JP2003273099A - Composition for low dielectric constant film formation, low dielectric constant film, its manufacturing method, and semiconductor device - Google Patents

Composition for low dielectric constant film formation, low dielectric constant film, its manufacturing method, and semiconductor device

Info

Publication number
JP2003273099A
JP2003273099A JP2002077381A JP2002077381A JP2003273099A JP 2003273099 A JP2003273099 A JP 2003273099A JP 2002077381 A JP2002077381 A JP 2002077381A JP 2002077381 A JP2002077381 A JP 2002077381A JP 2003273099 A JP2003273099 A JP 2003273099A
Authority
JP
Japan
Prior art keywords
dielectric constant
low dielectric
constant film
film
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002077381A
Other languages
Japanese (ja)
Other versions
JP3957154B2 (en
Inventor
Junichi Kon
純一 今
Ei Yano
映 矢野
Yoshihiro Nakada
義弘 中田
Katsumi Suzuki
克己 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2002077381A priority Critical patent/JP3957154B2/en
Publication of JP2003273099A publication Critical patent/JP2003273099A/en
Application granted granted Critical
Publication of JP3957154B2 publication Critical patent/JP3957154B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Formation Of Insulating Films (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a composition for low dielectric constant film formation for forming a low dielectric constant film of high strength. <P>SOLUTION: The composition for the low dielectric constant film formation contains at least polysiloxane, which is a hydrolysis product of alkoxysilane expressed by the formula X<SB>n</SB>Si(OR)<SB>4-n</SB>...(1) and a radiation decomposable compound. In the formula (1), X is at least one of hydrogen atom, fluorine atom, an alkyl group, an aryl group, a vinyl group and an alicyclic group. R is at least one of hydrogen atom, an alkyl group, an aryl group, vinyl group and an alicyclic group. It is preferable that the content of the radiation decomposable compound contain 0.1-200 pts.mass in 100 pts.mass of polysiloxane, contain two kinds or more of radiation decomposable compounds whose maximum absorption wavelengths are mutually different, and contain two or more kinds of radiation decomposable compounds whose molecular sizes are mutually different. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、半導体集積回路に
おける多層配線に好適な低誘電率膜形成用組成物、該低
誘電率膜形成用組成物を用いて形成した低誘電率膜及び
その製造方法、並びに該低誘電率膜を用いた半導体装置
に関する。
TECHNICAL FIELD The present invention relates to a composition for forming a low dielectric constant film suitable for multilayer wiring in a semiconductor integrated circuit, a low dielectric constant film formed using the composition for forming a low dielectric constant film, and the production thereof. The present invention relates to a method and a semiconductor device using the low dielectric constant film.

【0002】[0002]

【従来の技術】近年、半導体集積回路の集積度の増加及
び素子密度の向上に伴い、特に半導体素子の多層化への
要求が高まっている。この半導体集積回路の高集積化に
伴い、配線間隔は更に狭くなることから、配線間の容量
増大による配線遅延が問題となっている。ここで、前記
配線遅延(T)は、次の式(1)、T∝CR・・・式
(1)、で表され、配線抵抗(R)及び配線間の容量
(C)に影響を受ける。そして、前記誘電率(ε)と前
記配線間の容量(C)との関係は、次の式(2)、C=
εε・S/d・・・式(2)、で表される。なお、
前記式(2)において、Sは電極面積、εは真空の誘
電率、εは絶縁膜の誘電率、dは配線間隔をそれぞれ
表す。
2. Description of the Related Art In recent years, as the degree of integration of semiconductor integrated circuits has increased and the element density has increased, there has been an increasing demand for multilayered semiconductor elements. With the high integration of this semiconductor integrated circuit, the wiring interval becomes narrower, and thus the wiring delay due to the increase in the capacitance between the wirings becomes a problem. Here, the wiring delay (T) is expressed by the following equation (1), T∝CR ... Equation (1), and is affected by the wiring resistance (R) and the capacitance between wirings (C). . The relationship between the dielectric constant (ε) and the capacitance (C) between the wirings is expressed by the following equation (2), C =
ε 0 ε r · S / d ... Represented by equation (2). In addition,
In the formula (2), S is the electrode area, ε 0 is the dielectric constant of vacuum, ε r is the dielectric constant of the insulating film, and d is the wiring interval.

【0003】前記配線間の容量(C)は、配線厚を薄く
し電極面積を小さくすることで低減できるものの、配線
厚を薄くすると、更に前記配線抵抗(T)の上昇を招く
ために高速化を達成し得ない。したがって、前記配線遅
延(T)を小さくし、高速化を図るためには、絶縁膜の
低誘電率化が有効な手段となる。
The capacitance (C) between the wirings can be reduced by reducing the wiring thickness and the electrode area, but when the wiring thickness is reduced, the wiring resistance (T) is further increased, and therefore the speed is increased. Can not be achieved. Therefore, in order to reduce the wiring delay (T) and increase the speed, reducing the dielectric constant of the insulating film is an effective means.

【0004】従来、前記絶縁膜としては、一般的に、二
酸化珪素(SiO)、窒化珪素(SiN)、燐珪酸ガ
ラス(PSG)等の無機膜や、ポリイミド等の有機系高
分子等が用いられてきた。
Conventionally, as the insulating film, an inorganic film such as silicon dioxide (SiO 2 ), silicon nitride (SiN), phosphosilicate glass (PSG), or an organic polymer such as polyimide is generally used. Has been.

【0005】しかし、半導体デバイスで多用されている
CVD−SiO膜でも、その誘電率は4程度と高く、
また、低誘電率CVD膜として検討されているSiOF
膜では、誘電率は約3.3〜3.5であるものの、吸湿
性が高く、誘電率が上昇してしまうという問題があっ
た。
However, even a CVD-SiO 2 film which is widely used in semiconductor devices has a high dielectric constant of about 4,
In addition, SiOF, which has been studied as a low dielectric constant CVD film,
Although the film has a dielectric constant of about 3.3 to 3.5, it has a problem of high hygroscopicity and an increase in dielectric constant.

【0006】更に、前記低誘電率膜としては、シロキサ
ン樹脂を多孔質化した多孔質膜が提案されている。しか
し、この多孔質膜の場合、ポリシロキサンの重合を促進
する工程、熱分解性樹脂を加熱・分解させて孔を形成す
る工程等を経て製造され、これらの工程は300〜50
0℃の温度で行われることから、該多孔質膜を半導体装
置に適用した場合には、該半導体装置における配線が熱
ストレスにより断線し、該配線の材料が該多孔質膜中へ
拡散してしまう等の問題があった。このため、前記半導
体装置の製造プロセスにおける配線工程において、熱ス
トレスを低減し、半導体装置等のデバイスの信頼性を向
上させる低誘電率膜形成用組成物、該低誘電率膜の製造
方法等の開発が望まれている。
Further, as the low dielectric constant film, a porous film in which a siloxane resin is made porous has been proposed. However, in the case of this porous membrane, it is manufactured through a step of accelerating the polymerization of polysiloxane, a step of heating and decomposing a thermally decomposable resin to form pores, and these steps are performed in the range of 300 to 50.
Since it is carried out at a temperature of 0 ° C., when the porous film is applied to a semiconductor device, the wiring in the semiconductor device is disconnected due to thermal stress, and the material of the wiring diffuses into the porous film. There was a problem such as being lost. Therefore, in a wiring step in the manufacturing process of the semiconductor device, a composition for forming a low dielectric constant film, which reduces thermal stress and improves reliability of a device such as a semiconductor device, a method for manufacturing the low dielectric constant film, etc. Development is desired.

【0007】[0007]

【発明が解決しようとする課題】本発明は、従来におけ
る諸問題を解決し、以下の目的を達成することを課題と
する。即ち、本発明は、高強度で低誘電率な膜を形成可
能な低誘電率膜形成用組成物、それを用いて形成される
高強度な低誘電率膜及びその効率的な製造方法、並びに
高速で信頼性の高い半導体装置を提供することを目的と
する。
SUMMARY OF THE INVENTION It is an object of the present invention to solve various problems in the prior art and achieve the following objects. That is, the present invention provides a composition for forming a low dielectric constant film capable of forming a high strength and low dielectric constant film, a high strength low dielectric constant film formed using the same, and an efficient production method thereof, and An object is to provide a high-speed and highly reliable semiconductor device.

【0008】[0008]

【課題を解決するための手段】前記課題を解決するため
の手段としては、以下の通りである。 <1> 下記一般式(1)で表されるアルコキシシラン
の加水分解生成物であるポリシロキサンと、放射線分解
性化合物とを、少なくとも含有することを特徴とする低
誘電率膜形成用組成物である。
Means for solving the above-mentioned problems are as follows. <1> A composition for forming a low dielectric constant film comprising at least a polysiloxane which is a hydrolysis product of an alkoxysilane represented by the following general formula (1) and a radiation decomposable compound. is there.

【化3】 XSi(OR)4−n ・・・一般式(1) 前記一般式(1)において、Xは、水素原子、フッ素原
子、アルキル基、アリール基、ビニル基及び脂環族基の
少なくともいずれかを表す。Rは、水素原子、アルキル
基、アリール基、ビニル基、及び脂環族基の少なくとも
いずれかを表す。nは、0から3までの整数を表す。 <2> 放射線分解性化合物が、下記一般式(2)表さ
れるトリアリールスルホニウム塩、及び下記一般式
(3)で表されるジアリールヨードニウム塩の少なくと
もいずれかから選択される前記<1>に記載の低誘電率
膜形成用組成物である。
Embedded image X n Si (OR) 4-n ... General formula (1) In the general formula (1), X is a hydrogen atom, a fluorine atom, an alkyl group, an aryl group, a vinyl group or an alicyclic group. Represents at least one of the groups. R represents at least one of a hydrogen atom, an alkyl group, an aryl group, a vinyl group, and an alicyclic group. n represents an integer of 0 to 3. <2> In the above <1>, the radiation decomposable compound is selected from at least one of a triarylsulfonium salt represented by the following general formula (2) and a diaryl iodonium salt represented by the following general formula (3). It is the composition for forming a low dielectric constant film described.

【化4】 前記一般式(2)及び前記一般式(3)において、R
は、各々独立して、水素原子、ハロゲン原子、及び、直
鎖状、分岐状若しくは環状のアルキル基又はアルコキシ
基の少なくともいずれかを表す。前記<1>又は<2>
に記載の低誘電率膜形成用組成物は、基板上に塗布され
て塗布膜が形成され、該塗布膜に放射線が照射される
と、前記放射線分解性化合物が該塗布膜から分解され脱
離する。該放射線分解性化合物の脱離した箇所には、多
数の孔が形成されることから、該塗布膜は、熱ストレス
等を受けることなく、容易に多孔質化し低誘電率膜とな
る。この該低誘電率膜は、高速で信頼性の高い半導体装
置等に好適に使用される。 <3> 基板上に前記<1>又は<2>に記載の低誘電
率膜形成用組成物を塗布し塗布膜を形成し、該塗布膜に
放射線を照射することを特徴とする低誘電率膜の製造方
法である。該低誘電率膜の製造方法においては、前記低
誘電率膜形成用組成物が基板上に塗布されて塗布膜が形
成され、該塗布膜に放射線が照射されると、前記放射線
分解性化合物が該塗布膜から分解され脱離する。該放射
線分解性化合物の脱離した箇所には、多数の孔が形成さ
れることから、該塗布膜は、熱ストレス等を受けること
なく、容易に多孔質化し低誘電率膜が得られる。この該
低誘電率膜は、高速で信頼性の高い半導体装置等に好適
に使用される。 <4> 前記<2>に記載の低誘電率膜の製造方法によ
り形成される低誘電率膜である。該低誘電率膜は、多数
の孔が形成された多孔質膜であるので、低誘電率膜であ
り、高速で信頼性の高い半導体装置等に好適に使用され
る。 <5> 前記<4>に記載の低誘電率膜を層間絶縁膜と
して有することを特徴とする半導体装置である。該半導
体装置は、多数の孔が形成された多孔質膜の低誘電率膜
を層間絶縁膜として有するので、高速で信頼性が高い。
[Chemical 4] In the general formula (2) and the general formula (3), R 2
Each independently represents a hydrogen atom, a halogen atom, and / or at least one of a linear, branched, or cyclic alkyl group or alkoxy group. <1> or <2>
The composition for forming a low dielectric constant film described in 1 above is applied onto a substrate to form a coating film, and when the coating film is irradiated with radiation, the radiolytic compound is decomposed and released from the coating film. To do. Since a large number of pores are formed at the desorbed portion of the radiation-decomposable compound, the coating film is easily made porous without heat stress or the like to be a low dielectric constant film. The low dielectric constant film is suitable for use in semiconductor devices having high speed and high reliability. <3> A low dielectric constant characterized by coating the composition for forming a low dielectric constant film according to <1> or <2> on a substrate to form a coating film, and irradiating the coating film with radiation. It is a manufacturing method of a film. In the method for producing a low dielectric constant film, the composition for forming a low dielectric constant film is applied onto a substrate to form a coating film, and when the coating film is irradiated with radiation, the radiolytic compound is generated. It is decomposed and released from the coating film. Since a large number of pores are formed in the desorbed portion of the radiation-decomposable compound, the coating film is easily made porous without being subjected to heat stress or the like to obtain a low dielectric constant film. The low dielectric constant film is suitable for use in semiconductor devices having high speed and high reliability. <4> A low dielectric constant film formed by the method for manufacturing a low dielectric constant film according to <2>. Since the low dielectric constant film is a porous film having a large number of holes formed therein, the low dielectric constant film is a low dielectric constant film, and is suitably used for a high speed and highly reliable semiconductor device and the like. <5> A semiconductor device including the low dielectric constant film according to <4> as an interlayer insulating film. Since the semiconductor device has a low dielectric constant film, which is a porous film in which a large number of holes are formed, as an interlayer insulating film, it is fast and highly reliable.

【0009】[0009]

【発明の実施の形態】(低誘電率膜形成用組成物)本発
明の低誘電率膜形成用組成物は、ポリシロキサンと、放
射線分解性化合物とを少なくとも含有してなり、更に必
要に応じてその他の成分を含有してなる。
BEST MODE FOR CARRYING OUT THE INVENTION (Low Dielectric Constant Film Forming Composition) The low dielectric constant film forming composition of the present invention contains at least a polysiloxane and a radiation decomposable compound, and further, if necessary. And other components.

【0010】−ポリシロキサン− 前記ポリシロキサンは、下記一般式(1)で表されるア
ルコキシシランの加水分解生成物である。
-Polysiloxane- The polysiloxane is a hydrolysis product of an alkoxysilane represented by the following general formula (1).

【化5】 XSi(OR)4−n ・・・一般式(1) 前記一般式(1)において、Xは、水素原子、フッ素原
子、アルキル基、アリール基、ビニル基及び脂環族基の
少なくともいずれかを表す。Rは、水素原子、アルキル
基、アリール基、ビニル基、及び脂環族基の少なくとも
いずれかを表す。nは、0から3までの整数を表す。X
又はRで表される基は、更に他の置換基で置換されてい
てもよい。なお、前記アルキル基としては、特に制限は
なく、目的に応じて適宜選択することができるが、炭素
数1〜8のアルキル基が好ましい。
Embedded image X n Si (OR) 4-n ... General formula (1) In the general formula (1), X is a hydrogen atom, a fluorine atom, an alkyl group, an aryl group, a vinyl group or an alicyclic group. Represents at least one of the groups. R represents at least one of a hydrogen atom, an alkyl group, an aryl group, a vinyl group, and an alicyclic group. n represents an integer of 0 to 3. X
Alternatively, the group represented by R may be further substituted with another substituent. The alkyl group is appropriately selected depending on the intended purpose without any limitation, but it is preferably an alkyl group having 1 to 8 carbon atoms.

【0011】前記ポリシロキサンとしては、所定の溶剤
で希釈可能であれば特に制限はなく、目的に応じて適宜
選択することができ、例えば、テトラアルコキシシラン
のゾルゲルポリマー、トリアルコキキシシランのゾルゲ
ルポリマー、メチルトリアルコキシシランのゾルゲルポ
リマー、テトラアルコキシシラン及びトリアルコキシシ
ランのゾルゲルポリマー、テトラアルコキシシラン及び
メチルトリアルコキシシランのゾルゲルポリマー、メチ
ルトリアルコキシシラン及びトリアルコキシシランのゾ
ルゲルポリマー、テトラアルコキシシラン及びジメチル
アルコキシシランのゾルゲルポリマー、水素シルセスキ
オキサン、メチルシルセスキオキサン、フッ素含有水素
シルセスキオキサン、等が挙げられる。これらは、1種
単独で使用してもよく、2種以上を併用してもよい。
The polysiloxane is not particularly limited as long as it can be diluted with a predetermined solvent, and can be appropriately selected according to the purpose. For example, a sol-gel polymer of tetraalkoxysilane and a sol-gel polymer of trialkoxysilane. Sol-gel polymer of methyltrialkoxysilane, sol-gel polymer of tetraalkoxysilane and trialkoxysilane, sol-gel polymer of tetraalkoxysilane and methyltrialkoxysilane, sol-gel polymer of methyltrialkoxysilane and trialkoxysilane, tetraalkoxysilane and dimethylalkoxy Examples thereof include sol-gel polymers of silane, hydrogen silsesquioxane, methyl silsesquioxane, fluorine-containing hydrogen silsesquioxane, and the like. These may be used alone or in combination of two or more.

【0012】−放射線分解性化合物− 前記放射線分解性化合物としては、放射線が照射される
と分解・脱離可能なものであれば特に制限はなく、目的
に応じて適宜選択することができるが、例えば、ジアリ
ールヨードニウム塩、トリアリールスルホニウム塩、ト
リアリールセレノニウム塩、アクリル樹脂、ノボラック
樹脂、エポキシ樹脂、ポリエステル、ポリプロピレン、
フェノール化合物、イミダゾール化合物、及び、アダマ
ンタン化合物、等が挙げられる。これらの中でも、下記
一般式(2)表されるトリアリールスルホニウム塩、及
び下記一般式(3)で表されるジアリールヨードニウム
塩は、量子収率が高く、分解後に気体として膜から脱離
する点で、特に好ましい。
-Radiation-decomposable compound-The radiation-decomposable compound is not particularly limited as long as it can be decomposed / desorbed when irradiated with radiation, and can be appropriately selected according to the purpose. For example, diaryl iodonium salt, triaryl sulfonium salt, triaryl selenonium salt, acrylic resin, novolac resin, epoxy resin, polyester, polypropylene,
Examples thereof include phenol compounds, imidazole compounds, and adamantane compounds. Among these, the triarylsulfonium salt represented by the following general formula (2) and the diaryl iodonium salt represented by the following general formula (3) have a high quantum yield and are released from the film as gas after decomposition. Is particularly preferable.

【0013】[0013]

【化6】 [Chemical 6]

【0014】前記一般式(2)及び前記一般式(3)に
おいて、Rは、各々独立して、水素原子、ハロゲン原
子、又は、直鎖状、分岐状若しくは環状のアルキル基又
はアルコキシ基の少なくともいずれかを表す。前記アル
キル基又は前記アルコキシ基の炭素数としては1〜6の
が好ましい。
In the general formula (2) and the general formula (3), each R 2 independently represents a hydrogen atom, a halogen atom, or a linear, branched or cyclic alkyl group or alkoxy group. Represents at least one. The alkyl group or the alkoxy group preferably has 1 to 6 carbon atoms.

【0015】前記放射線分解性化合物は、1種単独で使
用してもよいが、2種以上を併用するのが好ましい。2
種以上を併用する態様としては、例えば、吸収極大波長
が互いに異なる放射線分解性化合物を2種以上併用する
態様、分子サイズが互いに異なる放射線分解性化合物を
2種以上併用する態様、等が挙げられる。前者の態様の
場合、低誘電率膜を製造する際に照射する放射線を2種
以上使用可能となり、段階的に孔を形成し多孔質化させ
ることが可能となる。また、後者の場合、低誘電率膜を
製造する際に該低誘電率膜における孔のサイズを任意に
変えることが可能となる。特に、吸収極大波長及び分子
サイズが共に異なる2種以上の放射線分解性化合物を併
用した場合、サイズの異なる孔を同一膜に効率的に混在
させることができる点で好ましい。
The above radiation-decomposable compounds may be used alone or in combination of two or more. Two
Examples of the combination of two or more species include a combination of two or more radiation-decomposable compounds having different absorption maximum wavelengths, a combination of two or more radiation-decomposable compounds having different molecular sizes, and the like. . In the case of the former mode, it is possible to use two or more kinds of radiation to be applied when manufacturing the low dielectric constant film, and it is possible to form pores stepwise and make them porous. Further, in the latter case, it becomes possible to arbitrarily change the size of the holes in the low dielectric constant film when the low dielectric constant film is manufactured. In particular, it is preferable to use two or more kinds of radiation-decomposable compounds having different absorption maximum wavelengths and different molecular sizes together, because pores having different sizes can be efficiently mixed in the same film.

【0016】なお、前者の態様の場合、吸収極大波長が
互いに異なる2種以上の内、吸収極大波長の大きい放射
線分解性化合物と、吸収波長の小さい放射線分解性化合
物との含有比(吸収極大波長の大きい放射線分解性化合
物/吸収波長の小さい放射線分解性化合物)が、1/1
00〜100/1であるのが好ましい。また、後者の態
様の場合、分子サイズが互いに異なる2種の放射線分解
性化合物の内、分子サイズの大きい放射線分解性化合物
と、分子サイズの小さい放射線分解性化合物と、の含有
比(分子サイズの大きい放射線分解性化合物/分子サイ
ズの小さい放射線分解性化合物)が、1/100〜10
0/1であるのが好ましい。
In the former embodiment, the content ratio of the radiolytic compound having a large absorption maximum wavelength and the radiolytic compound having a small absorption maximum wavelength among two or more kinds of absorption maximum wavelengths different from each other (absorption maximum wavelength Of radiation decomposable compounds having a large absorption ratio / radiation decomposable compounds having a small absorption wavelength)
It is preferably from 00 to 100/1. Further, in the latter embodiment, the content ratio of the radiolytic compound having a large molecular size and the radiolytic compound having a small molecular size among the two types of radiolytic compounds having different molecular sizes Large radiolytic compound / small radiolytic compound) is 1/100 to 10
It is preferably 0/1.

【0017】前記放射線分解性化合物の前記低誘電率膜
形成用組成物における含有量としては、前記ポリシロキ
サン100質量部に対し、0.1〜200質量部が好ま
しく、0.1〜50質量部がより好ましい。前記含有量
が、0.1質量部に満たないと、形成される低誘電率膜
における誘電率の低減効果が十分でないことがあり、2
00質量部を超えると、得られる低誘電率膜の強度が低
下することがある。
The content of the radiation decomposable compound in the composition for forming a low dielectric constant film is preferably 0.1 to 200 parts by mass, and 0.1 to 50 parts by mass with respect to 100 parts by mass of the polysiloxane. Is more preferable. If the content is less than 0.1 part by mass, the effect of reducing the dielectric constant of the formed low dielectric constant film may not be sufficient.
If the amount exceeds 100 parts by mass, the strength of the obtained low dielectric constant film may decrease.

【0018】−その他の成分− 前記その他の成分としては、希釈溶剤、骨格に炭化水素
を含むシリコーン化合物、等が挙げられる。
-Other Components- Examples of the other components include a diluting solvent and a silicone compound containing a hydrocarbon in the skeleton.

【0019】前記希釈溶剤としては、前記シロキサン樹
脂を溶解可能であれば特に制限はなく、目的に応じて適
宜選択することができ、例えば、シクロヘキサノン、メ
チルイソブチルケトン、メチルエチルケトン、メチルセ
ロソルブ、エチルセロソルブ、オクタン、デカン、プロ
ピレングリコール、プロピレングリコールモノメチルエ
ーテル、プロピレングリコールモノメチルエーテルアセ
テート、ジエチレングリコール、プロピレングリコー
ル、プロピレングリコールモノメチルエーテル、プロピ
レングリコールモノエチルエーテル、及び、プロピレン
グリオールモノプロピロエーテル、などが挙げられる。
これらは、1種単独で使用してもよく、2種以上を併用
してもよい。
The diluting solvent is not particularly limited as long as it can dissolve the siloxane resin and can be appropriately selected according to the purpose. For example, cyclohexanone, methyl isobutyl ketone, methyl ethyl ketone, methyl cellosolve, ethyl cellosolve, Examples include octane, decane, propylene glycol, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, diethylene glycol, propylene glycol, propylene glycol monomethyl ether, propylene glycol monoethyl ether, and propylene glycol monopropyro ether.
These may be used alone or in combination of two or more.

【0020】前記骨格に炭化水素を含むシリコーン化合
物は、前記低誘電率膜形成用組成物に対し、酸やアルカ
リなどの耐薬品性や耐吸湿性を高める目的で使用され、
例えば、ポリジメチルカルボシラン、ポリヒドロメチル
カルボシラン、ポリジエチルカルボシラン、ポリヒドロ
エチルカルボシラン、ポリカルボシラスチレン、ポリフ
ェニルメチルカルボシラン、ポリジフェニルカルボシラ
ン、ポリジメチルシルフェニレンシロキサン、ポリメチ
ルシルフェニレンシロキサン、ポリジエチルシルフェニ
レンシロキサン、ポリエチルシルフェニレンシロキサ
ン、ポリジプロピルシルフェニレンシロキサン、ポリプ
ロピルシルフェニレンシロキサン、ポリフェニルシルフ
ェニレンシロキサン、ポリジフェニルシルフェニレンシ
ロキサン、ポリフェニルメチルシルフェニレンシロキサ
ン、ポリフェニルエチルシルフェニレンシロキサン、ポ
リフェニルプロピルシルフェニレンシロキサン、ポリエ
チルメチルシルフェニレンシロキサン、ポリメチルプロ
ピルシルフェニレンシロキサン、ポリエチルプロピルシ
ルフェニレンシロキサン、などが挙げられる。これら
は、1種単独で使用してもよく2種以上を併用してもよ
い。
The silicone compound containing a hydrocarbon in the skeleton is used for the purpose of enhancing the chemical resistance of the low dielectric constant film forming composition such as acid and alkali and the moisture absorption resistance.
For example, polydimethylcarbosilane, polyhydromethylcarbosilane, polydiethylcarbosilane, polyhydroethylcarbosilane, polycarbosilastyrene, polyphenylmethylcarbosilane, polydiphenylcarbosilane, polydimethylsilphenylenesiloxane, polymethylsilphenylene. Siloxane, polydiethylsilphenylene siloxane, polyethylsilphenylene siloxane, polydipropyl silphenylene siloxane, polypropyl silphenylene siloxane, polyphenyl silphenylene siloxane, poly diphenyl silphenylene siloxane, polyphenyl methyl silphenylene siloxane, polyphenyl ethyl silphenylene siloxane, Polyphenylpropyl silphenylene siloxane, polyethyl methyl silphe Ren siloxane, polymethyl propyl silphenylene siloxane, polyethyl propyl silphenylene siloxanes, and the like. These may be used alone or in combination of two or more.

【0021】前記骨格に炭化水素を含むシリコーン化合
物の前記低誘電率膜形成用組成物における含有量として
は、前記ポリシロキサン100質量部に対し、0.1〜
200質量部が好ましい。前記含有量が、0.1質量部
未満であると、得られる低誘電率膜の耐薬品性の効果が
得られないことがあり、200質量部を超えると、得ら
れる低誘電率膜の強度が低下することがある。
The content of the silicone compound containing hydrocarbon in the skeleton in the composition for forming a low dielectric constant film is 0.1 to 100 parts by mass of the polysiloxane.
200 parts by mass is preferred. When the content is less than 0.1 parts by mass, the effect of chemical resistance of the obtained low dielectric constant film may not be obtained, and when it exceeds 200 parts by mass, the strength of the obtained low dielectric constant film is increased. May decrease.

【0022】本発明の低誘電率膜形成用組成物は、低誘
電率膜を容易にかつ効率的に形成することができ、各種
分野において好適に使用することができ、以下の本発明
の低誘電率膜及びその製造方法、半導体装置に特に好適
に使用することができる。
The composition for forming a low dielectric constant film of the present invention can easily and efficiently form a low dielectric constant film and can be suitably used in various fields. The dielectric constant film, the manufacturing method thereof, and the semiconductor device can be particularly preferably used.

【0023】(低誘電率膜の製造方法)本発明の低誘電
率膜の製造方法においては、基板上に本発明の低誘電率
膜形成用組成物を塗布して塗布膜を形成し、該塗布膜に
放射線を照射する。
(Method for producing low dielectric constant film) In the method for producing a low dielectric constant film of the present invention, the composition for forming a low dielectric constant film of the present invention is applied onto a substrate to form a coating film, The coating film is irradiated with radiation.

【0024】−塗布膜− 前記塗布膜は、本発明の低誘電率膜形成用組成物を基板
上に塗布することにより形成される。該塗布の方法とし
ては、特に制限はなく、公知の塗布方法、例えば、スピ
ンコート、ディップコート、ニーダーコート、カーテン
コート、及び、ブレードコート等が挙げられる。これら
の中でも、効率性等の点で、スピンコート、ディップコ
ート等が好ましい。前記塗布の後、必要に応じて溶媒等
を乾燥させることができ、該乾燥の温度としては、特に
制限はなく、目的に応じて適宜選択することができる
が、100〜250℃程度が好ましい。
-Coating Film- The coating film is formed by coating the composition for forming a low dielectric constant film of the present invention on a substrate. The coating method is not particularly limited, and known coating methods such as spin coating, dip coating, kneader coating, curtain coating, and blade coating can be used. Among these, spin coating, dip coating and the like are preferable in terms of efficiency. After the application, a solvent and the like can be dried as necessary, and the drying temperature is not particularly limited and can be appropriately selected depending on the purpose, but is preferably about 100 to 250 ° C.

【0025】−放射線の照射− 前記放射線の照射は、前記塗布膜に対して行われる。該
塗布膜に前記放射線が塗布されると、前記低誘電率膜形
成用組成物に含有される放射線分解性化合物が分解・脱
離される。該塗布膜が多孔質化する。前記放射線の種類
としては、特に制限はなく、目的に応じて適宜選択する
ことができるが、例えば、赤外光、可視光、紫外光、X
線、などが好適に挙げられ、本発明においては電子線も
前記放射線として照射することができ、同様の効果が得
られる。これらは、1種単独で使用してもよいし、2種
以上を併用してもよいが、前記放射線分解性化合物が樹
脂である場合には、主鎖断裂のエネルギーを有する光源
として紫外光、X線、電子線等を特に好適に使用するこ
とができる。
-Irradiation of Radiation- Irradiation of the radiation is performed on the coating film. When the coating film is coated with the radiation, the radiation decomposable compound contained in the composition for forming a low dielectric constant film is decomposed / desorbed. The coating film becomes porous. The type of radiation is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include infrared light, visible light, ultraviolet light, and X-ray.
A preferable example is a ray, and in the present invention, an electron beam can also be irradiated as the radiation, and the same effect can be obtained. These may be used alone or in combination of two or more, but when the radiation-decomposable compound is a resin, ultraviolet light is used as a light source having energy of main chain breaking, X-rays, electron beams and the like can be used particularly preferably.

【0026】前記放射線を照射した際、前記放射線分解
性化合物を効率的に分解・脱離させるためには、該放射
線を照射する際の、前記塗布膜の吸光度(照射する放射
線の波長(10−1〜10Åにおける吸光度を指
す。)が、1.75以下であるのが好ましく、1.25
以下であるのがより好ましい。
In order to efficiently decompose and desorb the radiation-decomposable compound upon irradiation with the radiation, the absorbance of the coating film during irradiation with the radiation (wavelength (10 The absorbance at 1 to 10 6 Å is preferably 1.75 or less, and is 1.25.
The following is more preferable.

【0027】前記放射線の照射においては、例えば、前
記低誘電率膜形成用組成物が、吸収極大波長が互いに異
なる2種以上の前記放射線分解性化合物を含有している
場合には、2種以上の放射線を前記塗布膜に対し照射す
ることにより、前記放射線分解性化合物を種類毎に段階
的に前記塗布膜から分解・脱離させることができる。そ
の結果、前記塗布膜を段階的に多孔質化することが可能
となる。特に吸収極大波長及び分子サイズが共に異なる
2種以上の前記放射線分解性化合物を併用した場合に
は、サイズの異なる孔を前記塗布膜に効率的に形成する
ことが可能となる。この場合において、先ず、分子サイ
ズの小さい前記放射線分解性化合物が吸収極大を示す波
長域の放射線を照射して、該分子サイズの小さい放射線
分解性化合物を前記塗布膜から分解・脱離させ、次に、
分子サイズの大きい放射線分解性化合物が吸収極大を示
す波長域の放射線を照射し、該分子サイズの大きい放射
線分解性化合物を前記塗布膜から分解・脱離させる。こ
のとき、該分子サイズの大きな放射線分解性化合物は、
前記塗布膜には既に分子サイズの小さい前記放射線分解
性化合物の分解・脱離により多数の孔が形成されている
ため、効率良く脱離可能となり、容易に多孔質化が進
む。その結果、低誘電率膜が極めて効率的に得られる。
In the irradiation with the radiation, for example, when the composition for forming a low dielectric constant film contains two or more kinds of the radiation decomposable compounds having different absorption maximum wavelengths, two or more kinds of the compounds are used. By irradiating the coating film with the above-mentioned radiation, the radiation decomposable compound can be decomposed / desorbed from the coating film step by step for each type. As a result, it becomes possible to gradually make the coating film porous. In particular, when two or more kinds of the radiation decomposable compounds having different maximum absorption wavelengths and different molecular sizes are used in combination, it becomes possible to efficiently form pores having different sizes in the coating film. In this case, first, the radiation decomposable compound having a small molecular size is irradiated with radiation in a wavelength range where the radiation decomposable compound has an absorption maximum to decompose and desorb the radiation decomposable compound having a small molecular size from the coating film, and To
The radiation-decomposable compound having a large molecular size is irradiated with radiation in a wavelength range where it has an absorption maximum, and the radiation-decomposable compound having a large molecular size is decomposed and desorbed from the coating film. At this time, the radiolytic compound having a large molecular size is
Since a large number of pores have already been formed in the coating film by decomposing / desorbing the radiation-decomposable compound having a small molecular size, the coating film can be efficiently desorbed, and the porosity easily progresses. As a result, a low dielectric constant film can be obtained very efficiently.

【0028】前記塗布膜に前記放射線の照射の前後乃至
同時に、必要に応じて熱処理を行うことができる。前記
熱処理を行うと、前記ポリシロキサンの重合を促進さ
せ、該ポリシロキサンを架橋させることができる。前記
熱処理の温度としては、特に制限はなく、目的に応じて
適宜選択することができるが、250〜300℃程度が
好ましい。前記熱処理の回数としては、特に制限はな
く、目的に応じて適宜選択することができる。
Heat treatment can be performed on the coating film before or after the irradiation of the radiation or at the same time, if necessary. When the heat treatment is performed, the polymerization of the polysiloxane can be promoted and the polysiloxane can be crosslinked. The temperature of the heat treatment is appropriately selected depending on the intended purpose without any limitation, but it is preferably about 250 to 300 ° C. The number of times of the heat treatment is not particularly limited and can be appropriately selected depending on the purpose.

【0029】本発明の低誘電率膜の製造方法は、低誘電
率膜を高温処理することなく容易に製造することができ
るので、高速で信頼性の高い半導体装置等に熱ストレス
を与えることなく、高品質な半導体装置等の製造に適用
することができ、以下の本発明の低誘電率膜、半導体装
置等に特に好適である。
According to the method of manufacturing a low dielectric constant film of the present invention, a low dielectric constant film can be easily manufactured without high-temperature treatment, so that a high-speed and highly reliable semiconductor device or the like is not subjected to thermal stress. It can be applied to the production of high quality semiconductor devices and the like, and is particularly suitable for the low dielectric constant film, semiconductor device and the like of the present invention described below.

【0030】(低誘電率膜)本発明の低誘電率膜は、本
発明の低誘電率膜の製造方法により製造される。前記低
誘電率膜における孔の径(平均径)としては、低誘電率
特性の観点からは、100nm以下が好ましく、80n
m以下がより好ましい。なお、前記孔の径(平均径)
は、透過型電子顕微鏡により測定することができる。前
記低誘電率膜の厚みとしては、特に制限はなく、目的に
応じて適宜選択することができるが、0.05〜5μm
程度であるのが好ましい。本発明の低誘電率膜は、低誘
電率特性に優れることから、各種分野において好適に使
用することができるが、高速で信頼性の要求される各種
のデバイス、例えば、IC、LSI等の高集積度の半導
体装置等における安定な層間絶縁膜として特に好適に使
用することができる。
(Low-k film) The low-k film of the present invention is manufactured by the method of manufacturing a low-k film of the present invention. The diameter (average diameter) of the pores in the low dielectric constant film is preferably 100 nm or less from the viewpoint of low dielectric constant characteristics, and is 80 n.
It is more preferably m or less. The diameter of the holes (average diameter)
Can be measured by a transmission electron microscope. The thickness of the low dielectric constant film is appropriately selected depending on the intended purpose without any limitation, but it is 0.05 to 5 μm.
It is preferably about the same. Since the low dielectric constant film of the present invention has excellent low dielectric constant characteristics, it can be suitably used in various fields, but it can be used in various devices that require high speed and reliability, such as high ICs and LSIs. It can be particularly preferably used as a stable interlayer insulating film in a semiconductor device having a high degree of integration.

【0031】(半導体装置)本発明の半導体装置は、本
発明の低誘電率膜を層間絶縁膜として有する以外に特に
制限はなく、目的に応じて適宜選択した公知の部材等を
有してなり、フラッシュメモリ、DRAM、FRAM、
MOSトランジスタ、などが好適に挙げられる。本発明
の半導体装置は、本発明の低誘電率膜を層間絶縁膜とし
て有するため、各層の層間の絶縁性に優れ、高速で信頼
性が高く、各種分野において好適に使用することができ
る。
(Semiconductor Device) The semiconductor device of the present invention is not particularly limited except that it has the low dielectric constant film of the present invention as an interlayer insulating film, and has well-known members appropriately selected according to the purpose. , Flash memory, DRAM, FRAM,
Suitable examples include MOS transistors. Since the semiconductor device of the present invention has the low dielectric constant film of the present invention as an interlayer insulating film, it has excellent insulating properties between layers, is high-speed and highly reliable, and can be suitably used in various fields.

【0032】以下に、本発明の半導体装置の一例につい
て、図1を参照しながら説明する。本発明の半導体装置
は、例えば以下のようにして得られる。即ち、図1に示
すように、先ず素子間分離膜2で分離され、ソース拡散
層5a、ドレイン拡散層5b、及び、サイドウォール絶
縁膜3を有するゲート電極4を形成したトランンジスタ
層が形成されたシリコンウエハ1上に、層間絶縁膜(リ
ンガラス)6及びストッパー膜7を形成し、電極取り出
し用のコンタクトホールを形成する。このコンタクトホ
ールに、スパッタ法でバリア膜8(TiN;50nm)
を形成した後、WF及び水素を混合し還元することで
導体プラグ(W)9を埋め込み、化学的機械研磨法(C
MP)によりビア以外の部分を除去する。
An example of the semiconductor device of the present invention will be described below with reference to FIG. The semiconductor device of the present invention is obtained, for example, as follows. That is, as shown in FIG. 1, first, a transistor layer separated by the element isolation film 2 and having the source diffusion layer 5a, the drain diffusion layer 5b, and the gate electrode 4 having the sidewall insulating film 3 is formed. An interlayer insulating film (phosphorus glass) 6 and a stopper film 7 are formed on the silicon wafer 1 and contact holes for electrode extraction are formed. A barrier film 8 (TiN; 50 nm) is formed in this contact hole by a sputtering method.
After the formation, the conductor plug (W) 9 is embedded by mixing and reducing WF 6 and hydrogen, and the chemical mechanical polishing method (C
The portion other than the via is removed by MP).

【0033】続いて、ストッパー膜7上に、本発明の低
誘電率膜形成用組成物を前記塗布方法により塗布し、低
誘電率膜10(厚み:450nm)を形成した後、TE
OS−SiO(キャップ膜12)を50nm積層させ
る。このキャップ膜12を、1層目配線パターンを施し
たレジスト層をマスクとして、CF/CHFガスを
原料としたFプラズマによって加工する。
Then, the composition for forming a low dielectric constant film of the present invention is applied onto the stopper film 7 by the above-mentioned coating method to form the low dielectric constant film 10 (thickness: 450 nm), and then TE is formed.
OS-SiO 2 (cap film 12) is laminated to a thickness of 50 nm. The cap film 12 is processed by F plasma using CF 4 / CHF 3 gas as a raw material, using the resist layer having the first wiring pattern as a mask.

【0034】この配線溝に、Cuの絶縁層への拡散バリ
アとして働くバリア膜8(TiN)(50nm)と、電
解メッキの際に電極として働くシード層Cu(50n
m)とを、スパッタにより形成する。更に、電解メッキ
により銅(600nm)を積層した後、CMPにより配
線パターン部以外のメタルを除去し、銅配線14の層を
形成する。
In this wiring groove, a barrier film 8 (TiN) (50 nm) that functions as a diffusion barrier of Cu to the insulating layer and a seed layer Cu (50 n) that functions as an electrode during electrolytic plating are used.
m) and are formed by sputtering. Further, after copper (600 nm) is laminated by electrolytic plating, the metal other than the wiring pattern portion is removed by CMP to form a layer of the copper wiring 14.

【0035】次に、ビア層及び配線層を同時に形成する
デュアルダマシン法について説明する。第1層目配線層
上に、Cu拡散防止を目的として、シラン及びアンモニ
アガスを用い、プラズマCVDにより、拡散防止膜13
としてSiN膜(50nm)を形成し、本発明の低誘電
率膜形成用組成物を前記塗布方法により塗布し、低誘電
率膜10(650nm)を積層する。配線層部分に、シ
ラン及びアンモニアガスを用い、プラズマCVDによ
り、ストッパー膜7としてSiN膜(50nm)を成膜
し、更に、本発明の低誘電率膜形成用組成物を前記塗布
方法により塗布し、その上に低誘電率膜10(400n
m)を形成する。キャップ膜12(50nm)として、
TEOS−SiO膜を積層する。この低誘電率膜10
に、ビアパターンを形成したレジスト層をマスクとし
て、CF/CHFガスを原料としたFプラズマによ
り、ガス組成を変えることでSiO/低誘電率絶縁膜
/SiN/低誘電率絶縁膜/SiNの順に加工する。続
いて、第2層目目配線パターンを施したレジスト層をマ
スクとして、CF/CHFガスを原料としたFプラ
ズマにより加工する。このビアと配線溝に、Cuの絶縁
層への拡散バリアとして働くバリア膜8(TiN;50
nm)、及び、電解メッキの際に電極として働くシード
層Cu(50nm)をスパッタにより形成する。更に、
電解メッキにより銅(1400nm)を積層した後、C
MPにより配線パターン部以外のメタルを除去し、銅配
線14を形成した化学的機械研磨法(CMP)によりビ
ア以外の部分を除去しビア層を形成する。これにより、
前記工程を繰り返して、3層配線を形成することができ
る。このようにして、得られる多層配線において、10
0万個の連続ビアの歩留まりを90%以上とすることが
できる。
Next, a dual damascene method for simultaneously forming a via layer and a wiring layer will be described. A diffusion prevention film 13 was formed on the first wiring layer by plasma CVD using silane and ammonia gas for the purpose of preventing Cu diffusion.
As a result, a SiN film (50 nm) is formed, and the composition for forming a low dielectric constant film of the present invention is applied by the above-mentioned coating method to laminate the low dielectric constant film 10 (650 nm). A SiN film (50 nm) is formed as a stopper film 7 by plasma CVD using silane and ammonia gas on the wiring layer portion, and the composition for forming a low dielectric constant film of the present invention is applied by the above-mentioned application method. , A low dielectric constant film 10 (400n
m) is formed. As the cap film 12 (50 nm),
A TEOS-SiO 2 film is laminated. This low dielectric constant film 10
In addition, by using the resist layer having the via pattern as a mask and changing the gas composition by F plasma using CF 4 / CHF 3 gas as a raw material, SiO 2 / low dielectric constant insulating film / SiN / low dielectric constant insulating film / Processed in the order of SiN. Then, using the resist layer having the second-layer wiring pattern as a mask, processing is performed by F plasma using CF 4 / CHF 3 gas as a raw material. A barrier film 8 (TiN; 50) that functions as a diffusion barrier of Cu to the insulating layer is formed in the via and the wiring groove.
nm) and a seed layer Cu (50 nm) that functions as an electrode during electrolytic plating is formed by sputtering. Furthermore,
After laminating copper (1400 nm) by electrolytic plating, C
The metal other than the wiring pattern portion is removed by MP, and the portion other than the via is removed by chemical mechanical polishing (CMP) in which the copper wiring 14 is formed to form a via layer. This allows
By repeating the above steps, a three-layer wiring can be formed. In this way, in the obtained multilayer wiring, 10
The yield of 0,000 continuous vias can be increased to 90% or more.

【0036】[0036]

【実施例】以下、本発明の実施例を説明するが、本発明
は、これらの実施例に何ら限定されるものではない。 (実施例1) −低誘電率膜形成用組成物の調製− テトラエトキシシラン20.8g(0.1mol)、メ
チルトリエトキシシラン17.8g(0.1mol)、
及びメチルイソブチルケトン39.6gの200mlを
反応容器に仕込み、ここに、400ppmの硝酸水1
6.2g(0.9mol)を10分間で滴下し、滴下終
了後2時間の熟成反応を行った。次に、硫酸マグネシウ
ム5gを添加し、過剰の水分を除去した後、ロータリー
エバポレータにて熟成反応により生成したエタノール
を、反応溶液が50mlになるまで除去した。得られた
反応溶液にメチルイソブチルケトンを20ml添加し、
200℃のオーブンによりメチルイソブチルケトンを除
去し、固形分濃度17.4質量%の組成物を作製した。
この組成物に、ポリメチルメタクリレートを1.68g
(ポリシロキサン100質量部に対し、5質量部)添加
し、低誘電率膜形成用組成物を作製した。
EXAMPLES Examples of the present invention will be described below, but the present invention is not limited to these examples. (Example 1) -Preparation of composition for forming low dielectric constant film-Tetraethoxysilane 20.8 g (0.1 mol), methyltriethoxysilane 17.8 g (0.1 mol),
200 ml of 39.6 g of methyl isobutyl ketone and 200 ml of nitric acid water of 400 ppm were charged into a reaction vessel.
6.2 g (0.9 mol) was added dropwise over 10 minutes, and an aging reaction was carried out for 2 hours after the completion of the addition. Next, 5 g of magnesium sulfate was added to remove excess water, and then ethanol produced by the aging reaction was removed by a rotary evaporator until the reaction solution reached 50 ml. 20 ml of methyl isobutyl ketone was added to the obtained reaction solution,
Methyl isobutyl ketone was removed in an oven at 200 ° C to prepare a composition having a solid content concentration of 17.4% by mass.
1.68 g of polymethylmethacrylate in this composition
(5 parts by mass relative to 100 parts by mass of polysiloxane) was added to prepare a composition for forming a low dielectric constant film.

【0037】−低誘電率膜の製造− 得られた低誘電率膜形成用組成物を、シリコンウエハ上
に、スピンコート(3000回転、20秒間)して塗布
膜を形成した後、200℃で乾燥させ、250℃で60
分間アニールを行った。その後、該塗布膜に対し、波長
172nmの紫外線照射を3分間照射して低誘電率膜を
製造した。このとき、放射線(紫外線)照射前の塗布膜
における吸光度を、紫外・可視分光光度計(機械名;U
−3200、日立社製)を用いて公知の吸光度測定方法
により測定した。また、同様に、放射線(紫外線)照射
前の塗布膜に、1mmのAu電極を形成し、容量測定す
ることにより該塗布膜の誘電率を測定・算出した。ま
た、得られた低誘電率膜における誘電率を前述と同様に
して測定した。また、該低誘電率膜における孔の径を、
透過型電子顕微鏡(TEM)により測定した。これらの
結果を表1に示す。
-Production of Low Dielectric Constant Film- The obtained composition for forming a low dielectric constant film was spin-coated (3000 revolutions, 20 seconds) on a silicon wafer to form a coating film, and then at 200 ° C. Dry and 60 at 250 ° C
Annealing was performed for a minute. Then, the coating film was irradiated with ultraviolet rays having a wavelength of 172 nm for 3 minutes to manufacture a low dielectric constant film. At this time, the absorbance of the coating film before irradiation with radiation (ultraviolet rays) was measured by an ultraviolet / visible spectrophotometer (machine name: U
-3200, manufactured by Hitachi, Ltd.). Similarly, a 1 mm Au electrode was formed on the coating film before radiation (ultraviolet) irradiation, and the capacitance was measured to measure and calculate the dielectric constant of the coating film. Further, the dielectric constant of the obtained low dielectric constant film was measured in the same manner as described above. In addition, the diameter of the holes in the low dielectric constant film is
It was measured by a transmission electron microscope (TEM). The results are shown in Table 1.

【0038】(実施例2) −低誘電率膜形成用組成物の調製− 実施例1において、ポリメチルメタクリレート1.68
g(5質量部)を、トリアジン誘導体2.5g(10質
量部)に代えた以外は、実施例1と同様にして低誘電率
膜形成用組成物を調製した。
(Example 2) -Preparation of composition for forming low dielectric constant film-In Example 1, polymethylmethacrylate 1.68
A low dielectric constant film-forming composition was prepared in the same manner as in Example 1 except that 2.5 g (10 parts by mass) of the triazine derivative was used instead of g (5 parts by mass).

【0039】−低誘電率膜の製造− 得られた低誘電率膜形成用組成物を用い、実施例1にお
いて、照射した放射線(波長172nmの紫外線)を波
長400nmの可視光線に代え、照射時間を5分間とし
た以外は、実施例1と同様にして低誘電率膜を製造し、
実施例1と同様の同様の評価を行った。結果を表1に示
した。
-Production of low dielectric constant film- Using the obtained composition for forming a low dielectric constant film, in Example 1, the irradiated radiation (ultraviolet ray having a wavelength of 172 nm) was changed to visible light having a wavelength of 400 nm, and irradiation time was changed. A low dielectric constant film was produced in the same manner as in Example 1, except that
The same evaluation as in Example 1 was performed. The results are shown in Table 1.

【0040】(実施例3) -低誘電率膜形成用組成物の調製− メチルトリエトキシシラン17.8g(0.1mo
l)、トリエトキシシラン16.4g(0.1mo
l)、及びメチルイソブチルケトン37.2gの200
mlを反応容器に仕込み、ここに、400ppmの硝酸
水16.2g(0.9mol)を10分間で滴下し、滴
下終了後2時間の熟成反応を行った。次に、硫酸マグネ
シウム5gを添加し、過剰の水分を除去した後、ロータ
リーエバポレータにて熟成反応により生成したエタノー
ルを、反応溶液が50mlになるまで除去した。得られ
た反応溶液にメチルイソブチルケトンを20ml添加
し、200℃のオーブンによりメチルイソブチルケトン
を除去し、固形分濃度15.8質量%の組成物を得た。
この組成物に、ポリメチルメタクリレート1.68g
(ポリシロキサン100質量部に対し、5質量部)を添
加し、低誘電率膜形成用組成物を調製した。
(Example 3) -Preparation of composition for forming low dielectric constant film-Methyltriethoxysilane 17.8 g (0.1 mo)
1), 16.4 g of triethoxysilane (0.1 mo
l), and 200 of 37.2 g of methyl isobutyl ketone.
The reaction vessel was charged with ml, and 16.2 g (0.9 mol) of 400 ppm nitric acid water was added dropwise over 10 minutes, and an aging reaction was performed for 2 hours after the completion of the addition. Next, 5 g of magnesium sulfate was added to remove excess water, and then ethanol produced by the aging reaction was removed by a rotary evaporator until the reaction solution reached 50 ml. 20 ml of methyl isobutyl ketone was added to the obtained reaction solution, and methyl isobutyl ketone was removed by an oven at 200 ° C. to obtain a composition having a solid content concentration of 15.8 mass%.
1.68 g of polymethylmethacrylate in this composition
(5 parts by mass with respect to 100 parts by mass of polysiloxane) was added to prepare a composition for forming a low dielectric constant film.

【0041】−低誘電率膜の製造− 得られた低誘電率膜形成用組成物を用い、実施例1と同
様にして、低誘電率膜を形成し、実施例1と同様の評価
を行った。その結果を表1に示した。
-Manufacture of low dielectric constant film- Using the obtained composition for forming a low dielectric constant film, a low dielectric constant film was formed in the same manner as in Example 1, and the same evaluation as in Example 1 was performed. It was The results are shown in Table 1.

【0042】(実施例4) −低誘電率膜形成用組成物の調製− 実施例3において、ポリメチルメタクリレート1.68
g(5質量部)をトリアジン誘導体2.5g(10質量
部)に代えた以外は、実施例3と同様にして低誘電率膜
形成用組成物を調製した。
(Example 4) -Preparation of composition for forming low dielectric constant film-In Example 3, polymethylmethacrylate 1.68
A low dielectric constant film-forming composition was prepared in the same manner as in Example 3, except that 2.5 g (10 parts by mass) of the triazine derivative was used instead of g (5 parts by mass).

【0043】−低誘電率膜の製造− 得られた低誘電率膜形成用組成物を用い、実施例3の
「低誘電率膜の形成・吸光度、誘電率測定」において、
照射した放射線(波長172nmの紫外線)を波長40
0nmの可視光線に代え、照射時間を5分間に代えた以
外は、実施例1と同様にして低誘電率膜を製造し、実施
例1と同様の評価を行った。その結果を表1に示した。
-Production of low dielectric constant film- Using the obtained composition for forming a low dielectric constant film, in "formation of low dielectric constant film / absorbance, dielectric constant measurement" of Example 3,
The irradiated radiation (ultraviolet rays with a wavelength of 172 nm) has a wavelength of 40
A low dielectric constant film was produced in the same manner as in Example 1 except that the irradiation time was changed to 5 minutes instead of 0 nm visible light, and the same evaluation as in Example 1 was performed. The results are shown in Table 1.

【0044】(比較例1)実施例1において、ポリメチ
ルメタクリレートを添加しなかった以外は、実施例1と
同様にした。その結果を表1に示した。
(Comparative Example 1) The same procedure as in Example 1 was carried out except that polymethyl methacrylate was not added. The results are shown in Table 1.

【0045】(比較例2)実施例3において、ポリメチ
ルメタクリレートを添加しなかった以外は、実施例3と
同様にした。その結果を表1に示した。
(Comparative Example 2) The same procedure as in Example 3 was carried out except that polymethyl methacrylate was not added. The results are shown in Table 1.

【0046】[0046]

【表1】 [Table 1]

【0047】(実施例5)実施例3において、照射した
放射線(波長172nmの紫外線)を波長365nmの
紫外線に代え、照射時間を10分間に代えた以外は、実
施例3と同様にして低誘電率膜を製造し、実施例3と同
様の評価を行った。その結果を表2に示した。
(Example 5) A low dielectric constant was obtained in the same manner as in Example 3 except that the irradiated radiation (ultraviolet rays having a wavelength of 172 nm) was changed to ultraviolet rays having a wavelength of 365 nm and the irradiation time was changed to 10 minutes. A rate film was produced and evaluated in the same manner as in Example 3. The results are shown in Table 2.

【0048】(実施例6) −低誘電率膜形成用組成物の調製− 実施例3において、ポリメチルメタクリレート1.68
gを、トリアリールスルホニウム誘導体2.1g(5質
量部)に代えた以外は、実施例3と同様にして低誘電率
膜形成用組成物を調製した。
(Example 6) -Preparation of low dielectric constant film forming composition-In Example 3, polymethylmethacrylate 1.68
A composition for forming a low dielectric constant film was prepared in the same manner as in Example 3 except that 2.1 g (5 parts by mass) of the triarylsulfonium derivative was used instead of g.

【0049】−低誘電率膜の製造− 実施例3において、照射した放射線(波長172nmの
紫外線)を波長254nmの紫外線に代え、照射時間を
1分間に代えた以外は、実施例3と同様にして、低誘電
率膜を製造し、実施例3と同様の評価を行った。その結
果を表2に示した。
-Production of Low Dielectric Constant Film- In the same manner as in Example 3 except that the irradiated radiation (ultraviolet ray having a wavelength of 172 nm) was changed to ultraviolet ray having a wavelength of 254 nm and the irradiation time was changed to 1 minute. Then, a low dielectric constant film was manufactured, and the same evaluation as in Example 3 was performed. The results are shown in Table 2.

【0050】(実施例7) −低誘電率膜形成用組成物の調製− 実施例3において、更にトリアリールスルホニウム誘導
体2.1g(5質量部)を添加した以外は、実施例3と
同様にして低誘電率膜形成用組成物を調製した。
(Example 7) -Preparation of composition for forming low dielectric constant film-In the same manner as in Example 3 except that 2.1 g (5 parts by mass) of the triarylsulfonium derivative was added in Example 3. A low dielectric constant film forming composition was prepared.

【0051】−低誘電率膜の製造− 実施例3において、波長172nmの紫外線照射を3分
間照射したことを、波長254nmの紫外線を1分間照
射した後、波長365nmの紫外線を10分間照射した
ことに代えた以外は、実施例3と同様にして低誘電率膜
を製造し、実施例3と同様の評価を行った。その結果を
表2に示した。
-Production of low dielectric constant film-In Example 3, irradiation with ultraviolet rays having a wavelength of 172 nm was performed for 3 minutes, irradiation with ultraviolet rays having a wavelength of 254 nm was performed for 1 minute, and then irradiation with ultraviolet rays having a wavelength of 365 nm was performed for 10 minutes. A low dielectric constant film was manufactured in the same manner as in Example 3 except that the above was used, and the same evaluation as in Example 3 was performed. The results are shown in Table 2.

【0052】[0052]

【表2】 [Table 2]

【0053】なお、表2の「吸光度」において、実施例
7では、波長254nmの紫外線を1分間照射する前の
被膜における吸光度が「2.5」、波長365nmの
紫外線を10分間照射する前の被膜における吸光度が
「2.0」であることを示している。
In Table 7, "Absorbance" indicates that in Example 7, the absorbance of the coating before irradiation with ultraviolet rays having a wavelength of 254 nm for 1 minute was "2.5" and before irradiation with ultraviolet rays having a wavelength of 365 nm was 10 minutes. It shows that the absorbance of the coating is “2.0”.

【0054】(実施例8)本発明の低誘電率膜形成用組
成物を用いて製造した本発明の低誘電率膜を備えた本発
明の半導体装置を以下のようにして得た。即ち、図1に
示すように、先ず、素子間分離膜2で分離され、ソース
拡散層5a、ドレイン拡散層5b、及び、サイドウォー
ル絶縁膜3を有するゲート電極4を形成したトランンジ
スタ層が形成されたシリコンウエハ1上に、層間絶縁膜
(リンガラス)6及びストッパー膜7を形成し、電極取
り出し用のコンタクトホールを形成した。このコンタク
トホールに、スパッタ法でバリア膜8(TiN;50n
m)を形成した後、WF及び水素を混合し還元するこ
とにより導体プラグ(W)9を埋め込み、化学的機械研
磨法(CMP)によりビア以外の部分を除去した。
Example 8 A semiconductor device of the present invention provided with the low dielectric constant film of the present invention produced by using the low dielectric constant film forming composition of the present invention was obtained as follows. That is, as shown in FIG. 1, first, a transistor layer separated by the element isolation film 2 and having the source diffusion layer 5a, the drain diffusion layer 5b, and the gate electrode 4 having the sidewall insulating film 3 is formed. An interlayer insulating film (phosphorus glass) 6 and a stopper film 7 were formed on the formed silicon wafer 1 to form contact holes for taking out electrodes. The barrier film 8 (TiN; 50n) is formed in this contact hole by the sputtering method.
After forming m), the conductor plug (W) 9 was embedded by mixing and reducing WF 6 and hydrogen, and the portion other than the via was removed by the chemical mechanical polishing (CMP) method.

【0055】続いて、ストッパー膜7上に、実施例4の
低誘電率膜形成用組成物を用い、実施例4と同様にして
低誘電率膜10(厚み:450nm)を形成した後、T
EOS−SiO(キャップ膜12)を50nm積層さ
せた。このキャップ膜12を、1層目配線パターンを施
したレジスト層をマスクとして、CF/CHFガス
を原料としたFプラズマによって加工した。
Subsequently, a low dielectric constant film 10 (thickness: 450 nm) was formed on the stopper film 7 by using the composition for forming a low dielectric constant film of Example 4 in the same manner as in Example 4, and then T
EOS-SiO 2 (cap film 12) was laminated in a thickness of 50 nm. This cap film 12 was processed by F plasma using CF 4 / CHF 3 gas as a raw material, using the resist layer having the first wiring pattern as a mask.

【0056】この配線溝に、Cuの絶縁層への拡散バリ
アとして働くバリア膜8(TiN)(50nm)と、電
解メッキの際に電極として働くシード層Cu(50n
m)とを、スパッタにより形成した。更に、電解メッキ
により銅(600nm)を積層した後、CMPにより配
線パターン部以外のメタルを除去し、銅配線14の層を
形成した。
In this wiring groove, a barrier film 8 (TiN) (50 nm) that functions as a diffusion barrier of Cu to the insulating layer, and a seed layer Cu (50 n) that functions as an electrode during electrolytic plating are used.
m) and were formed by sputtering. Further, after copper (600 nm) was laminated by electrolytic plating, the metal other than the wiring pattern portion was removed by CMP to form a layer of the copper wiring 14.

【0057】次に、ビア層及び配線層を同時に形成する
デュアルダマシン法について説明する。第1層目配線層
上に、Cu拡散防止を目的として、シラン及びアンモニ
アガスを用い、プラズマCVDにより、拡散防止膜13
としてSiN膜(50nm)を形成し、実施例4の低誘
電率膜形成用組成物を用い、実施例4と同様にして低誘
電率膜10(650nm)を形成し積層した。配線層部
分に、シラン及びアンモニアガスを用い、プラズマCV
Dにより、ストッパー膜7としてSiN膜(50nm)
を成膜し、更に実施例4の低誘電率膜形成用組成物を用
い、実施例4と同様にしてその上に低誘電率膜10(4
00nm)を形成した。キャップ膜12(50nm)と
して、TEOS−SiO膜を積層した。この低誘電率
膜10に、ビアパターンを形成したレジスト層をマスク
として、CF/CHFガスを原料としたFプラズマ
により、ガス組成を変えることでSiO/低誘電率絶
縁膜/SiN/低誘電率絶縁膜/SiNの順に加工し
た。続いて、第2層目目配線パターンを施したレジスト
層をマスクとして、CF/CHFガスを原料とした
Fプラズマにより加工した。このビアと配線溝に、Cu
の絶縁層への拡散バリアとして働くバリア膜8(Ti
N;50nm)、及び電解メッキの際に電極として働く
シード層Cu(50nm)をスパッタにより形成した。
更に、電解メッキにより銅(1400nm)を積層した
後、CMPにより配線パターン部以外のメタルを除去
し、銅配線14を形成した化学的機械研磨法(CMP)
によりビア以外の部分を除去しビア層を形成した。これ
により、前記工程を繰り返して、3層配線を形成した。
以上のようにして、得た半導体装置における多層配線で
は、100万個の連続ビアの歩留まりを90%以上とす
ることができた。
Next, a dual damascene method for simultaneously forming a via layer and a wiring layer will be described. A diffusion prevention film 13 was formed on the first wiring layer by plasma CVD using silane and ammonia gas for the purpose of preventing Cu diffusion.
As a result, a SiN film (50 nm) was formed, and using the composition for forming a low dielectric constant film of Example 4, a low dielectric constant film 10 (650 nm) was formed and laminated in the same manner as in Example 4. Plasma CV is used for the wiring layer portion using silane and ammonia gas.
According to D, the SiN film (50 nm) is used as the stopper film 7.
Was further formed, and the composition for forming a low dielectric constant film of Example 4 was used, and the low dielectric constant film 10 (4) was formed thereon in the same manner as in Example 4.
00 nm) was formed. As the cap film 12 (50 nm), a TEOS-SiO 2 film was laminated. The low dielectric constant film 10, a resist layer formed a via pattern as a mask, CF 4 / CHF 3 by F plasma gas as a raw material, SiO 2 / low dielectric constant insulating by changing the gas composition film / SiN / The low dielectric constant insulating film / SiN was processed in this order. Then, using the resist layer having the second-layer wiring pattern as a mask, processing was performed by F plasma using CF 4 / CHF 3 gas as a raw material. Cu in the via and wiring groove
Barrier film 8 (Ti
N; 50 nm) and a seed layer Cu (50 nm) that functions as an electrode during electrolytic plating were formed by sputtering.
Further, after copper (1400 nm) is laminated by electrolytic plating, the metal other than the wiring pattern portion is removed by CMP, and the copper wiring 14 is formed by chemical mechanical polishing (CMP).
A portion other than the via was removed to form a via layer. As a result, the above steps were repeated to form a three-layer wiring.
As described above, in the multilayer wiring in the obtained semiconductor device, the yield of 1 million continuous vias could be 90% or more.

【0058】ここで、本発明の好ましい態様を付記する
と、以下の通りである。 (付記1) 下記一般式(1)で表されるアルコキシシ
ランの加水分解生成物であるポリシロキサンと、放射線
分解性化合物とを、少なくとも含有することを特徴とす
る低誘電率膜形成用組成物。
The preferred embodiments of the present invention will be additionally described below. (Supplementary Note 1) A composition for forming a low dielectric constant film comprising at least a polysiloxane which is a hydrolysis product of an alkoxysilane represented by the following general formula (1) and a radiation decomposable compound. .

【化7】 XSi(OR)4−n ・・・一般式(1) 前記一般式(1)において、Xは、水素原子、フッ素原
子、アルキル基、アリール基、ビニル基及び脂環族基の
少なくともいずれかを表す。Rは、水素原子、アルキル
基、アリール基、ビニル基、及び脂環族基の少なくとも
いずれかを表す。nは、0から3までの整数を表す。 (付記2) 放射線分解性化合物の含有量が、ポリシロ
キサン100質量部に対し、0.1〜200質量部であ
る付記1に記載の低誘電率膜形成用組成物。 (付記3) 放射線分解性化合物が、下記一般式(2)
表されるトリアリールスルホニウム塩、及び下記一般式
(3)で表されるジアリールヨードニウム塩の少なくと
もいずれかから選択される付記1又は2に記載の低誘電
率膜形成用組成物。
Embedded image X n Si (OR) 4-n ... General formula (1) In the general formula (1), X is a hydrogen atom, a fluorine atom, an alkyl group, an aryl group, a vinyl group or an alicyclic group. Represents at least one of the groups. R represents at least one of a hydrogen atom, an alkyl group, an aryl group, a vinyl group, and an alicyclic group. n represents an integer of 0 to 3. (Supplementary Note 2) The composition for forming a low dielectric constant film according to Supplementary Note 1, wherein the content of the radiation decomposable compound is 0.1 to 200 parts by mass with respect to 100 parts by mass of polysiloxane. (Supplementary Note 3) The radiolytic compound is represented by the following general formula (2).
The composition for forming a low dielectric constant film according to Supplementary Note 1 or 2, which is selected from at least one of a triarylsulfonium salt represented and a diaryliodonium salt represented by the following general formula (3).

【化8】 前記一般式(2)及び前記一般式(3)において、R
は、各々独立して、水素原子、ハロゲン原子、及び、直
鎖状、分岐状若しくは環状のアルキル基又はアルコキシ
基の少なくともいずれかを表す。 (付記4) 吸収極大波長が互いに異なる2種以上の放
射線分解性化合物を含有する付記1から3のいずれかに
記載の低誘電率膜形成用組成物。 (付記5) 分子サイズが互いに異なる2種以上の放射
線分解性化合物を含有する付記1から4のいずれかに記
載の低誘電率膜形成用組成物。 (付記6) 骨格に炭化水素を含むシリコーン化合物を
含有する付記1から5のいずれかに記載の低誘電率膜形
成用組成物。 (付記7) 吸収極大波長が互いに異なる2種以上の
内、吸収極大波長の大きい放射線分解性化合物と、吸収
波長の小さい放射線分解性化合物との含有比(吸収極大
波長の大きい放射線分解性化合物/吸収波長の小さい放
射線分解性化合物)が、1/100〜100/1である
付記4に記載の低誘電率膜形成用組成物。 (付記8) 分子サイズが互いに異なる2種の放射線分
解性化合物の内、分子サイズの大きい放射線分解性化合
物と、分子サイズの小さい放射線分解性化合物と、の含
有比(分子サイズの大きい放射線分解性化合物/分子サ
イズの小さい放射線分解性化合物)が、1/100〜1
00/1である付記5に記載の低誘電率膜形成用組成
物。 (付記9) 骨格に炭化水素を含むシリコーン化合物の
低誘電率膜形成用組成物における含有量が、ポリシロキ
サン100質量部に対し、0.1〜200質量部である
付記6に記載の低誘電率膜形成用組成物。 (付記10) 基板上に付記1から9のいずれかに記載
の低誘電率膜形成用組成物を塗布し塗布膜を形成し、該
塗布膜に放射線を照射することを特徴とする低誘電率膜
の製造方法。 (付記11) 塗布膜に熱処理を行う付記10に記載の
低誘電率膜の製造方法。 (付記12) 熱処理が250〜300℃で行われる付
記11に記載の低誘電率膜の製造方法。 (付記13) 放射線が、赤外光、可視光、紫外光、X
線、及び電子線から選択される付記10から12のいず
れかに記載の低誘電率膜の製造方法。 (付記14) 塗布膜における、照射する放射線の波長
(10−1〜10Åにおける吸光度を指す。)に対す
る吸光度が、1.75以下である付記10から13のい
ずれかに記載の低誘電率膜の製造方法。 (付記15) 2種以上の放射線を照射する付記10か
ら14のいずれかに記載の低誘電率膜の製造方法。 (付記16) 付記10から15のいずれかに記載の低
誘電率膜の製造方法により形成される低誘電率膜。 (付記17) 径100nm以下の孔を複数有する付記
16に記載の低誘電率膜。 (付記18) 付記18又は19に記載の低誘電率膜を
層間絶縁膜として有することを特徴とする半導体装置。
[Chemical 8] In the general formula (2) and the general formula (3), R 2
Each independently represents a hydrogen atom, a halogen atom, and / or at least one of a linear, branched, or cyclic alkyl group or alkoxy group. (Additional remark 4) The composition for forming a low dielectric constant film according to any one of additional remarks 1 to 3, which contains two or more types of radiation-decomposable compounds having mutually different absorption maximum wavelengths. (Supplementary Note 5) The composition for forming a low dielectric constant film according to any one of Supplementary Notes 1 to 4, which contains two or more kinds of radiation-decomposable compounds having different molecular sizes. (Supplementary Note 6) The composition for forming a low dielectric constant film according to any one of Supplementary Notes 1 to 5, which contains a silicone compound containing a hydrocarbon in its skeleton. (Supplementary Note 7) Among two or more kinds having different absorption maximum wavelengths from each other, the content ratio of the radiation decomposable compound having a large absorption maximum wavelength and the radiation decomposable compound having a small absorption wavelength (radiation decomposable compound having a large absorption maximum wavelength / The composition for forming a low dielectric constant film according to Appendix 4, wherein the radiation decomposable compound having a small absorption wavelength is 1/100 to 100/1. (Supplementary Note 8) Among two types of radiolytic compounds having different molecular sizes, the content ratio of the radiolytic compound having a large molecular size and the radiolytic compound having a small molecular size (radiolytic property having a large molecular size Compound / radiolytic compound of small molecular size) is 1/100 to 1
The composition for forming a low dielectric constant film according to Supplementary Note 5, which is 00/1. (Supplementary Note 9) The low dielectric constant according to Supplementary Note 6, wherein the content of the silicone compound containing a hydrocarbon in the skeleton in the composition for forming a low dielectric constant film is 0.1 to 200 parts by mass with respect to 100 parts by mass of polysiloxane. A composition for forming a rate film. (Supplementary Note 10) A low dielectric constant, characterized in that the substrate is coated with the composition for forming a low dielectric constant film according to any one of Supplementary Notes 1 to 9 to form a coating film, and the coating film is irradiated with radiation. Membrane manufacturing method. (Supplementary Note 11) The method for producing a low dielectric constant film according to Supplementary Note 10, wherein the coating film is heat-treated. (Supplementary Note 12) The method for producing a low dielectric constant film according to Supplementary Note 11, wherein the heat treatment is performed at 250 to 300 ° C. (Supplementary Note 13) Radiation is infrared light, visible light, ultraviolet light, X
13. The method for producing a low dielectric constant film according to any one of appendices 10 to 12, which is selected from an electron beam and an electron beam. (Supplementary Note 14) The low dielectric constant according to any one of Supplementary Notes 10 to 13, wherein the coating film has an absorbance of 1.75 or less with respect to a wavelength of radiation to be irradiated (indicating absorbance at 10 −1 to 10 6 Å). Membrane manufacturing method. (Supplementary Note 15) The method for producing a low dielectric constant film according to any one of supplementary notes 10 to 14, which comprises irradiating two or more types of radiation. (Supplementary Note 16) A low dielectric constant film formed by the method for producing a low dielectric constant film according to any one of supplementary notes 10 to 15. (Supplementary Note 17) The low dielectric constant film according to Supplementary Note 16, which has a plurality of holes each having a diameter of 100 nm or less. (Supplementary Note 18) A semiconductor device comprising the low dielectric constant film according to Supplementary Note 18 or 19 as an interlayer insulating film.

【0059】[0059]

【発明の効果】本発明によると、従来における諸問題を
解決することができ、高強度で低誘電率な膜を形成可能
な低誘電率膜形成用組成物、それを用いて形成される高
強度な低誘電率膜及びその効率的な製造方法、並びに高
速で信頼性の高い半導体装置を提供することができる。
According to the present invention, various problems in the prior art can be solved, and a composition for forming a low dielectric constant film capable of forming a film having a high strength and a low dielectric constant, and a high composition formed using the same. It is possible to provide a strong low dielectric constant film, an efficient manufacturing method thereof, and a high-speed and highly reliable semiconductor device.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、本発明の低誘電率膜を用いた本発明の
半導体装置の一例を示す概略説明図である。
FIG. 1 is a schematic explanatory view showing an example of a semiconductor device of the present invention using a low dielectric constant film of the present invention.

【符号の説明】[Explanation of symbols]

1・・・シリコンウエハ 2・・・素子間分離膜 3・・・サイドウォール絶縁膜 4・・・ゲート電極 5a・・ソース拡散層 5b・・ドレイン拡散層 6・・・層間絶縁膜(リンガラス) 7・・・ストッパー膜 8・・・バリア膜 9・・・導体プラグ(W) 10・・低誘電率膜 12・・キャップ膜 13・・拡散防止膜 1 ... Silicon wafer 2 ... Element separation film 3 ... Sidewall insulating film 4 ... Gate electrode 5a ... Source diffusion layer 5b ... Drain diffusion layer 6 ... Interlayer insulation film (phosphorus glass) 7: Stopper film 8 ... Barrier film 9 ... Conductor plug (W) 10 ... Low dielectric constant film 12 ... Cap membrane ..Diffusion prevention film

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中田 義弘 神奈川県川崎市中原区上小田中4丁目1番 1号 富士通株式会社内 (72)発明者 鈴木 克己 神奈川県川崎市中原区上小田中4丁目1番 1号 富士通株式会社内 Fターム(参考) 5F033 HH11 HH33 JJ01 JJ11 JJ19 JJ33 KK01 KK11 KK33 MM01 MM02 MM12 MM13 NN06 NN07 PP15 PP27 QQ09 QQ21 QQ25 QQ37 QQ48 QQ54 RR04 RR06 RR14 RR23 SS04 SS21 SS22 TT04 XX01 XX24 XX27 5F058 AA10 AC10 AG01 AG09 AG10   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Yoshihiro Nakata             4-1, Kamiodanaka, Nakahara-ku, Kawasaki-shi, Kanagawa             No. 1 within Fujitsu Limited (72) Inventor Katsumi Suzuki             4-1, Kamiodanaka, Nakahara-ku, Kawasaki-shi, Kanagawa             No. 1 within Fujitsu Limited F term (reference) 5F033 HH11 HH33 JJ01 JJ11 JJ19                       JJ33 KK01 KK11 KK33 MM01                       MM02 MM12 MM13 NN06 NN07                       PP15 PP27 QQ09 QQ21 QQ25                       QQ37 QQ48 QQ54 RR04 RR06                       RR14 RR23 SS04 SS21 SS22                       TT04 XX01 XX24 XX27                 5F058 AA10 AC10 AG01 AG09 AG10

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 下記一般式(1)で表されるアルコキシ
シランの加水分解生成物であるポリシロキサンと、放射
線分解性化合物とを、少なくとも含有することを特徴と
する低誘電率膜形成用組成物。 【化1】 XSi(OR)4−n ・・・一般式(1) 前記一般式(1)において、Xは、水素原子、フッ素原
子、アルキル基、アリール基、ビニル基及び脂環族基の
少なくともいずれかを表す。Rは、水素原子、アルキル
基、アリール基、ビニル基、及び脂環族基の少なくとも
いずれかを表す。nは、0から3までの整数を表す。
1. A composition for forming a low dielectric constant film comprising at least a polysiloxane which is a hydrolysis product of an alkoxysilane represented by the following general formula (1) and a radiation decomposable compound. object. Embedded image X n Si (OR) 4-n ... General formula (1) In the general formula (1), X is a hydrogen atom, a fluorine atom, an alkyl group, an aryl group, a vinyl group or an alicyclic group. Represents at least one of the groups. R represents at least one of a hydrogen atom, an alkyl group, an aryl group, a vinyl group, and an alicyclic group. n represents an integer of 0 to 3.
【請求項2】 放射線分解性化合物が、下記一般式
(2)表されるトリアリールスルホニウム塩、及び下記
一般式(3)で表されるジアリールヨードニウム塩の少
なくともいずれかから選択される請求項1に記載の低誘
電率膜形成用組成物。 【化2】 前記一般式(2)及び前記一般式(3)において、R
は、各々独立して、水素原子、ハロゲン原子、及び、直
鎖状、分岐状若しくは環状のアルキル基又はアルコキシ
基の少なくともいずれかを表す。
2. The radiation decomposable compound is selected from at least one of a triarylsulfonium salt represented by the following general formula (2) and a diaryl iodonium salt represented by the following general formula (3). The composition for forming a low dielectric constant film according to 1. [Chemical 2] In the general formula (2) and the general formula (3), R 2
Each independently represents a hydrogen atom, a halogen atom, and / or at least one of a linear, branched, or cyclic alkyl group or alkoxy group.
【請求項3】 基板上に請求項1又は2に記載の低誘電
率膜形成用組成物を塗布し塗布膜を形成し、該塗布膜に
放射線を照射することを特徴とする低誘電率膜の製造方
法。
3. A low dielectric constant film, comprising: coating a composition for forming a low dielectric constant film according to claim 1 on a substrate to form a coating film; and irradiating the coating film with radiation. Manufacturing method.
【請求項4】 請求項3に記載の低誘電率膜の製造方法
により形成される低誘電率膜。
4. A low dielectric constant film formed by the method for manufacturing a low dielectric constant film according to claim 3.
【請求項5】 請求項4に記載の低誘電率膜を層間絶縁
膜として有することを特徴とする半導体装置。
5. A semiconductor device comprising the low dielectric constant film according to claim 4 as an interlayer insulating film.
JP2002077381A 2002-03-19 2002-03-19 Low dielectric constant film forming composition, low dielectric constant film, method for producing the same, and semiconductor device Expired - Fee Related JP3957154B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002077381A JP3957154B2 (en) 2002-03-19 2002-03-19 Low dielectric constant film forming composition, low dielectric constant film, method for producing the same, and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002077381A JP3957154B2 (en) 2002-03-19 2002-03-19 Low dielectric constant film forming composition, low dielectric constant film, method for producing the same, and semiconductor device

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2007000257A Division JP2007165914A (en) 2007-01-04 2007-01-04 Composition for forming low dielectric constant film
JP2007000258A Division JP4437820B2 (en) 2007-01-04 2007-01-04 Manufacturing method of low dielectric constant film

Publications (2)

Publication Number Publication Date
JP2003273099A true JP2003273099A (en) 2003-09-26
JP3957154B2 JP3957154B2 (en) 2007-08-15

Family

ID=29205701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002077381A Expired - Fee Related JP3957154B2 (en) 2002-03-19 2002-03-19 Low dielectric constant film forming composition, low dielectric constant film, method for producing the same, and semiconductor device

Country Status (1)

Country Link
JP (1) JP3957154B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006093657A (en) * 2004-07-09 2006-04-06 Jsr Corp Organic silica system film and forming method thereof, composition for forming insulating film of semiconductor apparatus, and wiring structure and semiconductor apparatus
JP2007046010A (en) * 2005-08-12 2007-02-22 Fujifilm Corp Composition for forming film, insulating film and method for producing the insulating film
JPWO2005124846A1 (en) * 2004-06-21 2008-04-17 日立化成工業株式会社 Organic siloxane film, semiconductor device using the same, flat display device, and raw material liquid
JPWO2007043205A1 (en) * 2005-10-14 2009-04-16 塩谷 喜美 Irradiation apparatus, irradiation method, and semiconductor device
US8216647B2 (en) 2005-03-14 2012-07-10 Fujifilm Corporation Insulating film, process for producing the same and electronic device using the same

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07258414A (en) * 1994-03-24 1995-10-09 Oki Electric Ind Co Ltd Silicone resin and composition containing the same and method for forming silicate glass-based inorganic film
WO2000018847A1 (en) * 1998-09-25 2000-04-06 Catalysts & Chemicals Industries Co., Ltd. Coating fluid for forming low-permittivity silica-based coating film and substrate with low-permittivity coating film
JP2000273176A (en) * 1999-03-26 2000-10-03 Fujitsu Ltd Insulation film formation method and semiconductor device
JP2000340557A (en) * 1999-05-28 2000-12-08 Fujitsu Ltd Material for insulation film, method for forming the insulation film, and semiconductor device
JP2001210142A (en) * 1999-10-01 2001-08-03 Shipley Co Llc Porous material
JP2002016057A (en) * 2000-04-28 2002-01-18 Lg Chem Investment Ltd Ultra-low dielectric porous wiring interlayer dielectric for semiconductor device, method for manufacturing the same, and semiconductor device using the film
JP2002030249A (en) * 2000-07-14 2002-01-31 Catalysts & Chem Ind Co Ltd Silica coating liquid for forming low dielectric constant and silica coat substrate with low dielectric constant
JP2002105205A (en) * 2000-09-29 2002-04-10 Mitsubishi Materials Corp Porous film composed of organic silicone compound and method for producing the same
JP2002544331A (en) * 1999-05-07 2002-12-24 アライドシグナル インコーポレイテッド Microporous materials fabricated using soluble reagents

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07258414A (en) * 1994-03-24 1995-10-09 Oki Electric Ind Co Ltd Silicone resin and composition containing the same and method for forming silicate glass-based inorganic film
WO2000018847A1 (en) * 1998-09-25 2000-04-06 Catalysts & Chemicals Industries Co., Ltd. Coating fluid for forming low-permittivity silica-based coating film and substrate with low-permittivity coating film
JP2000273176A (en) * 1999-03-26 2000-10-03 Fujitsu Ltd Insulation film formation method and semiconductor device
JP2002544331A (en) * 1999-05-07 2002-12-24 アライドシグナル インコーポレイテッド Microporous materials fabricated using soluble reagents
JP2000340557A (en) * 1999-05-28 2000-12-08 Fujitsu Ltd Material for insulation film, method for forming the insulation film, and semiconductor device
JP2001210142A (en) * 1999-10-01 2001-08-03 Shipley Co Llc Porous material
JP2002016057A (en) * 2000-04-28 2002-01-18 Lg Chem Investment Ltd Ultra-low dielectric porous wiring interlayer dielectric for semiconductor device, method for manufacturing the same, and semiconductor device using the film
JP2002030249A (en) * 2000-07-14 2002-01-31 Catalysts & Chem Ind Co Ltd Silica coating liquid for forming low dielectric constant and silica coat substrate with low dielectric constant
JP2002105205A (en) * 2000-09-29 2002-04-10 Mitsubishi Materials Corp Porous film composed of organic silicone compound and method for producing the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2005124846A1 (en) * 2004-06-21 2008-04-17 日立化成工業株式会社 Organic siloxane film, semiconductor device using the same, flat display device, and raw material liquid
JP2006093657A (en) * 2004-07-09 2006-04-06 Jsr Corp Organic silica system film and forming method thereof, composition for forming insulating film of semiconductor apparatus, and wiring structure and semiconductor apparatus
JP4535280B2 (en) * 2004-07-09 2010-09-01 Jsr株式会社 Formation method of organic silica film
US8216647B2 (en) 2005-03-14 2012-07-10 Fujifilm Corporation Insulating film, process for producing the same and electronic device using the same
JP2007046010A (en) * 2005-08-12 2007-02-22 Fujifilm Corp Composition for forming film, insulating film and method for producing the insulating film
JPWO2007043205A1 (en) * 2005-10-14 2009-04-16 塩谷 喜美 Irradiation apparatus, irradiation method, and semiconductor device

Also Published As

Publication number Publication date
JP3957154B2 (en) 2007-08-15

Similar Documents

Publication Publication Date Title
DE10154771B4 (en) Silicon based composition, low dielectric constant film and method of making the same
US6080526A (en) Integration of low-k polymers into interlevel dielectrics using controlled electron-beam radiation
DE10113110B4 (en) Film material and low dielectric constant film
KR101158185B1 (en) Insulating film material, multilayer wiring board and process for producing the multilayer wiring board, and semiconductor apparatus and process for producing the semiconductor device
JP3886779B2 (en) Insulating film forming material and insulating film forming method
US7985700B2 (en) Composition for forming insulating film and method for fabricating semiconductor device
WO2000075979A1 (en) Process of using siloxane dielectric films in the integration of organic dielectric films in electronic devices
US7830012B2 (en) Material for forming exposure light-blocking film, multilayer interconnection structure and manufacturing method thereof, and semiconductor device
JP2001127152A (en) Method for forming low dielectric constant insulation film, low dielectric constant insulation film formed by the same method, and semiconductor device using the low dielectric constant insulation film
JP3957154B2 (en) Low dielectric constant film forming composition, low dielectric constant film, method for producing the same, and semiconductor device
JP4437820B2 (en) Manufacturing method of low dielectric constant film
JP2000100808A (en) Insulation film forming material and semiconductor device containing insulating film formed of the same
US8207059B2 (en) Silicon compound, ultraviolet absorbent, method for manufacturing multilayer wiring device and multilayer wiring device
JP5267552B2 (en) Wiring substrate, semiconductor device, and manufacturing method of semiconductor device
JP4493278B2 (en) Porous resin insulation film, electronic device, and method for manufacturing the same
JP2007165914A (en) Composition for forming low dielectric constant film
JP2003273098A (en) Composition for low dielectric constant film formation, low dielectric constant film, its manufacturing method, and semiconductor device
JP2006351877A (en) Manufacturing method of lamination, semiconductor device and its manufacturing method
JP4257272B2 (en) Semiconductor device and manufacturing method thereof
JP2004281535A (en) Method of manufacturing insulating film and semiconductor device
JP2004186593A (en) Low dielectric insulating film, its manufacturing method, and semiconductor device
JPH06271772A (en) Silsesquioxane polymer composition
JP2002334873A (en) Semiconductor device and method for manufacturing the same
JP2004204061A (en) Composition for low dielectric film, low dielectric film, and semiconductor device
JP2002231714A (en) Low permittivity insulating film forming composition and semiconductor device including low permittivity insulating film formed of the composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060822

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061107

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070226

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070501

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070502

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100518

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100518

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110518

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110518

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110518

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120518

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120518

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130518

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140518

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees