JP2004241254A - Method of manufacturing superconducting oxide wire - Google Patents

Method of manufacturing superconducting oxide wire Download PDF

Info

Publication number
JP2004241254A
JP2004241254A JP2003029079A JP2003029079A JP2004241254A JP 2004241254 A JP2004241254 A JP 2004241254A JP 2003029079 A JP2003029079 A JP 2003029079A JP 2003029079 A JP2003029079 A JP 2003029079A JP 2004241254 A JP2004241254 A JP 2004241254A
Authority
JP
Japan
Prior art keywords
heat treatment
wire
sintering
oxide superconducting
superconducting wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003029079A
Other languages
Japanese (ja)
Other versions
JP3858830B2 (en
Inventor
Kohei Yamazaki
浩平 山崎
Hiroyasu Yumura
洋康 湯村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2003029079A priority Critical patent/JP3858830B2/en
Publication of JP2004241254A publication Critical patent/JP2004241254A/en
Application granted granted Critical
Publication of JP3858830B2 publication Critical patent/JP3858830B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing superconducting oxide wire having a high critical current. <P>SOLUTION: In the method of manufacturing the superconductivity oxide wire, the following characteristics are provided. The wire in the state of raw material powder of oxide superconductor containing Bi2223 phase covered by metal is produced. A plurality of times of heat processes are carried out to the wire. At least one heat process out of the plurality of heat processes carried out to the wire is carried out with oxygen concentration at ≤ 15% and in two steps of sintering. The high temperature sintering of the two steps sintering is carried out at ≥835°C and ≤845°C. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、酸化物超電導線材の製造方法に関し、特定的には、Bi(ビスマス)2223相を含む酸化物超電導体の原料粉末を金属で被覆した形態を有する線材を複数回熱処理する工程を備えた酸化物超電導線材の製造方法に関するものである。
【0002】
【従来の技術】
従来、Bi2223相を有する酸化物超電導体を金属被覆した多芯線からなる超電導線材(以下、Bi2223相を有する酸化物超電導線材)は、液体窒素温度での使用が可能であり、比較的高い臨界電流密度が得られること、長尺化が比較的容易であることから、超電導ケーブルやマグネットへの応用が期待されている。
【0003】
このようなBi2223相を有する酸化物超電導線材は、以下のようにして製造されていた。まず、Bi2223相を含む酸化物超電導体の原料粉末を金属で被覆した形態を有する線材が作製される。次に、熱処理と圧延とを繰り返すことにより、超電導相であるBi2223相が線材の超電導フィラメント部分に配向して生成し、テープ状の酸化物超電導線材が得られる。このような酸化物超電導線材の製造方法は、特許2636049号公報(特開平3−138820号公報)(特許文献1)、特許2855869号公報(特開平4−292812号公報)(特許文献2)に開示されている。
【0004】
【特許文献1】
特許2636049号公報(特開平3−138820号公報)
【0005】
【特許文献2】
特許2855869号公報(特開平4−292812号公報)
【0006】
【発明が解決しようとする課題】
Bi2223相を有する酸化物超電導線材の超電導フィラメントにおいて、Bi2223相が生成しやすいのは、主に金属シースとの界面部分である。これは、Bi2223相の結晶構造の異方性が大きいことに起因するものである。超電導フィラメントにおける金属シースとの界面部分に生成したBi2223相は、超電導結晶粒同士の接合が強く、かつ配向性が高い。このため、Bi2223相を有する酸化物超電導線材では、超電導フィラメントにおける金属シースとの界面部分に主に電流が流れる。
【0007】
しかしながら、通常、超電導相であるBi2223相が生成する際には、(Ca,Sr)PbOや(Ca,Sr)CuOのような非超電導相(以下、異相)もまた生成する。このような異相は、Bi2223相の配向性を低下させ、超電導結晶粒同士の結合を弱くする。従来の酸化物超電導線材の製造方法においては、これらの異相が超電導フィラメント全体に分散して生成していた。このため、超電導フィラメントにおける金属シースとの界面部分に生成する異相が電流の流れの妨げとなり、その結果、Bi2223相を有する酸化物超電導線材の臨界電流値が低下するという問題があった。
【0008】
したがって、本発明の目的は、高い臨界電流値を有する酸化物超電導線材の製造方法を提供することである。
【0009】
【課題を解決するための手段】
本発明の酸化物超電導線材の製造方法は、Bi2223相を含む酸化物超電導体の原料粉末を金属で被覆した形態を有する線材を作製する工程と、線材に複数回の熱処理をする工程とを備えていて、線材に複数回の熱処理をする工程のうち少なくとも1回の工程は、酸素濃度が15%以下、温度835℃以上845℃以下での本焼結を含む。
【0010】
本発明の酸化物超電導線材によれば、酸素濃度15%以下、温度835℃以上845℃以下で本焼結が行なわれることにより、異相が超電導フィラメントの中心部分に集中し、かつ超電導結晶粒同士の接合が強くなる。これにより、超電導フィラメントにおける金属シースとの界面部分に生成する異相が減少するので、異相が電流の妨げとなりにくくなる。また、超電導結晶粒同士の接合が強くなり、かつ配向性が高くなる。これらの結果、酸化物超電導線材の臨界電流値が高くなる。
【0011】
上記の製造方法において好ましくは、線材に複数回の熱処理をする工程のうち少なくとも1回の工程は、800℃以上820℃以下でのアニール焼結を含む。
【0012】
これにより、本焼結により生成されたBi2223相がアニールされる効果により、Bi2223相の配向性が高くなり結晶粒同士の接合が強くなる。その結果酸化物超電導線材の臨界電流値が高くなる。
【0013】
上記の製造方法において好ましくは、線材に複数回の熱処理をする工程のうち少なくとも1回の工程における酸素濃度は8%以下である。また、上記の製造方法において好ましくは、線材に複数回の熱処理をする工程のうち少なくとも1回の工程における熱処理時間は30時間以上であり、さらに好ましくは50時間以上である。さらに、上記の製造方法において好ましくは、本焼結の焼結時間が10時間以上50時間以下である。これにより、酸化物超電導線材の臨界電流値が一層高くなる。
【0014】
上記の製造方法において好ましくは、線材に複数回の熱処理をする工程のうち少なくとも1回の工程直後から700℃までの降温時の降温速度は1℃/h以上10℃/h以下である。
【0015】
熱処理する工程直後の降温時の降温速度が大きいと、Bi2223相と金属シースとの熱収縮率の差により、金属シースとの界面部分の超電導フィラメントにクラック(ひび割れ)が生じやすい。一方、降温速度が小さいと、異相が生成することによりBi2223相の配向性が低下し、超電導結晶粒同士の結合が弱くなる。その結果、臨界電流値が低下する。したがって、上記の降温速度の範囲で熱処理する工程直後から700℃まで降温することにより、クラックおよび異相の生成を抑止できるので、酸化物超電導線材の臨界電流値が高くなる。
【0016】
上記の製造方法において好ましくは、原料粉末における(ビスマスと鉛):鉛の原子比は、1:0.15以上1:0.17以下である。
【0017】
これにより、酸化物超電導線材の臨界電流値が一層高くなる。
なお、本明細書中で「Bi2223相」とは、ビスマスと鉛とストロンチウムとカルシウムと銅とを含み、その原子比として(ビスマスと鉛):ストロンチウム:カルシウム:銅が2:2:2:3と近似して表されるBi−Sr−Ca−Cu−O系の酸化物超電導相であり、具体的には(BiPb)SrCaCu8+z超電導相のことである。
【0018】
【発明の実施の形態】
以下、本発明の実施の形態について図を用いて説明する。
【0019】
図1は、酸化物超電導線材の構成を概念的に示す部分断面斜視図である。図1を参照して、たとえば、多芯線の酸化物超電導線材について説明する。酸化物超電導線材1は、長手方向に延びる複数本の酸化物超電導体フィラメント2と、それらを被覆するシース部3とを有している。複数本の酸化物超電導体フィラメント2の各々は、Bi2223相を含む材質よりなっている。シース部3の材質は、たとえば銀や銀合金よりなっている。
【0020】
なお、上記においては多芯線について説明したが、1本の酸化物超電導体フィラメント2がシース部3により被覆される単芯線構造の酸化物超電導線材が用いられてもよい。
【0021】
次に、上記の酸化物超電導線材の製造方法について説明する。
図2は本発明の実施の形態における酸化物超電導線材の製造方法を示すステップ図である。
【0022】
図2を参照して、まず、原料粉末が混合され、熱処理されることが繰り返される。これにより反応が起こり、最終目的の超電導体に変化する中間状態の前駆体粉末が作製される(ステップS1)。原料粉末としては、超電導相であるBi2223相と非超電導相とから構成される混合粉末が用意される。熱処理はたとえば700℃〜800℃の温度で行なわれる。次に、この前駆体粉末が金属シースに充填される(ステップS2)。次に、前駆体粉末が金属シースに充填されたものに対して伸線加工が行なわれる(ステップS3)。この際には伸線加工と中間軟化処理とが繰り返され、前駆体フィラメントを芯材として金属シースで被覆されたクラッド線となる。次に、複数のクラッド線が束ねられて再び金属シースに勘合される(ステップS4)。これにより、たとえば55芯を有する多芯線が作製される。次に多芯線に対して伸線加工される(ステップS5)。これにより、Bi2223相を含む酸化物超電導体の原料粉末を金属で被覆した形態を有する線材が作製される。その後、この多芯線に対して複数回の圧延加工と熱処理とが繰り返される(ステップS6)。
【0023】
上記の製造方法により、たとえば図1に示す酸化物超電導線材を製造することができる。
【0024】
本実施の形態においては、伸線加工された多芯線に対して複数回の圧延加工と熱処理とが繰り返される(ステップS6)。このうち、少なくとも1回の熱処理が、たとえば以下の熱処理方法により行なわれる。
【0025】
図3は、本発明の実施の形態における熱処理方法における時間と温度の関係を示す図である。
【0026】
図3を参照して、本実施の形態における熱処理は本焼結とアニール焼結とを含む2段焼結により行なわれる。線材が設置された炉内は、酸素濃度15%以下、好ましくは8%以下に保たれている。まず、炉内が840℃まで昇温され、本焼結が行なわれる。焼結時間10時間以上50時間以下という条件で行なわれる。
次にアニール焼結が行なわれる。アニール焼結は炉内温度810℃で行なわれる。また、熱処理時間(本焼結の焼結時間とアニール焼結の焼結時間との合計時間)が30時間以上、好ましくは50時間以上となるような条件で行なわれる。熱処理直後から炉内温度700℃までの降温時には、降温速度が1℃/h以上10℃/h以下となるように炉内温度が制御される。
【0027】
なお、上記においては多芯構造の酸化物超電導線材について示したが、1本の酸化物超電導体(超電導フィラメント)を、金属シースで被覆した単芯構造の酸化物超電導線材についても本発明を適用することができる。
【0028】
また、本焼結の炉内温度が840℃である場合について示したが、835℃以上845℃以下であればよい。さらに、アニール焼結の炉内温度が810℃である場合について示したが、800℃以上820℃以下であればよい。
【0029】
【実施例】
以下、本発明の実施例について説明する。
【0030】
(実施例1)
図2を用いて説明した方法により、鉛の原子比がPb/(Bi+Pb)=0.163となるように混合された原料粉末を用いて、Bi2223相を含む酸化物超電導体の原料粉末を金属で被覆した形態を有する線材を作製した。その後、1次圧延、1次熱処理、2次圧延および2次熱処理を行なった。このうち2次熱処理においては2段焼結を行なった。1次熱処理と2次熱処理とについては、表1に示すように熱処理条件を変化させて熱処理を行なった。ここで、表1の1次熱処理における「大気焼結」とは、炉内の酸素濃度20%、炉内温度830℃以上840℃以下の条件で行なう本焼結のみの熱処理を意味している。表1の1次熱処理における「低酸素焼結」とは、炉内の酸素濃度8%、炉内温度820℃以上830℃以下の条件で行なう本焼結のみの熱処理を意味している。また、表1の2次熱処理における「大気焼結」とは、炉内の酸素濃度20%、炉内温度830℃以上840℃以下の条件で本焼結した後、炉内の酸素濃度20%、炉内温度800℃以上820℃以下の条件でアニール焼結する熱処理を意味している。さらに、表1の2次熱処理における「低酸素焼結」とは、炉内の酸素濃度8%、炉内温度820℃以上830℃以下の条件で本焼結した後、炉内の酸素濃度8%、炉内温度800℃以上820℃以下の条件でアニール焼結する熱処理を意味している。2次熱処理後に室温まで冷却した後、臨界電流値を測定した。その結果も表1に示す。
【0031】
なお、作製された酸化物超電導線材の外径サイズは、幅3.6mm、厚さ0.21mm、長さ100mmであり、酸化物超電導線材の横断面における酸化物超電導体部分の面積に対する金属部分の面積の比(以下、銀比)は2.0であった。
【0032】
【表1】

Figure 2004241254
【0033】
表1から明らかなように、1次熱処理および2次熱処理の少なくともいずれか1回の熱処理において低酸素焼結を行なった試料2〜4は、1次熱処理と2次熱処理との両方で大気焼結を行なった試料1よりも高い臨界電流値となっている。
【0034】
(実施例2)
実施例1と同様にしてBi2223相を含む酸化物超電導体の原料粉末を金属で被覆した形態を有する線材を作製した。その後、1次圧延、1次熱処理、2次圧延および2次熱処理を行なった。このうち1次熱処理においては、表2に示すように熱処理条件を変えて行なった。なお、1次熱処理と2次熱処理との両方において炉内の酸素濃度は8%とした。
【0035】
【表2】
Figure 2004241254
【0036】
2次熱処理後に室温まで冷却した後、臨界電流値を測定した。図4は、本発明の実施例2において作製された酸化物超電導線材の全熱処理時間と臨界電流値との関係を示す図である。
【0037】
図4の結果より、2段焼結を行なった試料6および試料8は、2段焼結を行なわなかった試料5および7よりも高い臨界電流値となっている。また、試料6と試料8とを比較して、本焼結の焼結時間とアニール焼結の焼結時間との合計時間である熱処理時間が50時間である試料6は、熱処理時間が30時間である試料8よりも高い臨界電流値となっている。
【0038】
(実施例3)
実施例1と同様にしてBi2223相を含む酸化物超電導体の原料粉末を金属で被覆した形態を有する線材を作製した。その後、1次圧延、1次熱処理、2次圧延および2次熱処理を行なった。1次熱処理と2次熱処理とについては、表3に示すように熱処理条件を変化させて熱処理を行なった。表3の1次熱処理および2次熱処理における「1段焼結」とは、炉内の酸素濃度8%、炉内温度840℃の条件で行なう本焼結のみの熱処理を意味している。表3の1次熱処理および2次熱処理における「2段焼結」とは、炉内の酸素濃度8%、炉内温度840℃の条件で本焼結した後、炉内温度810℃の条件でアニール焼結する熱処理を意味している。2次熱処理後に室温まで冷却した後、臨界電流値を測定した。その結果も表3に示す。
【0039】
【表3】
Figure 2004241254
【0040】
表3から明らかなように、1次熱処理および2次熱処理の少なくともいずれか1回の熱処理において2段焼結を行なった試料10〜12は、1次熱処理と2次熱処理との両方で1段焼結を行なった試料9よりも高い臨界電流値となっている。
【0041】
(実施例4)
実施例1と同様にしてBi2223相を含む酸化物超電導体の原料粉末を金属で被覆した形態を有する線材を作製した。その後、1次圧延、1次熱処理、2次圧延および2次熱処理を行なった。1次熱処理は、炉内の酸素濃度8%、炉内温度840℃、熱処理時間20時間の条件で本焼結のみの熱処理を行なった。2次熱処理では2段焼結を行なった。炉内の酸素濃度8%、炉内温度835℃および840℃の条件で、焼結時間を変化させて本焼結を行なった。本焼結後、炉内の酸素濃度8%、炉内温度810℃、焼結時間30時間の条件でアニール焼結を行なった。2次熱処理後に室温まで冷却した後、臨界電流値を測定した。図5は、本発明の実施例4において作製された酸化物超電導線材の本焼結の焼結時間と臨界電流値との関係を示す図である。
【0042】
図5の結果より、炉内温度が835℃の場合と840℃の場合との両方で、10時間以上50時間以下の焼結時間で本焼結を行なった場合の方が、50時間を超える焼結時間で本焼結を行なった場合よりも高い臨界電流値となっている。
【0043】
(実施例5)
実施例1と同様にしてBi2223相を含む酸化物超電導体の原料粉末を金属で被覆した形態を有する線材を作製した。その後、1次圧延、1次熱処理、2次圧延および2次熱処理を行なった。2次熱処理では2段焼結を行なった。炉内の酸素濃度8%、炉内温度840℃、焼結時間30時間の条件で本焼結した後、炉内の酸素濃度8%、炉内温度810℃、焼結時間30時間の条件でアニール焼結する熱処理を行なった。2次熱処理終了直後(810℃)から炉内温度700℃まで降温する際に、降温速度を0.9〜55℃/hの範囲で変化させて降温した。室温まで冷却した後、臨界電流値を測定した。なお、銀比が1.3で、原料粉末中の鉛の原子比がPb/(Bi+Pb)(図6中z)=0.143となる酸化物超電導線材についても同様の測定を行なった。図6は、本発明の実施例5において作製された酸化物超電導線材の降温速度と臨界電流値との関係を示す図である。
【0044】
図6の結果より、両方の酸化物超電導線材で、降温速度が1℃/h以上10℃/h以下の場合に臨界電流値が向上している。
【0045】
(実施例6)
図2を用いて説明した方法により、鉛の原子比がそれぞれPb/(Bi+Pb)=0.143、0.163となるように混合された2種類の原料粉末を用いて、Bi2223相を含む酸化物超電導体の原料粉末を金属で被覆した形態を有する線材を作製した。その後、1次圧延、1次熱処理を行なった。1次熱処理については、表4に示すように熱処理条件を変化させて熱処理を行なった。1次熱処理後、室温まで冷却して、臨界電流値を測定した。
【0046】
【表4】
Figure 2004241254
【0047】
なお、表4の1次熱処理の熱処理条件における「1段焼結」とは、炉内の酸素濃度8%、炉内温度840℃の条件で行なう本焼結のみの熱処理を意味している。表4の1次熱処理の熱処理条件における「2段焼結」とは、炉内の酸素濃度8%、炉内温度840℃の条件で本焼結した後、炉内温度810℃、焼結時間20時間の条件でアニール焼結を行なう熱処理を意味している。
【0048】
図7は本発明の実施例6において作製された酸化物超電導線材の1次熱処理の熱処理時間と1次熱処理後の臨界電流値との関係を示す図である。図7の結果より、1次熱処理において、1段熱処理を行なった場合と2段焼結を行なった場合の両方で、鉛の原子比がPb/(Bi+Pb)=0.163となる原料粉末を用いた試料19〜24は、鉛の原子比がPb/(Bi+Pb)=0.143となる原料粉末を用いた試料13〜18よりも高い臨界電流値となっている。
【0049】
続いて、表4における試料15と試料21とについて、2次圧延および2次熱処理を行なった。2次熱処理では2段焼結を行なった。炉内の酸素濃度8%、炉内温度840℃の条件で、焼結時間を10〜50時間の範囲で変化させて本焼結を行なった。本焼結後、炉内の酸素濃度8%、炉内温度810℃、焼結時間30時間の条件でアニール焼結を行なった。2次熱処理後、室温まで冷却して臨界電流値を測定した。
【0050】
図8は、本発明の実施例6において作製された酸化物超電導線材の2次熱処理における本焼結時間と2次熱処理後の臨界電流値との関係を示す図である。図8の結果より、2次熱処理における本焼結の焼結時間に関係なく、鉛の原子比がPb/(Bi+Pb)=0.163となる原料粉末を用いた試料21は、鉛の原子比がPb/(Bi+Pb)=0.143となる原料粉末を用いた試料15よりも高い臨界電流値となっている。
【0051】
(実施例7)
図2を用いて説明した方法により、鉛の原子比がPb/(Bi+Pb)=0.163となるように混合された原料粉末を用いて、Bi2223相を含む酸化物超電導体の原料粉末を金属で被覆した形態を有する線材を作製した。その後、1次圧延、1次熱処理、2次圧延および2次熱処理を行なった。このうち2次熱処理においては、炉内の酸素濃度8%、本焼結温度840℃、アニール焼結温度810℃の2段焼結を行なった。2次熱処理直後から700℃までの降温速度を3℃/hとした。室温まで冷却して臨界電流値を測定した。
【0052】
図9(a)は、従来の酸化物超電導線材の断面を模式的に示す図である。図9(b)は、本発明の実施例7における製造方法により製造された酸化物超電導線材の断面を模式的に示す図である。
【0053】
図9(a)、(b)を参照して、従来の酸化物超電導線材1は、異相5が超電導フィラメント2全体に分散して生成している。一方、本実施例における酸化物超電導線材1は、異相5が超電導フィラメント2の中心部分に集中している。したがって、電流が流れる部分である金属シース3との界面部分の超電導フィラメント2には、異相5が少なくBi2223相4が多いので、異相5が電流の妨げとなりにくくなり、酸化物超電導線材1の臨界電流値が高くなる。
【0054】
本実施の形態においては、伸線加工された多芯線に対して行なう複数回の熱処理のうち、少なくとも1回の熱処理が2段焼結である場合について示したが、本発明はこのような熱処理方法に限定されるものではなく、酸素濃度が15%以下で、835℃以上845℃以下での本焼結を含む熱処理であればよい。
【0055】
以上に開示された実施の形態はすべての点で例示であって制限的なものではないと考慮されるべきである。本発明の範囲は、以上の実施の形態ではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての修正や変形を含むものと意図される。
【0056】
【発明の効果】
以上のように、本発明の酸化物超電導線材によれば、酸素濃度15%以下、温度835℃以上845℃以下で本焼結が行なわれることにより、異相が超電導フィラメントの中心部分に集中し、かつ超電導結晶粒同士の接合が強くなる。これにより、超電導フィラメントにおける金属シースとの界面部分に生成する異相が減少するので、異相が電流の妨げとなりにくくなる。また、超電導結晶粒同士の接合が強くなり、かつ配向性が高くなる。これらの結果、酸化物超電導線材の臨界電流値が高くなる。
【図面の簡単な説明】
【図1】酸化物超電導線材の構成を概念的に示す部分断面斜視図である。
【図2】本発明の実施の形態における酸化物超電導線材の製造方法を示すステップ図である。
【図3】本発明の実施の形態における熱処理方法における時間と温度の関係を示す図である。
【図4】本発明の実施例2において作製された酸化物超電導線材の熱処理時間と臨界電流値との関係を示す図である。
【図5】本発明の実施例4において作製された酸化物超電導線材の本焼結の焼結時間と臨界電流値との関係を示す図である。
【図6】本発明の実施例5において作製された酸化物超電導線材の降温速度と臨界電流値との関係を示す図である。
【図7】本発明の実施例6において作製された酸化物超電導線材の1次熱処理における熱処理時間と1次熱処理後の臨界電流値との関係を示す図である。
【図8】本発明の実施例6において作製された酸化物超電導線材の2次熱処理における本焼結時間と2次熱処理後の臨界電流値との関係を示す図である。
【図9】(a)従来の酸化物超電導線材の断面を模式的に示す図である。
(b)本発明の実施例7における製造方法により製造された酸化物超電導線材の断面を模式的に示す図である。
【符号の説明】
1 酸化物超電導線材、2 超電導フィラメント、3 金属シース、4 Bi2223相、5 異相。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing an oxide superconducting wire, and specifically includes a step of performing a plurality of heat treatments on a wire having a form in which a raw material powder of an oxide superconductor containing a Bi (bismuth) 2223 phase is coated with a metal. And a method for producing an oxide superconducting wire.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, a superconducting wire composed of a multifilamentary wire coated with an oxide superconductor having a Bi2223 phase (hereinafter referred to as an oxide superconducting wire having a Bi2223 phase) can be used at liquid nitrogen temperature and has a relatively high critical current. Since the density can be obtained and the length can be relatively easily increased, application to superconducting cables and magnets is expected.
[0003]
Such an oxide superconducting wire having the Bi2223 phase has been manufactured as follows. First, a wire having a form in which a raw material powder of an oxide superconductor containing a Bi2223 phase is coated with a metal is manufactured. Next, by repeating the heat treatment and the rolling, the Bi2223 phase, which is the superconducting phase, is oriented and generated in the superconducting filament portion of the wire, and a tape-shaped oxide superconducting wire is obtained. The manufacturing method of such an oxide superconducting wire is disclosed in Japanese Patent No. 2636049 (Japanese Patent Application Laid-Open No. 3-138820) (Patent Document 1) and Japanese Patent No. 2855869 (Japanese Patent Application Laid-Open No. 4-292812) (Patent Document 2). It has been disclosed.
[0004]
[Patent Document 1]
Japanese Patent No. 2636049 (JP-A-3-138820)
[0005]
[Patent Document 2]
Japanese Patent No. 2855869 (JP-A-4-292812)
[0006]
[Problems to be solved by the invention]
In the superconducting filament of the oxide superconducting wire having the Bi2223 phase, the Bi2223 phase is easily generated mainly at the interface with the metal sheath. This is due to the large anisotropy of the crystal structure of the Bi2223 phase. The Bi2223 phase generated at the interface between the superconducting filament and the metal sheath has strong bonding between superconducting crystal grains and high orientation. For this reason, in the oxide superconducting wire having the Bi2223 phase, current mainly flows at the interface between the superconducting filament and the metal sheath.
[0007]
However, when the Bi2223 phase, which is a superconducting phase, is usually generated, a non-superconducting phase (hereinafter, a different phase) such as (Ca, Sr) 2 PbO 4 or (Ca, Sr) 2 CuO 3 is also generated. Such a hetero phase lowers the orientation of the Bi2223 phase and weakens the bonding between the superconducting crystal grains. In the conventional method for producing an oxide superconducting wire, these different phases are dispersed and generated throughout the superconducting filament. Therefore, there is a problem that a heterogeneous phase generated at the interface between the superconducting filament and the metal sheath hinders the flow of current, and as a result, the critical current value of the oxide superconducting wire having the Bi2223 phase is reduced.
[0008]
Therefore, an object of the present invention is to provide a method for producing an oxide superconducting wire having a high critical current value.
[0009]
[Means for Solving the Problems]
The method for producing an oxide superconducting wire of the present invention includes a step of producing a wire having a form in which a raw material powder of an oxide superconductor containing a Bi2223 phase is coated with a metal, and a step of performing a plurality of heat treatments on the wire. In addition, at least one of the steps of performing the heat treatment on the wire a plurality of times includes main sintering at an oxygen concentration of 15% or less and a temperature of 835 ° C or more and 845 ° C or less.
[0010]
According to the oxide superconducting wire of the present invention, since the main sintering is performed at an oxygen concentration of 15% or less and a temperature of 835 ° C. to 845 ° C., the hetero phase is concentrated on the central portion of the superconducting filament and the superconducting crystal grains Bonding becomes stronger. This reduces the number of different phases generated at the interface between the superconducting filament and the metal sheath, so that the different phases are less likely to hinder the current. In addition, the bonding between the superconducting crystal grains becomes stronger, and the orientation becomes higher. As a result, the critical current value of the oxide superconducting wire increases.
[0011]
In the above manufacturing method, preferably, at least one of the steps of performing the heat treatment on the wire a plurality of times includes annealing sintering at 800 ° C. or more and 820 ° C. or less.
[0012]
Thereby, due to the effect of annealing the Bi2223 phase generated by the main sintering, the orientation of the Bi2223 phase is increased and the bonding between crystal grains is strengthened. As a result, the critical current value of the oxide superconducting wire increases.
[0013]
In the above manufacturing method, preferably, the oxygen concentration in at least one of the steps of performing the heat treatment on the wire a plurality of times is 8% or less. In the above-described manufacturing method, preferably, the heat treatment time in at least one of the steps of performing the heat treatment on the wire a plurality of times is 30 hours or more, and more preferably 50 hours or more. Furthermore, in the above-mentioned production method, the sintering time of the main sintering is preferably 10 hours or more and 50 hours or less. This further increases the critical current value of the oxide superconducting wire.
[0014]
In the above-described manufacturing method, preferably, the temperature reduction rate from immediately after at least one of the steps of performing the heat treatment to the wire to 700 ° C. is 1 ° C./h or more and 10 ° C./h or less.
[0015]
If the cooling rate at the time of cooling immediately after the heat treatment step is high, cracks (cracks) are likely to occur in the superconducting filament at the interface with the metal sheath due to the difference in the thermal shrinkage between the Bi2223 phase and the metal sheath. On the other hand, when the cooling rate is low, the orientation of the Bi2223 phase is reduced due to the formation of the hetero phase, and the bonding between the superconducting crystal grains is weakened. As a result, the critical current value decreases. Therefore, by lowering the temperature to 700 ° C. immediately after the step of heat treatment within the range of the above-mentioned temperature lowering rate, generation of cracks and different phases can be suppressed, and the critical current value of the oxide superconducting wire increases.
[0016]
In the above production method, preferably, the atomic ratio of (bismuth and lead): lead in the raw material powder is from 1: 0.15 to 1: 0.17.
[0017]
This further increases the critical current value of the oxide superconducting wire.
In the present specification, the “Bi2223 phase” includes bismuth, lead, strontium, calcium, and copper, and has an atomic ratio of (bismuth and lead): strontium: calcium: copper of 2: 2: 2: 3. oxides of Bi-Sr-Ca-Cu- O system represented by approximating the a superconducting phase, and specifically means a (BiPb) 2 Sr 2 Ca 1 Cu 2 O 8 + z superconducting phase.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0019]
FIG. 1 is a partial cross-sectional perspective view conceptually showing the configuration of the oxide superconducting wire. With reference to FIG. 1, for example, a multifilamentary oxide superconducting wire will be described. The oxide superconducting wire 1 has a plurality of oxide superconducting filaments 2 extending in the longitudinal direction and a sheath 3 covering the filaments. Each of the plurality of oxide superconductor filaments 2 is made of a material containing a Bi2223 phase. The material of the sheath portion 3 is made of, for example, silver or a silver alloy.
[0020]
Although the description has been given of the multifilamentary wire in the above description, an oxide superconducting wire having a single core structure in which one oxide superconducting filament 2 is covered with the sheath portion 3 may be used.
[0021]
Next, a method for manufacturing the above-described oxide superconducting wire will be described.
FIG. 2 is a step diagram illustrating a method for manufacturing an oxide superconducting wire according to an embodiment of the present invention.
[0022]
Referring to FIG. 2, the process of mixing the raw material powder and performing the heat treatment is repeated first. As a result, a reaction occurs, and a precursor powder in an intermediate state, which is changed into a final target superconductor, is produced (Step S1). As a raw material powder, a mixed powder composed of a Bi2223 phase which is a superconducting phase and a non-superconducting phase is prepared. The heat treatment is performed, for example, at a temperature of 700 ° C to 800 ° C. Next, this precursor powder is filled in a metal sheath (step S2). Next, wire drawing is performed on the precursor powder filled in the metal sheath (step S3). At this time, the drawing process and the intermediate softening process are repeated to form a clad wire covered with a metal sheath using the precursor filament as a core material. Next, a plurality of clad wires are bundled and fitted to the metal sheath again (step S4). Thereby, for example, a multi-core wire having 55 cores is manufactured. Next, the multifilamentary wire is drawn (step S5). As a result, a wire having a form in which the raw material powder of the oxide superconductor containing the Bi2223 phase is covered with the metal is produced. Thereafter, rolling and heat treatment are repeated a plurality of times for this multifilamentary wire (step S6).
[0023]
By the above manufacturing method, for example, the oxide superconducting wire shown in FIG. 1 can be manufactured.
[0024]
In the present embodiment, rolling and heat treatment are repeated a plurality of times on the drawn multicore wire (step S6). Among them, at least one heat treatment is performed, for example, by the following heat treatment method.
[0025]
FIG. 3 is a diagram showing a relationship between time and temperature in the heat treatment method according to the embodiment of the present invention.
[0026]
Referring to FIG. 3, the heat treatment in the present embodiment is performed by two-stage sintering including main sintering and annealing sintering. The inside of the furnace in which the wire is installed is kept at an oxygen concentration of 15% or less, preferably 8% or less. First, the temperature inside the furnace is raised to 840 ° C., and the main sintering is performed. The sintering is performed under the condition of 10 hours or more and 50 hours or less.
Next, annealing sintering is performed. Annealing sintering is performed at a furnace temperature of 810 ° C. The heat treatment is performed under such conditions that the heat treatment time (the total time of the sintering time of the main sintering and the sintering time of the annealing sintering) is 30 hours or more, preferably 50 hours or more. Immediately after the heat treatment, the temperature in the furnace is controlled such that the cooling rate is 1 ° C./h or more and 10 ° C./h or less when the temperature is lowered to 700 ° C. in the furnace immediately after the heat treatment.
[0027]
In the above description, a multifilamentary oxide superconducting wire has been described, but the present invention is also applied to a single-filamentary oxide superconducting wire in which one oxide superconductor (superconducting filament) is covered with a metal sheath. can do.
[0028]
Although the case where the furnace temperature of the main sintering is 840 ° C. has been described, the temperature may be 835 ° C. or more and 845 ° C. or less. Furthermore, the case where the furnace temperature of annealing sintering is 810 ° C. is described, but it is sufficient that the temperature is 800 ° C. or more and 820 ° C. or less.
[0029]
【Example】
Hereinafter, examples of the present invention will be described.
[0030]
(Example 1)
By using the raw material powder mixed so that the atomic ratio of lead is Pb / (Bi + Pb) = 0.163 by the method described with reference to FIG. A wire rod having a form covered with was prepared. Thereafter, primary rolling, primary heat treatment, secondary rolling and secondary heat treatment were performed. In the secondary heat treatment, two-stage sintering was performed. Regarding the first heat treatment and the second heat treatment, the heat treatment was performed while changing the heat treatment conditions as shown in Table 1. Here, “atmospheric sintering” in the primary heat treatment in Table 1 means a heat treatment of only main sintering performed under the conditions of an oxygen concentration in the furnace of 20% and a furnace temperature of 830 ° C. or more and 840 ° C. or less. . “Low oxygen sintering” in the primary heat treatment in Table 1 means a heat treatment of only main sintering performed under the conditions of an oxygen concentration of 8% in the furnace and a furnace temperature of 820 ° C. or more and 830 ° C. or less. The "air sintering" in the secondary heat treatment in Table 1 means that the oxygen concentration in the furnace is 20%, the furnace temperature is 830 ° C or more and 840 ° C or less, and then the furnace is 20% oxygen concentration. Anneal sintering at a furnace temperature of 800 ° C. or more and 820 ° C. or less. Further, "low-oxygen sintering" in the secondary heat treatment in Table 1 means that the main sintering is performed under the conditions of an oxygen concentration of 8% in the furnace and a furnace temperature of 820 ° C. or more and 830 ° C. or less. % Means a heat treatment for annealing and sintering at a furnace temperature of 800 ° C. or more and 820 ° C. or less. After cooling to room temperature after the second heat treatment, the critical current value was measured. The results are also shown in Table 1.
[0031]
The outer diameter of the prepared oxide superconducting wire was 3.6 mm in width, 0.21 mm in thickness, and 100 mm in length, and the metal portion with respect to the area of the oxide superconductor portion in the cross section of the oxide superconducting wire. Was 2.0 (hereinafter, silver ratio).
[0032]
[Table 1]
Figure 2004241254
[0033]
As is clear from Table 1, Samples 2 to 4 which were subjected to low oxygen sintering in at least one of the first heat treatment and the second heat treatment were air-fired in both the first heat treatment and the second heat treatment. The critical current value is higher than that of the sample 1 in which the bonding is performed.
[0034]
(Example 2)
In the same manner as in Example 1, a wire having a form in which the raw material powder of the oxide superconductor containing the Bi2223 phase was coated with metal was produced. Thereafter, primary rolling, primary heat treatment, secondary rolling and secondary heat treatment were performed. Of these, the primary heat treatment was performed under different heat treatment conditions as shown in Table 2. The oxygen concentration in the furnace was 8% in both the first heat treatment and the second heat treatment.
[0035]
[Table 2]
Figure 2004241254
[0036]
After cooling to room temperature after the second heat treatment, the critical current value was measured. FIG. 4 is a diagram showing the relationship between the total heat treatment time and the critical current value of the oxide superconducting wire manufactured in Example 2 of the present invention.
[0037]
From the results of FIG. 4, the samples 6 and 8 subjected to the two-stage sintering have higher critical current values than the samples 5 and 7 not subjected to the two-stage sintering. Further, comparing Sample 6 and Sample 8, Sample 6 having a heat treatment time of 50 hours, which is the total time of the sintering time of the main sintering and the sintering time of the annealing sintering, has a heat treatment time of 30 hours. The critical current value is higher than that of sample 8 which is
[0038]
(Example 3)
In the same manner as in Example 1, a wire having a form in which the raw material powder of the oxide superconductor containing the Bi2223 phase was coated with metal was produced. Thereafter, primary rolling, primary heat treatment, secondary rolling and secondary heat treatment were performed. Regarding the first heat treatment and the second heat treatment, the heat treatment was performed while changing the heat treatment conditions as shown in Table 3. The "single-stage sintering" in the first heat treatment and the second heat treatment in Table 3 means a heat treatment only for the main sintering performed under the conditions of an oxygen concentration in the furnace of 8% and a furnace temperature of 840 ° C. The "two-stage sintering" in the first heat treatment and the second heat treatment in Table 3 means that the main sintering is performed under the conditions of an oxygen concentration of 8% in a furnace and a furnace temperature of 840 ° C, and then a condition of a furnace temperature of 810 ° C. It means heat treatment for annealing sintering. After cooling to room temperature after the second heat treatment, the critical current value was measured. Table 3 also shows the results.
[0039]
[Table 3]
Figure 2004241254
[0040]
As is clear from Table 3, the samples 10 to 12 which were subjected to the two-stage sintering in at least one of the first heat treatment and the second heat treatment were subjected to one-step sintering in both the first heat treatment and the second heat treatment. The critical current value is higher than that of the sintered sample 9.
[0041]
(Example 4)
In the same manner as in Example 1, a wire having a form in which the raw material powder of the oxide superconductor containing the Bi2223 phase was coated with metal was produced. Thereafter, primary rolling, primary heat treatment, secondary rolling and secondary heat treatment were performed. In the first heat treatment, only the main sintering was performed under the conditions of an oxygen concentration of 8% in the furnace, a furnace temperature of 840 ° C., and a heat treatment time of 20 hours. In the second heat treatment, two-stage sintering was performed. The main sintering was carried out under the conditions of an oxygen concentration of 8% in the furnace, and 835 ° C. and 840 ° C. in the furnace while changing the sintering time. After the main sintering, annealing sintering was performed under the conditions of an oxygen concentration of 8% in the furnace, a furnace temperature of 810 ° C., and a sintering time of 30 hours. After cooling to room temperature after the second heat treatment, the critical current value was measured. FIG. 5 is a diagram showing the relationship between the sintering time of the main sintering of the oxide superconducting wire produced in Example 4 of the present invention and the critical current value.
[0042]
From the results shown in FIG. 5, the case where the main sintering was performed for a sintering time of 10 hours or more and 50 hours or less both in the case where the furnace temperature was 835 ° C. and the case where the furnace temperature was 840 ° C. exceeded 50 hours. The critical current value is higher than when the main sintering is performed in the sintering time.
[0043]
(Example 5)
In the same manner as in Example 1, a wire having a form in which the raw material powder of the oxide superconductor containing the Bi2223 phase was coated with metal was produced. Thereafter, primary rolling, primary heat treatment, secondary rolling and secondary heat treatment were performed. In the second heat treatment, two-stage sintering was performed. After the main sintering under the conditions of an oxygen concentration of 8% in the furnace, a temperature of 840 ° C. in the furnace, and a sintering time of 30 hours, the conditions of an oxygen concentration in the furnace of 8%, a temperature in the furnace of 810 ° C., and a sintering time of 30 hours are used. A heat treatment for annealing sintering was performed. Immediately after the completion of the secondary heat treatment (810 ° C.), when the temperature was lowered to 700 ° C. in the furnace, the temperature was lowered by changing the temperature lowering rate in the range of 0.9 to 55 ° C./h. After cooling to room temperature, the critical current value was measured. The same measurement was performed on an oxide superconducting wire having a silver ratio of 1.3 and an atomic ratio of lead in the raw material powder of Pb / (Bi + Pb) (z in FIG. 6) = 0.143. FIG. 6 is a diagram showing the relationship between the temperature drop rate and the critical current value of the oxide superconducting wire manufactured in Example 5 of the present invention.
[0044]
As shown in FIG. 6, the critical current value of both the oxide superconducting wires is improved when the cooling rate is 1 ° C./h or more and 10 ° C./h or less.
[0045]
(Example 6)
According to the method described with reference to FIG. 2, the oxidation including the Bi2223 phase is performed using two types of raw material powders mixed so that the atomic ratio of lead becomes Pb / (Bi + Pb) = 0.143 and 0.163, respectively. A wire having a form in which a raw material powder of a superconductor was coated with a metal was produced. Thereafter, primary rolling and primary heat treatment were performed. Regarding the primary heat treatment, the heat treatment was performed while changing the heat treatment conditions as shown in Table 4. After the first heat treatment, the mixture was cooled to room temperature, and the critical current value was measured.
[0046]
[Table 4]
Figure 2004241254
[0047]
The "single-step sintering" in the heat treatment conditions of the primary heat treatment in Table 4 means a heat treatment only for the main sintering performed under the conditions of an oxygen concentration in the furnace of 8% and a furnace temperature of 840 ° C. “Two-stage sintering” in the heat treatment conditions of the primary heat treatment in Table 4 means that the main sintering is performed under the conditions of an oxygen concentration of 8% in the furnace and a temperature of 840 ° C. in the furnace, and then a sintering time of 810 ° C. in the furnace. This means a heat treatment in which annealing sintering is performed for 20 hours.
[0048]
FIG. 7 is a diagram showing the relationship between the heat treatment time of the first heat treatment and the critical current value after the first heat treatment of the oxide superconducting wire produced in Example 6 of the present invention. From the results shown in FIG. 7, in the first heat treatment, the raw material powder in which the atomic ratio of lead is Pb / (Bi + Pb) = 0.163 is obtained in both the case where the one-stage heat treatment is performed and the case where the two-stage sintering is performed. The samples 19 to 24 used have higher critical current values than the samples 13 to 18 using the raw material powder in which the atomic ratio of lead is Pb / (Bi + Pb) = 0.143.
[0049]
Subsequently, secondary rolling and secondary heat treatment were performed on Samples 15 and 21 in Table 4. In the second heat treatment, two-stage sintering was performed. The main sintering was performed under the conditions of an oxygen concentration of 8% in the furnace and a temperature of 840 ° C. in the furnace while changing the sintering time in a range of 10 to 50 hours. After the main sintering, annealing sintering was performed under the conditions of an oxygen concentration of 8% in the furnace, a furnace temperature of 810 ° C., and a sintering time of 30 hours. After the second heat treatment, the mixture was cooled to room temperature and the critical current value was measured.
[0050]
FIG. 8 is a diagram showing the relationship between the main sintering time in the secondary heat treatment of the oxide superconducting wire manufactured in Example 6 of the present invention and the critical current value after the secondary heat treatment. From the results in FIG. 8, regardless of the sintering time of the main sintering in the secondary heat treatment, the sample 21 using the raw material powder in which the atomic ratio of lead is Pb / (Bi + Pb) = 0.163 has the atomic ratio of lead. Has a higher critical current value than the sample 15 using the raw material powder in which Pb / (Bi + Pb) = 0.143.
[0051]
(Example 7)
By using the raw material powder mixed so that the atomic ratio of lead is Pb / (Bi + Pb) = 0.163 by the method described with reference to FIG. A wire rod having a form covered with was prepared. Thereafter, primary rolling, primary heat treatment, secondary rolling and secondary heat treatment were performed. Of these, in the secondary heat treatment, two-stage sintering was performed at an oxygen concentration of 8% in the furnace, a main sintering temperature of 840 ° C., and an annealing sintering temperature of 810 ° C. The temperature decreasing rate from immediately after the second heat treatment to 700 ° C. was 3 ° C./h. After cooling to room temperature, the critical current value was measured.
[0052]
FIG. 9A is a diagram schematically showing a cross section of a conventional oxide superconducting wire. FIG. 9B is a diagram schematically illustrating a cross section of the oxide superconducting wire manufactured by the manufacturing method according to the seventh embodiment of the present invention.
[0053]
With reference to FIGS. 9A and 9B, in the conventional oxide superconducting wire 1, the heterophase 5 is generated by being dispersed throughout the superconducting filament 2. On the other hand, in the oxide superconducting wire 1 according to the present embodiment, the heterophase 5 is concentrated on the central portion of the superconducting filament 2. Therefore, the superconducting filament 2 at the interface with the metal sheath 3 where the current flows, has less heterophase 5 and more Bi2223 phase 4, so that the heterophase 5 is less likely to hinder the current and the criticality of the oxide superconducting wire 1 The current value increases.
[0054]
In the present embodiment, the case where at least one heat treatment is a two-stage sintering among a plurality of heat treatments performed on the drawn multifilamentary wire has been described. The method is not limited to the above method, and any heat treatment including an actual sintering at an oxygen concentration of 15% or less and 835 ° C or more and 845 ° C or less may be used.
[0055]
The embodiments disclosed above are to be considered in all respects as illustrative and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the embodiments described above, and is intended to include any modifications or variations within the meaning and range equivalent to the terms of the claims.
[0056]
【The invention's effect】
As described above, according to the oxide superconducting wire of the present invention, by performing the main sintering at an oxygen concentration of 15% or less and a temperature of 835 ° C or more and 845 ° C or less, the hetero phase is concentrated on the central portion of the superconducting filament, In addition, the bonding between the superconducting crystal grains is strengthened. This reduces the number of different phases generated at the interface between the superconducting filament and the metal sheath, so that the different phases are less likely to hinder the current. In addition, the bonding between the superconducting crystal grains becomes stronger, and the orientation becomes higher. As a result, the critical current value of the oxide superconducting wire increases.
[Brief description of the drawings]
FIG. 1 is a partial cross-sectional perspective view conceptually showing a configuration of an oxide superconducting wire.
FIG. 2 is a step diagram illustrating a method for manufacturing an oxide superconducting wire according to an embodiment of the present invention.
FIG. 3 is a diagram showing a relationship between time and temperature in a heat treatment method according to an embodiment of the present invention.
FIG. 4 is a diagram showing a relationship between a heat treatment time and a critical current value of an oxide superconducting wire manufactured in Example 2 of the present invention.
FIG. 5 is a diagram showing the relationship between the sintering time and the critical current value of the main sintering of the oxide superconducting wire produced in Example 4 of the present invention.
FIG. 6 is a diagram showing a relationship between a temperature drop rate and a critical current value of an oxide superconducting wire manufactured in Example 5 of the present invention.
FIG. 7 is a view showing a relationship between a heat treatment time in a first heat treatment and a critical current value after the first heat treatment of the oxide superconducting wire manufactured in Example 6 of the present invention.
FIG. 8 is a view showing the relationship between the main sintering time in the secondary heat treatment of the oxide superconducting wire produced in Example 6 of the present invention and the critical current value after the secondary heat treatment.
FIG. 9A is a view schematically showing a cross section of a conventional oxide superconducting wire.
(B) It is a figure which shows typically the cross section of the oxide superconducting wire manufactured by the manufacturing method in Example 7 of this invention.
[Explanation of symbols]
1 Oxide superconducting wire, 2 superconducting filament, 3 metal sheath, 4 Bi2223 phase, 5 out of phase.

Claims (8)

Bi2223相を含む酸化物超電導体の原料粉末を金属で被覆した形態を有する線材を作製する工程と、
前記線材に複数回の熱処理をする工程とを備え、
前記線材に複数回の熱処理をする工程のうち少なくとも1回の工程は、酸素濃度が15%以下である、酸化物超電導線材の製造方法であって、
前記線材に複数回の熱処理をする工程のうち少なくとも1回の工程は、835℃以上845℃以下での本焼結を含むことを特徴とする、酸化物超電導線材の製造方法。
Producing a wire having a form in which a raw material powder of an oxide superconductor containing a Bi2223 phase is coated with a metal;
Performing a heat treatment on the wire a plurality of times,
At least one of the steps of performing the heat treatment on the wire a plurality of times is a method of manufacturing an oxide superconducting wire having an oxygen concentration of 15% or less,
A method for producing an oxide superconducting wire, wherein at least one of the steps of performing the heat treatment on the wire a plurality of times includes main sintering at 835 ° C. or more and 845 ° C. or less.
前記線材に複数回の熱処理をする工程のうち少なくとも1回の工程は、800℃以上820℃以下でのアニール焼結を含むことを特徴とする、請求項1に記載の酸化物超電導線材の製造方法。The manufacturing of the oxide superconducting wire according to claim 1, wherein at least one of the steps of performing the heat treatment on the wire a plurality of times includes annealing sintering at 800 ° C or more and 820 ° C or less. Method. 前記線材に複数回の熱処理をする工程のうち少なくとも1回の工程における前記酸素濃度は8%以下である、請求項1または2に記載の酸化物超電導線材の製造方法。The method for producing an oxide superconducting wire according to claim 1 or 2, wherein the oxygen concentration in at least one of the steps of performing the heat treatment on the wire a plurality of times is 8% or less. 前記線材に複数回の熱処理をする工程のうち少なくとも1回の工程における熱処理時間は30時間以上である、請求項1〜3のいずれかに記載の酸化物超電導線材の製造方法。The method for producing an oxide superconducting wire according to any one of claims 1 to 3, wherein a heat treatment time in at least one of the steps of performing the heat treatment on the wire a plurality of times is 30 hours or more. 前記線材に複数回の熱処理をする工程のうち少なくとも1回の工程における熱処理時間は50時間以上である、請求項4に記載の酸化物超電導線材の製造方法。The method for producing an oxide superconducting wire according to claim 4, wherein the heat treatment time in at least one of the steps of performing the heat treatment on the wire a plurality of times is 50 hours or more. 前記線材に複数回の熱処理をする工程のうち少なくとも1回の工程における前記本焼結の焼結時間は10時間以上50時間以下である、請求項1〜5のいずれかに記載の酸化物超電導線材の製造方法。The oxide superconductivity according to any one of claims 1 to 5, wherein the sintering time of the main sintering in at least one of the steps of performing the heat treatment on the wire multiple times is 10 hours or more and 50 hours or less. Wire rod manufacturing method. 前記線材に複数回の熱処理をする工程のうち少なくとも1回の工程直後から700℃までの降温時の降温速度は1℃/h以上10℃/h以下である、請求項1〜6のいずれかに記載の酸化物超電導線材の製造方法。7. The method according to claim 1, wherein a rate of temperature reduction from immediately after at least one of the steps of performing the heat treatment on the wire to 700 ° C. is 1 ° C./h or more and 10 ° C./h or less. 3. The method for producing an oxide superconducting wire according to claim 1. 前記原料粉末における、(ビスマスと鉛):鉛の原子比は、1:0.15以上1:0.17以下である、請求項1〜7のいずれかに記載の酸化物超電導線材の製造方法。The method for producing an oxide superconducting wire according to any one of claims 1 to 7, wherein the atomic ratio of (bismuth and lead): lead in the raw material powder is from 1: 0.15 to 1: 0.17. .
JP2003029079A 2003-02-06 2003-02-06 Manufacturing method of oxide superconducting wire Expired - Fee Related JP3858830B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003029079A JP3858830B2 (en) 2003-02-06 2003-02-06 Manufacturing method of oxide superconducting wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003029079A JP3858830B2 (en) 2003-02-06 2003-02-06 Manufacturing method of oxide superconducting wire

Publications (2)

Publication Number Publication Date
JP2004241254A true JP2004241254A (en) 2004-08-26
JP3858830B2 JP3858830B2 (en) 2006-12-20

Family

ID=32956351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003029079A Expired - Fee Related JP3858830B2 (en) 2003-02-06 2003-02-06 Manufacturing method of oxide superconducting wire

Country Status (1)

Country Link
JP (1) JP3858830B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006085980A (en) * 2004-09-15 2006-03-30 Sumitomo Electric Ind Ltd Manufacturing method of superconductive wire rod
CN103910527A (en) * 2012-12-28 2014-07-09 北京有色金属研究总院 Beta-FeSe superconducting ceramic and two-step sintering preparation method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006085980A (en) * 2004-09-15 2006-03-30 Sumitomo Electric Ind Ltd Manufacturing method of superconductive wire rod
JP4496902B2 (en) * 2004-09-15 2010-07-07 住友電気工業株式会社 Superconducting wire manufacturing method
CN103910527A (en) * 2012-12-28 2014-07-09 北京有色金属研究总院 Beta-FeSe superconducting ceramic and two-step sintering preparation method

Also Published As

Publication number Publication date
JP3858830B2 (en) 2006-12-20

Similar Documents

Publication Publication Date Title
EP1187232B1 (en) Oxide high-temperature superconducting wire and method of producing the same
JP3858830B2 (en) Manufacturing method of oxide superconducting wire
JP4038813B2 (en) Superconducting wire manufacturing method
WO2006011302A1 (en) Method for producing superconducting wire
JP4039260B2 (en) Manufacturing method of oxide superconducting wire and raw material powder of oxide superconducting wire
JPH06139848A (en) Manufacture of oxide high-temperature superconducting wire rod
JP2951419B2 (en) Method for manufacturing large-capacity oxide superconducting conductor
JPH09115356A (en) Tape form oxide superconducting wire material and superconducting magnet and current lead using the same
JP4720211B2 (en) Method for producing bismuth oxide superconducting wire
JPH04262308A (en) Oxide superconductive wire rod
JP2549669B2 (en) Oxide superconducting wire
JPS63232215A (en) Manufacture of superconductive wire
JP2003242847A (en) Method of manufacturing superconducting wire material
JP4496902B2 (en) Superconducting wire manufacturing method
JP4375134B2 (en) Superconducting wire manufacturing method
JP4507899B2 (en) Bismuth oxide superconducting wire and method for producing the same, superconducting equipment using the bismuth oxide superconducting wire
JP4709455B2 (en) Oxide high-temperature superconducting wire and manufacturing method
US6207619B1 (en) Oxidic superconductor with a bismuth phase of the 2223 type and method of manufacture thereof
JP2599138B2 (en) Method for producing oxide-based superconducting wire
JP2003173721A (en) Oxide superconductive cable for ac and its manufacturing method
JP2004119248A (en) Reforming method of bismuth group oxide superconductive wire material
JP3078765B2 (en) Compound superconducting wire and method for producing compound superconducting wire
JP2006107843A (en) Tape-shaped superconductive wire
JPH08337424A (en) Production of bismuth-containing oxide superconducting wire
JPH01320710A (en) Manufacture of superconductive cable in multicore type oxide line

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060829

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060911

R150 Certificate of patent or registration of utility model

Ref document number: 3858830

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090929

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100929

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100929

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110929

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110929

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120929

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130929

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees