JP2003303519A - Method of manufacturing superconducting wire - Google Patents

Method of manufacturing superconducting wire

Info

Publication number
JP2003303519A
JP2003303519A JP2002107055A JP2002107055A JP2003303519A JP 2003303519 A JP2003303519 A JP 2003303519A JP 2002107055 A JP2002107055 A JP 2002107055A JP 2002107055 A JP2002107055 A JP 2002107055A JP 2003303519 A JP2003303519 A JP 2003303519A
Authority
JP
Japan
Prior art keywords
wire
multifilamentary
clad
superconducting
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002107055A
Other languages
Japanese (ja)
Other versions
JP3712120B2 (en
Inventor
Tetsuyuki Kaneko
哲幸 兼子
Jun Fujigami
純 藤上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2002107055A priority Critical patent/JP3712120B2/en
Publication of JP2003303519A publication Critical patent/JP2003303519A/en
Application granted granted Critical
Publication of JP3712120B2 publication Critical patent/JP3712120B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a superconducting wire enhancing Jc (Lc, Je) by aligning the orientation of crystal grains of a superconducting phase. <P>SOLUTION: A multiconductor wire in which raw material powder of the superconducting phase is arranged in a multi-core state is produced. The multiconductor wire is drawn flatly. The flatly drawn multiconductor wire is rolled to form a tape-shaped multiconductor wire. In the case where the multiconductor wire is processed in a flat shape by drawing and then rolled, shearing easy to generate in the beginning of rolling can be avoided, and a tape-shaped wire in which the orientation of the crystal grains of the superconducting filament is aligned can be obtained. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、超電導線材の製造
方法に関するものである。特に、臨界電流密度(Jc)を
向上できる超電導線材の製造方法に関するものである。
TECHNICAL FIELD The present invention relates to a method for manufacturing a superconducting wire. In particular, the present invention relates to a method for manufacturing a superconducting wire which can improve the critical current density (Jc).

【0002】[0002]

【従来の技術】パイダーインチューブ法によりBi2223相
などの酸化物超電導体を長尺のテープ状線材に形成する
技術が知られている。この方法は、まず超電導相の原料
粉末を金属パイプに充填する。次に、この金属パイプを
伸線加工してクラッド線とする。複数のクラッド線を束
ねて別の金属パイプに挿入し、伸線加工して多芯線とす
る。この多芯線を圧延加工してテープ状線材とする。テ
ープ状線材に一次熱処理を施して目的の超電導相を生成
させる。続いて、このテープ状線材を再度圧延してから
二次熱処理を施して、超電導相の結晶粒同士を接合させ
る。これら2回の塑性加工と熱処理は、1回しか行わな
い場合もあるが、一般に大気雰囲気下にて行われる。そ
して、金属シース中に多数の超電導フィラメントが含ま
れるテープ状線材を得る。
2. Description of the Related Art There is known a technique of forming an oxide superconductor such as Bi2223 phase into a long tape-shaped wire by the Pider-in-tube method. In this method, first, a raw material powder for a superconducting phase is filled in a metal pipe. Next, this metal pipe is drawn to form a clad wire. A plurality of clad wires are bundled, inserted into another metal pipe, and drawn to form a multifilamentary wire. The multifilamentary wire is rolled into a tape-shaped wire. The tape-shaped wire is subjected to a primary heat treatment to generate a desired superconducting phase. Then, the tape-shaped wire is rolled again and then subjected to a secondary heat treatment to bond the crystal grains of the superconducting phase. These two times of plastic working and heat treatment may be performed only once, but they are generally performed in an air atmosphere. Then, a tape-shaped wire rod containing a large number of superconducting filaments in the metal sheath is obtained.

【0003】[0003]

【発明が解決しようとする課題】しかし、従来の製造方
法で得られる超電導線材では、超電導コイルやケーブル
などの用途に適用する場合は、さらに高いJc(Ic:臨界
電流、Je:実効臨界電流密度)が求められており、数%
でもJcを向上することが重要かつ困難な課題であった。
However, the superconducting wire obtained by the conventional manufacturing method has a higher Jc (Ic: critical current, Je: effective critical current density) when applied to applications such as superconducting coils and cables. ) Is required, and a few percent
However, improving Jc was an important and difficult task.

【0004】高温超電導線材は、酸化物セラミックスで
あるため、そのJcは原料粉末、フィラメント配置、加工
プロセス、圧延条件、熱処理条件など、全ての製造条件
の影響を受ける。そのため、さらに高いJcを実現するに
は、これらの各製造条件を最適化する必要がある。
Since the high-temperature superconducting wire is an oxide ceramic, its Jc is affected by all manufacturing conditions such as raw material powder, filament arrangement, processing process, rolling condition and heat treatment condition. Therefore, in order to achieve higher Jc, it is necessary to optimize each of these manufacturing conditions.

【0005】これらの製造条件のうち、多芯線の圧延す
る際、従来は伸線後の多芯線をそのまま圧延しており、
特に圧延方向を規定することもなかった。そのため、Bi
2223相の結晶粒の配向性も揃っておらず、Jc向上の阻害
要因となっていた。
Of these manufacturing conditions, when rolling a multifilamentary wire, conventionally, the multifilamentary wire after drawing is rolled as it is,
In particular, the rolling direction was not specified. Therefore, Bi
The orientation of the crystal grains of the 2223 phase was also not uniform, which was an obstacle to the improvement of Jc.

【0006】従って、本発明の主目的は、超電導相の結
晶粒の配向性を揃えてJc(Ic、Je)を向上させることが
できる超電導線材の製造方法を提供することにある。
Therefore, a main object of the present invention is to provide a method for producing a superconducting wire which can improve the Jc (Ic, Je) by aligning the crystal grains of the superconducting phase.

【0007】[0007]

【課題を解決するための手段】本発明は、多芯線を圧延
するのに先立って、伸線により多芯線を扁平状に形成し
ておくことで上記の目的を達成する。
The present invention achieves the above object by forming a multifilamentary wire into a flat shape by drawing before rolling the multifilamentary wire.

【0008】すなわち、本発明超電導線材の製造方法
は、安定化材中に超電導相の原料粉末が多芯に配置され
た多芯線を用意する工程と、前記多芯線を扁平状に伸線
する工程と、扁平状に伸線された多芯線を圧延してテー
プ状線材とする工程とを有することを特徴とする。
That is, the method for producing a superconducting wire of the present invention comprises a step of preparing a multifilamentary wire in which a raw material powder of a superconducting phase is arranged in a multifilament in a stabilizing material, and a step of drawing the multifilamentary wire into a flat shape. And a step of rolling the flattened multifilamentary wire into a tape-shaped wire.

【0009】従来、多芯線を圧延する場合、断面が円形
あるいは正六角形の多芯線をそのまま圧延しており、圧
延方向も特に規定していない。本発明者らは、この圧延
時の多芯線の挙動を詳細に検討した結果、次の知見を得
た。
Conventionally, when rolling a multifilamentary wire, a multifilamentary wire having a circular or regular hexagonal cross section is rolled as it is, and the rolling direction is not particularly specified. As a result of detailed investigation of the behavior of the multifilamentary wire during rolling, the present inventors have obtained the following findings.

【0010】多芯線を一軸方向に圧延しようとして
も、多芯線が圧延方向と交差する方向にずれて変形し、
せん断が発生する。 このせん断発生は圧延初期に生じやすい。 ある程度まで多芯線を圧縮すると一軸圧縮に近い変形
が行われる。 このせん断は断面が円形の多芯線の場合のみならず、
断面が六角形の多芯線を対角または対辺方向に圧延しよ
うとした場合にも発生する。
When the multifilamentary wire is rolled in a uniaxial direction, the multifilamentary wire is displaced in a direction intersecting the rolling direction and is deformed,
Shear occurs. This shearing is likely to occur at the beginning of rolling. When the multifilamentary wire is compressed to some extent, a deformation similar to uniaxial compression is performed. This shearing is not limited to the case of a multi-core wire with a circular cross section,
It also occurs when trying to roll a multifilamentary wire having a hexagonal cross section in a diagonal or opposite side direction.

【0011】以上の知見から、伸線により予め多芯線を
扁平状に加工しておいてから圧延を行えば、圧延の初期
に発生しやすいせん断を回避することができ、超電導フ
ィラメントの結晶の配向を揃えたテープ状線材を得るこ
とができることを見出した。
From the above knowledge, if the multifilamentary wire is processed into a flat shape in advance by drawing and then the rolling is performed, it is possible to avoid the shear that tends to occur in the initial stage of rolling, and the orientation of the crystal of the superconducting filament. It was found that it is possible to obtain a tape-shaped wire rod in which

【0012】伸線加工であれば、圧延と異なって多芯線
の外周から実質的に均等な圧力が作用するため、扁平状
に加工する場合でも前述したせん断は生じない。そのた
め、多芯線内において隣接する超電導相の原料粉末同士
がつながるフィラメントブリッジが生じにくい。そし
て、予め扁平状に伸線された多芯線は、そのままさらに
扁平にする圧延加工を行ってもほぼ一軸方向に圧縮する
ことができ、超電導相の結晶粒の配向性を揃えたテープ
状線材を得ることができる。
In wire drawing, substantially the same pressure is applied from the outer circumference of the multifilamentary wire unlike in rolling, so that the above-mentioned shearing does not occur even when flattening. Therefore, in the multifilamentary wire, a filament bridge connecting adjacent raw material powders of the superconducting phase is unlikely to occur. Then, the multifilamentary wire drawn in advance in a flat shape can be compressed in a substantially uniaxial direction even if it is further flattened and rolled, and a tape-shaped wire rod having an aligned orientation of the crystal grains of the superconducting phase is obtained. Obtainable.

【0013】以下、本発明をより詳しく説明する。 (製造工程の概要)本発明超電導線材の製造工程は、通
常、「原料粉末の調整→クラッド線の作製→多芯線の作
製→扁平伸線→圧延してテープ状線材の作製→熱処理」
により行われる。必要に応じて、圧延と熱処理を複数回
繰り返す。例えば、扁平伸線に続いて「一次圧延してテ
ープ状線材の作製→一次熱処理→テープ状線材の二次圧
延→二次熱処理」を行う。
The present invention will be described in more detail below. (Summary of manufacturing process) The manufacturing process of the superconducting wire of the present invention is usually "adjustment of raw material powder → preparation of clad wire → preparation of multifilamentary wire → flat wire drawing → preparation of tape-shaped wire by rolling → heat treatment"
Done by. If necessary, rolling and heat treatment are repeated multiple times. For example, following the flat wire drawing, “primary rolling to produce a tape-shaped wire rod → primary heat treatment → secondary rolling of the tape-shaped wire rod → secondary heat treatment” is performed.

【0014】(原料粉末)原料粉末には、最終的に77K
以上の臨界温度を持ちうる超電導相が得られるように配
合した粉末が好適である。この原料粉末には、複合酸化
物を所定の組成比となるように混合した粉末のみなら
ず、その混合粉末を焼結し、これを粉砕した粉末も含ま
れる。
(Raw material powder) The final raw material powder is 77K.
A powder blended so as to obtain a superconducting phase capable of having the above critical temperature is suitable. This raw material powder includes not only a powder in which the composite oxide is mixed so as to have a predetermined composition ratio, but also a powder obtained by sintering the mixed powder and crushing the powder.

【0015】例えば、最終的にBi2223系超電導線材を得
る場合、出発原料にはBi2O3、PbO、SrCO3、CaCO3、CuO
を用いる。これら粉末を700〜870℃、10〜40時間、大気
雰囲気又は減圧雰囲気下にて少なくとも1回焼結する。
このような焼結により、Bi2223相よりもBi2212相が主体
となった原料粉末を得ることができる。
For example, when finally obtaining a Bi2223 series superconducting wire, the starting materials are Bi 2 O 3 , PbO, SrCO 3 , CaCO 3 and CuO.
To use. These powders are sintered at 700 to 870 ° C. for 10 to 40 hours at least once in an air atmosphere or a reduced pressure atmosphere.
By such sintering, it is possible to obtain a raw material powder mainly composed of the Bi2212 phase rather than the Bi2223 phase.

【0016】具体的な組成比は、BiaPbbSrcCadCueでa+
b:c:d:e=1.7〜2.8:1.7〜2.5:1.7〜2.8:3を満た
すものが好ましい。中でもBiまたはBi+Pb:Sr:Ca:Cu
=2:2:2:3を中心とする組成が好適である。特に、Bi
は1.8付近、Pbは0.3〜0.4、Srは2付近、Caは2.2付近、C
uは3.0付近が望ましい。
The specific composition ratio is as follows: Bi a Pb b Sr c Ca d Cu e
Those satisfying b: c: d: e = 1.7 to 2.8: 1.7 to 2.5: 1.7 to 2.8: 3 are preferable. Among them, Bi or Bi + Pb: Sr: Ca: Cu
A composition centered on = 2: 2: 2: 3 is preferable. In particular, Bi
Is around 1.8, Pb is 0.3 to 0.4, Sr is around 2, Ca is around 2.2, C
u is preferably around 3.0.

【0017】この原料粉末は、最大粒径が2.0μm以下
であり、平均粒径が1.0μm以下であることが好まし
い。このような微粉末を用いることで、高温超電導相を
生成しやすくなる。
This raw material powder preferably has a maximum particle size of 2.0 μm or less and an average particle size of 1.0 μm or less. By using such fine powder, it becomes easy to generate a high temperature superconducting phase.

【0018】(クラッド線の作製)クラッド線の作製
は、前記原料粉末を安定化材となる金属パイプに充填
し、この金属パイプを伸線することで行う。この伸線加
工により、安定化材中に超電導相の原料粉末が単芯に配
置されたクラッド線が形成される。クラッド線の断面形
状は円形のものや多角形のものがある。
(Production of clad wire) The production of the clad wire is carried out by filling the raw material powder into a metal pipe serving as a stabilizing material and drawing the metal pipe. By this wire drawing, a clad wire in which the raw material powder of the superconducting phase is arranged in a single core in the stabilizing material is formed. The cross-sectional shape of the clad wire may be circular or polygonal.

【0019】ここで用いる金属パイプの材料としては、
Ag、Cu、Fe、Ni、Cr、Ti、Mo、W、Pt、Pd、Rh、Ir、R
u、Osより選択される金属またはこれらの金属をベース
とする合金が好ましい。特に、酸化物超電導体との反応
性や加工性からAgまたはAg合金が好ましい。また、これ
ら金属パイプの断面形状は、円形、多角形(特に正多角
形)が挙げられる。中でも正六角形の金属パイプが好適
である。
As the material of the metal pipe used here,
Ag, Cu, Fe, Ni, Cr, Ti, Mo, W, Pt, Pd, Rh, Ir, R
Metals selected from u and Os or alloys based on these metals are preferred. In particular, Ag or Ag alloy is preferable in terms of reactivity with the oxide superconductor and workability. The cross-sectional shape of these metal pipes may be circular or polygonal (particularly regular polygonal). Among them, a regular hexagonal metal pipe is preferable.

【0020】(多芯線の作製)多芯線の作製は、複数本
のクラッド線を金属パイプ中に束ねて挿入し、この金属
パイプを伸線することで行う。これにより、安定化材中
に超電導相の原料粉末が多芯に配置された多芯線が形成
される。
(Production of multi-core wire) The multi-core wire is produced by bundling and inserting a plurality of clad wires into a metal pipe and drawing the metal pipe. As a result, a multifilamentary wire in which the raw material powder of the superconducting phase is arranged in multifilament in the stabilizing material is formed.

【0021】この多芯線の作製に用いる金属パイプの材
料、断面形状もクラッド線の作製に用いる金属パイプと
同様である。クラッド線の配置の仕方は、断面が円形の
金属パイプ中に複数のクラッド線を多角形に配置した
り、断面が六角形の金属パイプ中に複数のクラッド線を
配置することなどが挙げられる。
The material and sectional shape of the metal pipe used for producing the multifilamentary wire are the same as those of the metal pipe used for producing the clad wire. Examples of the method of arranging the clad lines include arranging a plurality of clad lines in a polygon in a metal pipe having a circular cross section and arranging a plurality of clad lines in a metal pipe having a hexagonal cross section.

【0022】扁平状に形成する前の多芯線の断面形状は
特に限定されない。円形や正多角形が挙げられる。特
に、平行な対辺を持つ形状が好ましい。製造容易性など
を考慮すると、正六角形が好ましい。また、扁平状に形
成後の断面形状は、扁平な多角形や楕円形などが挙げら
れる。
The cross-sectional shape of the multifilamentary wire before being formed into a flat shape is not particularly limited. Examples include circles and regular polygons. In particular, a shape having parallel opposite sides is preferable. A regular hexagon is preferable in view of ease of manufacturing. In addition, the cross-sectional shape after being formed into a flat shape may be a flat polygon or an ellipse.

【0023】(扁平伸線)円形あるいは正多角形などの
断面形状に伸線された多芯線を扁平状に伸線する。一般
に、この伸線には異型ダイスを用いればよい。このと
き、扁平状に伸線された多芯線のアスペクト比は2.0以
上とすることが好ましい。アスペクト比は扁平状に加工
された多芯線の幅/厚みで表される比である。前述した
ように、圧延初期においてせん断が生じやすく、ある程
度以上圧延されれば実質的に一軸方向への圧縮が可能で
ある。このことから、予め行う伸線加工もせん断が生じ
にくい程度の扁平状にすべく、多芯線のアスペクト比を
2.0以上とした。アスペクト比の上限は、伸線時の断線
を考慮すれば4.0程度である。
(Flat wire drawing) A multi-core wire drawn in a circular or regular polygonal cross-sectional shape is drawn flat. Generally, a deformed die may be used for this wire drawing. At this time, the aspect ratio of the flattened multifilamentary wire is preferably 2.0 or more. The aspect ratio is the ratio represented by the width / thickness of the multifilamentary wire processed into a flat shape. As described above, shearing is likely to occur in the initial stage of rolling, and if rolled to a certain extent or more, it can be substantially uniaxially compressed. From this, the aspect ratio of the multifilamentary wire is set so that the wire drawing process that is performed in advance has a flat shape that does not easily cause shearing.
It was set to 2.0 or more. The upper limit of the aspect ratio is about 4.0 in consideration of disconnection during wire drawing.

【0024】複数のクラッド線を多角形に配置して多芯
線を得た場合、クラッド線の対角方向または対辺方向を
保持するように多芯線を扁平に伸線することが好まし
い。扁平伸線に用いる異型ダイスの対辺方向または対角
方向と、扁平伸線する多芯線におけるクラッド線の対辺
方向または対角方向を合わせて伸線すれば、多角形に整
列されたクラッド線を整列状態のまま圧縮することがで
きる。
When a plurality of clad wires are arranged in a polygon to obtain a multifilamentary wire, it is preferable that the multifilamentary wire is drawn flat so as to hold the diagonal direction or the opposite side direction of the clad wire. Align the opposite side or diagonal direction of the irregular die used for flat wire drawing with the opposite side or diagonal direction of the flat wire drawing multi-core wire to align the polygonal clad wires. It can be compressed as it is.

【0025】(圧延加工)上記の扁平伸線により扁平状
に伸線された多芯線を圧延してテープ状線材とする。多
芯線からテープ状線材に加工するのは、最終的に形成さ
れる超電導導体の結晶の向きを揃えるためである。一般
に、酸化物系の超電導導体は結晶の方向により流すこと
ができる電流密度に大きな違いがあり、結晶方向を揃え
ることでより大きな電流密度を得ることができる。二次
圧延まで行う場合、二次圧延は一次熱処理による反応で
形成された空隙を押し潰し、後に行う二次熱処理で超電
導体の結晶同士を強固に結合させるために行われる。
(Rolling) The multifilamentary wire drawn flat by the above flat drawing is rolled into a tape-shaped wire. The reason why the multifilamentary wire is processed into a tape-shaped wire is to align the crystal orientations of the finally formed superconducting conductor. In general, oxide-based superconducting conductors have a large difference in the current density that can flow depending on the crystal direction, and a larger current density can be obtained by aligning the crystal directions. In the case of performing the secondary rolling, the secondary rolling is performed to crush the voids formed by the reaction of the primary heat treatment and to firmly bond the superconductor crystals to each other by the secondary heat treatment performed later.

【0026】クラッド線を多角形に配置して製造した多
芯線を圧延する際、圧延方向を多角形に配置されたクラ
ッド線の対角方向または対辺方向とすることが望まし
い。
When rolling the multifilamentary wire produced by arranging the clad wires in a polygonal shape, it is desirable that the rolling direction be the diagonal direction or the opposite side direction of the clad wires arranged in the polygonal shape.

【0027】対角方向に圧延した場合、超電導フィラメ
ントはテープ状線材の厚さ方向に整列して並ぶ。その結
果、テープ状線材の幅方向中央部に最も多数のフィラメ
ントが積層され、両端部にフィラメントの積層数が少な
くなる配列となる。中でも、中央部のフィラメントが最
も大きく圧縮されているため、中央部の特性が良いテー
プ状線材を得ることができる。
When rolled in a diagonal direction, the superconducting filaments are aligned in the thickness direction of the tape-shaped wire. As a result, the most number of filaments are laminated in the central portion of the tape-shaped wire in the width direction, and the number of laminated filaments is reduced at both ends. Among them, since the filament in the central portion is compressed most, it is possible to obtain a tape-shaped wire having excellent characteristics in the central portion.

【0028】一方、対辺方向に圧延した場合、超電導フ
ィラメントはテープ状線材の厚さ方向に交互に整列して
並ぶ。その結果、テープ状線材の幅方向の大半にわたっ
てほぼ均等にフィラメントが配列されて、Jc特性に優れ
たテープ状線材を得ることができる。特に、対辺方向へ
の圧延は、圧縮が行いやすく、より小さい力で圧延を行
うことができる。
On the other hand, when rolled in the opposite direction, the superconducting filaments are alternately arranged in the thickness direction of the tape-shaped wire. As a result, the filaments are arranged almost uniformly over most of the width of the tape-shaped wire, and the tape-shaped wire having excellent Jc characteristics can be obtained. In particular, rolling in the opposite direction is easy to compress, and rolling can be performed with a smaller force.

【0029】また、多芯線作製時にクラッド線を多角形
に配置した場合、これら複数のクラッド線のうち、多角
形の頂点に位置するクラッド線を、超電導相を含まない
フィラー線に置換することが好ましい。フィラー線とし
ては、クラッド線よりも圧縮変形しやすい材料で構成さ
れたものが好ましい。一般的には、金属線が利用でき
る。より具体的には、Ag線またはAg合金線などが挙げら
れる。その他、Cu、Fe、Ni、Cr、Ti、Mo、W、Pt、Pd、R
h、Ir、Ru、Osより選択される金属線またはこれらの金
属をベースとする合金線の利用も考えられる。
Further, when the clad wires are arranged in a polygonal shape during the production of the multifilamentary wire, the clad wire located at the apex of the polygonal shape among the plurality of clad wires may be replaced with a filler wire containing no superconducting phase. preferable. The filler wire is preferably made of a material that is more easily compressed and deformed than the clad wire. Generally, metal wires can be used. More specifically, an Ag wire or an Ag alloy wire may be mentioned. Others, Cu, Fe, Ni, Cr, Ti, Mo, W, Pt, Pd, R
The use of metal wires selected from h, Ir, Ru, Os or alloy wires based on these metals is also conceivable.

【0030】このフィラー線の存在により、多角形に配
置したクラッド線の対辺方向および対角方向を容易に目
視にて確認することができる。多芯線を形成する場合、
複数のクラッド線を多角形に配置して金属パイプに挿入
する。しかし、その後の伸線により、いずれのクラッド
線もほぼ円形に配置されるため、多角形に配置されたク
ラッド線のうち頂点に位置するクラッド線とそれ以外の
クラッド線とを区別することが困難なことがある。その
ため、多角形の頂点に位置するクラッド線を、超電導相
を含まないフィラー線とすることで容易に頂点の位置が
わかり、対辺方向および対角方向を識別することができ
る。
Due to the presence of the filler wire, it is possible to easily visually confirm the diagonal direction and the diagonal direction of the clad wire arranged in a polygon. When forming a multi-core wire,
A plurality of clad wires are arranged in a polygon and inserted into a metal pipe. However, since all the clad wires are arranged in a substantially circular shape by the subsequent drawing, it is difficult to distinguish the clad wire located at the apex from the clad wires arranged in a polygon and the other clad wires. There are things. Therefore, the clad line located at the apex of the polygon is a filler line containing no superconducting phase, so that the position of the apex can be easily known and the diagonal direction and the diagonal direction can be identified.

【0031】また、フィラー線を用いることで、圧延
時、多角形に配置したクラッド線の対角方向、対辺方向
を意識することなく圧延しても、ほぼ対角方向から圧延
することができる。これは、フィラー線がクラッド線よ
りも変形し易いため、多芯線をどのような方向から圧延
しても、まず多角形の対角線のうち、最も圧縮方向軸に
沿った対角線上に位置する一対のフィラー線から圧縮さ
れることになり、その結果、多芯線は回転するなどし
て、ほぼ対角方向から圧延されることになると考えられ
る。ただし、圧延方向を意識しなくても、偶然対辺方向
に圧延した場合は、最初に対角位置のフィラー線から圧
縮されるわけではなく、対辺方向に圧縮が行われると考
えられる。
Further, by using the filler wire, it is possible to perform the rolling substantially in the diagonal direction even when the rolling is performed without paying attention to the diagonal direction or the diagonal direction of the polygonally arranged clad wire. This is because, since the filler wire is more easily deformed than the clad wire, no matter which direction the multifilamentary wire is rolled, first of all, a pair of polygonal diagonal lines located on the diagonal line most along the compression direction axis is positioned. It is considered that the multifilamentary wire is compressed from the filler wire, and as a result, the multifilamentary wire is rolled and rolled in a substantially diagonal direction. However, even if the rolling direction is accidentally rolled in the opposite side direction, it is considered that the filler line is not first compressed from the diagonal position, but is compressed in the opposite side direction.

【0032】(熱処理)熱処理は、代表的には一次熱処
理と二次熱処理の2回行われる。一次熱処理は、主とし
てBi2223相などの超電導相を生成させることを目的とし
て行われる。二次熱処理は、主としてBi2223相などの結
晶粒同士を強固に結合させるために行う。
(Heat Treatment) The heat treatment is typically performed twice, a primary heat treatment and a secondary heat treatment. The primary heat treatment is performed mainly for the purpose of producing a superconducting phase such as Bi2223 phase. The secondary heat treatment is mainly performed to firmly bond the crystal grains such as the Bi2223 phase.

【0033】処理温度は、一次熱処理・二次熱処理共に
815℃超860℃以下とすることが好ましい。より好ましく
は830℃〜850℃程度である。特に、一次熱処理を840℃
以上850℃以下とし、二次熱処理を830℃以上840℃以下
とすることが好適である。さらに、二次熱処理を上記温
度内の異なる温度で多段階(特に2段階)に行っても良
い。
The treatment temperature is the same for both the primary heat treatment and the secondary heat treatment.
The temperature is preferably higher than 815 ° C and lower than 860 ° C. More preferably, it is about 830 ° C to 850 ° C. Especially, the primary heat treatment is 840 ℃
It is preferable that the temperature is 850 ° C or higher and the secondary heat treatment is 830 ° C or higher and 840 ° C or lower. Further, the secondary heat treatment may be performed in multiple stages (particularly two stages) at different temperatures within the above temperature range.

【0034】処理時間は、一次熱処理・二次熱処理共に
50時間以上250時間以下とすることが好ましい。特に、
二次熱処理を100時間以上とすることが好適である。
The processing time is the same for both the primary heat treatment and the secondary heat treatment.
It is preferably 50 hours or more and 250 hours or less. In particular,
The secondary heat treatment is preferably 100 hours or more.

【0035】雰囲気は、一次熱処理・二次熱処理共に大
気雰囲気にて行えば良い。より好ましくは、大気と同成
分からなる気流中で熱処理を施すことである。その際、
熱処理雰囲気における水分の含有率を低下させることが
好ましい。
The atmosphere may be an air atmosphere for both the primary heat treatment and the secondary heat treatment. More preferably, the heat treatment is performed in an air flow composed of the same components as the atmosphere. that time,
It is preferable to reduce the moisture content in the heat treatment atmosphere.

【0036】[0036]

【発明の実施の形態】以下、本発明の実施の形態を説明
する。「原料粉末の調整→クラッド線の作製→多芯線の
作製→扁平伸線→一次圧延加工→一次熱処理→二次圧延
加工→二次熱処理」の製造工程によりBi2223テープ状線
材を製造する。そして、扁平伸線を行わない比較例方法
によるテープ状線材も作製して、得られたテープ状線材
のIcおよびJeを確認する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below. The Bi2223 tape-shaped wire is manufactured by the manufacturing process of "adjustment of raw material powder → clad wire preparation → multifilamentary wire preparation → flat wire drawing → primary rolling processing → primary heat treatment → secondary rolling processing → secondary heat treatment. Then, a tape-shaped wire rod is manufactured by the method of the comparative example in which flat drawing is not performed, and Ic and Je of the obtained tape-shaped wire rod are confirmed.

【0037】Bi2O3、PbO、SrCO3、CaCO3、CuOの各粉末
を1.81:0.40:1.98:2.20:3.01の割合で混合する。混
合粉末を大気中にて700℃×8時間、800℃×10時間、133
Pa(1Torr)の減圧雰囲気において760℃×8時間の熱処
理を順次行う。各熱処理後にはそれぞれ粉砕を行う。こ
のようにして得られた粉末をさらに845℃×12時間の熱
処理して原料粉末を調整する。この原料粉末を外径25m
m、内径22mmの銀パイプに充填し、直径2.4mmまで伸線し
て断面が円形のクラッド線を作製する。
Powders of Bi 2 O 3 , PbO, SrCO 3 , CaCO 3 and CuO are mixed in a ratio of 1.81: 0.40: 1.98: 2.20: 3.01. Mixed powder in air at 700 ℃ × 8 hours, 800 ℃ × 10 hours, 133
Heat treatment is sequentially performed at 760 ° C for 8 hours in a reduced pressure atmosphere of Pa (1 Torr). Crushing is performed after each heat treatment. The powder thus obtained is further heat-treated at 845 ° C. for 12 hours to prepare a raw material powder. This raw material powder has an outer diameter of 25 m
It is filled in a silver pipe with m and an inner diameter of 22 mm, and drawn to a diameter of 2.4 mm to produce a clad wire with a circular cross section.

【0038】このクラッド線を61本束ねて六角形となる
ように配置し、外径25mm、内径22mmの銀パイプに挿入し
て、これを直径6.0mmにまで伸線して断面が円形の多芯
線を得る。61芯のクラッド線は銀パイプに挿入した際、
銀パイプに内接する六角形に配列される。この六角形の
頂点に位置する6本のクラッド線を銀からなるフィラー
線に置き換えた多芯線も同様に製造した。フィラー線を
用いた場合、多芯線の断面を拡大して見れば、六角形の
頂点がどこであるかは一目瞭然である。
61 pieces of this clad wire are bundled and arranged so as to form a hexagonal shape, which is inserted into a silver pipe having an outer diameter of 25 mm and an inner diameter of 22 mm, which is drawn up to a diameter of 6.0 mm and has a circular cross section. Get the core wire. When the 61-core clad wire is inserted into the silver pipe,
The hexagons are inscribed in the silver pipe. A multifilamentary wire in which the six clad wires located at the apexes of the hexagon were replaced with filler wires made of silver was also manufactured in the same manner. When a filler wire is used, it is obvious from a magnified view of the cross section of the multifilamentary wire where the apex of the hexagon is.

【0039】次に、得られた多芯線を正六角形のダイス
を用いて断面が正六角形になるように伸線する。ここで
は、対辺距離が1.15mmにまで伸線を行った。正六角形に
伸線後の多芯線の模式図を図1(A)、図2(A)に示す。ここ
では、図1(A)に示すように、六角形に配置されたクラ
ッド線11の対角方向が多芯線10の対辺方向となるような
多芯線と、図2(A)に示すように、六角形に配置されたク
ラッド線11の対辺方向が多芯線の対辺方向となるような
多芯線の両方を用意した。各クラッド線11の外周を覆っ
ているのは銀シース12である。
Next, the obtained multifilamentary wire is drawn using a regular hexagonal die so that the cross section becomes regular hexagonal. Here, wire drawing was performed until the opposite side distance was 1.15 mm. A schematic view of a multifilamentary wire after drawing into a regular hexagon is shown in FIGS. 1 (A) and 2 (A). Here, as shown in FIG. 1 (A), a multifilamentary wire in which the diagonal direction of the hexagonally arranged clad wire 11 is the opposite side direction of the multifilamentary wire 10, and as shown in FIG. 2 (A). Both of the multifilamentary wires in which the opposite sides of the hexagonally arranged clad wires 11 are the opposite sides of the multifilamentary wire were prepared. A silver sheath 12 covers the outer circumference of each clad wire 11.

【0040】次に、実施例方法については、アスペクト
比2.5の異型ダイスを用いて扁平伸線を行った。ここで
は、多芯線の対辺方向(六角配置されたクラッド線の対
角方向)に圧縮する扁平伸線を行った。扁平伸線後の多
芯線の模式断面図を図1(B)、図2(B)に示す。図1(B)に示
す扁平伸線後の多芯線は、最小対辺距離が0.6mm、最大
対角距離が1.5mmである。図2(B)に示す扁平伸線後の多
芯線は、最小対角距離が0.6mm、最大対辺距離が1.5mmで
ある。
Next, regarding the method of the embodiment, flat wire drawing was carried out using a modified die having an aspect ratio of 2.5. Here, flat wire drawing was performed in which compression was carried out in the direction of the opposite side of the multifilamentary wire (the direction of the diagonal of the clad wires arranged in hexagon). Schematic cross-sectional views of the multifilamentary wire after flat drawing are shown in FIGS. 1 (B) and 2 (B). The flattened multifilamentary wire shown in FIG. 1 (B) has a minimum diagonal distance of 0.6 mm and a maximum diagonal distance of 1.5 mm. The flattened multifilamentary wire shown in FIG. 2 (B) has a minimum diagonal distance of 0.6 mm and a maximum opposite side distance of 1.5 mm.

【0041】一方、比較例方法については、この扁平伸
線を行うことなく次述する圧延工程を行っている。
On the other hand, in the comparative example method, the rolling step described below is performed without performing the flat wire drawing.

【0042】次に、得られた多芯線を一次圧延してテー
プ状線材にする。その際、フィラー線を用いたものは六
角配置されたクラッド線の対角方向または六角配置され
たクラッド線の対辺方向に圧延を行い、フィラー線を用
いないものは、この対角または対辺以外の方向に圧延を
行った。
Next, the obtained multifilamentary wire is primarily rolled into a tape-shaped wire. At that time, the one using the filler wire is rolled in the diagonal direction of the hexagonally arranged clad wire or the opposite side direction of the hexagonally arranged clad wire, and the one not using the filler wire is formed in the diagonal or other than the opposite side. Rolling in the direction.

【0043】一次圧延により得られたテープ状線材に、
大気雰囲気にて840℃〜850℃×50時間の一次熱処理を施
す。一次熱処理後のテープ状線材を幅3.9mm×厚さ0.24m
mになるように再圧延(二次圧延)する。そして、再圧
延後のテープ状線材に大気雰囲気にて840℃〜850℃×50
時間〜150時間の二次熱処理を施す。実施例方法により
得られた二次圧延後のテープ状線材の模式断面図を図1
(C)、図2(C)に示す。この模式図に示すように、せん断
が生じることなく各クラッド線の配置がほぼ維持された
まま多芯線の圧延が行われている。
The tape-shaped wire obtained by the primary rolling is
Perform primary heat treatment at 840 ℃ -850 ℃ × 50 hours in air. 3.9mm width x 0.24m thickness of tape-shaped wire after primary heat treatment
Re-roll (secondary rolling) to m. Then, the re-rolled tape-shaped wire is heated in the air at 840 ℃ to 850 ℃ × 50
Secondary heat treatment is performed for about 150 hours. A schematic cross-sectional view of the tape-shaped wire rod after secondary rolling obtained by the method of Example is shown in FIG.
(C) and FIG. 2 (C) are shown. As shown in this schematic diagram, the multifilamentary wire is rolled while the arrangement of each clad wire is substantially maintained without shearing.

【0044】比較例方法における圧延状態を図3、4の説
明図に示す。ここでは、多芯線の対角方向と対辺方向の
各々について圧延を行った場合を示す。まず、対角方向
の圧延では、図3(B)に示すように、せん断が生じること
なく対角方向に圧縮されることを期待して圧延を行った
が、実際には同(C)に示すように、せん断が生じてうま
く一軸圧縮を行うことができなかった。ただし、厚さが
初期の1/2程度になると一軸圧縮に近い変形が行えた。
また、対辺方向の圧縮も、図4(B)に示すように、せん断
が生じることなく対角方向に圧縮されることを期待して
圧延を行ったが、実際には同(C)に示すように、せん断
が生じてうまく一軸圧縮を行うことができなかった。た
だし、厚さが初期の1/2程度になると一軸圧縮に近い変
形が行えた。
The rolling state in the comparative example method is shown in the explanatory views of FIGS. Here, a case where rolling is performed in each of the diagonal direction and the opposite side direction of the multifilamentary wire is shown. First, in rolling in the diagonal direction, as shown in FIG. 3 (B), rolling was carried out in the expectation that it would be compressed in the diagonal direction without shearing, but in actuality it was the same (C). As shown, shearing occurred and uniaxial compression could not be performed successfully. However, when the thickness was reduced to about 1/2 of the initial thickness, deformation similar to uniaxial compression was possible.
Further, as shown in FIG. 4 (B), the compression in the opposite direction was also performed in the expectation that the compression was performed in the diagonal direction without shearing, but in reality, it is shown in (C). As described above, shearing occurred and uniaxial compression could not be performed well. However, when the thickness was reduced to about 1/2 of the initial thickness, deformation similar to uniaxial compression was possible.

【0045】得られたテープ状の超電導線材について外
部磁場を印加しない状態での77KにおけるIcおよび線材
全断面積当りの実効臨界電流密度Je(Je=Ic/(線幅×
線厚み))を調べた。その結果を表1に示す。表1の結
果から明らかなように、扁平伸線を行った多芯線はせん
断が生じることなくほぼ一軸方向に圧縮されて高Ic(Je)
のテープ状超電導線材が得られることが確認された。中
でも、六角配置されたクラッド線の対角または対辺方向
に圧延した場合は一層高いIcが得られている。一方、扁
平伸線を行わなかった場合は、いずれも実施例方法で得
られた線材に比べて低いIc(Je)であることがわかる。
With respect to the obtained tape-shaped superconducting wire, Ic at 77 K without applying an external magnetic field and effective critical current density Je (Je = Ic / (wire width ×
Line thickness)). The results are shown in Table 1. As is clear from the results in Table 1, the flat-wired multifilamentary wire is compressed in almost uniaxial direction without shearing and has a high Ic (Je).
It was confirmed that the tape-shaped superconducting wire of Above all, a higher Ic is obtained when rolling is performed in the diagonal or opposite side directions of the hexagonally arranged clad wires. On the other hand, when flat wire drawing is not performed, it is found that the Ic (Je) is lower than that of the wire rods obtained by the method of Examples.

【0046】[0046]

【表1】 [Table 1]

【0047】[0047]

【発明の効果】以上説明したように、本発明超電導線材
の製造方法によれば、前記多芯線を直ちに圧延するので
はなく、一旦扁平状に伸線してから圧延することで、圧
延初期に生じやすいせん断を抑制して、超電導相の結晶
方向が揃いやすい一軸方向への圧縮を行うことができ
る。
As described above, according to the method for producing a superconducting wire of the present invention, the multifilamentary wire is not immediately rolled, but is drawn into a flat shape and then rolled, so that the initial rolling is performed. It is possible to suppress shear that tends to occur and perform compression in the uniaxial direction in which the crystal directions of the superconducting phase are easily aligned.

【0048】特に、複数のクラッド線を多角形に配置し
た多芯線を圧延する際、この多角形の対角方向または対
辺方向に圧延を行うことで、超電導相の結晶の配向が揃
ったテープ状線材を得ることができる。それにより、超
電導線材のIc、Jc、Jeを一層向上させることができる。
In particular, when rolling a multifilamentary wire in which a plurality of clad wires are arranged in a polygon, by rolling in a diagonal direction or a side direction of the polygon, a tape shape in which the crystals of the superconducting phase are aligned A wire rod can be obtained. Thereby, Ic, Jc, and Je of the superconducting wire can be further improved.

【0049】また、前記多角形の頂点に相当するクラッ
ド線を、超電導相を含まないフィラー線に置換すること
で、容易に対角方向・対辺方向を目視確認できる。さら
に、圧延方向を規定しなくても、実質的に対角方向への
圧延を実現することができる。
By replacing the clad line corresponding to the apex of the polygon with a filler line containing no superconducting phase, the diagonal direction and the opposite side direction can be easily visually confirmed. Further, even if the rolling direction is not specified, rolling in a substantially diagonal direction can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明方法によるテープ状線材を得る際の各段
階における断面図を示すもので、(A)は多芯線の対辺方
向とクラッド線の対角配置方向とを一致させた多芯線の
断面図、(B)は扁平伸線後の多芯線の断面図、(C)は圧延
後のテープ状線材の断面図である。
FIG. 1 is a cross-sectional view at each stage of obtaining a tape-shaped wire according to the method of the present invention, in which (A) shows a multi-core wire in which the opposite side direction of the multi-core wire and the diagonal arrangement direction of the clad wire are aligned. A cross-sectional view, (B) is a cross-sectional view of a multifilamentary wire after flat drawing, and (C) is a cross-sectional view of a tape-shaped wire rod after rolling.

【図2】本発明方法によるテープ状線材を得る際の各段
階における断面図を示すもので、(A)は多芯線の対辺方
向とクラッド線の対辺配置方向とを一致させた多芯線の
断面図、(B)は扁平伸線後の多芯線の断面図、(C)は圧延
後のテープ状線材の断面図である。
2A to 2C are cross-sectional views at each stage when a tape-shaped wire rod is obtained by the method of the present invention, in which FIG. FIG. 1 (B) is a cross-sectional view of a multifilamentary wire after flat drawing, and (C) is a cross-sectional view of a tape-shaped wire rod after rolling.

【図3】従来方法による多芯線の対角方向への圧延状況
を示す説明図で、(A)は圧縮前の状態、(B)は理想的な圧
縮状態、(C)は実際の圧縮状態を示している。
FIG. 3 is an explanatory view showing a situation of rolling a multifilamentary wire in a diagonal direction by a conventional method, where (A) is a state before compression, (B) is an ideal compression state, and (C) is an actual compression state. Is shown.

【図4】従来方法による多芯線の対辺方向への圧延状況
を示す説明図で、(A)は圧縮前の状態、(B)は理想的な圧
縮状態、(C)は実際の圧縮状態を示している。
FIG. 4 is an explanatory view showing a rolling condition of a multifilamentary wire in the opposite side direction by a conventional method, (A) shows a state before compression, (B) shows an ideal compression state, and (C) shows an actual compression state. Shows.

【符号の説明】[Explanation of symbols]

10 多芯線 11 クラッド線 12 銀シース 10 multi-core wire 11 Clad wire 12 silver sheath

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5G321 AA06 BA01 BA03 CA04 CA09 CA18 CA32 CA42 DA02 DB18 DB28 DB44 DB50    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 5G321 AA06 BA01 BA03 CA04 CA09                       CA18 CA32 CA42 DA02 DB18                       DB28 DB44 DB50

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 安定化材中に超電導相の原料粉末が多芯
に配置された多芯線を用意する工程と、 前記多芯線を扁平状に伸線する工程と、 扁平状に伸線された多芯線を圧延してテープ状線材とす
る工程とを有することを特徴とする超電導線材の製造方
法。
1. A step of preparing a multifilamentary wire in which a raw material powder of a superconducting phase is arranged in multiplicity in a stabilizing material, a step of drawing the multifilamentary wire into a flat shape, and a flattened shape And a step of rolling a multifilamentary wire into a tape-shaped wire, a method of manufacturing a superconducting wire.
【請求項2】 前記扁平状に伸線された多芯線のアスペ
クト比が2.0以上であることを特徴とする請求項1に記
載の超電導線材の製造方法。
2. The method for producing a superconducting wire according to claim 1, wherein the flattened multifilamentary wire has an aspect ratio of 2.0 or more.
【請求項3】 扁平状に伸線する前の多芯線の断面形状
が正多角形であることを特徴とする請求項1に記載の超
電導線材の製造方法。
3. The method for producing a superconducting wire according to claim 1, wherein the cross-sectional shape of the multifilamentary wire before being flattened is a regular polygon.
【請求項4】 前記多芯線を用意する工程は、安定化材
中に超電導相の原料粉末が単芯に配置されたクラッド線
を複数束ねて金属パイプ内に多角形に配置されるよう挿
入し、この金属パイプを伸線加工することで行われ、 前記多芯線を扁平に伸線する工程は、前記クラッド線の
対角方向または対辺方向を保持するように行うことを特
徴とする請求項1に記載の超電導線材の製造方法。
4. The step of preparing the multifilamentary wire comprises bundling a plurality of clad wires having a single core of superconducting phase raw material powder in a stabilizing material and inserting the clad wires into a polygonal shape in a metal pipe. The wire drawing is performed on the metal pipe, and the step of drawing the multifilamentary wire into a flat shape is performed so as to hold the diagonal direction or the opposite side direction of the clad wire. The method for manufacturing a superconducting wire according to.
【請求項5】 扁平状に伸線された多芯線を圧延する工
程は、圧延方向を多角形に配置されたクラッド線の対辺
方向とすることを特徴とする請求項4に記載の超電導線
材の製造方法。
5. The superconducting wire rod according to claim 4, wherein in the step of rolling the flattened multifilamentary wire, the rolling direction is the direction opposite to the clad wire arranged in a polygon. Production method.
【請求項6】 扁平状に伸線された多芯線を圧延する工
程は、圧延方向を多角形に配置されたクラッド線の対角
方向とすることを特徴とする請求項4に記載の超電導線
材の製造方法。
6. The superconducting wire rod according to claim 4, wherein in the step of rolling the flattened multifilamentary wire, the rolling direction is a diagonal direction of the clad wire arranged in a polygon. Manufacturing method.
【請求項7】 前記多角形に配置された複数のクラッド
線のうち、多角形の頂点に位置するクラッド線を、超電
導相を含まないフィラー線に置換することを特徴とする
請求項4に記載の超電導線材の製造方法。
7. The clad line located at the apex of the polygon among the plurality of clad lines arranged in the polygon is replaced with a filler line containing no superconducting phase. Manufacturing method of the superconducting wire.
JP2002107055A 2002-04-09 2002-04-09 Superconducting wire manufacturing method Expired - Fee Related JP3712120B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002107055A JP3712120B2 (en) 2002-04-09 2002-04-09 Superconducting wire manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002107055A JP3712120B2 (en) 2002-04-09 2002-04-09 Superconducting wire manufacturing method

Publications (2)

Publication Number Publication Date
JP2003303519A true JP2003303519A (en) 2003-10-24
JP3712120B2 JP3712120B2 (en) 2005-11-02

Family

ID=29391196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002107055A Expired - Fee Related JP3712120B2 (en) 2002-04-09 2002-04-09 Superconducting wire manufacturing method

Country Status (1)

Country Link
JP (1) JP3712120B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005112047A1 (en) * 2004-05-13 2005-11-24 Sumitomo Electric Industries, Ltd. Method of producing superconducting wire
WO2006001100A1 (en) * 2004-06-24 2006-01-05 Sumitomo Electric Industries, Ltd. Method for producing superconducting wire
JP2010123443A (en) * 2008-11-20 2010-06-03 Sumitomo Electric Ind Ltd Method for manufacturing superconducting wire

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005112047A1 (en) * 2004-05-13 2005-11-24 Sumitomo Electric Industries, Ltd. Method of producing superconducting wire
WO2006001100A1 (en) * 2004-06-24 2006-01-05 Sumitomo Electric Industries, Ltd. Method for producing superconducting wire
JP2006012537A (en) * 2004-06-24 2006-01-12 Sumitomo Electric Ind Ltd Method of producing superconducting wire
US7784169B2 (en) 2004-06-24 2010-08-31 Sumitomo Electric Industries, Ltd. Method of manufacturing superconducting wire
JP2010123443A (en) * 2008-11-20 2010-06-03 Sumitomo Electric Ind Ltd Method for manufacturing superconducting wire

Also Published As

Publication number Publication date
JP3712120B2 (en) 2005-11-02

Similar Documents

Publication Publication Date Title
JP3658844B2 (en) Oxide superconducting wire, manufacturing method thereof, and oxide superconducting stranded wire and conductor using the same
JP4038813B2 (en) Superconducting wire manufacturing method
JP3712120B2 (en) Superconducting wire manufacturing method
TWI296415B (en) Bismuth based oxide superconductor and method of manufacturing the same
JP4011358B2 (en) Superconducting wire manufacturing method
US20070184984A2 (en) Superconducting wire, superconducting mutifilamentary wire using the superconducting wire, and method of manufacturing the same
JP5343526B2 (en) Superconducting wire manufacturing method
JPH09167530A (en) Oxide multi-core superconductive conductor and its manufacture
JP4720211B2 (en) Method for producing bismuth oxide superconducting wire
JP3657367B2 (en) Bismuth-based oxide multicore superconducting wire and method for producing the same
JPH06325634A (en) Multi-core oxide superconducting wire
JP4016324B2 (en) Superconducting wire manufacturing method
JP2775946B2 (en) Manufacturing method of oxide superconducting wire
JPH06349358A (en) Manufacture of oxide high temperature superconductive wire material
JP2003331668A (en) Manufacturing method and for superconducting wire
JP4174890B2 (en) Manufacturing method of oxide multi-core superconducting wire
JP3757617B2 (en) Oxide superconducting billet, oxide superconducting wire, and manufacturing method thereof
JP4595813B2 (en) Oxide superconducting wire, manufacturing method thereof and superconducting equipment
JP4893117B2 (en) Oxide superconducting wire manufacturing method and superconducting equipment
JPH04292805A (en) Manufacture of oxide superconductive wire
JPH01169815A (en) Manufacture of superconductive cable with high critical current density
JP2004241254A (en) Method of manufacturing superconducting oxide wire
JP2001118437A (en) Oxide superconductive multi-conductor wire and method for manufacturing
JP2005158343A (en) Superconductive wire material, superconductive multi-core wire using it, and manufacturing method of those
JPH05274933A (en) Manufacture of oxide superconducting wire material

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040922

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050728

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050810

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080826

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090826

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090826

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100826

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110826

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120826

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130826

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees