JP2003313017A - Method for producing carbon nanotube - Google Patents

Method for producing carbon nanotube

Info

Publication number
JP2003313017A
JP2003313017A JP2002117352A JP2002117352A JP2003313017A JP 2003313017 A JP2003313017 A JP 2003313017A JP 2002117352 A JP2002117352 A JP 2002117352A JP 2002117352 A JP2002117352 A JP 2002117352A JP 2003313017 A JP2003313017 A JP 2003313017A
Authority
JP
Japan
Prior art keywords
carbon nanotubes
catalyst
carbon nanotube
temperature
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002117352A
Other languages
Japanese (ja)
Inventor
Michio Sugimoto
道雄 杉本
Yoshimasa Takeda
芳正 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Japan Petroleum Energy Center JPEC
Original Assignee
Petroleum Energy Center PEC
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Petroleum Energy Center PEC, Idemitsu Kosan Co Ltd filed Critical Petroleum Energy Center PEC
Priority to JP2002117352A priority Critical patent/JP2003313017A/en
Publication of JP2003313017A publication Critical patent/JP2003313017A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for more efficiently and easily producing carbon nanotubes useful as a functional material, particularly single layer carbon nanotubes in larger quantities at a lower cost as compared with an arc discharge method or a laser irradiation method. <P>SOLUTION: Methane is thermally decomposed at 800-1,300°C on a solid catalyst, preferably a solid catalyst obtained by highly dispersing and carrying metal iron or a metal iron-containing substance on a zeolite to produce the objective carbon nanotubes. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、カーボンナノチュ
ーブの製造方法に関する。さらに詳しくは、本発明は、
機能性材料として有用なカーボンナノチューブ、特に単
層カーボンナノチューブを、アーク放電法やレーザー光
照射法に比べて、量産に適した触媒気相合成法により、
効率よく製造する方法に関するものである。
TECHNICAL FIELD The present invention relates to a method for producing carbon nanotubes. More specifically, the present invention provides
Compared with arc discharge method and laser light irradiation method, carbon nanotubes useful as functional materials, especially single-wall carbon nanotubes, can be produced by a catalytic gas phase synthesis method suitable for mass production.
The present invention relates to an efficient manufacturing method.

【0002】[0002]

【従来の技術】近年、直径が数ナノメートルから数十ナ
ノメートルの筒状炭素材料であるカーボンナノチューブ
は、例えば超高集積化が可能な分子素子、水素を始めと
する各種ガスの吸蔵材料、電界放出ディスプレー(FE
D)用部材、樹脂成形品用添加材などの機能性材料とし
て注目されている。このカーボンナノチューブは、19
91年に飯島らによって、アーク放電法の陰極に堆積し
た炭素の塊の中に見出されたものであり[「ネイチャー
(Nature)」、第354巻、第56〜58ページ
(1991年)]、それ以来積極的に研究が行われ、レ
ーザー光照射法や熱分解による気相合成法など、各種の
方法により合成されている。該カーボンナノチューブに
は、多層のものと単層のものとが存在し、特に単層カー
ボンナノチューブは、水素を始めとする各種ガスの吸蔵
材料としての用途が期待されている。しかしながら、こ
の単層カーボンナノチューブを、安価で多量かつ効率的
・簡便に製造し得る技術は、これまで見出されていない
のが実状である。
2. Description of the Related Art In recent years, carbon nanotubes, which are tubular carbon materials having a diameter of several nanometers to several tens of nanometers, are molecular elements capable of ultra-high integration, storage materials for various gases such as hydrogen, Field emission display (FE
D) has attracted attention as a functional material such as a member and an additive for a resin molded product. This carbon nanotube has 19
It was discovered by Iijima et al. In 1991 in the carbon mass deposited on the cathode of the arc discharge method ["Nature", vol. 354, pp. 56-58 (1991)]. , Has been actively researched since then, and has been synthesized by various methods such as a laser irradiation method and a vapor phase synthesis method by thermal decomposition. There are multi-walled and single-walled carbon nanotubes, and in particular, single-walled carbon nanotubes are expected to be used as a storage material for various gases including hydrogen. However, the reality is that no technology has been found so far that can produce such single-walled carbon nanotubes inexpensively, in large quantities, efficiently, and easily.

【0003】例えば、単層カーボンナノチューブの製造
方法としては、アーク放電法(特開平6−322616
号公報)やレーザー光照射法(特開平10−27330
8号公報)などが開示されているが、これらの方法は、
製造コストが高くつく上、量産が困難である。一方、触
媒を用いた気相合成法としては、不飽和度が高く、反応
性の高いアセチレンを原料として用いる方法(特開20
00−86217号公報)、あるいは一酸化炭素を原料
として用いる方法[「ケミカル・フィジクス・レターズ
(Chemical Physics Letter
s)」、第317巻、第497〜503ページ(200
0年)]が知られているが、これらの原料は、安全性や
有害性の面から問題がある。また、上記と同じ触媒を用
いた気相合成法として、ベンゼンなどの液状物質を原料
に用いた方法(特開2000−86218号公報)が開
示されているが、この場合、反応時に原料をなんらかの
手段で気化せねばならず、製造工程が煩雑になるのを免
れないという問題がある。
For example, as a method for producing single-walled carbon nanotubes, an arc discharge method (Japanese Patent Laid-Open No. 6-322616) is used.
Japanese Laid-Open Patent Publication No. 10-27330.
No. 8) is disclosed, but these methods are
Manufacturing cost is high and mass production is difficult. On the other hand, as a gas phase synthesis method using a catalyst, a method in which acetylene having a high degree of unsaturation and high reactivity is used as a raw material (Japanese Patent Application Laid-Open No. 20-29200)
No. 00-86217) or a method using carbon monoxide as a raw material [“Chemical Physics Letters”].
s) ", vol. 317, pp. 497-503 (200).
However, these raw materials have problems in terms of safety and harmfulness. Further, as a gas phase synthesis method using the same catalyst as described above, a method using a liquid substance such as benzene as a raw material (Japanese Patent Laid-Open No. 2000-86218) is disclosed. There is a problem in that it must be vaporized by means, and the manufacturing process must be complicated.

【0004】[0004]

【発明が解決しようとする課題】本発明は、このような
状況下で機能性材料として有用なカーボンナノチュー
ブ、特に単層カーボンナノチューブを、アーク放電法や
レーザー光照射法に比べて、安価で多量かつ効率的・簡
便に製造し得る方法を提供することを目的とするもので
ある
DISCLOSURE OF THE INVENTION The present invention provides a large amount of carbon nanotubes, particularly single-walled carbon nanotubes, useful as a functional material under such circumstances, as compared with the arc discharge method and the laser light irradiation method. In addition, the object is to provide a method that can be manufactured efficiently and simply.

【0005】[0005]

【課題を解決するための手段】本発明者らは、前記目的
を達成するために鋭意研究を重ねた結果、原料として、
安価でかつ安全性や有害性の面で、より優位な飽和度の
高いメタンを用い、固体触媒上で特定の温度にて熱分解
することにより、その目的を達成し得ることを見出し
た。本発明は、かかる知見に基づいて完成したものであ
る。すなわち、本発明は、(1)固体触媒上でメタンを
800〜1300℃の温度で熱分解することを特徴とす
るカーボンナノチューブの製造方法、(2)固体触媒
が、ゼオライトに鉄金属又は鉄金属含有物を高分散担持
させたものである上記(1)のカーボンナノチューブの
製造方法、及び(3)カーボンナノチューブが単層カー
ボンナノチューブである上記(1)のカーボンナノチュ
ーブの製造方法、を提供するものである。
Means for Solving the Problems The inventors of the present invention have conducted extensive studies to achieve the above object, and as a result, as a raw material,
It has been found that the objective can be achieved by using methane, which is cheaper, and is more advantageous in terms of safety and toxicity, and which has a higher degree of saturation and is thermally decomposed on a solid catalyst at a specific temperature. The present invention has been completed based on such findings. That is, the present invention is (1) a method for producing carbon nanotubes, characterized in that methane is thermally decomposed on a solid catalyst at a temperature of 800 to 1300 ° C., (2) the solid catalyst is a zeolite containing iron metal or iron metal. A method for producing the carbon nanotube according to the above (1), in which the inclusions are carried in a highly dispersed state, and (3) a method for producing the carbon nanotube according to the above (1), in which the carbon nanotube is a single-wall carbon nanotube. Is.

【0006】[0006]

【発明の実施の形態】本発明のカーボンナノチューブの
製造方法においては、原料としてメタンが用いられる。
このメタンは飽和度が高いため、一般的に反応性に乏し
いとされていたが、触媒を用いた気相合成法によるカー
ボンナノチューブの製造において、従来用いられている
アセチレンや一酸化炭素に比べて、安価でかつ安全性や
有害性の面で有利であるので、本発明における原料とし
て使用する。本発明においては、原料ガスとして、上記
メタンを、窒素、ヘリウム、アルゴンなどの不活性ガ
ス、あるいは水素により任意の割合で希釈混合したもの
を用いることができる。一方、固体触媒としては、担体
であるゼオライトに、鉄金属又は鉄金属含有物が高分散
担持されたものを使用することができる。前記触媒にお
いて、ゼオライト担体への鉄金属又は鉄金属含有物の担
持方法としては、特に制限はなく、様々な方法を用いる
ことができるが、例えば鉄の無機塩又は鉄の有機塩をイ
オン交換させて担持させる方法などを、好ましく用いる
ことができる。このようにして得られた触媒中の担持鉄
金属量としては特に制限はないが、通常Fe23換算で
0.1質量%以上、好ましくは1質量%以上である。ま
た、上限については、鉄金属が高分散で担持されていれ
ばよく、特に制限はないが、鉄金属の分散担持性及び触
媒調製などの面から、一般的には、2質量%程度であ
る。この触媒の形状については、特に制限はないが、通
常粉末状の形態で用いられる。次に、反応方法の好まし
い実施態様について説明する。まず、円筒状などの反応
器に前記触媒をセットしたのち、窒素、ヘリウム、アル
ゴンなどの不活性ガス、あるいは水素などを流通させな
がら、所定の温度まで反応器を加熱する。所定の温度に
達したら、上記の流通ガスを原料ガスに切り替え、所定
の流量となるように調整したのち、反応を開始する。
BEST MODE FOR CARRYING OUT THE INVENTION In the method for producing carbon nanotubes of the present invention, methane is used as a raw material.
Since this methane has a high degree of saturation, it was generally considered to have poor reactivity, but in the production of carbon nanotubes by a gas-phase synthesis method using a catalyst, it has a higher degree of reactivity than acetylene or carbon monoxide that has been conventionally used. Since it is inexpensive and advantageous in terms of safety and harmfulness, it is used as a raw material in the present invention. In the present invention, as the raw material gas, an inert gas such as nitrogen, helium, or argon, or a mixture of methane diluted with hydrogen at an arbitrary ratio can be used. On the other hand, as the solid catalyst, it is possible to use a zeolite, which is a carrier, on which iron metal or a substance containing iron metal is highly dispersed and supported. In the catalyst, the method for supporting the iron metal or the iron metal-containing material on the zeolite carrier is not particularly limited, and various methods can be used, for example, an inorganic salt of iron or an organic salt of iron is ion-exchanged. It is possible to preferably use a method of supporting by loading. The amount of supported iron metal in the catalyst thus obtained is not particularly limited, but is usually 0.1% by mass or more, preferably 1% by mass or more in terms of Fe 2 O 3 . The upper limit is not particularly limited as long as the iron metal is supported in a highly dispersed state, but is generally about 2% by mass from the viewpoint of the dispersibility and supportability of the iron metal and the preparation of the catalyst. . The shape of this catalyst is not particularly limited, but it is usually used in the form of powder. Next, a preferred embodiment of the reaction method will be described. First, the catalyst is set in a cylindrical reactor, and then the reactor is heated to a predetermined temperature while circulating an inert gas such as nitrogen, helium, or argon, or hydrogen. When the temperature reaches a predetermined temperature, the above flow gas is switched to the raw material gas, the flow rate is adjusted to a predetermined flow rate, and then the reaction is started.

【0007】反応温度は、800〜1300℃の範囲で
選定される。この温度が800℃未満ではメタンの熱分
解が進行しないし、1300℃を超えるとグラファイト
質炭素の生成量が増大するため、目的物である単層カー
ボンナノチューブが効率よく得られない。したがって、
好ましい反応温度は900〜1200℃の範囲である。
ガス流量は、触媒1g当たり、好ましくは10〜100
00cm3/分、より好ましくは100〜1000cm3
/分である。この流量が10cm3/分未満では目的物
である単層カーボンナノチューブを収率よく得ることが
できにくいし、 10000cm3/分を超えると、目的
物である単層カーボンナノチューブの生成及び成長に充
分な触媒と原料ガスとの接触滞量時間を確保することが
できにくい。反応時間は、通常5〜120分程度、好ま
しくは15〜60分である。反応時間が5分未満では目的
物である単層カーボンナノチューブの成長が充分に進行
しないおそれがあり、120分を超えるとグラファイト
質炭素の生成量が増大して、目的物である単層カーボン
ナノチューブが効率よく得られにくい。
The reaction temperature is in the range of 800 to 1300 ° C.
Selected. If this temperature is less than 800 ° C, the heat content of methane
Solution does not proceed, and if the temperature exceeds 1300 ° C, graphite
Since the amount of carbon produced increases, the target single layer car
Carbon nanotubes cannot be obtained efficiently. Therefore,
The preferred reaction temperature is in the range of 900 to 1200 ° C.
The gas flow rate is preferably 10 to 100 per 1 g of the catalyst.
00 cm3/ Min, more preferably 100-1000 cm3
/ Min. This flow rate is 10 cm3If less than / minute, it is the target
It is possible to obtain single-walled carbon nanotubes in good yield
It ’s hard to do, 10000 cm3If you exceed / min, the purpose
For the production and growth of single-walled carbon nanotubes
It is possible to secure sufficient contact delay time between the catalyst and the raw material gas.
It's hard to do. The reaction time is usually about 5 to 120 minutes, preferably
It is 15 to 60 minutes. Purpose if reaction time is less than 5 minutes
The growth of single-walled carbon nanotubes, which is a material
There is a possibility that it will not do, and if it exceeds 120 minutes, graphite
Single-layer carbon, which is the target product, increases the amount of carbon produced
It is difficult to obtain nanotubes efficiently.

【0008】反応終了後、窒素、ヘリウム、アルゴンな
どの不活性ガスを流通させながら、室温まで冷却したの
ち、反応器内から触媒を取り出し、目的物である単層カ
ーボンナノチューブを触媒から分離する。上記単層カー
ボンナノチューブの触媒からの分離の手段については特
に制限はないが、例えばフッ化水素酸や塩酸、硝酸ある
いは水酸化ナトリウム水溶液により触媒のみを溶解さ
せ、分離する方法を用いることができる。これらの酸や
水酸化ナトリウム水溶液に対して、単層カーボンナノチ
ューブは化学的に極めて安定であるため、触媒との分離
が可能である。このようにして、アセチレンや一酸化炭
素よりも安全性や有害性の面で有利なメタンを原料とす
る熱分解法により、1〜2nm程度の均一な直径を有す
る単層カーボンナノチューブを、量産性よく、かつ効率
的・簡便に製造することができる。
After completion of the reaction, after cooling to room temperature while circulating an inert gas such as nitrogen, helium or argon, the catalyst is taken out of the reactor and the target single-walled carbon nanotube is separated from the catalyst. The means for separating the single-walled carbon nanotubes from the catalyst is not particularly limited, but for example, a method in which only the catalyst is dissolved with hydrofluoric acid, hydrochloric acid, nitric acid or an aqueous sodium hydroxide solution and separated can be used. The single-walled carbon nanotubes are chemically extremely stable against these acids and aqueous sodium hydroxide solution, and therefore can be separated from the catalyst. In this way, single-walled carbon nanotubes having a uniform diameter of about 1 to 2 nm can be mass-produced by the thermal decomposition method using methane as a raw material, which is more advantageous than acetylene or carbon monoxide in terms of safety and harmfulness. Good, efficient, and simple production is possible.

【0009】[0009]

【実施例】次に、本発明を実施例により、さらに詳細に
説明するが、本発明は、この例によってなんら限定され
るものではない。 調製例1 触媒の調製 ゼオライト系担体として市販のUSY型ゼオライト(東
ソー製、HSZ−330HUA)を用いた。このUSY
型ゼオライト20gに、硝酸鉄(III)・九水和物を用い
て調製した0.025モル/リットル濃度の鉄水溶液5
00mlを加え、室温で1時間の攪拌を行った。その
後、吸引ろ過し、脱イオン水で十分に洗浄した後、12
0℃で2時間乾燥させ、さらに550℃で6時間焼成し
た。このようにして、USY型ゼオライトに鉄金属を担
持したものを得た。次に、この鉄金属担持USY型ゼオ
ライト70質量%とバインダーとしてのアルミナ30質
量%とからなる粉末状触媒を調製した。この触媒中の鉄
金属含有量はFe23換算で2.2質量%であった。
EXAMPLES Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples. Preparation Example 1 Preparation of catalyst A commercially available USY-type zeolite (HSZ-330HUA, manufactured by Tosoh Corporation) was used as a zeolite-based carrier. This USY
Aqueous iron solution having a concentration of 0.025 mol / liter prepared by using iron (III) nitrate nonahydrate in 20 g of zeolite type 5
00 ml was added, and the mixture was stirred at room temperature for 1 hour. Then, after suction filtration and thorough washing with deionized water, 12
It was dried at 0 ° C. for 2 hours and further calcined at 550 ° C. for 6 hours. Thus, a USY-type zeolite carrying iron metal was obtained. Next, a powdery catalyst comprising 70% by mass of this iron metal-supported USY-type zeolite and 30% by mass of alumina as a binder was prepared. The iron metal content in this catalyst was 2.2 mass% in terms of Fe 2 O 3 .

【0010】実施例1 反応器として、入口側にガス導入管、出口側にガス排出
管が接続され、反応器全体を電気ヒーターで加熱でき、
かつ循環水により冷却できる構造のアルミナ製円筒横型
反応器を用いた。まず、アルミナ製円筒横型反応器内
に、調製例1で得た粉末状触媒0.5gをアルミナ製皿
の上に乗せてセットし、反応器内を真空排気後、窒素ガ
スの流通を開始した。反応器内に、窒素ガスを100c
3/分で流通させたまま、15℃/分の速度で昇温さ
せ、800℃まで達したのち、最終的に10℃/分の速
度で、反応開始温度である1000℃まで昇温させた。
Example 1 As a reactor, a gas introduction pipe was connected to the inlet side and a gas discharge pipe was connected to the outlet side so that the entire reactor can be heated by an electric heater,
In addition, an alumina horizontal cylindrical reactor having a structure capable of being cooled by circulating water was used. First, 0.5 g of the powdery catalyst obtained in Preparation Example 1 was placed on an alumina plate in an alumina horizontal cylindrical reactor, the interior of the reactor was evacuated, and then the flow of nitrogen gas was started. . 100 g of nitrogen gas was put into the reactor.
While circulating at m 3 / min, the temperature was raised at a rate of 15 ° C./min to 800 ° C., and finally, at a rate of 10 ° C./min, to the reaction initiation temperature of 1000 ° C. It was

【0011】1000℃に到達後、直ちにメタン10体
積%と窒素90体積%とからなる原料ガスに切り替え、
温度を1000℃に保持しながら、100cm3/分で
30分間流通させて、反応を行った。反応終了後、再び
流速100cm3/分の窒素ガスに切り替え、100℃
/分の速度で室温まで冷却降温したのち、反応器内を大
気開放させた状態で反応済み触媒を取り出した。次い
で、この反応済み触媒をフッ化水素酸及び塩酸にて溶解
させ、ろ別後、ろ紙上の残渣物を透過型電子顕微鏡(T
EM)で観察し、約1.6nmの均一な直径を有する単
層カーボンナノチューブが生成していることを確認し
た。図1は、得られたカーボンナノチューブのTEM写
真図である。
Immediately after reaching 1000 ° C., the raw material gas consisting of 10% by volume of methane and 90% by volume of nitrogen was changed to
While maintaining the temperature at 1000 ° C., the reaction was carried out by flowing at 100 cm 3 / min for 30 minutes. After the reaction was completed, the flow rate was switched to 100 cm 3 / min of nitrogen gas again, and the temperature was 100 °
After cooling and cooling to room temperature at a rate of / min, the reacted catalyst was taken out with the inside of the reactor being open to the atmosphere. Then, the reacted catalyst is dissolved in hydrofluoric acid and hydrochloric acid, and after filtration, the residue on the filter paper is filtered with a transmission electron microscope (T
It was confirmed by EM) that single-walled carbon nanotubes having a uniform diameter of about 1.6 nm were produced. FIG. 1 is a TEM photograph of the obtained carbon nanotube.

【0012】比較例1 実施例1と同一の反応器内に、実施例1と同一の触媒を
セットし、反応器内に窒素ガスを100cm3/分で流
通させたまま、15℃/分の速度で昇温させ500℃ま
で達したのち、最終的に10℃/分の速度で反応開始温
度である700℃まで昇温させた。700℃に到達後、
直ちに実施例1と同一の原料ガスに切り替え、温度を7
00℃に保持しながら、100cm3/分で30分間流
通させ反応を行った。反応終了後、実施例1と同一の手
段で冷却、反応済みの触媒を取り出し、酸により触媒を
溶解させ、ろ別したのち、そのろ過残渣物をTEMで観
察したが、単層カーボンナノチューブの生成は確認され
なかった。
Comparative Example 1 The same catalyst as in Example 1 was set in the same reactor as in Example 1, and nitrogen gas was passed through the reactor at 100 cm 3 / min, and at 15 ° C./min. After the temperature was raised at a rate of up to 500 ° C., the temperature was finally raised to 700 ° C. which is a reaction start temperature at a rate of 10 ° C./min. After reaching 700 ℃,
Immediately switch to the same source gas as in Example 1 and set the temperature to 7
While maintaining at 00 ° C., the reaction was carried out by flowing at 100 cm 3 / min for 30 minutes. After the reaction was completed, the catalyst was cooled by the same means as in Example 1, the reacted catalyst was taken out, the catalyst was dissolved with an acid, and the mixture was filtered off. The filtered residue was observed by TEM. Was not confirmed.

【0013】比較例2 実施例1と同一の反応器内に、実施例1と同一の触媒を
セットし、反応器内に窒素ガスを100cm3/分で流
通させたまま、15℃/分の速度で昇温させ800℃ま
で達したのち、最終的に10℃/分の速度で反応開始温
度である1000℃まで昇温させた。1000℃に到達
後、直ちにエタン10体積%と窒素90体積%とからな
る原料ガスに切り替え、温度を1000℃に保持しなが
ら、100cm3/分で30分間流通させ反応を行っ
た。反応終了後、実施例1と同一の手段で冷却、反応済
みの触媒の取り出しを行い、水酸化ナトリウム水溶液及
び塩酸により、反応済み触媒を溶解させ、ろ別したの
ち、そのろ過残渣物をTEMで観察したが、単層カーボ
ンナノチューブの生成は確認できなかった。
Comparative Example 2 The same catalyst as in Example 1 was set in the same reactor as in Example 1, and nitrogen gas was passed through the reactor at 100 cm 3 / min, and at 15 ° C./min. After the temperature was raised at a rate of 800 ° C., the temperature was finally raised to 1000 ° C. which is a reaction start temperature at a rate of 10 ° C./min. Immediately after reaching 1000 ° C., the raw material gas consisting of 10% by volume of ethane and 90% by volume of nitrogen was switched to, and while maintaining the temperature at 1000 ° C., the reaction was carried out by flowing at 100 cm 3 / min for 30 minutes. After the completion of the reaction, cooling was performed by the same means as in Example 1, the reacted catalyst was taken out, the reacted catalyst was dissolved with an aqueous solution of sodium hydroxide and hydrochloric acid, and the mixture was filtered off. Although observed, formation of single-walled carbon nanotubes could not be confirmed.

【0014】[0014]

【発明の効果】本発明の方法によれば、機能性材料とし
て有用なカーボンナノチューブ、特に単層カーボンナノ
チューブを、アーク放電法やレーザー光照射法に比べ
て、安価で多量かつ効率的・簡便に製造することができ
る。また、この方法によれば、炭化水素の主成分として
メタンを含む天然ガスや各種石油精製装置オフガスを、
そのまま原料として、利用可能である。本発明の方法で
得られた単層カーボンナノチューブは、機能性材料とし
て種々の用途、特に水素を始めとする各種のガス吸蔵材
料としての利用が期待されている。
According to the method of the present invention, carbon nanotubes useful as a functional material, particularly single-wall carbon nanotubes, can be produced inexpensively, in large quantities, efficiently and simply as compared with the arc discharge method and the laser light irradiation method. It can be manufactured. In addition, according to this method, natural gas containing methane as a main component of hydrocarbons and off-gases of various petroleum refining equipment,
It can be used as it is as a raw material. The single-walled carbon nanotubes obtained by the method of the present invention are expected to be used as various functional materials, especially as various gas storage materials including hydrogen.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1で得られた単層カーボンナノチューブ
の透過型電子顕微鏡(TEM)写真図である。
FIG. 1 is a transmission electron microscope (TEM) photograph of the single-walled carbon nanotube obtained in Example 1.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G146 AA12 BA12 BC03 BC08 BC33A BC33B BC34A BC34B BC44 BC46    ─────────────────────────────────────────────────── ─── Continued front page    F term (reference) 4G146 AA12 BA12 BC03 BC08 BC33A                       BC33B BC34A BC34B BC44                       BC46

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 固体触媒上でメタンを800〜1300
℃の温度で熱分解することを特徴とするカーボンナノチ
ューブの製造方法。
1. 800 to 1300 methane over a solid catalyst
A method for producing a carbon nanotube, which comprises thermally decomposing at a temperature of ° C.
【請求項2】 固体触媒が、ゼオライトに鉄金属又は鉄
金属含有物を、高分散担持させたものである請求項1記
載カーボンナノチューブの製造方法。
2. The method for producing carbon nanotubes according to claim 1, wherein the solid catalyst is a zeolite on which iron metal or an iron metal-containing material is highly dispersed and supported.
【請求項3】 カーボンナノチューブが単層カーボンナ
ノチューブである請求項1記載のカーボンナノチューブ
の製造方法。
3. The method for producing a carbon nanotube according to claim 1, wherein the carbon nanotube is a single-wall carbon nanotube.
JP2002117352A 2002-04-19 2002-04-19 Method for producing carbon nanotube Pending JP2003313017A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002117352A JP2003313017A (en) 2002-04-19 2002-04-19 Method for producing carbon nanotube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002117352A JP2003313017A (en) 2002-04-19 2002-04-19 Method for producing carbon nanotube

Publications (1)

Publication Number Publication Date
JP2003313017A true JP2003313017A (en) 2003-11-06

Family

ID=29534588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002117352A Pending JP2003313017A (en) 2002-04-19 2002-04-19 Method for producing carbon nanotube

Country Status (1)

Country Link
JP (1) JP2003313017A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007290928A (en) * 2006-04-26 2007-11-08 Kyushu Institute Of Technology String-like carbon, method of utilizing the same and method of manufacturing the same
EP2062642A1 (en) 2003-05-29 2009-05-27 Japan Science and Technology Agency Catalyst for synthesizing carbon nanocoils, synthesising method of the same and synthesizing method of carbon nanocoils
US7670431B2 (en) * 2003-09-22 2010-03-02 Fuji Xerox Co., Ltd. Carbon nanotube manufacturing apparatus and method, and gas decomposer for use in the manufacturing apparatus and method
KR100962171B1 (en) 2007-12-26 2010-06-10 제일모직주식회사 Metal Nano Catalyst for Synthesizing Carbon Nanotube and Method for Preparing Carbon Nanotubes Using thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2062642A1 (en) 2003-05-29 2009-05-27 Japan Science and Technology Agency Catalyst for synthesizing carbon nanocoils, synthesising method of the same and synthesizing method of carbon nanocoils
US7829494B2 (en) 2003-05-29 2010-11-09 Japan Science And Technology Agency Catalyst for synthesizing carbon nanocoils, synthesizing method of the same, synthesizing method of carbon nanocoils, and carbon nanocoils
US7670431B2 (en) * 2003-09-22 2010-03-02 Fuji Xerox Co., Ltd. Carbon nanotube manufacturing apparatus and method, and gas decomposer for use in the manufacturing apparatus and method
JP2007290928A (en) * 2006-04-26 2007-11-08 Kyushu Institute Of Technology String-like carbon, method of utilizing the same and method of manufacturing the same
KR100962171B1 (en) 2007-12-26 2010-06-10 제일모직주식회사 Metal Nano Catalyst for Synthesizing Carbon Nanotube and Method for Preparing Carbon Nanotubes Using thereof

Similar Documents

Publication Publication Date Title
Kumar et al. Chemical vapor deposition of carbon nanotubes: a review on growth mechanism and mass production
EP1558524B1 (en) Cvd synthesis of carbon nanotubes
JP3963893B2 (en) Method for producing single-walled carbon nanotube
JP4837932B2 (en) Method for producing carbon nanotube
WO2011030821A1 (en) Method for simultaneously producing carbon nanotubes and hydrogen, and device for simultaneously producing carbon nanotubes and hydrogen
WO2000040509A1 (en) Amorphous nano-scale carbon tube and production method therefor
JP2008526683A (en) Method for growing long carbon single-walled nanotubes
JP2008519679A (en) Catalyst for producing carbon nanotubes by decomposing gaseous carbon compounds with heterogeneous catalysts
JP2004532789A (en) Catalyst support and carbon nanotubes formed on it
JP2009528969A (en) Method and apparatus for high quality single-walled carbon nanotube growth
JP5106123B2 (en) Synthesis method of carbon nanohorn carrier and carbon nanotube
JP3755662B2 (en) Method for producing carbon nanotube
KR20020042673A (en) Carbonaceous material for hydrogen storage and method for preparing the same, and cell and fuel cell
JP2003201108A (en) Carbon material
JP4126072B2 (en) Method for producing carbon nanotubes from a liquid phase carbon source
CN112452315A (en) Application of high-temperature sintering-resistant catalyst
US20120177545A1 (en) Novel combination catalysts based on iron for the substantial synthesis of multi-walled carbon nanotubes by chemical vapor deposition
CN112403461A (en) High-temperature sintering-resistant catalyst and synthesis method thereof
JP2003206117A (en) Process for mass production of multiwalled carbon nanotubes
JP4459212B2 (en) Single-walled carbon nanotube-containing composition
JP2003313018A (en) Method for producing carbon nanotube
JP2003313017A (en) Method for producing carbon nanotube
WO2022047600A1 (en) Method for preparing multi-walled carbon nanotubes
JP3952479B2 (en) Method for producing carbon nanotube
Zhu Detonation of molecular precursors as a tool for the assembly of nano-sized materials

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051221

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060328