積変化を吸収し、かつ水成分と潜熱蓄熱材料と
の混合比率が均一な状態で循環させることが可能にな
る。
Further, by installing the storage container TK, even if the volume change due to the temperature change of the latent heat storage medium occurs, the internal volume of the storage container TK absorbs the volume change of the latent heat storage medium, and It is possible to circulate the components and the latent heat storage material with a uniform mixing ratio.

【0054】(実施の形態2)次に、本発明の実施の形
態2について図面を参照しながら説明するが、実施の形
態1と同一構成部分については同一符号を付して詳細な
説明を省略する。
(Second Embodiment) Next, a second embodiment of the present invention will be described with reference to the drawings. The same components as those of the first embodiment will be designated by the same reference numerals and detailed description thereof will be omitted. To do.

【0055】図3は、本発明の実施の形態2による冷却
装置内部の要部概略図を示す。
FIG. 3 is a schematic view of the essential parts inside a cooling device according to the second embodiment of the present invention.

【0056】本発明の実施の形態2は、構成面では実施
の形態1で示した潜熱蓄熱媒体が水/オクタコサン系の
マイクロエマルジョンMEであるに替わって、水とアル
カン類材料をメラミン樹脂等の非水溶性の高分子膜でカ
プセル化したマイクロカプセルとの混合溶液MCとす
る。
In the second embodiment of the present invention, in terms of constitution, the latent heat storage medium shown in the first embodiment is replaced by a water / octacosane-based microemulsion ME, and water and alkane materials are replaced by melamine resin or the like. A mixed solution MC with microcapsules encapsulated with a water-insoluble polymer film is used.

【0057】更に、本発明の実施の形態2は、実施の形
態1で示した構成に加えて、吸熱用熱交換器HEX1の
出口配管付近に熱的に接触して吸熱用熱交換器HEX1
の温度Tpを検出する第2温度検出手段Th2を吸熱用
熱交換器HEX1の出口配管に設置し、かつ第1制御装
置Cnt1に替わって、第1温度検出手段Th1による
検出温度Tcが第1設定温度Ts1以上に達した時点で
熱媒体ポンプPMの運転を開始し、さらに第2温度検出
手段Th2による検出温度Tpが第2設定温度Ts2以
上に達した時点で送風ファンFNの運転を開始するとい
う第2制御装置Cnt2を備えている点が異なる。
Further, in addition to the structure shown in the first embodiment, the second embodiment of the present invention is in thermal contact with the vicinity of the outlet pipe of the heat absorption heat exchanger HEX1 and the heat absorption heat exchanger HEX1.
The second temperature detecting means Th2 for detecting the temperature Tp of the first temperature detecting means Th1 is installed in the outlet pipe of the heat exchanger for heat absorption HEX1 and the temperature Tc detected by the first temperature detecting means Th1 is set to the first setting in place of the first control device Cnt1. The operation of the heat medium pump PM is started when the temperature reaches the temperature Ts1 or higher, and the operation of the blower fan FN is started when the temperature Tp detected by the second temperature detecting means Th2 reaches the second set temperature Ts2 or higher. The difference is that the second control device Cnt2 is provided.

【0058】ここで、第1温度検出手段Th1より発熱
体CPUの表面温度Tcを検出し、潜熱蓄熱媒体である
水/マイクロカプセル混合溶液MCの潜熱蓄熱材料であ
るオクタコサンの融点Tmが61.5℃であることよ
り、第1設定温度Ts1=70℃、第2設定温度Ts2
=80℃とし、即ち潜熱蓄熱材料の融点Tmは第1設定
温度Ts1より低く、かつ潜熱蓄熱材料の融点Tmと第
1設定温度Ts1との差は20K以内としている。
Here, the surface temperature Tc of the heating element CPU is detected by the first temperature detecting means Th1, and the melting point Tm of octacosan, which is the latent heat storage material of the water / microcapsule mixed solution MC which is the latent heat storage medium, is 61.5. Since it is ℃, the first set temperature Ts1 = 70 ℃, the second set temperature Ts2
= 80 ° C, that is, the melting point Tm of the latent heat storage material is lower than the first set temperature Ts1, and the difference between the melting point Tm of the latent heat storage material and the first set temperature Ts1 is within 20K.

【0059】以上のように構成された実施の形態2によ
る冷却装置の動作内容について図4に示すフローチャー
トを用いて説明する。
The operation contents of the cooling device according to the second embodiment configured as described above will be described with reference to the flowchart shown in FIG.

【0060】まず、ある電子機器において発熱体CPU
の冷却装置が運転開始された後、step11にて温度
検出時間間隔INTがΔτ以上となるまで繰り返しによ
り待機し、温度検出時間間隔INTがΔτ以上になった
時点でstep12において発熱体CPUの表面温度T
c、及び吸熱用熱交換器HEX1の温度Tpを検出す
る。
First, in a certain electronic device, a heating element CPU
After the cooling device is started up, it waits repeatedly until the temperature detection time interval INT becomes Δτ or more at step 11, and when the temperature detection time interval INT becomes Δτ or more, at step 12, the surface temperature of the heating element CPU T
c, and the temperature Tp of the heat exchanger for heat absorption HEX1 are detected.

【0061】そして、step13において発熱体CP
Uの表面温度Tcと第1設定温度Ts1(=70℃)と
を比較し、Tc<Ts1の場合はstep14に移行し
て、熱媒体ポンプPM:停止(OFF)、送風ファンF
N:停止(OFF)としてstep11へ戻り、逆にT
c≧Ts1の場合はstep15に移行して、熱媒体ポ
ンプPMのみ:運転(ON)、送風ファンFN:停止
(OFF)のままとする。
Then, in step 13, the heating element CP
The surface temperature Tc of U is compared with the first set temperature Ts1 (= 70 ° C.), and if Tc <Ts1, the process proceeds to step 14, and the heat medium pump PM: stop (OFF), blower fan F
N: Stop (OFF) and return to step 11, and conversely T
If c ≧ Ts1, the process proceeds to step 15, and only the heat medium pump PM is kept operating (ON) and the blower fan FN is kept stopped (OFF).

【0062】次に、step16において吸熱用熱交換
器HEX1の温度Tpと第2設定温度Ts2(=80
℃)とを比較し、Tp<Ts2の場合は動作としては現
状維持しながら、step11へ戻り、逆にTp≧Ts
2の場合はstep17に移行して、熱媒体ポンプP
M:運転(ON)、送風ファンFN:運転(ON)とす
る。
Next, at step 16, the temperature Tp of the heat exchanger for heat absorption HEX1 and the second set temperature Ts2 (= 80).
C.), and if Tp <Ts2, the operation is maintained as it is, and the process returns to step 11, and conversely Tp ≧ Ts
In the case of 2, the process moves to step 17 and the heat medium pump P
M: operation (ON), blower fan FN: operation (ON).

【0063】そして、step18において、発熱体C
PUの表面温度Tcと上限温度Ts0(例えば、Ts0
=90℃)とを比較し、Tc<Ts0の場合は動作とし
ては現状維持しながら、step11へ戻り、逆にTc
≧Ts0の場合は、運転継続は危険と判断し、step
19に移行して発熱体CPUを保護するべく電子機器の
運転を停止する。
Then, in step 18, the heating element C
The surface temperature Tc of PU and the upper limit temperature Ts0 (for example, Ts0
= 90 ° C.), and when Tc <Ts0, the current operation is maintained and the process returns to step 11 and vice versa.
If ≧ Ts0, it is judged that continued operation is dangerous and step
In step 19, the operation of the electronic device is stopped to protect the heating element CPU.

【0064】以上の制御において、まず、発熱体CPU
による発熱の伴う電子機器等の冷却装置運転中におい
て、発熱体CPUの検出温度Tcが第1設定温度Ts1
より低い場合は、冷却の必要がないと判断し、送風ファ
ンFN、及び熱媒体ポンプPMを動作させることがな
い。
In the above control, first, the heating element CPU
During the operation of the cooling device such as an electronic device that generates heat due to, the detected temperature Tc of the heating element CPU is the first set temperature Ts1.
If it is lower, it is determined that cooling is not necessary, and the blower fan FN and the heat medium pump PM are not operated.

【0065】この時、発熱体CPUの発熱は吸熱用熱交
換器HEX1により潜熱蓄熱媒体である水/マイクロカ
プセル混合溶液MCへ吸熱され、冷却装置の内部全体に
充填されている水/マイクロカプセル混合溶液MCの温
度が潜熱蓄熱材料の融点Tm以下の場合、水/マイクロ
カプセル混合溶液MCは固相の状態で温度上昇してい
き、潜熱蓄熱材料の融点Tmに達すると、温度一定のま
ま固相から液相へと相変化が生じて潜熱蓄熱材料の保有
量に応じた潜熱量が水/マイクロカプセル混合溶液MC
に蓄熱される。
At this time, the heat generated by the heating element CPU is absorbed by the water / microcapsule mixed solution MC, which is a latent heat storage medium, by the heat exchanger for heat absorption HEX1, and the water / microcapsule mixed inside the cooling device is mixed. When the temperature of the solution MC is equal to or lower than the melting point Tm of the latent heat storage material, the temperature of the water / microcapsule mixed solution MC rises in the solid phase state, and when it reaches the melting point Tm of the latent heat storage material, the solid phase remains constant. A phase change occurs from the liquid phase to the liquid phase, and the amount of latent heat corresponding to the amount of latent heat storage material retained is
Is stored in.

【0066】即ち、発熱体CPUの発熱量が水/マイク
ロカプセル混合溶液MCの有する最大蓄熱量以下の場合
は、熱媒体ポンプPM、及び送風ファンFNを運転する
ことなく、発熱体CPUの発熱処理を行うことができ、
省エネルギー化に寄与できる。
That is, when the heat generation amount of the heating element CPU is less than the maximum heat storage amount of the water / microcapsule mixed solution MC, the heat generation process of the heating element CPU is performed without operating the heat medium pump PM and the blowing fan FN. Can be done
It can contribute to energy saving.

【0067】次に、発熱体CPUの発熱量が増加して水
/マイクロカプセル混合溶液MCの潜熱蓄熱材料が完全
に液相へと変化し、その後、液相の状態で第1設定温度
Ts1以上に達した時点で、まず熱媒体ポンプPMのみ
の運転を開始し、送風ファンFNは停止のままとする。
Next, the calorific value of the heating element CPU increases and the latent heat storage material of the water / microcapsule mixed solution MC completely changes to the liquid phase, and thereafter, in the liquid phase state, the first set temperature Ts1 or more is exceeded. When the temperature reaches, the operation of only the heat medium pump PM is started and the blower fan FN is kept stopped.

【0068】これにより、送風ファンFNを運転するこ
となく、熱媒体ポンプPMのみの運転により冷却装置内
部の全ての水/マイクロカプセル混合溶液MCがほぼ均
一な温度分布となり、最小電力にて潜熱蓄熱媒体の保有
し得る熱容量を有効に利用することができる。
As a result, all the water / microcapsule mixed solution MC in the cooling device has a substantially uniform temperature distribution by operating only the heat medium pump PM without operating the blower fan FN, and the latent heat storage is performed with the minimum power. The heat capacity of the medium can be effectively used.

【0069】更に、発熱体CPUの発熱量が増加して吸
熱用熱交換器HEX1の温度Tpが第2設定温度Ts2
以上に達した時点で送風ファンFNの運転を開始するこ
とにより、水/マイクロカプセル混合溶液MCが吸熱熱
交換器HEX1と放熱用熱交換器HEX2との間を循環
し、吸熱熱交換器HEX1で吸熱した熱を放熱用熱交換
器HEX2において管内/管外側強制対流熱伝達により
水/マイクロカプセル混合溶液MCから空気中へ放熱さ
れる。その結果、発熱体CPUからの発熱量増大に対し
て放熱用熱交換器HEX2からの放熱量を増大させるこ
とにより、発熱体CPUの温度上昇を抑制することがで
きる。
Further, the amount of heat generated by the heating element CPU increases, and the temperature Tp of the heat exchanger for heat absorption HEX1 becomes the second set temperature Ts2.
By starting the operation of the blower fan FN when reaching the above, the water / microcapsule mixed solution MC circulates between the endothermic heat exchanger HEX1 and the heat radiating heat exchanger HEX2, and in the endothermic heat exchanger HEX1. The absorbed heat is radiated from the water / microcapsule mixed solution MC into the air in the heat radiating heat exchanger HEX2 by forced convection heat transfer inside / outside the tube. As a result, it is possible to suppress an increase in the temperature of the heating element CPU by increasing the amount of heat radiation from the heat radiation heat exchanger HEX2 with respect to the increase in the amount of heat generation from the heating element CPU.

【0070】以上より、発熱体CPUからの発熱量増大
に対して、発熱体CPUの温度が比較的低い場合はでき
るだけ省電力にて発熱処理を行い、発熱体CPUの温度
が比較的高い場合のみ、熱媒体ポンプPM、及び送風フ
ァンFNを運転することにより、発熱体CPUの温度レ
ベルに応じた省エネルギー運転、かつ熱媒体ポンプP
M、及び送風ファンFNの長寿命化を実現できる。
As described above, when the temperature of the heating element CPU is relatively low against the increase in the amount of heat generated by the heating element CPU, the heat generation processing is performed with the lowest possible power consumption, and only when the temperature of the heating element CPU is relatively high. , The heat medium pump PM, and the blower fan FN are operated to save energy according to the temperature level of the heating element CPU, and the heat medium pump P
It is possible to extend the service life of M and the blower fan FN.

【0071】また、潜熱蓄熱媒体である水/マイクロカ
プセル混合溶液MCは、水と、蓄熱材料であるアルカン
類材料をメラミン樹脂等の非水溶性の高分子膜でカプセ
ル化したマイクロカプセルとの混合溶液であることによ
り、熱媒体として安定な特性を有し、熱容量が増加する
という利点を確保しながら、かつ水成分も有しているこ
とより熱輸送性も確保でき、その結果、熱媒体ポンプP
Mによる潜熱搬送が可能となる。
The water / microcapsule mixed solution MC which is a latent heat storage medium is a mixture of water and microcapsules in which an alkane material which is a heat storage material is encapsulated by a water-insoluble polymer film such as melamine resin. Since it is a solution, it has stable characteristics as a heat medium, and while it has the advantages of increasing the heat capacity, it also has a water component, so it can also secure heat transport properties, and as a result, a heat medium pump. P
The latent heat transfer by M becomes possible.

【0072】なお、水/マイクロカプセル混合溶液MC
の場合、潜熱蓄熱材料であるアルカン類材料が直接、水
と接触することがないため、実施の形態2で示したマイ
クロエマルジョンの場合と比較して圧力損失が低くなる
という利点がある。
Water / microcapsule mixed solution MC
In this case, the alkane material that is the latent heat storage material does not come into direct contact with water, so that there is an advantage that the pressure loss becomes lower than in the case of the microemulsion described in the second embodiment.

【0073】そして、水成分を連続相とし、潜熱蓄熱材
料を分散相とすることにより、発熱体CPUの温度が低
く、水/マイクロカプセル混合溶液MCの温度が潜熱蓄
熱材料の融点Tmよりも低い場合においても、潜熱蓄熱
材料オクタコサンのみが固相となり、0℃以上である限
り、水成分が固相となることがない。
Since the water component is the continuous phase and the latent heat storage material is the dispersed phase, the temperature of the heating element CPU is low and the temperature of the water / microcapsule mixed solution MC is lower than the melting point Tm of the latent heat storage material. Also in this case, only the latent heat storage material octacosan becomes a solid phase, and the water component does not become a solid phase as long as it is 0 ° C. or higher.

【0074】従って、潜熱蓄熱媒体である水/マイクロ
カプセル混合溶液MCの温度が潜熱蓄熱材料の融点Tm
よりも低い場合においても、水/マイクロカプセル混合
溶液MCとしての流動性は確保できるために、吸熱用熱
交換器HEX1、放熱用熱交換器HEX2、熱媒体ポン
プPM、及びそれぞれを連通する配管内部TBにおいて
自然対流による熱移動が可能となる。
Therefore, the temperature of the water / microcapsule mixed solution MC as the latent heat storage medium is the melting point Tm of the latent heat storage material.
Since the fluidity of the water / microcapsule mixed solution MC can be secured even when the temperature is lower than the above, the heat absorbing heat exchanger HEX1, the heat radiating heat exchanger HEX2, the heat medium pump PM, and the inside of the pipes communicating with each other In TB, heat transfer by natural convection becomes possible.

【0075】更に、貯留容器TKを設置することによ
り、潜熱蓄熱媒体である水/マイクロカプセル混合溶液
MCの温度変化による体積変化が生じた場合において
も、貯留容器TKの内容積により、水/マイクロカプセ
ル混合溶液MCの体積変化を吸収することができる。
Further, by installing the storage container TK, even when the volume change of the water / microcapsule mixed solution MC, which is the latent heat storage medium, is caused by the temperature change, the water / micro volume is changed by the internal volume of the storage container TK. The volume change of the capsule mixed solution MC can be absorbed.

【0076】かつ、潜熱蓄熱材料であるアルカン類材料
の密度は一般に水より小さいため、貯留容器TK内部に
おいて、アルカン類材料と水成分WTが分離した場合、
貯留容器TK内の上部側にアルカン類材料が分布しやす
くなるが、貯留容器TKの底部から内側上部へ所定長さ
Lの接続配管TB2を突出させることにより、水成分W
Tのみが流出することなく、潜熱蓄熱材料であるアルカ
ン類材料を均一に含んだ水/マイクロカプセル混合溶液
MCとして熱媒体ポンプPMへ流出させることが可能に
なる。
Since the density of the alkane material which is the latent heat storage material is generally smaller than that of water, when the alkane material and the water component WT are separated inside the storage container TK,
Although the alkane material is likely to be distributed on the upper side in the storage container TK, the water component W can be formed by projecting the connection pipe TB2 having a predetermined length L from the bottom of the storage container TK to the upper inside.
It is possible to cause only T to flow out to the heat medium pump PM as a water / microcapsule mixed solution MC uniformly containing an alkane material that is a latent heat storage material.

【0077】以上のように、実施の形態2の冷却装置
は、電子機器等の運転に際して、発熱体CPUの冷却に
必要なエネルギーを最小限に抑制しながら、発熱体CP
Uの温度上昇に対して熱媒体ポンプPM、及び送風ファ
ンFNを順次、運転開始することにより、発熱体CPU
の冷却が必要な場合には、潜熱蓄熱媒体の強制循環、及
び空気Airの強制対流により放熱量増大が図れ、発熱
体CPUの温度上昇を抑制することができる。
As described above, the cooling device of the second embodiment suppresses the energy required to cool the heating element CPU to a minimum when operating the electronic equipment and the like, while maintaining the heating element CP.
When the heat medium pump PM and the blower fan FN are sequentially started in response to the temperature rise of U, the heating element CPU
When the cooling is required, the amount of heat radiation can be increased by the forced circulation of the latent heat storage medium and the forced convection of the air Air, and the temperature rise of the heating element CPU can be suppressed.

【0078】また、熱媒体として水/マイクロカプセル
混合溶液MCを利用することより熱容量が増加するとい
う利点を確保しながら、かつ水成分も有していることよ
り流動性、及び熱輸送性も確保することが可能となる。
Further, while the advantage that the heat capacity is increased by using the water / microcapsule mixed solution MC as the heat medium is secured, the fluidity and the heat transportability are also secured by having the water component. It becomes possible to do.

【0079】更に、貯留容器TKを設置することによ
り、潜熱蓄熱媒体の温度変化による体積変化が生じた場
合においても、貯留容器TKの内容積により、潜熱蓄熱
媒体の体積変化を吸収し、かつ水成分と潜熱蓄熱材料と
の混合比率が均一な状態で循環させることが可能にな
る。
Furthermore, by installing the storage container TK, even when the volume change of the latent heat storage medium due to the temperature change occurs, the internal volume of the storage container TK absorbs the volume change of the latent heat storage medium, and It is possible to circulate the components and the latent heat storage material with a uniform mixing ratio.

【0080】[0080]

【発明の効果】以上説明したように請求項1に記載の発
明は、潜熱蓄熱媒体を循環させる熱媒体循環手段と、発
熱体に対して熱的に接触して、発熱体の発生熱を潜熱蓄
熱媒体へ熱移動させる吸熱用熱交換手段と、吸熱用熱交
換手段を介して発熱体より吸熱した潜熱蓄熱媒体の熱を
空気中へ熱移動させる放熱用熱交換手段と、放熱用熱交
換手段の近傍に設置した送風手段とが設置され、熱媒体
循環手段、吸熱用熱交換手段、及び放熱用熱交換手段は
順次連通されて閉回路を形成して内部を潜熱蓄熱媒体が
循環し、また、発熱体の温度を検出する第1温度検出手
段と、検出した温度信号を処理する温度信号処理手段
と、送風手段の運転/停止を行う送風手段制御装置と、
熱媒体搬送手段の運転/停止を行う熱媒体搬送手段制御
装置と、第1温度検出手段により検出した温度が第1所
定温度以上に達した時点で熱媒体循環手段、及び送風手
段の運転を開始する第1制御装置より構成されているも
のである。
As described above, according to the first aspect of the invention, the heat medium circulating means for circulating the latent heat storage medium and the heating element are brought into thermal contact with each other to generate the latent heat of the heat generated by the heating element. An endothermic heat exchange means for transferring heat to the heat storage medium, a heat dissipation heat exchange means for transferring heat of the latent heat storage medium absorbed from the heating element through the endothermic heat exchange means into the air, and a heat dissipation heat exchange means Is installed in the vicinity of the heat transfer means, the heat medium circulating means, the heat absorbing heat exchanging means, and the heat radiating heat exchanging means are sequentially connected to each other to form a closed circuit in which the latent heat storage medium circulates. A first temperature detecting means for detecting the temperature of the heating element, a temperature signal processing means for processing the detected temperature signal, and a blowing means control device for operating / stopping the blowing means,
The heat medium carrying means control device for operating / stopping the heat medium carrying means, and the operation of the heat medium circulating means and the air blowing means are started when the temperature detected by the first temperature detecting means reaches or exceeds the first predetermined temperature. It is composed of a first control device that does.

【0081】これにより、発熱体の発熱量が潜熱蓄熱媒
体の有する最大蓄熱量以下の場合は、熱媒体循環手段、
及び送風手段を運転することなく、発熱体の発熱処理を
行うことができ、省エネルギー化に寄与できる。
Accordingly, when the calorific value of the heating element is less than the maximum calorific value of the latent heat storage medium, the heat medium circulating means,
Also, the heat generation process of the heating element can be performed without operating the air blowing unit, which contributes to energy saving.

【0082】そして、発熱体の発熱量が増加して潜熱蓄
熱媒体が完全に液相へと変化し、その後、液相の状態で
第1所定温度以上に達した時点で熱媒体循環手段、及び
送風手段の運転を開始することにより、潜熱蓄熱媒体が
放熱用熱交換手段へ搬送され、そこで放熱用熱交換手段
を介して強制対流熱伝達により潜熱蓄熱媒体から空気中
へ放熱される。その結果、発熱体からの発熱量増大に対
して、発熱体の温度上昇を抑制することができる。
Then, the calorific value of the heating element increases and the latent heat storage medium completely changes to the liquid phase. After that, when the temperature reaches the first predetermined temperature or higher in the liquid phase state, the heat medium circulating means, and By starting the operation of the air blowing means, the latent heat storage medium is conveyed to the heat radiating heat exchange means, where it is radiated into the air by forced convection heat transfer via the heat radiating heat exchange means. As a result, it is possible to suppress an increase in the temperature of the heating element with respect to an increase in the amount of heat generated by the heating element.

【0083】また、請求項2に記載の発明は、請求項1
記載の発明に加えて、吸熱用熱交換手段の出口配管付近
に対して熱的に接触して吸熱用熱交換手段の温度を検出
する第2温度検出手段を設置し、第1制御装置に替わっ
て、第1温度検出手段による検出温度が第1所定温度以
上に達した時点で熱媒体搬送手段の運転を開始し、さら
に第2温度検出手段による検出温度が第2所定温度以上
に達した時点で送風手段の運転を開始する第2制御装置
を備えたものである。
The invention described in claim 2 is the same as claim 1
In addition to the invention described above, a second temperature detecting means for detecting the temperature of the heat absorbing heat exchanging means by thermally contacting with the vicinity of the outlet pipe of the heat absorbing heat exchanging means is installed, and the second controller is replaced with the first controller. Then, when the temperature detected by the first temperature detecting means reaches the first predetermined temperature or higher, the operation of the heat medium carrying means is started, and when the temperature detected by the second temperature detecting means reaches the second predetermined temperature or higher. The second control device for starting the operation of the blower means is provided.

【0084】これにより、発熱体の発熱量が増加して潜
熱蓄熱媒体が完全に液相へと変化し、その後、液相の状
態で第1所定温度以上に達した時点で熱媒体循環手段の
運転を開始することにより、送風手段を運転することな
く、熱媒体循環手段のみにより冷却装置内部の全ての潜
熱蓄熱媒体がほぼ均一な温度分布となり、最小電力にて
潜熱蓄熱媒体の保有し得る熱容量を有効に利用すること
ができる。
As a result, the calorific value of the heating element is increased, the latent heat storage medium is completely changed to the liquid phase, and thereafter, when the temperature exceeds the first predetermined temperature in the liquid state, the heat medium circulating means By starting the operation, all the latent heat storage medium inside the cooling device has a substantially uniform temperature distribution only by the heat medium circulation means without operating the blowing means, and the heat capacity that the latent heat storage medium can hold with the minimum power Can be used effectively.

【0085】更に、発熱体の発熱量が増加して潜熱蓄熱
媒体の温度が第2所定温度以上に達した時点で送風手段
の運転を開始することにより、潜熱蓄熱媒体が放熱用熱
交換手段へ強制的に搬送され、そこで放熱用熱交換手段
を介して強制対流熱伝達により潜熱蓄熱媒体から空気中
へ放熱される。その結果、発熱体からの発熱量増大に対
して放熱量を増大させることにより、発熱体の温度上昇
を抑制することができる。
Further, the operation of the blower means is started when the amount of heat generated by the heating element increases and the temperature of the latent heat storage medium reaches the second predetermined temperature or higher, whereby the latent heat storage medium is transferred to the heat radiating heat exchange means. It is forcibly conveyed and is radiated from the latent heat storage medium into the air by forced convection heat transfer through the heat radiating heat exchange means. As a result, it is possible to suppress the temperature rise of the heat generating element by increasing the heat radiation amount with respect to the heat generation amount of the heat generating element.

【0086】以上より、発熱体からの発熱量増大に対し
て、発熱体の温度が比較的低い場合はできるだけ省電力
にて発熱処理を行い、発熱体の温度が比較的高い場合の
み、熱媒体循環手段、及び送風手段を運転することによ
り、発熱体の温度レベルに応じた省エネルギー運転、か
つ熱媒体循環手段、及び送風手段の長寿命化を実現でき
る。
As described above, when the temperature of the heating element is relatively low, the heat generation process is performed with the lowest possible power consumption with respect to the increase in the amount of heat generated by the heating element, and only when the temperature of the heating element is relatively high, the heat medium is heated. By operating the circulation means and the air blowing means, it is possible to realize energy-saving operation according to the temperature level of the heating element and to extend the life of the heat medium circulation means and the air blowing means.

【0087】また、請求項3に記載の発明は、請求項1
または請求項2のいずれか一項に記載の発明における潜
熱蓄熱媒体として、水の中に、蓄熱材料であるアルカン
類材料を滴状に微細化して分散したマイクロエマルジョ
ン、または水と、蓄熱材料であるアルカン類材料をメラ
ミン樹脂等の非水溶性の高分子膜でカプセル化したマイ
クロカプセルとの混合溶液を用ものである。
The invention described in claim 3 is the same as claim 1
Alternatively, as the latent heat storage medium in the invention according to any one of claims 2 to 3, a microemulsion in which an alkane material that is a heat storage material is atomized and dispersed in water, or water and a heat storage material are used. It is for use as a mixed solution with a microcapsule obtained by encapsulating a certain alkane material with a water-insoluble polymer film such as melamine resin.

【0088】これにより、潜熱蓄熱媒体として安定な特
性を有し、熱容量が増加するという利点を確保しなが
ら、かつ水成分も有していることより熱輸送性も確保で
き、その結果、熱媒体循環手段による搬送が可能とな
る。
As a result, the latent heat storage medium has stable characteristics and the advantage that the heat capacity is increased, and at the same time, the heat transportability can be secured because the water component is also contained. As a result, the heat medium is obtained. It becomes possible to carry by the circulation means.

【0089】また、潜熱蓄熱媒体の温度が潜熱蓄熱材料
の融点よりも低い場合においても、潜熱蓄熱媒体として
の流動性は確保できるために、吸熱用熱交換手段、放熱
用熱交換手段、熱媒体搬送手段、及びそれぞれを連通す
る配管内部において自然対流による熱移動が可能とな
る。
Further, even when the temperature of the latent heat storage medium is lower than the melting point of the latent heat storage material, since the fluidity as the latent heat storage medium can be secured, the heat absorbing heat exchanging means, the heat radiating heat exchanging means, the heat medium Heat can be transferred by natural convection inside the transfer means and inside the pipes that communicate with each other.

【0090】また、請求項4に記載の発明は、請求項3
に記載の発明に加えて、上部に入口配管を設置し、底部
から内側上部へ所定長さの出口配管を突出させた、潜熱
蓄熱媒体を貯留する熱媒体貯留手段を、放熱用熱交換手
段と吸熱用熱交換手段とを連通する配管中に設置するも
のである。
The invention described in claim 4 is the same as claim 3
In addition to the invention described in, the inlet pipe is installed in the upper part, the outlet pipe of a predetermined length is projected from the bottom to the upper inside, the heat medium storage means for storing the latent heat storage medium, and the heat exchange means for heat dissipation. It is installed in a pipe communicating with the heat exchange means for heat absorption.

【0091】これにより、潜熱蓄熱媒体の温度変化によ
る体積変化が生じた場合においても、熱媒体貯留手段の
保有する内容積により、潜熱蓄熱媒体の体積変化を吸収
することができる。
As a result, even if the volume change of the latent heat storage medium due to the temperature change occurs, the volume change of the latent heat storage medium can be absorbed by the internal volume held by the heat medium storage means.

【0092】また、潜熱蓄熱材料であるアルカン類材料
の密度は一般に水より小さいため、熱媒体貯留手段内部
において、アルカン類材料と水成分が分離した場合、熱
媒体貯留手段内の上部側に分布しやすくなるが、熱媒体
貯留手段の底部から内側上部へ所定長さの配管を突出さ
せることにより、水成分のみが流出することなく、潜熱
蓄熱材料であるアルカン類材料を含んだ潜熱蓄熱媒体と
して熱媒体循環手段へ流出させることが可能になる。
Further, since the density of the alkane material which is the latent heat storage material is generally smaller than that of water, when the alkane material and the water component are separated inside the heat medium storage means, they are distributed to the upper side in the heat medium storage means. Although it is easier to do, by projecting a pipe of a predetermined length from the bottom of the heat medium storage means to the upper inside, as a latent heat storage medium containing an alkane material that is a latent heat storage material, only the water component does not flow out. It becomes possible to flow out to the heat medium circulation means.

【0093】また、請求項5に記載の発明は、請求項4
に記載の発明に加えて、潜熱蓄熱媒体を構成する潜熱蓄
熱材料の融点は第1所定温度より低く、かつ潜熱蓄熱材
料の融点と第1所定温度との差を略20K以内とするも
のである。
The invention described in claim 5 is the same as that of claim 4
In addition to the invention described in, the melting point of the latent heat storage material that constitutes the latent heat storage medium is lower than the first predetermined temperature, and the difference between the melting point of the latent heat storage material and the first predetermined temperature is approximately 20K or less. .

【0094】これにより、発熱体の発熱量が増加した場
合において、潜熱蓄熱媒体の温度が潜熱蓄熱材料の融点
より低い時点で熱媒体循環手段のみを運転させることに
より、潜熱蓄熱媒体の温度分布を均一にしておくことが
できる。
Accordingly, when the amount of heat generated by the heating element is increased, the temperature distribution of the latent heat storage medium is changed by operating only the heat medium circulating means at the time when the temperature of the latent heat storage medium is lower than the melting point of the latent heat storage material. Can be kept uniform.

【0095】一方、潜熱蓄熱媒体の温度が潜熱蓄熱材料
の融点より大幅に低い時点、例えば融点より略20Kを
越える低い温度レベルでは発熱体にとって支障のない程
度であり、このような僅かな温度上昇においては発熱体
を冷却する必要はない。
On the other hand, at the time when the temperature of the latent heat storage medium is significantly lower than the melting point of the latent heat storage material, for example, at a low temperature level exceeding about 20 K below the melting point, there is no problem for the heating element and such a slight temperature rise. In, it is not necessary to cool the heating element.

【0096】従って、発熱体の発熱量が増加して冷却の
必要性が発生した場合のみにおいて、熱媒体循環手段を
運転させることにより、省エネルギー化、及び熱媒体循
環手段の長寿命化を図りながら発熱体の冷却を行うこと
ができる。
Therefore, the heat medium circulating means is operated only when the heat generation amount of the heat generating element is increased and the necessity of cooling is generated, thereby saving energy and prolonging the life of the heat medium circulating means. The heating element can be cooled.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による冷却装置の実施の形態1の要部概
略図
FIG. 1 is a schematic view of a main part of a cooling device according to a first embodiment of the present invention.

【図2】同実施の形態の冷却装置における動作を示すフ
ローチャート
FIG. 2 is a flowchart showing the operation of the cooling device of the same embodiment.

【図3】本発明による冷却装置の実施の形態2の要部概
略図
FIG. 3 is a schematic view of essential parts of a cooling device according to a second embodiment of the present invention.

【図4】同実施の形態の冷却装置における動作を示すフ
ローチャート
FIG. 4 is a flowchart showing the operation of the cooling device of the same embodiment.

【図5】従来技術の冷却装置の要部概略構成図FIG. 5 is a schematic configuration diagram of a main part of a conventional cooling device.

【符号の説明】[Explanation of symbols]

Air 空気 Cnt1 第1制御装置 Cnt2 第2制御装置 CPU 発熱体 FN 送風ファン FNcnt 送風ファン制御装置 HEX1 吸熱用熱交換器 HEX2 放熱用熱交換器 L 所定長さ MC 水/マイクロカプセル混合溶液 ME マイクロエマルジョン PM 熱媒体ポンプ PMcnt 熱媒体ポンプ制御装置 TB 接続配管 TB1 入口配管 TB2 出口配管 Th1 第1温度検出手段 Th2 第2温度検出手段 Thcal 温度信号処理手段 TK 貯留容器 Ts1 第1設定温度 Ts2 第2設定温度 Air Air Cnt1 first control device Cnt2 second control device CPU heating element FN blower fan FNcnt Blower fan controller HEX1 Endothermic heat exchanger HEX2 heat dissipation heat exchanger L predetermined length MC water / microcapsule mixed solution ME Micro Emulsion PM heat medium pump PMcnt Heat medium pump controller TB connection piping TB1 inlet piping TB2 outlet piping Th1 first temperature detecting means Th2 second temperature detecting means Thcal temperature signal processing means TK storage container Ts1 first set temperature Ts2 second set temperature

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01L 23/473 C09K 5/00 L H05K 7/20 G06F 1/00 360A 360D Fターム(参考) 3L044 AA01 AA04 BA06 CA14 DB02 DC03 DD02 EA04 FA02 FA03 FA04 HA01 HA03 HA04 JA01 KA03 KA04 KA05 5E322 DB06 DB12 FA01 FA03 5F036 AA01 BB35 BB56 BF03 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) H01L 23/473 C09K 5/00 L H05K 7/20 G06F 1/00 360A 360D F term (reference) 3L044 AA01 AA04 BA06 CA14 DB02 DC03 DD02 EA04 FA02 FA03 FA04 HA01 HA03 HA04 JA01 KA03 KA04 KA05 5E322 DB06 DB12 FA01 FA03 5F036 AA01 BB35 BB56 BF03

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 潜熱蓄熱媒体を循環させる熱媒体循環手
段と、集積回路部品からなる発熱体に対して熱的に接触
して、前記発熱体における発生熱を内部に存在する前記
潜熱蓄熱媒体へ熱移動させる吸熱用熱交換手段と、前記
吸熱用熱交換手段を介して前記発熱体より吸熱した前記
潜熱蓄熱媒体の熱を空気中へ熱移動させる放熱用熱交換
手段と、前記放熱用熱交換手段の近傍に設置した送風手
段とが設置され、前記熱媒体循環手段、前記吸熱用熱交
換手段、及び前記放熱用熱交換手段は順次連通されて閉
回路を形成して内部を前記潜熱蓄熱媒体が循環し、ま
た、前記発熱体に対して熱的に接触して前記発熱体の温
度を検出する第1温度検出手段と、検出した温度信号を
処理する温度信号処理手段と、前記送風手段の運転/停
止を行う送風手段制御装置と、前記熱媒体搬送手段の運
転/停止を行う熱媒体搬送手段制御装置とからなり、前
記第1温度検出手段により検出した温度が第1所定温度
以上に達した時点で前記熱媒体循環手段、及び前記送風
手段の運転を開始する第1制御装置を備えたことを特徴
とする冷却装置。
1. A heat medium circulating means for circulating a latent heat storage medium, and a heat generating element composed of an integrated circuit part are in thermal contact with each other to generate heat in the heat generating element to the latent heat storage medium existing therein. Endothermic heat exchange means for transferring heat, heat dissipation means for transferring heat of the latent heat storage medium absorbed from the heating element through the endothermic heat exchange means into the air, and the heat dissipation heat exchange An air blowing means installed near the means is installed, and the heat medium circulating means, the heat absorbing heat exchanging means, and the heat radiating heat exchanging means are sequentially communicated with each other to form a closed circuit and the inside thereof is the latent heat storage medium. Circulates, and is in thermal contact with the heating element to detect the temperature of the heating element, first temperature detecting means, temperature signal processing means for processing the detected temperature signal, and the blower means. Blower control to start / stop And a heat medium carrying means control device for operating / stopping the heat medium carrying means, wherein the heat medium circulating means is provided when the temperature detected by the first temperature detecting means reaches a first predetermined temperature or higher. And a first control device for starting the operation of the blower means.
【請求項2】 潜熱蓄熱媒体を循環させる熱媒体循環手
段と、集積回路部品からなる発熱体に対して熱的に接触
して、前記発熱体における発生熱を内部に存在する前記
潜熱蓄熱媒体へ熱移動させる吸熱用熱交換手段と、前記
吸熱用熱交換手段を介して前記発熱体より吸熱した前記
潜熱蓄熱媒体の熱を空気中へ熱移動させる放熱用熱交換
手段と、前記放熱用熱交換手段の近傍に設置した送風手
段とが設置され、前記熱媒体循環手段、前記吸熱用熱交
換手段、及び前記放熱用熱交換手段は順次連通されて閉
回路を形成して内部を前記潜熱蓄熱媒体が循環し、ま
た、前記発熱体に対して熱的に接触して前記発熱体の温
度を検出する第1温度検出手段と、前記吸熱用熱交換手
段の出口配管付近に対して熱的に接触して前記吸熱用熱
交換手段の温度を検出する第2温度検出手段と、検出し
た温度信号を処理する温度信号処理手段と、前記送風手
段の運転/停止を行う送風手段制御装置と、前記熱媒体
搬送手段の運転/停止を行う熱媒体搬送手段制御装置と
からなり、前記第1温度検出手段による検出温度が第1
所定温度以上に達した時点で前記熱媒体搬送手段の運転
を開始し、さらに前記第2温度検出手段による検出温度
が第2所定温度以上に達した時点で前記送風手段の運転
を開始する第2制御装置を備えたことを特徴とする冷却
装置。
2. A heat medium circulating means for circulating a latent heat storage medium, and a heat generating element composed of an integrated circuit part are in thermal contact with each other to generate heat in the heat generating element inside the latent heat storage medium. Endothermic heat exchange means for transferring heat, heat dissipation means for exchanging heat of the latent heat storage medium absorbed from the heating element through the endothermic heat exchange means into the air, and the heat dissipation heat exchange An air blowing means installed near the means is installed, and the heat medium circulating means, the heat absorbing heat exchanging means, and the heat radiating heat exchanging means are sequentially communicated with each other to form a closed circuit and the inside thereof is the latent heat storage medium. Circulates and is in thermal contact with the heating element and the first temperature detecting means for detecting the temperature of the heating element, and in the vicinity of the outlet pipe of the heat exchanging means for heat absorption. To detect the temperature of the endothermic heat exchange means Second temperature detecting means, temperature signal processing means for processing the detected temperature signal, air blowing means control device for operating / stopping the air blowing means, and heat medium transport for operating / stopping the heat medium transport means. Means control device, and the temperature detected by the first temperature detecting means is the first
A second operation of starting the operation of the heating medium transfer means when the temperature reaches a predetermined temperature or higher, and an operation of the blower means when the temperature detected by the second temperature detection means reaches a second predetermined temperature or higher. A cooling device comprising a control device.
【請求項3】 前記潜熱蓄熱媒体として、水の中に、蓄
熱材料であるアルカン類材料を滴状に微細化して分散し
たマイクロエマルジョン、または前記水と、前記蓄熱材
料である前記アルカン類材料をメラミン樹脂等の非水溶
性の高分子膜でカプセル化したマイクロカプセルとの混
合溶液を用いることを特徴とする請求項1または請求項
2のいずれか一項記載の冷却装置。
3. As the latent heat storage medium, a microemulsion obtained by finely dispersing an alkane material that is a heat storage material in water in a droplet form, or the water and the alkane material that is the heat storage material. The cooling device according to claim 1 or 2, wherein a mixed solution with microcapsules encapsulated with a water-insoluble polymer film such as melamine resin is used.
【請求項4】 上部に入口配管を設置し、底部から内側
上部へ所定長さの出口配管を突出させた、前記潜熱蓄熱
媒体を貯留する熱媒体貯留手段を、前記放熱用熱交換手
段と前記吸熱用熱交換手段とを連通する配管中に設置し
たことを特徴とする請求項3記載の冷却装置。
4. A heat medium storage means for storing the latent heat storage medium, wherein an inlet pipe is installed at an upper portion, and an outlet pipe having a predetermined length is projected from a bottom portion to an inner upper portion. The cooling device according to claim 3, wherein the cooling device is installed in a pipe that communicates with the heat exchange means for heat absorption.
【請求項5】 前記潜熱蓄熱媒体を構成する前記潜熱蓄
熱材料の融点は前記第1所定温度より低く、かつ前記潜
熱蓄熱材料の融点と前記第1所定温度との差を略20K
以内としたことを特徴とする請求項3記載の冷却装置。
5. The melting point of the latent heat storage material that constitutes the latent heat storage medium is lower than the first predetermined temperature, and the difference between the melting point of the latent heat storage material and the first predetermined temperature is approximately 20K.
The cooling device according to claim 3, wherein the cooling device is within the range.
JP2002115863A 2002-04-18 2002-04-18 Cooling device Pending JP2003314936A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002115863A JP2003314936A (en) 2002-04-18 2002-04-18 Cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002115863A JP2003314936A (en) 2002-04-18 2002-04-18 Cooling device

Publications (1)

Publication Number Publication Date
JP2003314936A true JP2003314936A (en) 2003-11-06

Family

ID=29533810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002115863A Pending JP2003314936A (en) 2002-04-18 2002-04-18 Cooling device

Country Status (1)

Country Link
JP (1) JP2003314936A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007533028A (en) * 2004-04-12 2007-11-15 エヌヴィディア コーポレイション Expandable and shrinkable modular thermal solution
JP2008060385A (en) * 2006-08-31 2008-03-13 Fujitsu Ltd Cooling device, electronic equipment, and cooling medium
JP2008060384A (en) * 2006-08-31 2008-03-13 Fujitsu Ltd Cooling device, electronic equipment, and cooling medium
JP2008116681A (en) * 2006-11-02 2008-05-22 Ricoh Co Ltd Cooling device and image forming apparatus
US7455103B2 (en) * 2003-08-11 2008-11-25 Hitachi, Ltd. Electronic equipment provided with cooling system
JP2010006151A (en) * 2008-06-25 2010-01-14 Mitsubishi Electric Corp Cooling method of radio wave transceiver
JP2010535884A (en) * 2007-08-06 2010-11-25 ザ セクレタリー,デパートメント オブ アトミック エナジー,ガヴァメント,オブ インディア Stabilization of natural circulation system with nanoparticles
CN103794143A (en) * 2012-10-29 2014-05-14 苏州昆拓热控***股份有限公司 Outdoor display device
JP2015507284A (en) * 2012-01-23 2015-03-05 マイクロソフト コーポレーション Heat transfer device
CN108807313A (en) * 2018-07-05 2018-11-13 安康学院 A kind of heat dissipation from microelectronic devices device
JP2021120600A (en) * 2020-01-30 2021-08-19 三菱重工業株式会社 Cooling apparatus

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7455103B2 (en) * 2003-08-11 2008-11-25 Hitachi, Ltd. Electronic equipment provided with cooling system
JP2007533028A (en) * 2004-04-12 2007-11-15 エヌヴィディア コーポレイション Expandable and shrinkable modular thermal solution
JP4679475B2 (en) * 2006-08-31 2011-04-27 富士通株式会社 Cooling device, electronic device and cooling medium
JP2008060384A (en) * 2006-08-31 2008-03-13 Fujitsu Ltd Cooling device, electronic equipment, and cooling medium
JP4679474B2 (en) * 2006-08-31 2011-04-27 富士通株式会社 Cooling device, electronic device and cooling medium
JP2008060385A (en) * 2006-08-31 2008-03-13 Fujitsu Ltd Cooling device, electronic equipment, and cooling medium
JP2008116681A (en) * 2006-11-02 2008-05-22 Ricoh Co Ltd Cooling device and image forming apparatus
JP2010535884A (en) * 2007-08-06 2010-11-25 ザ セクレタリー,デパートメント オブ アトミック エナジー,ガヴァメント,オブ インディア Stabilization of natural circulation system with nanoparticles
JP2010006151A (en) * 2008-06-25 2010-01-14 Mitsubishi Electric Corp Cooling method of radio wave transceiver
US9606586B2 (en) 2012-01-23 2017-03-28 Microsoft Technology Licensing, Llc Heat transfer device
JP2015507284A (en) * 2012-01-23 2015-03-05 マイクロソフト コーポレーション Heat transfer device
CN103794143A (en) * 2012-10-29 2014-05-14 苏州昆拓热控***股份有限公司 Outdoor display device
CN108807313A (en) * 2018-07-05 2018-11-13 安康学院 A kind of heat dissipation from microelectronic devices device
CN108807313B (en) * 2018-07-05 2020-06-23 安康学院 Microelectronic device heat dissipation device
JP2021120600A (en) * 2020-01-30 2021-08-19 三菱重工業株式会社 Cooling apparatus
JP7291643B2 (en) 2020-01-30 2023-06-15 三菱重工業株式会社 Cooling system

Similar Documents

Publication Publication Date Title
US20050007740A1 (en) Optimised application of pcms in chillers
TW533455B (en) Device for cooling heat-generating electrical and electronic components, and an entire component comprising the same
CN105900260B (en) Battery and its shell structure, battery core guard method, movable fixture and its external member
US8522570B2 (en) Integrated circuit chip cooling using magnetohydrodynamics and recycled power
US20050104029A1 (en) Use of paraffin-containing powders as phase-change materials (pcm) in polymer composites in cooling devices
Chen et al. The application of capillary pumped loop for cooling of electronic components
US20060151146A1 (en) Phase-change heat reservoir device for transient thermal management
JP2003314936A (en) Cooling device
JP5353577B2 (en) heatsink
JP2011153776A (en) Cooling device
JP2005241148A (en) Heat pump system utilizing solar light and its operation controlling method
KR101990592B1 (en) Phase change cooling module and battery pack using the same
JP3979531B2 (en) Electronic cooling device
US8230901B2 (en) Electronic device cooling apparatus
JP2010251677A (en) Heat sink
CN206412346U (en) Cycle cooling system
CN106896883A (en) A kind of electronic equipment cooling system
US6862895B2 (en) Semiconductor cooling device and method of controlling same
Nandini Peltier based cabinet cooling system using heat pipe and liquid based heat sink
JP2000232286A (en) Heat dissipating system
KR100439257B1 (en) A Heat Pipe Module
JPWO2006134659A1 (en) Liquid cooling type cooling method and cooling device using latent heat material
EP1144933B1 (en) A device for temperature control
KR20080046517A (en) Outdoor unit of air-conditioner and air-conditioner having the same
KR19990051577A (en) Water Purifier Using Thermoelectric Semiconductor Element