JP2003308730A - Silver oxide fine particle composition, its manufacturing method, conductive composition, conductive film and its manufacturing method - Google Patents

Silver oxide fine particle composition, its manufacturing method, conductive composition, conductive film and its manufacturing method

Info

Publication number
JP2003308730A
JP2003308730A JP2002113713A JP2002113713A JP2003308730A JP 2003308730 A JP2003308730 A JP 2003308730A JP 2002113713 A JP2002113713 A JP 2002113713A JP 2002113713 A JP2002113713 A JP 2002113713A JP 2003308730 A JP2003308730 A JP 2003308730A
Authority
JP
Japan
Prior art keywords
silver
silver oxide
conductive
oxide fine
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002113713A
Other languages
Japanese (ja)
Other versions
JP4090778B2 (en
Inventor
Yukihiko Kurosawa
幸彦 黒沢
Akinobu Ono
朗伸 小野
Toshiyuki Honda
俊之 本多
Koji Okamoto
航司 岡本
Masafumi Ito
雅史 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Kasei Co Ltd
Fujikura Ltd
Original Assignee
Fujikura Kasei Co Ltd
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Kasei Co Ltd, Fujikura Ltd filed Critical Fujikura Kasei Co Ltd
Priority to JP2002113713A priority Critical patent/JP4090778B2/en
Publication of JP2003308730A publication Critical patent/JP2003308730A/en
Application granted granted Critical
Publication of JP4090778B2 publication Critical patent/JP4090778B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a silver oxide fine particle composition having such a small particle diameter as to cause a reduction reaction at low temperatures, and having an excellent dispersing property into a solvent or a binder resin even if it is dried, to provide its manufacturing method, to provide a conductive composition capable of providing a conductive film having low volume resistivity and high conductivity equivalent to silver even if the film is formed at high temperatures by using the silver oxide fine particle composition, to provide the conductive film and to provide a conductive film and its formation method. <P>SOLUTION: This silver oxide fine particle composition is formed of fine particles each formed by coating the surface of silver oxide particles with a dispersant and having an average particle diameter of 0.01-10 μm. The silver oxide fine particle composition can be dispersed into the dispersant. This conductive composition is made by dispersing the silver oxide fine particle composition into one or more kinds selected from a binder resin, a solvent and a reducing agent. In this conductive film, silver fine particles are fused to one another by applying the conductive composition to an object and heating it. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、導電性ペースト、
導電性塗料、導電性接着剤などとして用いられる酸化銀
微粒子組成物およびその製造方法、導電性組成物、これ
らを用いて形成された導電性被膜およびその形成方法に
関するものである。
TECHNICAL FIELD The present invention relates to a conductive paste,
The present invention relates to a silver oxide fine particle composition used as a conductive paint, a conductive adhesive and the like, a method for producing the same, a conductive composition, a conductive film formed using these, and a method for forming the same.

【0002】[0002]

【従来の技術】従来の導電性ペーストとしては、フレー
ク状の銀微粒子にアクリル樹脂、酢酸ビニル樹脂などの
熱可塑性樹脂、エポキシ樹脂、ポリエステル樹脂などの
熱硬化性樹脂などからなるバインダ、有機溶剤、硬化
剤、触媒などを添加し、混合して得られる銀ペーストが
代表的なものである。
2. Description of the Related Art Conventional conductive pastes include flake-shaped fine silver particles, a binder made of a thermoplastic resin such as acrylic resin and vinyl acetate resin, a thermosetting resin such as epoxy resin and polyester resin, an organic solvent, A silver paste obtained by adding and mixing a curing agent, a catalyst, etc. is typical.

【0003】この銀ペーストは、各種電子機器、電子部
品、電子回路などに対して導電性接着剤、導電性塗料な
どとして広く使用されている。また、この銀ペーストを
ポリエチレンテレフタレートフィルムなどのプラスチッ
クフィルム上にスクリーン印刷などにより印刷して、電
気回路を形成したフレキシブル回路基板もキーボード、
各種スイッチなどのプリント回路基板として用いられて
いる。
This silver paste is widely used as a conductive adhesive, a conductive paint, etc. for various electronic devices, electronic parts, electronic circuits and the like. In addition, a flexible circuit board on which a plastic circuit such as a polyethylene terephthalate film is printed with this silver paste by screen printing to form an electric circuit is also a keyboard,
It is used as a printed circuit board for various switches.

【0004】この銀ペーストの使用方法は、対象物に各
種塗布手段により塗布し、常温で乾燥するか、あるいは
150℃程度に加熱して、導電性被膜とすることで行な
われている。そして、このようにして得られた導電性被
膜の体積抵抗率は、製膜条件にもよるが、10-4〜10
-5Ω・cmの範囲であり、金属銀の体積抵抗率1.6×
10 -6Ω・cmに比べて、10〜100倍の値となって
おり、金属銀の導電性にはとうてい及ばない値となって
いる。
The method of using this silver paste depends on the object.
Apply by seed application means and dry at room temperature, or
Do this by heating to about 150 ° C to form a conductive film.
It is being appreciated. The conductive coating obtained in this way
The volume resistivity of the film depends on the film forming conditions, but is 10-Four-10
-FiveΩ · cm range, volume resistivity of metallic silver 1.6 ×
10 -610 to 100 times the value compared to Ω · cm
Which is far below the conductivity of metallic silver.
There is.

【0005】[0005]

【発明が解決しようとする課題】このような従来の銀ペ
ーストからなる導電性被膜の導電性が低い理由として
は、この導電性被膜内では、銀微粒子同士が、その一部
のみで物理的に接触しており、しかも銀微粒子同士の接
触点が少なく、また、銀微粒子同士の接触点において接
触抵抗が生じことなどが挙げられる。さらに、銀微粒子
同士の間にバインダが存在し、このバインダが銀微粒子
同士の直接的な接触を阻害していることなども挙げられ
る。
The reason why such a conductive coating made of a conventional silver paste has a low conductivity is because silver fine particles are physically present in the conductive coating only partially. It is mentioned that they are in contact with each other, and there are few contact points between the silver particles, and that contact resistance occurs at the contact points between the silver particles. Further, it is also possible that a binder exists between the silver fine particles and the binder prevents direct contact between the silver fine particles.

【0006】このような銀ペーストの導電性の低さを改
善する方法として、銀ペーストを対象物に塗布した後、
800℃程度に加熱してバインダを焼却、除去するとと
もに、銀微粒子を溶融して、銀微粒子が融着して一様に
連続した金属銀の被膜を形成する方法がある。このよう
にして得られた金属銀の被膜からなる導電性被膜の体積
抵抗率は、10-6Ω・cm程度になり、金属銀のそれに
近い導電性を有するものとなる。しかし、このような金
属銀の被膜からなる導電性被膜では、対象物が高温加熱
に耐え得るガラス、セラミックス、琺瑯などの耐熱性材
料に限られるという欠点がある。
As a method for improving the low conductivity of such a silver paste, after applying the silver paste to an object,
There is a method in which the binder is incinerated and removed by heating to about 800 ° C., the silver fine particles are melted, and the silver fine particles are fused to form a uniform and continuous coating film of metallic silver. The volume resistivity of the conductive coating film made of the metallic silver film thus obtained is about 10 −6 Ω · cm, and has a conductivity close to that of metallic silver. However, the conductive coating made of such a metallic silver coating has a drawback that the object is limited to heat-resistant materials such as glass, ceramics, enamel, etc. that can withstand high temperature heating.

【0007】また、これとは別の試みとして、銀の微粒
子を使うことによる導電性被膜の低抵抗化の検討が行な
われている。ここで用いられる銀の微粒子とは、その粒
径が数〜数十nmのものである。これを導電性ペースト
として使用して、対象物に塗布した後、加熱すると、こ
の銀の微粒子が比較的低温で融着して、銀の微粒子同士
の接点が増え、導電性被膜の導電性が向上する。そし
て、銀の微粒子の粒径が小さいほど、融着の起こる温度
も下がる傾向にあることが知られている。
In addition, as another attempt, a study has been made to reduce the resistance of the conductive coating by using fine silver particles. The fine silver particles used herein have a particle diameter of several to several tens of nm. When this is used as a conductive paste and applied to an object and then heated, the silver fine particles are fused at a relatively low temperature, the number of contacts between the silver fine particles increases, and the conductivity of the conductive coating increases. improves. It is known that the smaller the particle size of silver fine particles, the lower the temperature at which fusion occurs.

【0008】しかし、粒径が数〜数十nmの銀微粒子
は、その量産性や安定性の問題から、一般の銀粉と比較
して非常に高価なものである。また、この銀微粒子は非
常に小さいために、その凝集作用が強い。特に、乾燥し
た状態では、凝集作用が顕著になり、一旦、乾燥させた
銀微粒子は、溶媒やバインダなどへの分散が困難である
ことから、乾燥させることができなかった。このような
ことから、粒径が数〜数十nmの銀微粒子は、導電性ペ
ーストの材料としてはあまり普及していない。
However, silver fine particles having a particle diameter of several to several tens nm are very expensive as compared with general silver powder due to problems of mass productivity and stability. Further, since the silver fine particles are very small, their aggregation action is strong. In particular, in the dried state, the aggregation effect becomes remarkable, and the once dried silver fine particles cannot be dried because it is difficult to disperse them in a solvent or a binder. For this reason, silver fine particles having a particle size of several to several tens nm are not widely used as a material for the conductive paste.

【0009】さらに、熱によって、金属銀からなる導電
性被膜を形成する方法としては、酸化銀の還元反応を利
用したものが挙げられる。この形成方法は、加熱により
酸化銀中の酸素が還元されて放出され、銀化することを
利用したものである。この還元反応は、還元剤によって
促進させることができるが、酸化銀の粒径の影響を受け
易く、酸化銀の粒径が小さいほど低温で反応が起こるよ
うになる。
Further, as a method of forming a conductive coating film made of metallic silver by heat, a method utilizing a reduction reaction of silver oxide can be mentioned. This forming method utilizes the fact that oxygen in silver oxide is reduced and released by heating and silver is formed. This reduction reaction can be promoted by a reducing agent, but it is easily affected by the grain size of silver oxide, and the smaller the grain size of silver oxide, the lower the reaction temperature.

【0010】そして、この形成方法では、酸化銀の還元
と同時に、生成した銀同士が融着し合って連続した銀被
膜となり、この銀被膜は非常に導電性の高いものとな
る。このような酸化銀を用いた銀被膜の形成方法につい
ては、特願2001−398425号で提案されている
が、酸化銀微粒子の製造方法およびその分散性について
は、詳しく示されていない。
In this forming method, simultaneously with the reduction of silver oxide, the produced silver particles are fused together to form a continuous silver film, and this silver film has a very high conductivity. Japanese Patent Application No. 2001-398425 proposes a method for forming a silver coating using such silver oxide, but the method for producing fine silver oxide particles and the dispersibility thereof are not shown in detail.

【0011】本発明は、前記事情に鑑みてなされたもの
で、低温で還元反応が起こるほど粒径が小さく、乾燥さ
せても溶媒やバインダ樹脂などへの分散性に優れた酸化
銀微粒子組成物およびその製造方法を提供することを課
題とする。また、この酸化銀微粒子組成物を使用して、
高温で製膜しなくとも、金属銀と同等の低体積抵抗率、
高導電性の導電性被膜が得られる導電性組成物、導電性
被膜およびその形成方法を提供することを課題とする。
The present invention has been made in view of the above circumstances, and the silver oxide fine particle composition has a small particle size such that a reduction reaction occurs at a low temperature, and has excellent dispersibility in a solvent or a binder resin even when dried. Another object is to provide a method for producing the same. Further, using this silver oxide fine particle composition,
Low volume resistivity equivalent to metallic silver, even without film formation at high temperature,
An object of the present invention is to provide a conductive composition, a conductive coating and a method for forming the same, which can provide a highly conductive conductive coating.

【0012】[0012]

【課題を解決するための手段】前記課題は、酸化銀微粒
子の表面が分散剤で被覆されてなり、平均粒径が0.0
1〜10μmの微粒子である酸化銀微粒子組成物によっ
て解決できる。上記酸化銀微粒子組成物が、バインダ樹
脂、溶媒、還元剤から選ばれる1種類以上に分散可能で
あることが好ましい。前記課題は、銀化合物と塩基性物
質を分散剤の存在下で反応させ、酸化銀微粒子組成物を
得る酸化銀微粒子組成物の製造方法によって解決でき
る。前記課題は、上記酸化銀微粒子組成物が、バインダ
樹脂、溶媒、還元剤から選ばれる1種類以上に分散され
てなる導電性組成物によって解決できる。前記課題は、
上記導電性組成物を対象物に塗布し、加熱する導電性被
膜の形成方法によって解決できる。前記課題は、上記導
電性被膜の形成方法で得られ、銀微粒子が互いに融着し
ている導電性被膜によって解決できる。
[Means for Solving the Problems] The above-mentioned problem is that the surface of silver oxide fine particles is coated with a dispersant, and the average particle size is 0.0
The problem can be solved by using a silver oxide fine particle composition having fine particles of 1 to 10 μm. It is preferable that the silver oxide fine particle composition can be dispersed in one or more kinds selected from a binder resin, a solvent and a reducing agent. The above problems can be solved by a method for producing a silver oxide fine particle composition by reacting a silver compound and a basic substance in the presence of a dispersant to obtain a silver oxide fine particle composition. The above problem can be solved by a conductive composition in which the silver oxide fine particle composition is dispersed in one or more kinds selected from a binder resin, a solvent and a reducing agent. The problem is
This can be solved by a method of forming a conductive coating by applying the above-mentioned conductive composition to an object and heating it. The above problems can be solved by a conductive coating obtained by the above method for forming a conductive coating, in which silver particles are fused to each other.

【0013】[0013]

【発明の実施の形態】以下、本発明を詳しく説明する。
本発明の酸化銀微粒子組成物は、酸化銀微粒子の表面の
全部または一部が分散剤で被覆されてなり、平均粒径が
0.01〜10μmの微粒子である。この酸化銀微粒子
組成物の平均粒径が0.01μm未満では、乾燥した状
態において、凝集作用が強くなることがあり、溶媒やバ
インダなどへの分散が困難となる場合がある。一方、酸
化銀微粒子組成物の平均粒径が10μmを超えると、低
温において酸化銀の還元反応が起こり難くなり、結果と
して、金属銀からなる導電性被膜を形成し難くなる。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention is described in detail below.
The silver oxide fine particle composition of the present invention is a fine particle in which the surface of the silver oxide fine particles is wholly or partially covered with a dispersant and has an average particle diameter of 0.01 to 10 μm. If the average particle size of this silver oxide fine particle composition is less than 0.01 μm, the cohesive action may become strong in the dried state, and it may be difficult to disperse it in a solvent, a binder or the like. On the other hand, when the average particle size of the silver oxide fine particle composition exceeds 10 μm, the reduction reaction of silver oxide is less likely to occur at low temperatures, and as a result, it is difficult to form the conductive coating film made of metallic silver.

【0014】本発明で用いられる酸化銀微粒子は、硝酸
銀、過塩素酸銀、炭酸銀などの銀化合物と、水酸化ナト
リウム、水酸化カリウム、炭酸ナトリウムなどの塩基性
物質を反応させて得られた、平均粒径が0.01〜10
μmであるものである。
The fine silver oxide particles used in the present invention are obtained by reacting a silver compound such as silver nitrate, silver perchlorate or silver carbonate with a basic substance such as sodium hydroxide, potassium hydroxide or sodium carbonate. , The average particle size is 0.01 to 10
μm.

【0015】本発明で用いられる分散剤としては、ヒド
ロキシプロピルセルロース、ポリビニルピロリドン、ポ
リビニルアルコールなどの他に、市販の分散剤として、
例えば、ディスパービック160、ディスパービック1
61、ディスパービック162、ディスパービック16
3、ディスパービック166、ディスパービック17
0、ディスパービック180、ディスパービック18
2、ディスパービック184、ディスパービック190
(以上、ビックケミー社製)、フローレンTG−720
W、フローレンTG−730W、フローレンG−70
0、フローレンDOPA−17、フローレンDOPA−
22、フローレンDOPA−158(以上、共栄社化学
社製)、チラバゾールW−01、チラバゾールW−02
(以上、太陽化学社製)、ソルスパース20000、ソ
ルスパース24000、ソルスパース26000、ソル
スパース27000、ソルスパース28000(以上、
アビシア社製)、アジスパーPB711、アジスパーP
B811、アジスパーPA111、アジスパーPW91
1(以上、味の素社製)などの高分子系分散剤を用いる
ことができる。このような分散剤の使用量は、酸化銀微
粒子100重量部に対して有効成分で0.1〜300重
量部とし、好ましくは1〜100重量部とする。
As the dispersant used in the present invention, in addition to hydroxypropyl cellulose, polyvinylpyrrolidone, polyvinyl alcohol, etc., a commercially available dispersant may be used.
For example, Dispersevic 160, Dispersevic 1
61, Dispervik 162, Dispervik 16
3, Disperbic 166, Disperbic 17
0, Disperbic 180, Disperbic 18
2, Disperbic 184, Disperbic 190
(Above, made by Big Chemie), Floren TG-720
W, Floren TG-730W, Floren G-70
0, Floren DOPA-17, Floren DOPA-
22, Floren DOPA-158 (above, Kyoeisha Chemical Co., Ltd.), tirabazole W-01, tirabazole W-02
(All manufactured by Taiyo Kagaku Co., Ltd.), Sols Perth 20000, Sols Pers 24000, Sols Pers 26000, Sols Pers 27000, Sols Pers 28000 (or more,
Avisia), Azisper PB711, Azisper P
B811, Addisper PA111, Addisper PW91
Polymer dispersants such as 1 (above, manufactured by Ajinomoto Co., Inc.) can be used. The dispersant is used in an amount of 0.1 to 300 parts by weight, preferably 1 to 100 parts by weight, based on 100 parts by weight of the silver oxide fine particles as an active ingredient.

【0016】本発明の酸化銀微粒子組成物は、乾燥した
状態でも、組成物同士が互いに凝集し難く、バインダ樹
脂や溶媒などに対する分散性に非常に優れた微粒子であ
る。また、この酸化銀微粒子組成物は、比較的低温で、
単に加熱するか、あるいは還元剤との共存下において加
熱することにより、容易に金属銀に還元されるの微粒子
である。そして、この還元反応時に生じる反応熱によっ
て、還元反応によって形成された金属銀微粒子が溶融
し、互いに融着して高導電性の金属銀の導電性被膜を形
成する。したがって、得られる導電性被膜は、金属銀と
同等の体積抵抗率および導電性を有するものとなる。さ
らに、本発明の酸化銀微粒子組成物は、溶媒がない状態
でも、組成物同士が凝集しないように、その表面の一部
または全部が分散剤によって被覆されている。よって、
本発明の酸化銀微粒子組成物は、乾燥させた後でも、新
たなバインダ樹脂、溶媒、還元剤、その他の各種添加剤
などに対して凝集せずに再分散させることが可能であ
る。なお、本発明の酸化銀微粒子組成物を再分散させる
方法は、特に限定されるものではなく、公知の分散法を
適宜用いることができる。
The silver oxide fine particle composition of the present invention is a fine particle in which the compositions hardly aggregate with each other even in a dried state and the dispersibility in a binder resin or a solvent is excellent. Further, this silver oxide fine particle composition has a relatively low temperature,
The fine particles are easily reduced to metallic silver by simply heating or heating in the presence of a reducing agent. Then, the reaction heat generated during the reduction reaction melts the metal silver fine particles formed by the reduction reaction and fuses them to each other to form a conductive film of highly conductive metal silver. Therefore, the obtained conductive coating has the same volume resistivity and conductivity as metallic silver. Further, the silver oxide fine particle composition of the present invention has a part or all of its surface coated with a dispersant so that the compositions do not aggregate even in the absence of a solvent. Therefore,
Even after being dried, the silver oxide fine particle composition of the present invention can be re-dispersed in a new binder resin, solvent, reducing agent, and other various additives without agglomeration. The method of redispersing the silver oxide fine particle composition of the present invention is not particularly limited, and a known dispersion method can be appropriately used.

【0017】次に、本発明の酸化銀微粒子組成物の製造
方法について説明する。本発明の酸化銀微粒子組成物の
製造方法は、溶媒に分散または溶解した銀化合物と、溶
媒に分散または溶解した塩基性物質を、分散剤の存在下
で反応させて、この反応液をそのままの状態とするか、
または洗浄した後、溶媒を除去することにより、酸化銀
微粒子の表面の一部または全部が分散剤で被覆された、
平均粒径が0.01〜10μmの酸化銀微粒子組成物が
得られるものである。具体的な例としては、硝酸銀水溶
液に分散剤を添加しておき、水酸化ナトリウム水溶液
を、この硝酸銀水溶液に滴下することにより、本発明の
酸化銀微粒子組成物を得る。本発明の酸化銀微粒子組成
物の製造方法において、銀化合物または塩基性物質を、
分散または溶解させる分散媒の溶媒としては、水、メタ
ノール、エタノール、プロパノール、セカンダリーブチ
ルアルコール(SBA)などのアルコール類、イソホロ
ン、テルピネオール、エチレングリコールモノブチルエ
ーテル、ブチルセロソルブアセテートなどの有機溶媒が
用いられる。
Next, a method for producing the silver oxide fine particle composition of the present invention will be described. The method for producing a silver oxide fine particle composition of the present invention comprises reacting a silver compound dispersed or dissolved in a solvent and a basic substance dispersed or dissolved in a solvent in the presence of a dispersant, and leaving the reaction solution as it is. State or
Alternatively, after washing, by removing the solvent, a part or all of the surface of the silver oxide fine particles is coated with a dispersant,
It is possible to obtain a silver oxide fine particle composition having an average particle diameter of 0.01 to 10 μm. As a specific example, a dispersant is added to a silver nitrate aqueous solution, and a sodium hydroxide aqueous solution is added dropwise to the silver nitrate aqueous solution to obtain the silver oxide fine particle composition of the present invention. In the method for producing a silver oxide fine particle composition of the present invention, a silver compound or a basic substance,
As the solvent of the dispersion medium to be dispersed or dissolved, water, alcohols such as methanol, ethanol, propanol, and secondary butyl alcohol (SBA), and organic solvents such as isophorone, terpineol, ethylene glycol monobutyl ether, and butyl cellosolve acetate are used.

【0018】本発明の酸化銀微粒子組成物の製造方法に
あっては、銀化合物または塩基性物質に分散剤を添加し
ておくことにより、銀化合物または塩基性物質の反応に
よって生成する酸化銀微粒子が凝集するのを防止し、微
粒子状の酸化銀微粒子組成物を得ることができる。ま
た、銀化合物および/または塩基性物質の種類、これら
の物質の濃度、反応温度、反応時間などの各種条件、分
散剤の種類および量などを適宜設定することによって、
目的とする粒径を有する酸化銀微粒子組成物を得ること
ができる。
In the method for producing a silver oxide fine particle composition of the present invention, a silver oxide fine particle produced by a reaction of a silver compound or a basic substance by adding a dispersant to the silver compound or the basic substance. Can be prevented from aggregating, and a fine particle silver oxide fine particle composition can be obtained. In addition, by appropriately setting the types of silver compounds and / or basic substances, the concentrations of these substances, various conditions such as reaction temperature and reaction time, and the type and amount of dispersant,
It is possible to obtain a silver oxide fine particle composition having a target particle size.

【0019】次に、本発明の導電性組成物について説明
する。本発明の導電性組成物は、上記の本発明の酸化銀
微粒子組成物が、バインダ樹脂、溶媒、還元剤から選ば
れる1種類以上に、ほぼ均一に分散されてなるものであ
る。
Next, the conductive composition of the present invention will be described. The conductive composition of the present invention comprises the above-mentioned silver oxide fine particle composition of the present invention dispersed almost uniformly in one or more kinds selected from a binder resin, a solvent and a reducing agent.

【0020】本発明の導電性組成物の第1の実施形態
は、上記の本発明の酸化銀微粒子組成物が、バインダ樹
脂および/または溶媒に分散されてなるものである。こ
の実施形態の導電性組成物を構成するバインダ樹脂とし
ては、アクリル樹脂、ビニル樹脂、ポリエステル樹脂、
ウレタン樹脂、フェノール樹脂、エポキシ樹脂などや、
これらのモノマーが挙げられる。また、この実施形態の
導電性組成物を構成する溶媒としては、上記本発明の酸
化銀微粒子組成物の製造方法で用いられるものと同様の
ものが挙げられる。
The first embodiment of the conductive composition of the present invention is one in which the silver oxide fine particle composition of the present invention is dispersed in a binder resin and / or a solvent. The binder resin constituting the conductive composition of this embodiment, acrylic resin, vinyl resin, polyester resin,
Urethane resin, phenol resin, epoxy resin, etc.,
These monomers may be mentioned. Further, as the solvent constituting the conductive composition of this embodiment, the same solvents as those used in the method for producing a silver oxide fine particle composition of the present invention can be mentioned.

【0021】この実施形態の導電性組成物は、対象物に
塗布または印刷し、これを単に加熱するだけで、導電性
被膜を形成することができるものである。導電性組成物
を構成する酸化銀微粒子組成物の粒径が1μm以下であ
れば、加熱温度180〜200℃、加熱時間10秒〜1
20分程度で、導電性被膜を形成することができる。
The conductive composition of this embodiment is capable of forming a conductive coating by coating or printing on an object and simply heating it. If the particle size of the silver oxide fine particle composition constituting the conductive composition is 1 μm or less, the heating temperature is 180 to 200 ° C., and the heating time is 10 seconds to 1
The conductive film can be formed in about 20 minutes.

【0022】さらに、この実施形態の導電性組成物は、
種々の方法で対象物に塗布または印刷することができ、
そのときの適切な粘度は製膜条件により異なる。例え
ば、スクリーン印刷の場合には、30〜300ポイズ程
度の粘度が好ましい。このときの粘度は、バインダ樹脂
および/または溶媒の種類、バインダ樹脂および/また
は溶媒の酸化銀微粒子組成物に対する添加量を変えるこ
とで調整することができる。
Further, the conductive composition of this embodiment is
Can be applied or printed on objects in various ways,
The appropriate viscosity at that time depends on the film forming conditions. For example, in the case of screen printing, a viscosity of about 30 to 300 poise is preferable. The viscosity at this time can be adjusted by changing the kind of the binder resin and / or the solvent and the addition amount of the binder resin and / or the solvent to the silver oxide fine particle composition.

【0023】また、本発明の導電性組成物の第2の実施
形態は、上記の本発明の酸化銀微粒子組成物が、還元剤
に分散されてなるものである。この実施形態の導電性組
成物を構成する還元剤としては、酸化銀微粒子組成物中
の酸化銀を還元するもので、還元反応後の副生成物が気
体や揮発性の高い液体となり、生成した導電性被膜内に
残留しないものが好ましい。このような還元剤の具体的
な例としては、エチレングリコール、ホルマリン、ヒド
ラジン、アスコルビン酸、各種アルコールなどが挙げら
れる。これらの還元剤は、液体であれば溶媒としても用
いることができ、このような例としては、エチレングリ
コールなどが挙げられる。
In a second embodiment of the conductive composition of the present invention, the silver oxide fine particle composition of the present invention is dispersed in a reducing agent. The reducing agent that constitutes the conductive composition of this embodiment is one that reduces the silver oxide in the silver oxide fine particle composition, and the by-product after the reduction reaction becomes a gas or a highly volatile liquid and is generated. Those that do not remain in the conductive coating are preferred. Specific examples of such a reducing agent include ethylene glycol, formalin, hydrazine, ascorbic acid, and various alcohols. These reducing agents can also be used as a solvent as long as they are liquid, and examples thereof include ethylene glycol.

【0024】このような還元剤の中には、還元力が高い
ものがある。そこで、還元力が高い還元剤を用いる場合
は、導電性組成物を対象物に塗布または印刷する直前
に、導電性組成物に還元剤を添加する。このようにすれ
ば、導電性組成物の保管中や、塗布または印刷の間に、
導電性組成物内で還元反応が起こるのを大幅に抑えるこ
とができる。これにより、導電性組成物の貯蔵安定性を
改善することができ、また、安定した導電性を有する導
電性被膜を形成することができる。
Some of such reducing agents have high reducing power. Therefore, when a reducing agent having a high reducing power is used, the reducing agent is added to the conductive composition immediately before applying or printing the conductive composition on an object. In this way, during storage of the conductive composition, or during application or printing,
It is possible to significantly suppress the reduction reaction from occurring in the conductive composition. Thereby, the storage stability of the conductive composition can be improved, and a conductive coating film having stable conductivity can be formed.

【0025】この実施形態の導電性組成物は、還元剤を
添加することでより低い温度で還元反応が進み、導電性
被膜を形成できる。この例で用いられる酸化銀微粒子組
成物の平均粒径は、小さいものに限定する必要がなく、
0.01〜10μmの範囲であれば特に支障はない。こ
の実施形態の導電性組成物は、還元剤の存在により、1
μm以上の粒子でも還元反応がスムーズに進行し、導電
性被膜を容易に形成することができる。
In the conductive composition of this embodiment, the reduction reaction proceeds at a lower temperature by adding a reducing agent, and a conductive film can be formed. The average particle size of the silver oxide fine particle composition used in this example need not be limited to a small one,
If it is in the range of 0.01 to 10 μm, there is no particular problem. Due to the presence of the reducing agent, the conductive composition of this embodiment has a
Even with particles having a size of μm or more, the reduction reaction proceeds smoothly, and a conductive film can be easily formed.

【0026】この実施形態の導電性組成物の粘度は、製
膜条件によって異なるが、例えば、スクリーン印刷の場
合には、30〜300ポイズ程度が好ましい。また、こ
の実施形態の導電性組成物を用いて導電性被膜を形成す
るには、この導電性組成物を対象物に適宜の手段で塗布
した後、単に加熱するだけでよい。加熱温度は、還元剤
の存在により第1の実施形態よりも低くてよく、加熱温
度140〜160℃、加熱時間10秒〜120分程度
で、導電性被膜を形成することができる。
The viscosity of the conductive composition of this embodiment varies depending on the film forming conditions, but in the case of screen printing, it is preferably about 30 to 300 poise. In order to form a conductive coating film using the conductive composition of this embodiment, the conductive composition may be applied to an object by an appropriate means and then simply heated. The heating temperature may be lower than that in the first embodiment due to the presence of the reducing agent, and the conductive film can be formed at a heating temperature of 140 to 160 ° C. and a heating time of about 10 seconds to 120 minutes.

【0027】なお、本発明の導電性組成物は、上記第1
および第2の実施形態に限定されるものではなく、バイ
ンダ樹脂、溶媒または還元剤から選択される2種類以上
が併用されていてもよい。また、本発明の導電性組成物
を用いて、導電性被膜を形成する際には、いずれの場合
においても、対象物の表面を清浄にしておかなければな
らない。
The electrically conductive composition of the present invention has the above first composition.
It is not limited to the second embodiment, and two or more kinds selected from a binder resin, a solvent or a reducing agent may be used in combination. In addition, when forming a conductive film using the conductive composition of the present invention, the surface of the object must be cleaned in any case.

【0028】次に、本発明の導電性被膜について説明す
る。本発明の導電性被膜は、上述のように、本発明の導
電性組成物を対象物に塗布し、加熱することによって、
酸化銀微粒子組成物中の酸化銀微粒子が還元され、還元
された金属銀微粒子が互いに融着して、一様に連続した
金属銀の薄膜に形成されたものである。
Next, the conductive film of the present invention will be described. The conductive coating of the present invention, as described above, by applying the conductive composition of the present invention to an object, by heating,
The silver oxide fine particles in the silver oxide fine particle composition are reduced, and the reduced metal silver fine particles are fused to each other to form a uniformly continuous thin film of metal silver.

【0029】本発明の導電性被膜の体積抵抗率は、3〜
8×10-6Ω・cmの範囲の値を示し、金属銀の体積抵
抗率と同オーダーである。このように、本発明の導電性
被膜は、体積抵抗率が極めて低いので、導電性被膜の厚
みを極めて薄くしても高い導電性を得ることができる。
例えば、体積抵抗率5×10-5Ω・cmの銀ペーストを
使用して、厚さ50μmの電気回路を要求される場合、
本発明の導電性被膜を用いれば、体積抵抗率3×10-6
Ω・cm、厚さ3μmの電気回路を形成することができ
る。
The volume resistivity of the conductive film of the present invention is 3 to.
It shows a value in the range of 8 × 10 −6 Ω · cm, which is on the same order as the volume resistivity of metallic silver. As described above, since the conductive coating film of the present invention has an extremely low volume resistivity, high conductivity can be obtained even if the thickness of the conductive coating film is extremely thin.
For example, when a silver paste having a volume resistivity of 5 × 10 −5 Ω · cm is used and an electric circuit having a thickness of 50 μm is required,
When the conductive coating film of the present invention is used, the volume resistivity is 3 × 10 −6.
An electric circuit having an Ω · cm and a thickness of 3 μm can be formed.

【0030】また、本発明の導電性被膜を形成する酸化
銀微粒子の平均粒径が0.01〜10μmであるから、
本発明の導電性被膜からなる電気回路の線幅を10μm
以下とすることができる。しかも、この電気回路自体の
導電性が極めて高いので、上述のように電気回路の厚み
を厚くする必要もない。よって、電気回路の形成が容易
である上に、電気回路自体の可撓性も高くなる。
Further, since the silver oxide fine particles forming the conductive film of the present invention have an average particle diameter of 0.01 to 10 μm,
The line width of the electric circuit made of the conductive film of the present invention is 10 μm.
It can be: Moreover, since the electric circuit itself has extremely high conductivity, it is not necessary to increase the thickness of the electric circuit as described above. Therefore, the electric circuit can be easily formed, and the flexibility of the electric circuit itself is increased.

【0031】さらに、本発明の導電性被膜は、対象物に
塗布され、加熱されて形成されるが、この導電性被膜の
対象物側の面は、金属銀の光沢に富む鏡面を呈するもの
となる。特に、対象物の表面が平滑な面(鏡面)であれ
ば、対象物から剥離した導電性被膜の対象物側の面は、
反射率の高い鏡として、家庭用、工業用などの用途に使
用でき、例えばレーザー装置の共振器の反射鏡などに使
用することができる。
Further, the conductive coating of the present invention is formed by applying it to an object and heating it. The surface of the conductive coating on the object side has a mirror surface which is rich in metallic silver. Become. In particular, if the surface of the object is a smooth surface (mirror surface), the surface of the conductive coating separated from the object on the object side is
As a mirror having a high reflectance, it can be used for domestic and industrial uses, and can be used, for example, as a reflector of a resonator of a laser device.

【0032】そして、本発明の導電性被膜の形成におけ
る加熱温度は180〜200℃程度、あるいは140〜
160℃程度で十分である。したがって、本発明の導電
性被膜は、耐熱性の低いプラスチックフィルムなどの対
象物にも適用でき、高導電性を有する導電性被膜を形成
することができるとともに、対象物が熱劣化することも
ない。
The heating temperature for forming the conductive film of the present invention is about 180 to 200 ° C., or 140 to 200 ° C.
About 160 ° C is sufficient. Therefore, the conductive coating film of the present invention can be applied to an object such as a plastic film having a low heat resistance, can form a conductive coating film having high conductivity, and the object does not deteriorate due to heat. .

【0033】以下、具体的な実施例を示して、本発明の
効果を明かにする。 (実施例1)イオン交換水50mlに硝酸銀10.0g
を溶解し、さらに、これに分散剤としてヒドロキシプロ
ピルセルロース2.5gを添加した水溶液に、攪拌しな
がら2M水酸化ナトリウム水溶液を29.5ml滴下
し、攪拌を10〜30分続けて、酸化銀微粒子の懸濁液
を調製した。この懸濁液中の酸化銀微粒子の粒径を、粒
径測定器(商品名;マイクロトラックUPA150、日
機装社製)で測定したところ、その平均粒径は0.35
μmであった。次いで、この酸化銀微粒子の懸濁液を濾
過して、回収した酸化銀微粒子をメタノールで2〜5回
洗浄し、余分なイオン類を除去した。次いで、これを熱
風乾燥炉にて、温度50℃で、5時間乾燥させて、表面
が分散剤で被覆された酸化銀微粒子組成物を得た。次い
で、この酸化銀微粒子組成物1.0gをセカンダリーブ
チルアルコール(SBA)0.5gに分散させて、ペー
スト状の導電性組成物を製造した。この導電性組成物中
の酸化銀微粒子組成物の粒径を粒径測定器にて測定した
ところ、その平均粒径は、懸濁液中の酸化銀微粒子の平
均粒径と同じであった。このことから、導電性組成物中
で、酸化銀微粒子組成物は凝集しておらず、分散性が良
好であることが確認された。次いで、この導電性組成物
1.0gに、還元剤としてエチレングリコールを0.5
g添加した後、厚さ0.1mmのポリエチレンテレフタ
レートフィルムの表面に、スクリーン印刷により、厚さ
5〜10μmの電気回路パターンを形成した後、これを
オーブン中で、温度150℃で、30分〜3時間加熱し
て、導電性被膜を形成した。得られた導電性被膜の体積
抵抗率は、3〜6×10-6Ω・cmであった。さらに、
この導電性被膜の表面を走査型電子顕微鏡で観察したと
ころ、酸化銀を還元して生成した銀微粒子同士が融着接
合していることが確認された。
Hereinafter, the effects of the present invention will be clarified by showing concrete examples. (Example 1) 10.0 g of silver nitrate in 50 ml of ion-exchanged water
2M sodium hydroxide aqueous solution was added dropwise to the aqueous solution prepared by dissolving 2.5 g of hydroxypropyl cellulose as a dispersant while stirring, and the stirring was continued for 10 to 30 minutes to obtain silver oxide fine particles. A suspension of was prepared. The particle size of silver oxide fine particles in this suspension was measured with a particle size measuring device (trade name: Microtrac UPA150, manufactured by Nikkiso Co., Ltd.), and the average particle size was 0.35.
was μm. Next, this silver oxide fine particle suspension was filtered, and the recovered silver oxide fine particles were washed with methanol 2 to 5 times to remove excess ions. Then, this was dried in a hot air drying oven at a temperature of 50 ° C. for 5 hours to obtain a silver oxide fine particle composition having a surface coated with a dispersant. Next, 1.0 g of this silver oxide fine particle composition was dispersed in 0.5 g of secondary butyl alcohol (SBA) to produce a paste-like conductive composition. When the particle size of the silver oxide fine particle composition in this conductive composition was measured by a particle size measuring device, the average particle size was the same as the average particle size of the silver oxide fine particles in the suspension. From this, it was confirmed that the silver oxide fine particle composition did not aggregate in the conductive composition, and the dispersibility was good. Next, 0.5 g of ethylene glycol as a reducing agent was added to 1.0 g of this conductive composition.
After adding g, an electric circuit pattern having a thickness of 5 to 10 μm was formed by screen printing on the surface of a polyethylene terephthalate film having a thickness of 0.1 mm, and then this was placed in an oven at a temperature of 150 ° C. for 30 minutes to The conductive coating was formed by heating for 3 hours. The volume resistivity of the obtained conductive coating was 3 to 6 × 10 −6 Ω · cm. further,
When the surface of this conductive film was observed with a scanning electron microscope, it was confirmed that the silver particles produced by reducing silver oxide were fusion-bonded to each other.

【0034】(実施例2)イオン交換水50mlに硝酸
銀10.0gを溶解し、さらに、これに分散剤としてデ
ィスパービック190(ビックケミー社製)6.25g
を添加した水溶液に、攪拌しながら2M水酸化ナトリウ
ム水溶液を29.5ml滴下し、攪拌を10〜30分続
けて、酸化銀微粒子の懸濁液を調製した。この懸濁液中
の酸化銀微粒子の粒径を、粒径測定器(商品名;マイク
ロトラックUPA150、日機装社製)で測定したとこ
ろ、その平均粒径は0.21μmであった。次いで、こ
の酸化銀微粒子の懸濁液を、メタノールで2〜5回洗浄
し、余分なイオン類を除去した。次いで、これを熱風乾
燥炉にて、温度50℃で、5時間乾燥させて、酸化銀微
粒子組成物を得た。次いで、この酸化銀微粒子組成物
1.0gをセカンダリーブチルアルコール(SBA)
0.5gに分散させて、ペースト状の導電性組成物を製
造した。この導電性組成物中の酸化銀微粒子組成物の粒
径を粒径測定器にて測定したところ、その平均粒径は、
懸濁液中の酸化銀微粒子の平均粒径と同じであった。こ
のことから、導電性組成物中で、酸化銀微粒子組成物は
凝集しておらず、分散性が良好であることが確認され
た。次いで、この導電性組成物1.0gに、還元剤とし
てエチレングリコールを0.5g添加した後、厚さ0.
1mmのポリエチレンテレフタレートフィルムの表面
に、スクリーン印刷により、厚さ5〜10μmの電気回
路パターンを形成した後、これをオーブン中で、温度1
50℃で、30分〜3時間加熱して、導電性被膜を形成
した。得られた導電性被膜の体積抵抗率は、3〜6×1
-6Ω・cmであった。さらに、この導電性被膜の表面
を走査型電子顕微鏡で観察したところ、酸化銀を還元し
て生成した銀微粒子同士が融着接合していることが確認
された。
Example 2 10.0 g of silver nitrate was dissolved in 50 ml of ion-exchanged water, and 6.25 g of Disperbic 190 (manufactured by BYK Chemie) was added as a dispersant.
29.5 ml of a 2M sodium hydroxide aqueous solution was added dropwise to the aqueous solution added with stirring, and stirring was continued for 10 to 30 minutes to prepare a suspension of silver oxide fine particles. When the particle size of the silver oxide fine particles in this suspension was measured with a particle size measuring device (trade name: Microtrac UPA150, manufactured by Nikkiso Co., Ltd.), the average particle size was 0.21 μm. Next, this silver oxide fine particle suspension was washed with methanol 2 to 5 times to remove excess ions. Then, this was dried in a hot air drying oven at a temperature of 50 ° C. for 5 hours to obtain a silver oxide fine particle composition. Then, 1.0 g of this silver oxide fine particle composition was added to secondary butyl alcohol (SBA).
It was dispersed in 0.5 g to produce a paste-like conductive composition. When the particle size of the silver oxide fine particle composition in this conductive composition was measured with a particle size measuring device, the average particle size was
It was the same as the average particle size of the fine silver oxide particles in the suspension. From this, it was confirmed that the silver oxide fine particle composition did not aggregate in the conductive composition, and the dispersibility was good. Next, 0.5 g of ethylene glycol as a reducing agent was added to 1.0 g of this conductive composition, and then the thickness was adjusted to 0.
An electric circuit pattern having a thickness of 5 to 10 μm was formed by screen printing on the surface of a 1 mm polyethylene terephthalate film, and then this was placed in an oven at a temperature of 1 μm.
By heating at 50 ° C. for 30 minutes to 3 hours, a conductive film was formed. The volume resistivity of the obtained conductive coating is 3 to 6 × 1.
It was 0 −6 Ω · cm. Furthermore, when the surface of this conductive film was observed with a scanning electron microscope, it was confirmed that the silver fine particles produced by reducing silver oxide were fusion-bonded to each other.

【0035】(比較例)比較のため、市販の銀ペースト
(商品名;FA−353、藤倉化成社製)を用意し、こ
れを厚さ0.1mmのポリエチレンテレフタレートフィ
ルムの表面に、スクリーン印刷により、厚さ5〜10μ
mの電気回路パターンを形成した後、これをオーブン中
で、温度150℃で、30分加熱して、導電性被膜を形
成した。得られた導電性被膜の体積抵抗率は、4×10
-5Ω・cmであった。さらに、この導電性被膜の表面を
走査型電子顕微鏡で観察したところ、銀フレーク同士が
単に接触している状態であることが確認された。
(Comparative Example) For comparison, a commercially available silver paste (trade name: FA-353, manufactured by Fujikura Kasei Co., Ltd.) was prepared and screen-printed on the surface of a polyethylene terephthalate film having a thickness of 0.1 mm. , Thickness 5-10μ
After forming the electric circuit pattern of m, this was heated in an oven at a temperature of 150 ° C. for 30 minutes to form a conductive film. The volume resistivity of the obtained conductive coating is 4 × 10.
It was −5 Ω · cm. Furthermore, when the surface of this conductive coating was observed with a scanning electron microscope, it was confirmed that the silver flakes were simply in contact with each other.

【0036】[0036]

【発明の効果】以上説明したように、本発明の酸化銀微
粒子組成物は、酸化銀微粒子の表面が分散剤で被覆され
てなり、平均粒径が0.01〜10μmの微粒子である
から、乾燥した状態でも、組成物同士が互いに凝集し難
く、バインダ樹脂や溶媒などに対する分散性に非常に優
れた微粒子である。また、この酸化銀微粒子組成物は、
比較的低温で、単に加熱するか、あるいは還元剤との共
存下において加熱することにより、容易に金属銀に還元
される。そして、この還元反応時に生じる反応熱によっ
て、還元反応によって形成された金属銀微粒子が溶融
し、互いに融着して高導電性の金属銀の導電性被膜を形
成することができる。したがって、得られる導電性被膜
は、金属銀と同等の体積抵抗率および導電性を有するも
のとなる。
As described above, in the silver oxide fine particle composition of the present invention, the surface of the silver oxide fine particles is coated with a dispersant, and the average particle diameter is 0.01 to 10 μm. Even in a dried state, the compositions are hard to aggregate with each other, and the particles are very excellent in dispersibility in a binder resin, a solvent and the like. Further, this silver oxide fine particle composition,
It can be easily reduced to metallic silver by simply heating at a relatively low temperature or by heating in the presence of a reducing agent. Then, the reaction heat generated during the reduction reaction melts the metal silver fine particles formed by the reduction reaction and fuses them to each other to form a conductive film of highly conductive metal silver. Therefore, the obtained conductive coating has the same volume resistivity and conductivity as metallic silver.

【0037】本発明の導電性組成物は、上記酸化銀微粒
子組成物が、バインダ樹脂、溶媒、還元剤から選ばれる
1種類以上に分散されてなるものであるから、対象物に
塗布または印刷し、これを単に加熱するだけで、導電性
被膜を形成することができるものである。特に、還元剤
が添加されたものは、より低い温度で還元反応が進み、
導電性被膜を形成することができる。
The conductive composition of the present invention comprises the above-mentioned silver oxide fine particle composition dispersed in one or more kinds selected from a binder resin, a solvent and a reducing agent, and therefore is applied or printed on an object. The conductive coating can be formed by simply heating this. In particular, in the case where the reducing agent is added, the reduction reaction proceeds at a lower temperature,
A conductive coating can be formed.

【0038】本発明の導電性被膜は、上記導電性組成物
を対象物に塗布し、加熱することにより、銀微粒子が互
いに融着しているものであるから、体積抵抗率は、3〜
8×10-6Ω・cmの範囲の値を示し、金属銀の体積抵
抗率と同オーダーとなる。また、体積抵抗率が極めて低
いので、導電性被膜の厚みを極めて薄くしても高い導電
性を得ることができる。さらに、この導電性被膜からな
る電気回路は、その線幅を十分に細くすることができ、
その厚みを厚くするも必要がない。したがって、電気回
路の形成が容易である上に、電気回路自体の可撓性も高
くなる。そして、その導電性被膜の形成は、比較的低い
温度での加熱でなされるので、対称物として耐熱性の低
いプラスチックなどを用いることができる。
The electroconductive coating film of the present invention has the volume resistivity of 3 to since the fine silver particles are fused to each other by applying the electroconductive composition to an object and heating it.
It shows a value in the range of 8 × 10 −6 Ω · cm, which is on the same order as the volume resistivity of metallic silver. Further, since the volume resistivity is extremely low, high conductivity can be obtained even if the thickness of the conductive coating is extremely thin. Furthermore, the electric circuit made of this conductive film can have a sufficiently narrow line width,
It is not necessary to increase the thickness. Therefore, it is easy to form the electric circuit and the flexibility of the electric circuit itself is increased. Since the conductive coating is formed by heating at a relatively low temperature, it is possible to use a plastic having low heat resistance as a symmetrical material.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01B 5/14 H01B 5/14 Z 13/00 503 13/00 503C (72)発明者 小野 朗伸 東京都江東区木場一丁目5番1号 株式会 社フジクラ内 (72)発明者 本多 俊之 埼玉県北葛飾郡鷲宮桜田5丁目13番地1号 藤倉化成株式会社開発研究所内 (72)発明者 岡本 航司 埼玉県北葛飾郡鷲宮桜田5丁目13番地1号 藤倉化成株式会社開発研究所内 (72)発明者 伊藤 雅史 埼玉県北葛飾郡鷲宮桜田5丁目13番地1号 藤倉化成株式会社開発研究所内 Fターム(参考) 4J002 AA001 BA001 BG001 CC031 CC101 CD001 CF001 CK021 DE096 FB266 FD116 GH01 GJ01 GQ02 5G301 CA11 CD04 DA23 DA42 DD02 DD03 5G307 GA02 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) H01B 5/14 H01B 5/14 Z 13/00 503 13/00 503C (72) Inventor Akinobu Ono Tokyo 1-5-1 Kiba, Koto-ku, Fujikura Stock Company (72) Inventor Toshiyuki Honda 5-13-1 Sakurada, Washinomiya, Kita Katsushika-gun, Saitama Fujikura Kasei Co., Ltd. Development Lab (72) Inventor Koji Okamoto Saitama Fujikura Chemical Co., Ltd., 5-13-1, Washinomiya Sakurada, Kita Katsushika-gun, Japan (72) Inventor Masafumi Ito 5-13-1, Sakurada, Washinomiya, Kita-Katsushika-gun, Saitama Prefecture F-term (Reference) 4J002 AA001 BA001 BG001 CC031 CC101 CD001 CF001 CK021 DE096 FB266 FD116 GH01 GJ01 GQ02 5G301 CA11 CD04 DA23 DA42 DD02 DD03 5G307 GA02

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 酸化銀微粒子の表面が分散剤で被覆され
てなり、平均粒径が0.01〜10μmの微粒子である
ことを特徴とする酸化銀微粒子組成物。
1. A silver oxide fine particle composition, characterized in that the surface of silver oxide fine particles is coated with a dispersant and has an average particle diameter of 0.01 to 10 μm.
【請求項2】 請求項1記載の酸化銀微粒子組成物が、
バインダ樹脂、溶媒、還元剤から選ばれる1種類以上に
分散可能であることを特徴とする酸化銀微粒子組成物。
2. The silver oxide fine particle composition according to claim 1,
A silver oxide fine particle composition which can be dispersed in one or more kinds selected from a binder resin, a solvent and a reducing agent.
【請求項3】 銀化合物と塩基性物質を分散剤の存在下
で反応させ、酸化銀微粒子組成物を得ることを特徴とす
る酸化銀微粒子組成物の製造方法。
3. A method for producing a silver oxide fine particle composition, which comprises reacting a silver compound and a basic substance in the presence of a dispersant to obtain a silver oxide fine particle composition.
【請求項4】 請求項1ないし3のいずれかに記載の酸
化銀微粒子組成物が、バインダ樹脂、溶媒、還元剤から
選ばれる1種類以上に分散されてなることを特徴とする
導電性組成物。
4. A conductive composition comprising the silver oxide fine particle composition according to claim 1 dispersed in one or more kinds selected from a binder resin, a solvent and a reducing agent. .
【請求項5】 請求項4記載の導電性組成物を対象物に
塗布し、加熱することを特徴とする導電性被膜の形成方
法。
5. A method for forming a conductive film, which comprises applying the conductive composition according to claim 4 to an object and heating the object.
【請求項6】 請求項5記載の導電性被膜の形成方法で
得られ、銀微粒子が互いに融着していることを特徴とす
る導電性被膜。
6. A conductive coating film obtained by the method for forming a conductive coating film according to claim 5, wherein the silver fine particles are fused to each other.
JP2002113713A 2002-04-16 2002-04-16 Silver oxide fine particle composition and method for producing the same, conductive composition, conductive film and method for forming the same Expired - Lifetime JP4090778B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002113713A JP4090778B2 (en) 2002-04-16 2002-04-16 Silver oxide fine particle composition and method for producing the same, conductive composition, conductive film and method for forming the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002113713A JP4090778B2 (en) 2002-04-16 2002-04-16 Silver oxide fine particle composition and method for producing the same, conductive composition, conductive film and method for forming the same

Publications (2)

Publication Number Publication Date
JP2003308730A true JP2003308730A (en) 2003-10-31
JP4090778B2 JP4090778B2 (en) 2008-05-28

Family

ID=29395820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002113713A Expired - Lifetime JP4090778B2 (en) 2002-04-16 2002-04-16 Silver oxide fine particle composition and method for producing the same, conductive composition, conductive film and method for forming the same

Country Status (1)

Country Link
JP (1) JP4090778B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005015289A (en) * 2003-06-27 2005-01-20 Mitsui Mining & Smelting Co Ltd Superfine silver oxide powder suspension and method of producing the same
JP2006040603A (en) * 2004-07-23 2006-02-09 Fujikura Ltd Forming method of conductive film
JP2006314913A (en) * 2005-05-12 2006-11-24 Fujikura Ltd Conductive film, its production method, and flexible wiring substrate
JP2007042301A (en) * 2005-07-29 2007-02-15 Toda Kogyo Corp Conductive composition, conductive paste, and conductive film
US7276185B2 (en) 2003-10-22 2007-10-02 Denso Corporation Conductor composition, a mounting substrate and a mounting structure utilizing the composition
US7560051B2 (en) 2005-03-18 2009-07-14 Seiko Epson Corporation Metal particle dispersion liquid, method for manufacturing metal particle dispersion liquid, method for manufacturing conductive-film-forming substrate, electronic device and electronic apparatus
JP2009269783A (en) * 2008-05-07 2009-11-19 Dowa Hightech Co Ltd Silver oxide powder and its manufacturing method
US7816780B2 (en) * 2006-12-18 2010-10-19 Renesas Electronics Corporation Semiconductor apparatus and manufacturing method of semiconductor apparatus
JP2012131948A (en) * 2010-12-24 2012-07-12 Sumitomo Bakelite Co Ltd Resin composition, prepreg, laminate plate, resin sheet, printed wiring board, and semiconductor device
JP2012176892A (en) * 2012-06-08 2012-09-13 Dowa Hightech Co Ltd Method for producing silver oxide powder
US8840811B2 (en) 2009-04-28 2014-09-23 Hitachi Chemical Company, Ltd. Electrically conductive bonding material, method of bonding with the same, and semiconductor device bonded with the same
US10391124B2 (en) * 2009-07-21 2019-08-27 Aidance Skincare & Topical Solutions Llc Silver oxide formulations

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5156658B2 (en) 2009-01-30 2013-03-06 株式会社日立製作所 Electronic components for LSI

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005015289A (en) * 2003-06-27 2005-01-20 Mitsui Mining & Smelting Co Ltd Superfine silver oxide powder suspension and method of producing the same
US7276185B2 (en) 2003-10-22 2007-10-02 Denso Corporation Conductor composition, a mounting substrate and a mounting structure utilizing the composition
US7807073B2 (en) 2003-10-22 2010-10-05 Denso Corporation Conductor composition, a mounting substrate and a mounting structure utilizing the composition
JP2006040603A (en) * 2004-07-23 2006-02-09 Fujikura Ltd Forming method of conductive film
JP4628718B2 (en) * 2004-07-23 2011-02-09 株式会社フジクラ Method for forming conductive film
US7560051B2 (en) 2005-03-18 2009-07-14 Seiko Epson Corporation Metal particle dispersion liquid, method for manufacturing metal particle dispersion liquid, method for manufacturing conductive-film-forming substrate, electronic device and electronic apparatus
US7767115B2 (en) 2005-03-18 2010-08-03 Seiko Epson Corporation Metal particle dispersion liquid, method for manufacturing metal particle dispersion liquid, method for manufacturing conductive-film-forming substrate, electronic device and electronic apparatus
JP2006314913A (en) * 2005-05-12 2006-11-24 Fujikura Ltd Conductive film, its production method, and flexible wiring substrate
JP2007042301A (en) * 2005-07-29 2007-02-15 Toda Kogyo Corp Conductive composition, conductive paste, and conductive film
US7816780B2 (en) * 2006-12-18 2010-10-19 Renesas Electronics Corporation Semiconductor apparatus and manufacturing method of semiconductor apparatus
JP2009269783A (en) * 2008-05-07 2009-11-19 Dowa Hightech Co Ltd Silver oxide powder and its manufacturing method
US8840811B2 (en) 2009-04-28 2014-09-23 Hitachi Chemical Company, Ltd. Electrically conductive bonding material, method of bonding with the same, and semiconductor device bonded with the same
US10391124B2 (en) * 2009-07-21 2019-08-27 Aidance Skincare & Topical Solutions Llc Silver oxide formulations
JP2012131948A (en) * 2010-12-24 2012-07-12 Sumitomo Bakelite Co Ltd Resin composition, prepreg, laminate plate, resin sheet, printed wiring board, and semiconductor device
JP2012176892A (en) * 2012-06-08 2012-09-13 Dowa Hightech Co Ltd Method for producing silver oxide powder

Also Published As

Publication number Publication date
JP4090778B2 (en) 2008-05-28

Similar Documents

Publication Publication Date Title
EP1972660B1 (en) Conductive composition, conductive paint, and method of forming conductive paint
KR100951726B1 (en) Electroconductive composition, electroconductive coating and method for forming electroconductive coating
JP4301763B2 (en) Silver compound paste
JP3423932B2 (en) Resistive paste for forming electric heating element thick film
JP2003308730A (en) Silver oxide fine particle composition, its manufacturing method, conductive composition, conductive film and its manufacturing method
JP2013149618A (en) Polymer thick film solder alloy conductor composition
JP2003308731A (en) Conductive composition, conductive coating and method for forming the same
JP2005200604A (en) Particulate silver compound and use of the same
JP2003309337A (en) Printed circuit board
JP4090779B2 (en) Conductive composition, method for forming conductive film, conductive film
JP3805503B2 (en) Paste for producing baking layers
JP2003308499A (en) Ic card and its manufacturing method
JP2008208285A (en) Conductive ink composition
JP2004335138A (en) Silver oxide particle and its manufacturing method, and conductive composition and its manufacturing method
JP2001273816A (en) Conductive paste
JP2006041008A (en) Electronic component mounting method
JP2003301140A (en) Coating material for forming transparent electroconductive film and emboss processed electronic part carrier tape
JP2847563B2 (en) Electron beam-curable conductive paste composition
JPH05290621A (en) Indium-tin oxide paste baked at high temperature
JP2010050205A (en) Membrane wiring board and method of manufacturing the same
JP2003309375A (en) Multilayer circuit board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080227

R150 Certificate of patent or registration of utility model

Ref document number: 4090778

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120307

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120307

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140307

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term