JP3979531B2 - Electronic cooling device - Google Patents

Electronic cooling device Download PDF

Info

Publication number
JP3979531B2
JP3979531B2 JP2003109839A JP2003109839A JP3979531B2 JP 3979531 B2 JP3979531 B2 JP 3979531B2 JP 2003109839 A JP2003109839 A JP 2003109839A JP 2003109839 A JP2003109839 A JP 2003109839A JP 3979531 B2 JP3979531 B2 JP 3979531B2
Authority
JP
Japan
Prior art keywords
heat
storage means
cooling
sink
fan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003109839A
Other languages
Japanese (ja)
Other versions
JP2004319658A (en
Inventor
一光 金子
Original Assignee
日本ブロアー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ブロアー株式会社 filed Critical 日本ブロアー株式会社
Priority to JP2003109839A priority Critical patent/JP3979531B2/en
Publication of JP2004319658A publication Critical patent/JP2004319658A/en
Application granted granted Critical
Publication of JP3979531B2 publication Critical patent/JP3979531B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、例えば、大容量の熱を発生する被冷却体、特に、比較的限られた時間に加熱ピークが発生する制御盤の如き被冷却体を冷却するのに好適な電子冷却装置に関するものである。
【0002】
【従来の技術】
一般に、大容量の冷却を行うためには、冷媒コンプレッサーを用いた圧縮機型の冷却装置が用いられている。この冷却装置は、被冷却体を冷却する冷媒(液体又は気体)を収納した冷熱回路から成っており、この冷熱回路は、被冷却体から吸熱して冷媒を加熱する吸熱側熱交換機と、加熱された冷媒を圧縮するコンプレッサーとを含んでおり、コンプレッサーの圧縮時に放散される熱は放熱側熱交換機によって放熱される。
【0003】
この圧縮機型冷却装置は、被冷却体からの大容量の熱を吸収することができるので大容量冷却に好適であるが、冷媒を循環する冷媒管路と大型のコンプレッサーとを必要とするので設備が大掛かりとなる欠点があった。
【0004】
また、一般に、制御盤の如き被冷却体は、常に同じ容量の熱を発生するのではなく、一日の中の数時間の時間帯に発熱のピークに達してこの時間帯だけ冷却を必要とし 、それ以外の時間帯は、必ずしも冷却を必要としない。
【0005】
しかし、圧縮機型の冷却装置は、この発熱のピークの時間帯に発生する熱量を吸収するのに必要な容量を有することが要求されるので、装置の構成部品もそれに見合った大容量のものとなる欠点があった。
【0006】
一方、電子部品等の小容量の冷却を行うのに好適な冷却装置としていわゆるサーモモジュールを有する冷却装置が一般に用いられている。この冷却装置は,小型のペルチエ効果素子(サーモモジュール)とフィンとファンとから成っているので、装置を全体的に小型化することができるが、短い時間であっても高い熱ピークを有する被冷却体を冷却するのに充分な冷却容量を得ることができない。
【0007】
最近、CPU等の電子部品の熱を蓄熱する相変化材料を含んだヒートシンクが提案されている(特許文献1及び2参照)。これらのヒートシンクは、被冷却体である電子部品を内部に埋め込むか(特許文献1参照)、電子部品に熱伝導関係を保って電子部品に取付けている(特許文献2参照)。
【0008】
しかし、これらのヒートシンクは、電子部品が発生する熱を相変化材料に蓄熱し、この熱をヒートシンクの放熱部から自然放熱するので、比較的発熱量の小さな電子部品に好適であるが、この原理を大容量の冷却に応用することはできない。
【0009】
【特許文献1】
米国特許第4,446,916号明細書
【0010】
【特許文献2】
特開2002−57262号公報
【0011】
【発明が解決しようとする課題】
本発明が解決しようとする課題は、比較的限られた時間帯に大容量の冷却を必要とする被冷却体を大掛かりな設備を必要とすることなく、小容量の冷却器で冷却することができる電子冷却装置を提供することにある。
【0012】
【課題を解決するための手段】
本発明の課題解決手段は、固体とゲルと液体との間を相変化する物質である相変化材料を収納する熱伝導性容器から成る蓄熱手段と、この蓄熱手段の吸熱側に設けられて被冷却体からの熱を蓄熱手段に伝達する吸熱側熱交換手段と、蓄熱手段の放熱側に設けられて蓄熱手段からの熱を放散する放熱側熱交換手段と、放熱側熱交換手段を制御する放熱側制御手段とを備え、放熱側熱交換手段は、サーモモジュールと放熱側ヒートシンクと冷却ファンとから成り、サーモモジュールの吸熱面は、蓄熱手段の熱伝導性容器に取付けられ、放熱側ヒートシンクは、サーモモジュールの放熱面に取付けられ、冷却ファンは、放熱側ヒートシンクに冷却空気を吹き付けたり放熱側ヒートシンクから冷却空気を吸い込んだりするように配置され、放熱側制御手段は、蓄熱手段の蓄熱量に応じて放熱側熱交換手段のサーモモジュールと冷却ファンとの運転を制御することを特徴とする電子冷却装置を提供することにある。
【0013】
吸熱側熱交換手段は、吸熱側ヒートシンクと吸熱ファンとから成り、吸熱側ヒートシンクは、蓄熱手段の熱伝導性容器に一体に設けられ、吸熱ファンは、被冷却体からの熱を吸引して吸熱フィンに加熱空気を吹き付けたり吸熱側ヒートシンクから冷却空気を吸い込んで被冷却体に吹き付けたりするように配置されるのが好ましい。
【0014】
このように、相変化材料(PCM)の相変化を利用して大容量の熱を蓄熱すると、短い時間帯で高い熱ピークを発生してもこのピーク熱を確実に吸収することができ、また相変化材料は、サーモモジュールで元の相に強制的に戻されるので、コンプレッサーや冷媒管路の如き大掛かり設備と大きな電力消費を必要とすることなく、大容量冷却することができる。
【0015】
また、相変化材料とサーモモジュールを組み合わせて、短時間の大きな蓄熱とこの蓄熱の強制放熱とによって相変化材料の相変化を促進するので、小容量の電子冷却器を用いて大容量冷却を行うことができる。
【0016】
【発明の実施の形態】
本発明の実施の形態を図面を参照して詳細に述べると、図1は、本発明に係わる電子冷却装置10を示し、この電子冷却装置10は、相変化材料(PCM)12から成る蓄熱手段14と、この蓄熱手段14の吸熱側に設けられて被冷却体からの熱を蓄熱手段14に伝達する吸熱側熱交換手段16と、蓄熱手段14の放熱側に設けられて蓄熱手段14からの熱を放散する放熱側熱交換手段18とを備えている。
【0017】
蓄熱手段14の相変化材料12は、熱を放散又は吸収して固体とゲルと液体との間を相変化する成分から成っており、この成分としては、相変化温度が比較的安定しており、20℃乃至60℃で液相に相変化する成分、例えばパラフィン(融点28.2乃至44℃)、塩化カルシウム水和物(融点29.7℃)、硫酸ナトリウム水和物(融点32.4℃)、チオ硫酸ナトリウム水和物(融点48℃)、酢酸ナトリウム水和物(融点58℃)等があるが、被冷却体の熱保有温度に応じてこれらの成分の中から適宜選択される。これらの成分の融点を微調整する目的でこれらの成分に適宜の調整剤を添加することができる。
【0018】
蓄熱手段14は、この相変化材料12を収納する例えばアルミニウム等の熱伝導性容器20から成っている。相変化材料12は、相変化に応じて体積が変化するので最大体積で容器20が破壊することがないように、容器20は、その内部容量を設定する。
【0019】
放熱側熱交換手段18は、図1に示すように、ペルチエ効果素子から成るサーモモジュール22と、放熱側ヒートシンク24と、冷却ファン26とを含んでいる。
【0020】
サーモモジュール22の吸熱面は、蓄熱手段14の熱伝導性容器20に直接取付けられ、放熱側ヒートシンク24は、サーモモジュール22の放熱面に取付けられ、冷却ファン26は、ヒートシンク24に冷却空気を吹き付けたりヒートシンク24から冷却空気を吸い込んだりするように配置されている。
【0021】
図示の形態では、放熱側ヒートシンク24は、サーモモジュール22の放熱面に取付けられる放熱板24Aとこの放熱板24Aから垂直に延びる多数のフィン24Bとから成っており、これらのフィン24Bは、相互に平行に配置されているが、フィン24Bの配置は適宜に設定される。
【0022】
冷却ファン26は、図示の形態では、放熱側ヒートシンク24のほぼ全面に冷却空気を吹き付けたり放熱側ヒートシンク24のほぼ全面から冷却空気を吸い込んだりするフラットファンから成っているが、ヒートシンク24の全面に又は全面から冷却空気を誘導することができるような空気誘導手段を有すれば冷却空気の吐出口又は吸引口は、小さくてもよい。
【0023】
吸熱側熱交換手段16は、吸熱側ヒートシンク28と吸熱ファン30とから成っている。図示の形態では、吸熱側ヒートシンク28は、蓄熱手段14の容器20の壁から垂直に延びるように一体に形成された多数のフィン28Aから成っており、これらのフィン28Aは、放熱側ヒートシンク24のフィン24Bと同様に、相互に平行に配置されているが、同様にして、フィン28Aの配置は適宜設定される。
【0024】
吸熱ファン30は、図示の形態では、冷却ファン26と同様に、吸熱側ヒートシンク28のほぼ全面に吸引空気を吹き付けるか吸熱側ヒートシンク28のほぼ全面から空気を吸い込むフラットファンから成っているが、同様にして、ヒートシンク28の全面に又は全面から吸引空気を誘導することができるような空気誘導手段を有すれば吸引空気の吸引口又は吐出口は、小さくてもよい。
【0025】
図2に示すように、放熱側熱交換手段16と吸熱側熱交換手段18との運転をそれぞれ制御する放熱側制御手段32と吸熱側制御手段34とを備えている。
【0026】
吸熱側制御手段34は、被冷却体を冷却すべき指令を受けて吸熱側熱交換手段16の吸熱ファン30を適宜運転するが、例えば、被冷却体が屋外に設置された大きな制御盤であるとすると、夜間のように比較的発熱量が低い時間帯では吸熱ファン30の運転を停止するか低速運転し、夏場の昼のように外部からの熱の侵入が加わる時間帯には吸熱ファン30を高速運転するように制御し、冬場のように発熱量が比較的低い時には吸熱ファン30を停止するように制御する。
【0027】
放熱側制御手段36は、夏場では蓄熱手段14の相変化材料12からの熱を放散するようにサーモモジュール22及び冷却ファン26を連続運転するか蓄熱手段14の相変化材料12の蓄熱量に応じて間欠的に運転するように制御し、冬場のように相変化材料12の蓄熱量が低い時にはサーモモジュール22と冷却ファン26との運転を停止するか相変化材料の蓄熱量に応じて間欠運転するように制御することができる。
【0028】
次に、本発明の電子冷却装置10の使用状態を述べると、本発明の電子冷却装置10は、例えば、屋外に設置された大型の制御盤を冷却するためにこの制御盤を囲むように取付けられたフードの放熱口に取付けられるが、この場合、電子冷却装置10は、吸熱側熱交換手段16がフードの内部にあり、放熱側熱交換手段18がフードの外側に位置するように配置される。
【0029】
この制御盤は、通常の連続運転での発熱量が100Wであるが、夏場の昼間に約3時間のピーク時に400Wの熱が外部から侵入したとすると、ピーク時に必要な冷却能力は、500Wとなる。
【0030】
本発明の電子冷却装置10は、吸熱側制御手段34によって夏場のピーク時以外には吸熱ファン30を停止するか低速で連続又は間欠運転するが、ピーク時には吸熱ファン30を高速運転して制御盤からの熱を吸収し蓄熱手段14に蓄熱する。蓄熱手段14は、その相変化材料14が固相からゲルを介して液相に変換され、この相変化に伴って制御盤からの熱を吸収し蓄積する。
【0031】
一方、放熱側制御手段32は、夏場には蓄熱手段14の相変化材料12が液相から固相に戻るまで、サーモモジュール22及び放熱ファン26を連続運転する。
【0032】
冬場はもちろん、夏場でも夜間は、フードからの漏洩熱量でほとんど冷却する必要がないので、吸熱側熱交換手段34は停止し、放熱側熱交換手段32は、蓄熱手段14の相変化材料12が固相に戻った後には停止する。
【0033】
制御盤を冷却するためには、500Wの冷却能力を必要とするので、通常の冷却装置ではこの冷却能力に見合った冷却容量を有することが必要であったが、本発明の電子冷却装置は、ピーク時の500W×3時間=1500ワット時を24時間かけて熱放散すればよいので、62.5Wの冷却能力で足り、従って電子的に冷却するサーモモジュール22によってピーク時に必要な500W冷却を行うことができることが解る。
【0034】
また、従来技術の冷却装置では、一時的に大きな電力を消費し、これは、エアコンディショナー等の他の機器の電力消費と重なるが、本発明の電子冷却装置は、ピーク時の電力消費のピーク値を低減する機能を有することが解る。
【0035】
【発明の効果】
本発明によれば、上記のように、相変化材料(PCM)の相変化を利用して大容量の熱を蓄熱するので、短い時間帯で高い熱ピークを発生してもこのピーク熱を確実に吸収することができ、相変化材料は、サーモモジュールで固相に強制的に戻されるので、コンプレッサーや冷媒管路の如き大掛かりな設備と大きな電力消費を必要とすることなく、大容量冷却することができる。
【0036】
また、相変化材料とサーモモジュールとを組み合わせて、短時間の大きな蓄熱とこの蓄熱の強制放熱とによって相変化材料の相変化を促進するので、小容量の電子冷却器を用いて大容量冷却を行うことができる実益がある。
【図面の簡単な説明】
【図1】本発明の電子冷却装置の概略断面図である。
【図2】図1
1171335325906_0
の電子冷却装置の制御系統の系統図である。
【符号の説明】
10 電子冷却装置
12 相変化材料(PCM)
14 蓄熱手段
16 吸熱側熱交換手段
18 放熱側熱交換手段
20 熱伝導性容器
22 サーモモジュール
24 放熱側ヒートシンク
24A 放熱板
24B フィン
26 冷却ファン
28 吸熱側ヒートシンク
28A フィン
30 吸熱ファン
32 放熱側制御手段
34 吸熱側制御手段
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electronic cooling device suitable for cooling a cooled object such as a control panel that generates a heating peak in a relatively limited time, for example, a cooled object that generates a large amount of heat. It is.
[0002]
[Prior art]
In general, a compressor-type cooling device using a refrigerant compressor is used to perform large-capacity cooling. The cooling device includes a cooling circuit that stores a refrigerant (liquid or gas) that cools the object to be cooled. The cooling circuit includes a heat absorption side heat exchanger that absorbs heat from the object to be cooled and heats the refrigerant, and a heating circuit. A compressor that compresses the generated refrigerant, and the heat dissipated when the compressor is compressed is dissipated by the heat-radiating side heat exchanger.
[0003]
This compressor-type cooling device is suitable for large-capacity cooling because it can absorb a large amount of heat from the object to be cooled, but requires a refrigerant pipe for circulating the refrigerant and a large compressor. There was a drawback that the equipment was large.
[0004]
In general, the object to be cooled, such as a control panel, does not always generate the same amount of heat, but reaches a peak of heat generation within several hours of the day and requires cooling only during this time. Other time zones do not necessarily require cooling.
[0005]
However, since the compressor-type cooling device is required to have a capacity necessary to absorb the amount of heat generated during the peak time of the heat generation, the component parts of the device have a large capacity corresponding to it. There was a drawback.
[0006]
On the other hand, a cooling device having a so-called thermo module is generally used as a cooling device suitable for cooling a small capacity of an electronic component or the like. Since this cooling device is composed of a small Peltier effect element (thermo module), fins, and a fan, the overall size of the device can be reduced. However, the cooling device has a high heat peak even in a short time. A cooling capacity sufficient to cool the cooling body cannot be obtained.
[0007]
Recently, a heat sink including a phase change material for storing heat of an electronic component such as a CPU has been proposed (see Patent Documents 1 and 2). These heat sinks are embedded in an electronic component that is an object to be cooled (see Patent Document 1) or attached to the electronic component while maintaining a heat conduction relationship with the electronic component (see Patent Document 2).
[0008]
However, these heatsinks are suitable for electronic parts with relatively small heat generation because they store the heat generated by the electronic parts in the phase change material and naturally dissipate this heat from the heat dissipation part of the heatsink. Cannot be applied to large-capacity cooling.
[0009]
[Patent Document 1]
US Pat. No. 4,446,916
[Patent Document 2]
Japanese Patent Laid-Open No. 2002-57262
[Problems to be solved by the invention]
The problem to be solved by the present invention is to cool an object to be cooled which requires a large capacity cooling in a relatively limited time zone with a small capacity cooler without requiring a large facility. An object of the present invention is to provide an electronic cooling device that can be used.
[0012]
[Means for Solving the Problems]
The problem-solving means of the present invention comprises a heat storage means comprising a heat conductive container for storing a phase change material that is a substance that changes phase between a solid, a gel, and a liquid, and a heat storage means provided on the heat absorption side of the heat storage means. The heat absorption side heat exchange means for transferring the heat from the cooling body to the heat storage means, the heat release side heat exchange means for dissipating the heat from the heat storage means provided on the heat release side of the heat storage means, and the heat release side heat exchange means are controlled. The heat radiation side heat exchanging means comprises a thermo module, a heat radiation side heat sink, and a cooling fan, and the heat absorption surface of the thermo module is attached to the heat conductive container of the heat storage means. , attached to the heat radiating surface of the thermo-module, a cooling fan is disposed from the heat radiation side heat sink or blowing cooling air to the radiator side heat sink to inhale cooling air, the heat radiation side control Stage is to provide an electronic cooling device and controls the operation of the thermo-module of the heat dissipation side heat exchanger means in accordance with the amount of stored heat of the heat storage means and the cooling fan.
[0013]
The heat absorption side heat exchange means comprises a heat absorption side heat sink and a heat absorption fan. The heat absorption side heat sink is provided integrally with the heat conductive container of the heat storage means, and the heat absorption fan absorbs heat by sucking heat from the object to be cooled. It is preferable that the heating air is blown to the fins or the cooling air is sucked from the heat absorption side heat sink and blown to the object to be cooled.
[0014]
Thus, if a large amount of heat is stored using the phase change of the phase change material (PCM), this peak heat can be reliably absorbed even if a high heat peak is generated in a short time zone. Since the phase change material is forcibly returned to the original phase by the thermo module, it can be cooled with a large capacity without requiring large-scale equipment such as a compressor and a refrigerant pipe and large power consumption.
[0015]
In addition, the phase change material and the thermo module are combined to accelerate the phase change of the phase change material by a large amount of heat storage for a short time and forced heat dissipation of this heat storage, so large capacity cooling is performed using a small capacity electronic cooler. be able to.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 shows an electronic cooling device 10 according to the present invention, which is a heat storage means composed of a phase change material (PCM) 12. 14, a heat absorption side heat exchange means 16 that is provided on the heat absorption side of the heat storage means 14 and transfers heat from the cooled object to the heat storage means 14, and a heat dissipation side of the heat storage means 14 provided from the heat storage means 14. The heat-dissipation side heat exchange means 18 which dissipates heat is provided.
[0017]
The phase change material 12 of the heat storage means 14 is composed of a component that dissipates or absorbs heat to change phase between a solid, a gel, and a liquid, and the phase change temperature is relatively stable as this component. Ingredients that change to a liquid phase at 20 to 60 ° C., such as paraffin (melting point 28.2 to 44 ° C.), calcium chloride hydrate (melting point 29.7 ° C.), sodium sulfate hydrate (melting point 32.4) ° C), sodium thiosulfate hydrate (melting point 48 ° C), sodium acetate hydrate (melting point 58 ° C), etc., which are appropriately selected from these components depending on the heat holding temperature of the object to be cooled. . For the purpose of finely adjusting the melting point of these components, an appropriate adjusting agent can be added to these components.
[0018]
The heat storage means 14 is composed of a heat conductive container 20 such as aluminum for storing the phase change material 12. Since the volume of the phase change material 12 changes in accordance with the phase change, the container 20 sets its internal capacity so that the container 20 does not break at the maximum volume.
[0019]
As shown in FIG. 1, the heat radiation side heat exchanging means 18 includes a thermo module 22 made of a Peltier effect element, a heat radiation side heat sink 24, and a cooling fan 26.
[0020]
The heat absorption surface of the thermo module 22 is directly attached to the heat conductive container 20 of the heat storage means 14, the heat radiation side heat sink 24 is attached to the heat radiation surface of the thermo module 22, and the cooling fan 26 blows cooling air to the heat sink 24. Or the cooling air is sucked from the heat sink 24.
[0021]
In the illustrated form, the heat radiation side heat sink 24 includes a heat radiation plate 24A attached to the heat radiation surface of the thermo module 22 and a large number of fins 24B extending vertically from the heat radiation plate 24A. These fins 24B are mutually connected. Although arrange | positioned in parallel, arrangement | positioning of the fin 24B is set suitably.
[0022]
The cooling fan 26, in the embodiment shown, but is made from a flat fan for Guests I write almost suck the entire cooling air of almost the entire surface to the cooling air blowing or radiating side heat sink 24 and the heat dissipation side heat sink 24, the heat sink 24 The cooling air discharge port or suction port may be small if air guiding means capable of guiding cooling air to the entire surface or from the entire surface is provided.
[0023]
The heat absorption side heat exchange means 16 includes a heat absorption side heat sink 28 and a heat absorption fan 30. In the form shown in the figure, the heat absorption side heat sink 28 is composed of a large number of fins 28 </ b> A integrally formed so as to extend vertically from the wall of the container 20 of the heat storage means 14. Similar to the fins 24B, the fins 28A are arranged in parallel to each other. Similarly, the arrangement of the fins 28A is appropriately set.
[0024]
In the illustrated embodiment, the heat absorption fan 30 is formed of a flat fan that blows suction air to almost the entire surface of the heat absorption side heat sink 28 or sucks air from almost the entire surface of the heat absorption side heat sink 28 in the same manner as the cooling fan 26. Thus, if there is an air guiding means capable of guiding suction air over or from the entire surface of the heat sink 28, the suction port or suction port for suction air may be small.
[0025]
As shown in FIG. 2, there are provided a heat radiation side control means 32 and a heat absorption side control means 34 for controlling the operations of the heat radiation side heat exchange means 16 and the heat absorption side heat exchange means 18, respectively.
[0026]
The heat absorption side control unit 34 receives a command to cool the object to be cooled and appropriately operates the heat absorption fan 30 of the heat absorption side heat exchange unit 16. For example, the heat absorption side control unit 34 is a large control panel in which the object to be cooled is installed outdoors. Then, when the heat generation amount is relatively low, such as at night, the operation of the heat absorption fan 30 is stopped or operated at a low speed, and during the summer time, when the heat intrusion from the outside is applied, the heat absorption fan 30 is operated. Are controlled so as to operate at high speed, and when the heat generation amount is relatively low, such as in winter, the heat absorption fan 30 is controlled to stop.
[0027]
The heat radiation side control means 36 continuously operates the thermo module 22 and the cooling fan 26 so as to dissipate heat from the phase change material 12 of the heat storage means 14 in the summer, or according to the heat storage amount of the phase change material 12 of the heat storage means 14. When the heat storage amount of the phase change material 12 is low as in winter, the operation of the thermo module 22 and the cooling fan 26 is stopped or intermittent operation is performed according to the heat storage amount of the phase change material. Can be controlled.
[0028]
Next, the usage state of the electronic cooling device 10 of the present invention will be described. The electronic cooling device 10 of the present invention is attached so as to surround the control panel in order to cool, for example, a large control panel installed outdoors. In this case, the electronic cooling device 10 is arranged such that the heat absorption side heat exchange means 16 is located inside the hood and the heat radiation side heat exchange means 18 is located outside the hood. The
[0029]
This control panel has a calorific value of 100 W in normal continuous operation, but if the heat of 400 W enters from the outside at the peak of about 3 hours during the daytime in summer, the cooling capacity required at the peak is 500 W. Become.
[0030]
In the electronic cooling device 10 of the present invention, the endothermic fan 30 is stopped by the endothermic control means 34 except during the summer peak or is continuously or intermittently operated at a low speed. The heat stored in the heat storage means 14 is absorbed. In the heat storage means 14, the phase change material 14 is converted from a solid phase to a liquid phase through a gel, and heat from the control panel is absorbed and accumulated along with this phase change.
[0031]
On the other hand, the heat radiation side control means 32 continuously operates the thermo module 22 and the heat radiation fan 26 until the phase change material 12 of the heat storage means 14 returns from the liquid phase to the solid phase in summer.
[0032]
Since it is not necessary to cool down by the amount of heat leaked from the hood in winter as well as in summer, the heat absorption side heat exchange means 34 is stopped, and the heat release side heat exchange means 32 is the phase change material 12 of the heat storage means 14. Stop after returning to the solid phase.
[0033]
In order to cool the control panel, a cooling capacity of 500 W is required. Therefore, an ordinary cooling device has to have a cooling capacity corresponding to this cooling capability. 500W x 3 hours at peak time = 1500 watt hours only needs to be dissipated over 24 hours, so cooling capacity of 62.5W is sufficient, and the necessary 500W cooling at peak time is performed by the thermo module 22 that is electronically cooled I understand that I can do it.
[0034]
In addition, the conventional cooling device consumes a large amount of power temporarily, which overlaps with the power consumption of other equipment such as an air conditioner, but the electronic cooling device of the present invention has a peak power consumption at the peak time. It turns out that it has the function to reduce a value.
[0035]
【The invention's effect】
According to the present invention, as described above, a large amount of heat is stored using the phase change of the phase change material (PCM), so even if a high heat peak is generated in a short time period, this peak heat is reliably ensured. The phase change material is forcibly returned to the solid phase by the thermo module, so it can be cooled with a large capacity without requiring large equipment such as a compressor or a refrigerant line and large power consumption. be able to.
[0036]
In addition, the phase change material and the thermo module are combined to accelerate the phase change of the phase change material by a large amount of heat storage for a short time and forced heat dissipation of this heat storage, so large capacity cooling can be achieved using a small-capacity electronic cooler. There are real benefits that can be made.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view of an electronic cooling device of the present invention.
FIG. 2
1171335325906_0
It is a systematic diagram of the control system of the electronic cooling device.
[Explanation of symbols]
10 Electronic cooling device 12 Phase change material (PCM)
14 heat storage means 16 heat absorption side heat exchange means 18 heat radiation side heat exchange means 20 heat conductive container 22 thermo module 24 heat radiation side heat sink 24A heat radiation plate 24B fin 26 cooling fan 28 heat absorption side heat sink 28A fin 30 heat absorption fan 32 heat radiation side control means 34 Heat absorption side control means

Claims (2)

固体とゲルと液体との間を相変化する物質である相変化材料を収納する熱伝導性容器から成る蓄熱手段と、前記蓄熱手段の吸熱側に設けられて被冷却体からの熱を前記蓄熱手段に伝達する吸熱側熱交換手段と、前記蓄熱手段の放熱側に設けられて前記蓄熱手段からの熱を放散する放熱側熱交換手段と、前記放熱側熱交換手段を制御する放熱側制御手段とを備え、前記放熱側熱交換手段は、サーモモジュールと放熱側ヒートシンクと冷却ファンとから成り、前記サーモモジュールの吸熱面は、前記蓄熱手段の熱伝導性容器に取付けられ、前記放熱側ヒートシンクは、前記サーモモジュールの放熱面に取付けられ、前記冷却ファンは、前記放熱側ヒートシンクに冷却空気を吹き付けたり前記放熱側ヒートシンクから冷却空気を吸い込んだりするように配置され、前記放熱側制御手段は、前記蓄熱手段の蓄熱量に応じて前記放熱側熱交換手段のサーモモジュールと冷却ファンとの運転を制御することを特徴とする電子冷却装置。 A heat storage means comprising a heat conductive container for storing a phase change material that is a substance that changes phase between a solid, a gel, and a liquid; and the heat storage means provided on the heat absorption side of the heat storage means to store heat from the object to be cooled. A heat absorption side heat exchange means for transmitting to the heat storage means; a heat radiation side heat exchange means for dissipating heat from the heat storage means provided on the heat radiation side of the heat storage means; and a heat radiation side control means for controlling the heat radiation side heat exchange means The heat radiation side heat exchanging means comprises a thermo module, a heat radiation side heat sink, and a cooling fan, and the heat absorption surface of the thermo module is attached to a heat conductive container of the heat storage means. The cooling fan is attached to the heat radiation surface of the thermo module, and the cooling fan blows cooling air to the heat radiation side heat sink or sucks cooling air from the heat radiation side heat sink. Disposed, the heat dissipation side control unit, an electronic cooling device and controls the operation of the cooling fan and the thermo-module of the heat radiation side heat exchange means in response to the heat storage amount of the heat storage means. 請求項1に記載の電子冷却装置であって、前記吸熱側熱交換手段は、吸熱側ヒートシンクと吸熱ファンとから成り、前記吸熱側ヒートシンクは、前記蓄熱手段の熱伝導性容器に一体に設けられ、前記吸熱ファンは、前記被冷却体からの熱を吸引して前記吸熱側ヒートシンクに加熱空気を吹き付けたり前記吸熱側ヒートシンクから冷却空気を吸い込んだりするように配置されていることを特徴とする電子冷却装置。 2. The electronic cooling device according to claim 1 , wherein the heat absorption side heat exchange means includes a heat absorption side heat sink and a heat absorption fan, and the heat absorption side heat sink is provided integrally with a heat conductive container of the heat storage means. The heat-absorbing fan is arranged to suck heat from the object to be cooled and to blow heated air to the heat-absorbing side heat sink or to suck cooling air from the heat-absorbing side heat sink. Cooling system.
JP2003109839A 2003-04-15 2003-04-15 Electronic cooling device Expired - Lifetime JP3979531B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003109839A JP3979531B2 (en) 2003-04-15 2003-04-15 Electronic cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003109839A JP3979531B2 (en) 2003-04-15 2003-04-15 Electronic cooling device

Publications (2)

Publication Number Publication Date
JP2004319658A JP2004319658A (en) 2004-11-11
JP3979531B2 true JP3979531B2 (en) 2007-09-19

Family

ID=33470852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003109839A Expired - Lifetime JP3979531B2 (en) 2003-04-15 2003-04-15 Electronic cooling device

Country Status (1)

Country Link
JP (1) JP3979531B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100854966B1 (en) 2008-04-16 2008-08-28 주식회사 하이럭스 Refrigerator for cosmetics

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4873293B2 (en) * 2006-03-24 2012-02-08 高砂熱学工業株式会社 Package air conditioner performance degradation prevention system using solar cells
KR100827725B1 (en) * 2007-05-02 2008-05-08 티티엠주식회사 Pcm attachment method and automatic machine thereof
JP5081599B2 (en) * 2007-12-07 2012-11-28 ローム株式会社 Organic EL planar light emitting device
US7810965B2 (en) 2008-03-02 2010-10-12 Lumenetix, Inc. Heat removal system and method for light emitting diode lighting apparatus
US9102857B2 (en) * 2008-03-02 2015-08-11 Lumenetix, Inc. Methods of selecting one or more phase change materials to match a working temperature of a light-emitting diode to be cooled
US7969075B2 (en) 2009-02-10 2011-06-28 Lumenetix, Inc. Thermal storage system using encapsulated phase change materials in LED lamps
US8123389B2 (en) 2010-02-12 2012-02-28 Lumenetix, Inc. LED lamp assembly with thermal management system
JP4669567B1 (en) * 2010-02-24 2011-04-13 エンパイア テクノロジー ディベロップメント エルエルシー Wiring board and manufacturing method thereof
CN102620467A (en) * 2012-03-21 2012-08-01 美的集团有限公司 Electronic refrigerating device capable of accumulating cold
KR101391159B1 (en) 2012-11-15 2014-05-02 연세대학교 산학협력단 Pcm embedded thermoelectric element fabrication method
US9036352B2 (en) * 2012-11-30 2015-05-19 Ge Aviation Systems, Llc Phase change heat sink for transient thermal management
CN103811976B (en) * 2014-02-28 2017-02-22 苏州微木智能***有限公司 Heat dissipation device and method of pulse type high-power laser
KR102266263B1 (en) 2015-05-07 2021-06-17 삼성전자주식회사 Display apparatus
WO2017216147A1 (en) * 2016-06-17 2017-12-21 Arcelik Anonim Sirketi Portable air-conditioning device comprising thermoelectric module
KR20220093236A (en) 2019-11-12 2022-07-05 엠버 테크놀로지스 인코포레이티드 Cooler with active temperature control

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100854966B1 (en) 2008-04-16 2008-08-28 주식회사 하이럭스 Refrigerator for cosmetics

Also Published As

Publication number Publication date
JP2004319658A (en) 2004-11-11

Similar Documents

Publication Publication Date Title
JP3979531B2 (en) Electronic cooling device
JP4997215B2 (en) Server device
TW200301814A (en) Optimised use of PCMS in cooling devices
WO2011150798A1 (en) Tec refrigerating installation and electrical apparatus using same
US8297062B2 (en) Heat-dissipating device for supplying cold airflow
CN208431978U (en) A kind of electronic equipment radiating module
JP2000002493A (en) Cooling unit and cooling structure employing it
KR20020019787A (en) High efficiency thermoelectric cooling and heating box for food and drink storage in a vehicle
Nandini Peltier based cabinet cooling system using heat pipe and liquid based heat sink
JPH0544961A (en) Air-conditioner
KR20040061286A (en) Hybrid heat exchanger having tec and heat pipe
US10030896B1 (en) Magneto-caloric cooling system
CN108507226A (en) A kind of electronic equipment radiating module
US9631842B1 (en) Magneto-caloric cooling system
KR200389678Y1 (en) Cooing and heating apparatus without using CFC
KR100439257B1 (en) A Heat Pipe Module
CN206531339U (en) A kind of refrigerator
CN218770826U (en) Cooling system for internal ring temperature of power supply equipment
KR20080046517A (en) Outdoor unit of air-conditioner and air-conditioner having the same
KR101172679B1 (en) Outdoor unit of air conditioner
JP2004200428A (en) Cooling device
JP2000232286A (en) Heat dissipating system
JP2000035291A (en) Cooling unit and cooling structure
EP2363882A1 (en) Heat-dissipating device for supplying cold airflow
CN218353000U (en) High-efficient high-power heat abstractor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050509

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050819

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050824

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20050916

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070621

R150 Certificate of patent or registration of utility model

Ref document number: 3979531

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100706

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110706

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110706

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120706

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130706

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term