JP2003272629A - Positive electrode active material for nonaqueous electrolyte secondary battery and its manufacturing method - Google Patents

Positive electrode active material for nonaqueous electrolyte secondary battery and its manufacturing method

Info

Publication number
JP2003272629A
JP2003272629A JP2002075919A JP2002075919A JP2003272629A JP 2003272629 A JP2003272629 A JP 2003272629A JP 2002075919 A JP2002075919 A JP 2002075919A JP 2002075919 A JP2002075919 A JP 2002075919A JP 2003272629 A JP2003272629 A JP 2003272629A
Authority
JP
Japan
Prior art keywords
particle diameter
lithium manganate
positive electrode
secondary battery
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002075919A
Other languages
Japanese (ja)
Other versions
JP4620926B2 (en
Inventor
Norimoto Sugiyama
典幹 杉山
Masaichi Fujino
昌市 藤野
Hiroyasu Watanabe
浩康 渡邊
Hideaki Maeda
英明 前田
Hideaki Sadamura
英昭 貞村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toda Kogyo Corp
Original Assignee
Toda Kogyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toda Kogyo Corp filed Critical Toda Kogyo Corp
Priority to JP2002075919A priority Critical patent/JP4620926B2/en
Publication of JP2003272629A publication Critical patent/JP2003272629A/en
Application granted granted Critical
Publication of JP4620926B2 publication Critical patent/JP4620926B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide lithium manganate particle powder with excellent charge/ discharge cycle characteristics of a secondary battery as a positive electrode active material for a nonaqueous electrolyte secondary battery. <P>SOLUTION: The positive electrode active material for the nonaqueous electrolyte secondary battery consisting of lithium manganate particle powder with an average primary particle size of 3.0 to 20.0 μm, an average secondary particle size D<SB>50</SB>of 2.5 to 40.0 μm, and a ratio between the average primary particle size and the average secondary particle size of 0.5 to 1.2, is obtained by neutralizing a reaction solution containing manganese salt, ageing it, and put it under oxidation reaction to obtain manganese oxide particle powder, which is mixed with a lithium compound, and heating the mixture within a temperature range of 700 and 1,000°C. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、非水電解液二次電池用
の正極活物質として二次電池の充放電サイクル特性に優
れたマンガン酸リチウム粒子粉末に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium manganate particle powder having excellent charge / discharge cycle characteristics of a secondary battery as a positive electrode active material for a non-aqueous electrolyte secondary battery.

【0002】[0002]

【従来の技術】近年、AV機器やパソコン等の電子機器
のポータブル化、コードレス化が急速に進んでおり、こ
れらの駆動用電源として小型、軽量で高エネルギー密度
を有する二次電池への要求が高くなっている。このよう
な状況下において、充放電電圧が高く、充放電容量も大
きいという長所を有するリチウムイオン二次電池が注目
されている。
2. Description of the Related Art In recent years, portable and cordless electronic equipment such as AV equipment and personal computers are rapidly advancing, and there is a demand for a secondary battery having a small size, a light weight and a high energy density as a power source for driving them. It's getting higher. Under such circumstances, lithium ion secondary batteries, which have the advantages of high charge / discharge voltage and large charge / discharge capacity, have been receiving attention.

【0003】従来、4V級の電圧をもつ高エネルギー型
のリチウムイオン二次電池に有用な正極活物質として
は、スピネル型構造のLiMn、岩塩型構造のL
iMnO、LiCoO、LiCo1−XNi
、LiNiO等が一般的に知られており、なか
でもLiCoOは高電圧と高容量を有する点で優れて
いるが、コバルト原料の供給量が少ないことによる製造
コスト高の問題や廃棄電池の環境安全上の問題を含んで
いる。そこで、供給量が多く低コストで環境適性の良い
マンガンを原料として作られるスピネル構造型のマンガ
ン酸リチウム粒子粉末(基本組成:LiMn−以
下、同じ−)の研究が盛んに行われている。
Conventionally, as a positive electrode active material useful for a high energy type lithium ion secondary battery having a voltage of 4V class, LiMn 2 O 4 having a spinel structure and L having a rock salt structure are used.
iMnO 2, LiCoO 2, LiCo 1 -X Ni
X O 2, LiNiO 2 or the like are generally known, inter alia although LiCoO 2 is excellent in that it has a high voltage and high capacity, the manufacturing cost due to the supply amount of the cobalt material less problematic Ya Includes environmental safety issues for waste batteries. Therefore, research on spinel-structured lithium manganate particles (basic composition: LiMn 2 O 4 -hereinafter, the same-) produced from manganese with a large supply amount and low cost and good environmental friendliness has been actively conducted. There is.

【0004】周知の通り、マンガン酸リチウム粒子粉末
は、マンガン化合物とリチウム化合物とを所定の割合で
混合し、700〜800℃の温度範囲で焼成することに
よって得ることができる。
As is well known, a lithium manganate particle powder can be obtained by mixing a manganese compound and a lithium compound in a predetermined ratio and firing the mixture in a temperature range of 700 to 800 ° C.

【0005】しかしながら、マンガン酸リチウム粒子粉
末をリチウムイオン二次電池の正極活物質として用いた
場合、高電圧と高エネルギー密度を有するものの、充放
電サイクル特性が劣るという問題がある。この原因は、
充放電の繰り返しに伴う結晶構造中のリチウムイオンの
脱離・挿入挙動によって結晶格子が伸縮して、結晶の体
積変化によって格子破壊が生じることや電解液中へMn
が溶解することとされている。
However, when the lithium manganate particles are used as the positive electrode active material of a lithium ion secondary battery, although they have high voltage and high energy density, they have a problem of poor charge / discharge cycle characteristics. The cause is
The crystal lattice expands and contracts due to the desorption / insertion behavior of lithium ions in the crystal structure due to the repeated charge / discharge, and the lattice change occurs due to the volume change of the crystal.
Is said to dissolve.

【0006】マンガン酸リチウム粒子粉末を用いたリチ
ウムイオン二次電池にあっては、充放電の繰り返しによ
る充放電容量の劣化を抑制し、充放電サイクル特性を向
上させることが現在最も要求されている。
In a lithium ion secondary battery using lithium manganate particles, it is currently most required to suppress deterioration of charge / discharge capacity due to repeated charge / discharge and improve charge / discharge cycle characteristics. .

【0007】充放電サイクル特性を向上させるために
は、マンガン酸リチウム粒子粉末からなる正極活物質が
充填性に優れ、適度な大きさを有することが必要であ
る。その手段としては、マンガン酸リチウム粒子の粒子
径及び粒度分布を制御する方法、焼成温度を制御して高
結晶のマンガン酸リチウム粒子粉末を得る方法、異種元
素を添加して結晶の結合力を強化する方法、表面処理を
行ってMnの溶出を抑制する方法等が行われている。
In order to improve the charge / discharge cycle characteristics, it is necessary that the positive electrode active material composed of lithium manganate particles is excellent in filling property and has an appropriate size. As the means, a method of controlling the particle size and the particle size distribution of lithium manganate particles, a method of controlling the firing temperature to obtain highly crystalline lithium manganate particles, and a heterogeneous element are added to strengthen the crystal bonding force. And a method of suppressing elution of Mn by performing surface treatment.

【0008】適度な大きさのマンガン酸リチウム粒子粉
末を得る方法として、特開平10−162826号公
報、特開平10−172567号公報、特開平10−3
21227号公報、特開平11−1323号公報、特開
平11−45710号公報、特開平11−71115号
公報、特開平11−219705号公報、特開2000
−12031号公報、特開2000−143247号公
報、特開2001−122626号公報及び特開200
1−240417号公報記載の各方法が知られている。
As a method for obtaining a lithium manganate particle powder having an appropriate size, JP-A-10-162826, JP-A-10-172567, and JP-A-10-3 can be used.
No. 21227, No. 11-1323, No. 11-45710, No. 11-71115, No. 11-219705, No. 2000
-12031, JP-A-2000-143247, JP-A-2001-122626, and JP-A-200
Each method described in JP-A 1-240417 is known.

【0009】[0009]

【発明が解決しようとする課題】非水電解液二次電池用
の正極活物質として二次電池の充放電サイクル特性に優
れたマンガン酸リチウム粒子粉末は未だ得られていな
い。
As a positive electrode active material for a non-aqueous electrolyte secondary battery, lithium manganate particles having excellent charge / discharge cycle characteristics of the secondary battery have not been obtained yet.

【0010】即ち、前出特開平10−162826号公
報には噴霧熱分解法によって粒度分布に優れたマンガン
酸リチウム粒子粉末を得る製造法が開示されているが、
得られるマンガン酸リチウム粒子粉末は多孔性であり比
表面積が大きくなるため、Mnの溶出を抑制することが
困難となり、結果として、二次電池の充放電サイクル特
性が低下する。また、充填密度についても十分とは言い
難いものである。
That is, the above-mentioned Japanese Patent Laid-Open No. 10-162826 discloses a method for producing lithium manganate particles having an excellent particle size distribution by a spray pyrolysis method.
Since the obtained lithium manganate particle powder is porous and has a large specific surface area, it becomes difficult to suppress the elution of Mn, and as a result, the charge / discharge cycle characteristics of the secondary battery deteriorate. Further, it is hard to say that the packing density is sufficient.

【0011】また、前出特開平10−172567号公
報には、マンガン化合物とリチウム化合物とのスラリー
をスプレードライヤーで乾燥した後、焼成する製造法が
開示されているが、多数の一次粒子からなる凝集体を構
成しており、比表面積が大きくなるためMnの溶出を抑
制することが困難となり、結果として、二次電池の充放
電サイクル特性が低下する。また、充填密度についても
十分とは言い難いものである。
Further, Japanese Unexamined Patent Publication (Kokai) No. 10-172567 mentioned above discloses a manufacturing method in which a slurry of a manganese compound and a lithium compound is dried by a spray dryer and then calcined, but it is composed of a large number of primary particles. Since the agglomerates are formed and the specific surface area becomes large, it becomes difficult to suppress the elution of Mn, and as a result, the charge / discharge cycle characteristics of the secondary battery deteriorate. Further, it is hard to say that the packing density is sufficient.

【0012】また、前出特開平10−321227号公
報には一次粒子と二次粒子の平均粒子径を特定したマン
ガン酸リチウム粒子粉末が開示されているが、一次粒子
が小さいため、二次粒子は多数の一次粒子によって構成
されており、比表面積が大きくなるためMnの溶出を抑
制することが困難となり、結果として、二次電池の充放
電サイクル特性が低下する。また、充填密度についても
十分とは言い難いものである。
Further, Japanese Patent Laid-Open No. 10-32127 discloses a lithium manganate particle powder in which the average particle size of primary particles and secondary particles is specified. However, since the primary particles are small, the secondary particles are Is composed of a large number of primary particles, and it becomes difficult to suppress the elution of Mn because the specific surface area becomes large, and as a result, the charge / discharge cycle characteristics of the secondary battery deteriorate. Further, it is hard to say that the packing density is sufficient.

【0013】また、前出特開平11−1323号公報に
は一次粒子と二次粒子の平均粒子径を特定したマンガン
酸リチウム粒子粉末が記載されているが、凝集体であっ
て、比表面積が大きくなるためMnの溶出を抑制するこ
とが困難となり、結果として、二次電池の充放電サイク
ル特性が低下する。また実施例では平均一次粒子径2.
0μmであって平均二次粒子径2.0μmであるマンガ
ン酸リチウム粒子粉末が記載されているが、平均粒子径
が小さく充填性が十分とは言い難いものである。
Further, the above-mentioned JP-A-11-1323 describes a lithium manganate particle powder in which the average particle size of primary particles and secondary particles is specified, but it is an aggregate and has a specific surface area. Since it becomes large, it becomes difficult to suppress the elution of Mn, and as a result, the charge / discharge cycle characteristics of the secondary battery deteriorate. In the examples, the average primary particle diameter is 2.
Although a lithium manganate particle powder having a particle size of 0 μm and an average secondary particle size of 2.0 μm is described, it is difficult to say that the average particle size is small and the filling property is sufficient.

【0014】また、前出特開平11−45710号公報
には、Fを含有するマンガン酸リチウム粒子粉末が開示
されているが、各種原料を混合、焼成して得られるもの
であり、マンガン酸リチウム粒子粉末の一次粒子につい
ては考慮されておらず、Mnの溶出抑制及び充填性が十
分とは言い難いものである。
Further, Japanese Patent Application Laid-Open No. 11-45710 discloses a lithium manganate particle powder containing F, which is obtained by mixing and firing various raw materials. The primary particles of the particle powder are not considered, and it is difficult to say that the elution suppression of Mn and the filling property are sufficient.

【0015】また、特開平11−71115号公報には
平均凝集粒子径が1〜50μmであって平均一次粒子径
が3.0μm以下であるマンガン酸リチウム粒子粉末が
開示されているが、実施例で得られているマンガン酸リ
チウム粒子の平均一次粒子径は1.0μm以下と小さく
比表面積が大きくなるため、Mnの溶出を抑制すること
が困難となり、結果として、二次電池の充放電サイクル
特性が低下する。
Further, JP-A-11-71115 discloses a lithium manganate particle powder having an average agglomerated particle diameter of 1 to 50 μm and an average primary particle diameter of 3.0 μm or less. The average primary particle size of the lithium manganate particles obtained in 1. is as small as 1.0 μm or less and the specific surface area is large, so that it is difficult to suppress the elution of Mn, and as a result, the charge / discharge cycle characteristics of the secondary battery. Is reduced.

【0016】また、前出特開平11−219705号公
報には平均粒子径が1.0μm以下の微細粒子の含有量
が少ないマンガン酸リチウム粒子粉末が開示されている
が、一次粒子については考慮されておらず、マンガン原
料に電解MnOを用いている点及び平均粒子径に対す
る比表面積が大きいことから、凝集粒子であると推測さ
れる。そのため、Mnの溶出を抑制することは困難であ
り、結果として、二次電池の充放電サイクル特性が低下
する。
Further, the above-mentioned JP-A-11-219705 discloses a lithium manganate particle powder having a small content of fine particles having an average particle diameter of 1.0 μm or less, but primary particles are considered. However, the fact that electrolytic MnO 2 is used as the manganese raw material and the specific surface area relative to the average particle size are large, so it is presumed that the particles are aggregated particles. Therefore, it is difficult to suppress the elution of Mn, and as a result, the charge / discharge cycle characteristics of the secondary battery deteriorate.

【0017】また、前出特開2000−12031号公
報には平均粒子径が1〜45μmのマンガン酸リチウム
粒子粉末が開示されているが、一次粒子については考慮
されておらず、得られたマンガン酸リチウム粒子は小さ
な一次粒子が凝集した二次粒子であるため、比表面積が
大きくMnの溶出を抑制することが困難となり、結果と
して、二次電池の充放電サイクル特性が低下する。
Further, the above-mentioned Japanese Patent Laid-Open No. 2000-12031 discloses a lithium manganate particle powder having an average particle diameter of 1 to 45 μm, but primary particles are not taken into consideration and the obtained manganese is obtained. Since lithium oxide particles are secondary particles formed by aggregating small primary particles, it is difficult to suppress the elution of Mn because of their large specific surface area, and as a result, the charge / discharge cycle characteristics of the secondary battery deteriorate.

【0018】また、前出特開2000−143247号
公報には一次粒子径が0.5〜2.0μmであるマンガ
ン酸リチウム粒子粉末が開示されているが、一次粒子が
小さいため、充填密度が低くなり、また、比表面積も大
きくなるためMnの溶出を抑制することが困難となり、
結果として、二次電池の充放電サイクル特性が低下す
る。
Further, the above-mentioned Japanese Patent Laid-Open No. 2000-143247 discloses a lithium manganate particle powder having a primary particle diameter of 0.5 to 2.0 μm, but since the primary particles are small, the packing density is high. It becomes low and the specific surface area becomes large, so it becomes difficult to suppress the elution of Mn,
As a result, the charge / discharge cycle characteristics of the secondary battery deteriorate.

【0019】また、前出特開2001−122626号
公報には粒度分布を特定したマンガン酸リチウム粒子粉
末が開示されているが、一次粒子については考慮されて
おらず、マンガン原料に電解二酸化マンガン(EMD)
又はCMDを用いている点及び平均粒子径に対する比表
面積が大きいことから、凝集粒子であると推測される。
従って、Mnの溶出を抑制することが困難となり、結果
として充放電サイクル特性が低下する。
Further, the above-mentioned Japanese Patent Laid-Open No. 2001-122626 discloses a lithium manganate particle powder having a specified particle size distribution, but primary particles are not taken into consideration and electrolytic manganese dioxide ( EMD)
Alternatively, since CMD is used and the specific surface area relative to the average particle size is large, it is presumed that the particles are aggregated particles.
Therefore, it becomes difficult to suppress the elution of Mn, and as a result, the charge / discharge cycle characteristics deteriorate.

【0020】また、前出特開2001−240417号
公報にはマンガン水酸化物を酸化して酸化マンガンとし
た後、粒子成長させ、次いで、リチウム化合物と混合し
た後、加熱焼成する製造法が開示されているが、得られ
たマンガン酸リチウム粒子粉末の比表面積が大きいこと
から、Mnの溶出を抑制することが困難となり、結果と
して、二次電池の充放電サイクル特性が低下する。ま
た、水熱合成するため工業的とは言い難い。
Further, the above-mentioned Japanese Patent Laid-Open No. 2001-240417 discloses a manufacturing method in which manganese hydroxide is oxidized into manganese oxide, particles are grown, and then mixed with a lithium compound, followed by heating and firing. However, since the obtained lithium manganate particles have a large specific surface area, it is difficult to suppress the elution of Mn, and as a result, the charge / discharge cycle characteristics of the secondary battery deteriorate. Also, since it is hydrothermally synthesized, it cannot be said to be industrial.

【0021】そこで本発明は、非水電解液二次電池用の
正極活物質として二次電池の充放電サイクル特性に優れ
たマンガン酸リチウム粒子粉末を提供することを技術的
課題とする。
Therefore, it is a technical object of the present invention to provide a lithium manganate particle powder having excellent charge / discharge cycle characteristics of a secondary battery as a positive electrode active material for a non-aqueous electrolyte secondary battery.

【0022】[0022]

【課題を解決するための手段】前記技術的課題は、次の
通りの本発明によって達成できる。
The above technical problems can be achieved by the present invention as follows.

【0023】即ち、本発明は、平均一次粒子径が3.0
〜20.0μmであって平均二次粒子径D50(マンガ
ン酸リチウム粒子粉末の全体積を100%として粒子径
に対する累積割合を求めたときの累積割合が50%とな
る粒子径)が2.5〜40.0μmであり、前記平均一
次粒子径と平均二次粒子径との比(平均一次粒子径/平
均二次粒子径)が0.5〜1.2であるマンガン酸リチ
ウム粒子粉末からなることを特徴とする非水電解質二次
電池用正極活物質である。
That is, in the present invention, the average primary particle size is 3.0.
.About.20.0 μm and the average secondary particle diameter D 50 (the particle diameter at which the cumulative proportion with respect to the particle diameter when the total volume of the lithium manganate particle powder is 100% is 50%) is 2. From 5 to 40.0 μm, and the ratio of the average primary particle diameter to the average secondary particle diameter (average primary particle diameter / average secondary particle diameter) is 0.5 to 1.2. And a positive electrode active material for a non-aqueous electrolyte secondary battery.

【0024】また、本発明は、マンガン酸リチウム粒子
粉末の平均二次粒子径D50に対するD10(マンガン
酸リチウム粒子粉末の全体積を100%として粒子径に
対する累積割合を求めたときの累積割合が10%となる
粒子径)の比(D10/D )が0.50以上であっ
てD50に対するD90(マンガン酸リチウム粒子粉末
の全体積を100%として累積体積で表した粒子径を求
めたときの累積割合が90%となる粒子径)の比(D
90/D50)が2.0以下である前記非水電解質二次
電池用正極活物質である。
Further, according to the present invention, the cumulative ratio when D 10 (the total volume of the lithium manganate particle powder is 100% and the cumulative ratio with respect to the particle diameter is calculated with respect to the average secondary particle diameter D 50 of the lithium manganate particle powder) particles but expressed in cumulative volume on the total volume of the ratio (D 10 / D 5 0) a is 0.50 or more D 90 for D 50 (lithium manganate particles having a particle diameter) comprising 10% 100% The ratio of the particle diameter at which the cumulative proportion when the diameter is obtained is 90% (D
90 / D 50) is a positive active material for the nonaqueous electrolyte secondary battery is 2.0 or less.

【0025】また、本発明は、マンガン塩を含有する反
応溶液を中和し、次いで熟成した後、酸化反応を行って
酸化マンガン粒子粉末を得、該酸化マンガン粒子粉末と
リチウム化合物とを混合し、該混合物を700〜100
0℃の温度範囲で加熱することを特徴とする前記非水電
解質二次電池用正極活物質の製造法である。
In the present invention, the reaction solution containing a manganese salt is neutralized and then aged, and then an oxidation reaction is carried out to obtain manganese oxide particle powder, and the manganese oxide particle powder and a lithium compound are mixed. , 100 to 100 of the mixture
The method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery is characterized by heating in a temperature range of 0 ° C.

【0026】次に、本発明の構成をより詳しく説明すれ
ば次の通りである。
Next, the structure of the present invention will be described in more detail.

【0027】先ず、本発明に係る非水電解質二次電池用
正極活物質(以下、単に「正極活物質」と言う。)につ
いて述べる。
First, the positive electrode active material for a non-aqueous electrolyte secondary battery according to the present invention (hereinafter, simply referred to as "positive electrode active material") will be described.

【0028】なお、本発明において、「一次粒子」とは
単独で存在することができる最小粒子を表し、「二次粒
子」とは複数の一次粒子が凝集して形成された通常挙動
する上での最小粒子のことを意味する。
In the present invention, the term "primary particle" means the smallest particle that can exist alone, and the term "secondary particle" means that a plurality of primary particles are aggregated to behave normally. Means the smallest particle of.

【0029】本発明に係る正極活物質は、平均一次粒子
径が3.0〜20.0μmである。平均一次粒子径が
3.0μm未満の場合には、二次電池の正極を製造する
際に充填密度が低くなり、また、バインダ量を増加させ
る必要があるなど、二次電池のエネルギー密度の低下を
招く。一方、20.0μmを超える場合には、電流密度
を増加させた場合にLiの脱挿入反応が低下する傾向が
ある。好ましくは4.0〜18.0μmである。
The positive electrode active material according to the present invention has an average primary particle diameter of 3.0 to 20.0 μm. When the average primary particle size is less than 3.0 μm, the packing density becomes low when the positive electrode of the secondary battery is manufactured, and it is necessary to increase the amount of the binder, which lowers the energy density of the secondary battery. Invite. On the other hand, when it exceeds 20.0 μm, the Li insertion / removal reaction tends to decrease when the current density is increased. It is preferably 4.0 to 18.0 μm.

【0030】本発明に係る正極活物質の平均二次粒子径
(D50)は2.5〜40.0μmである。平均二次粒
子径が3.0μm未満の場合には、二次電池の正極を製
造する際に充填密度が低くなり、また、バインダ量を増
加させる必要があるなど、二次電池のエネルギー密度の
低下を招く。一方、20.0μmを超える場合には、電
流密度を増加させた場合にLiの脱挿入反応が低下する
傾向がある。好ましくは5.0〜30.0μmである。
The average secondary particle diameter (D 50 ) of the positive electrode active material according to the present invention is 2.5 to 40.0 μm. When the average secondary particle size is less than 3.0 μm, the packing density becomes low when the positive electrode of the secondary battery is manufactured, and it is necessary to increase the binder amount. Cause decline. On the other hand, when it exceeds 20.0 μm, the Li insertion / removal reaction tends to decrease when the current density is increased. The thickness is preferably 5.0 to 30.0 μm.

【0031】前記平均一次粒子径と前記平均二次粒子径
(D50)との比(平均一次粒子径/平均二次粒子径)
は0.5〜1.2であり、0.5未満の場合には、凝集
粒子が多数存在するため充填密度が低下し、1.0であ
れば、一次粒子と二次粒子の粒子径が同一であり凝集し
ておらず一次粒子として挙動しているものであるが、測
定誤差を考慮すると上限値は1.2である。好ましくは
0.5〜1.0である。
Ratio of the average primary particle diameter to the average secondary particle diameter (D 50 ) (average primary particle diameter / average secondary particle diameter)
Is 0.5 to 1.2, and when it is less than 0.5, the packing density is lowered due to the large number of aggregated particles, and when it is 1.0, the particle diameters of the primary particles and the secondary particles are The particles are the same and do not aggregate but behave as primary particles, but the upper limit is 1.2 in consideration of measurement error. It is preferably 0.5 to 1.0.

【0032】レーザー散乱・回折方式により、マンガン
酸リチウム粒子粉末の全体積を100%として粒子径に
対する体積の累積割合を求めたときの体積の累積割合が
10%、50%、90%となる点の粒子径をそれぞれD
10、50、D90として示した場合、本発明に係る
正極活物質の粒度分布は、平均二次粒子径D50に対す
るD10の比(D10/D50)が0.50以上であっ
てD50に対するD の比(D90/D50)が2.
0以下である。D10/D50及びD90/D 50が前
記範囲外の場合には、粒度分布が広いことを意味してお
り、充填性が低下する。D10/D50は0.6以上が
好ましく、より好ましくは0.64以上である。その上
限値は0.85程度である。また、D90/D50
1.7以下が好ましく、より好ましくは1.6以下であ
る。その下限値は1.15程度である。
Manganese by laser scattering / diffraction system
The total volume of lithium oxide particle powder is 100%
When the cumulative ratio of the volume to the
The particle diameters at 10%, 50%, and 90% are D
10,DFifty, D90, The present invention
The particle size distribution of the positive electrode active material is the average secondary particle diameter D.FiftyAgainst
D10Ratio of (D10/ DFifty) Is 0.50 or more
DFiftyAgainst D9 0Ratio of (D90/ DFifty) Is 2.
It is 0 or less. D10/ DFiftyAnd D90/ D FiftyBefore
Outside the range, it means that the particle size distribution is wide.
Therefore, the filling property decreases. D10/ DFiftyIs 0.6 or more
It is more preferably 0.64 or more. Moreover
The limit value is about 0.85. Also, D90/ DFiftyIs
It is preferably 1.7 or less, more preferably 1.6 or less.
It The lower limit is about 1.15.

【0033】本発明に係る正極活物質の粒子形状は粒状
である。鋭角部を有する粒子形状の場合には、電解液と
の反応性が高まるため好ましくない。
The particle shape of the positive electrode active material according to the present invention is granular. In the case of a particle shape having an acute angle portion, reactivity with an electrolytic solution increases, which is not preferable.

【0034】本発明に係る正極活物質はLi1+xMn
2−xの組成式で表されるマンガン酸リチウム粒子
粉末であり、Li/Mnはモル比で0.525〜0.6
2であることが好ましい。0.525未満の場合には、
充放電容量は高いがJahn−Teller効果による
歪みの発生のためサイクル特性が低下する。また、0.
62を越える場合には、初期放電容量が十分ではないた
め好ましくない。前記組成式において、原子番号が11
以上の金属元素又は遷移金属元素をMnに対するモル比
で0〜20%含有してもよい。
The positive electrode active material according to the present invention is Li 1 + x Mn.
It is a lithium manganate particle powder represented by a composition formula of 2- xO 4 , and Li / Mn is a molar ratio of 0.525 to 0.6.
It is preferably 2. If less than 0.525,
Although the charge / discharge capacity is high, the cycle characteristics deteriorate due to the occurrence of strain due to the John-Teller effect. Also, 0.
If it exceeds 62, the initial discharge capacity is not sufficient, which is not preferable. In the above composition formula, the atomic number is 11
You may contain the said metal element or transition metal element by 0-20% by molar ratio with respect to Mn.

【0035】なお、充放電容量及びサイクル特性に寄与
しないMn、Mn、MnO2、LiMn
等の異相を含んでいても良い。
It should be noted that Mn 2 O 3 , Mn 3 O 4 , MnO 2 and Li 2 Mn which do not contribute to the charge / discharge capacity and cycle characteristics.
It may contain a foreign phase such as O 3 .

【0036】本発明に係る正極活物質のBET比表面積
値は、0.04〜1.5m/gが好ましい。0.04
/g未満の場合には、電流密度を増加させた場合に
Liの脱挿入反応が低下すると考えられ電池特性が低下
する。1.5m/gを超える場合には、正極活物質の
充填密度が低下することや電解液との反応性が過剰とな
り安全性が低下する。
The BET specific surface area value of the positive electrode active material according to the present invention is preferably 0.04 to 1.5 m 2 / g. 0.04
When it is less than m 2 / g, the Li insertion / desorption reaction is considered to decrease when the current density is increased, and the battery characteristics deteriorate. When it exceeds 1.5 m 2 / g, the packing density of the positive electrode active material decreases and the reactivity with the electrolytic solution becomes excessive, so that the safety decreases.

【0037】本発明に係る正極活物質のタップ密度は
2.0g/ml以上が好ましい。その上限値は3.0g
/ml程度である。
The tap density of the positive electrode active material according to the present invention is preferably 2.0 g / ml or more. The upper limit is 3.0g
/ Ml.

【0038】次に、本発明に係る正極活物質の製造法に
ついて述べる。
Next, the method for producing the positive electrode active material according to the present invention will be described.

【0039】本発明におけるマンガン塩としては、硫酸
マンガン、硝酸マンガン、蓚酸マンガン、酢酸マンガン
等が挙げられ、これらは単独で又は必要に応じて2種以
上組み合わせて用いてもよい。
Examples of the manganese salt in the present invention include manganese sulfate, manganese nitrate, manganese oxalate, manganese acetate, etc. These may be used alone or in combination of two or more as required.

【0040】前記の各種マンガン塩を含有する反応溶液
を中和する場合には、水酸化ナトリウム水溶液、水酸化
カリウム水溶液、アンモニア等のアルカリ溶液を使用す
ることができる。アルカリ溶液はマンガン塩の当量より
も過剰に添加することによって粒子サイズの大きな酸化
マンガンを容易に得ることができる。前記マンガン塩の
中和分を除くアルカリ溶液の添加量は0〜20モル/L
で行え、1.0から10モル/Lが好ましい。
When the reaction solution containing various manganese salts described above is neutralized, an aqueous solution of sodium hydroxide, an aqueous solution of potassium hydroxide or an alkaline solution such as ammonia can be used. Manganese oxide having a large particle size can be easily obtained by adding an alkaline solution in excess of the equivalent amount of manganese salt. The addition amount of the alkaline solution excluding the neutralized portion of the manganese salt is 0 to 20 mol / L.
Can be carried out in the following manner, and preferably 1.0 to 10 mol / L.

【0041】熟成反応は、中和反応後の懸濁液に対し
て、20〜100℃の温度範囲、好ましくは50〜90
℃の温度範囲で行う。熟成反応を行うことによって粒度
分布の狭い酸化マンガンが得られ、よって粒度分布の狭
いマンガン酸リチウム粒子粉末を得ることができる。熟
成時間は0.1〜10時間が好ましく、より好ましくは
1〜3時間である。
The aging reaction is carried out in a temperature range of 20 to 100 ° C., preferably 50 to 90, with respect to the suspension after the neutralization reaction.
Perform in the temperature range of ° C. By carrying out the aging reaction, manganese oxide having a narrow particle size distribution can be obtained, and thus a lithium manganate particle powder having a narrow particle size distribution can be obtained. The aging time is preferably 0.1 to 10 hours, more preferably 1 to 3 hours.

【0042】酸化反応は、反応溶液に酸化性ガスを通気
するか、或いは、酸化剤を添加することによって行うこ
とができ、例えば空気の通気が好ましい。
The oxidation reaction can be carried out by passing an oxidizing gas through the reaction solution or by adding an oxidizing agent, for example, aeration of air is preferable.

【0043】酸化反応の終了後、水洗、乾燥を行って酸
化マンガン粒子粉末とする。
After completion of the oxidation reaction, washing with water and drying are performed to obtain manganese oxide particle powder.

【0044】得られる酸化マンガン粒子粉末はMn
からなり、粒子形状は粒状であり、平均粒子径が2.
0〜20.0μmであり、BET比表面積値が0.04
〜2.0m/gであることが好ましい。また、Mn
を含んでいてもよい。
The obtained manganese oxide particle powder is Mn 3 O.
4 and the particle shape is granular, and the average particle diameter is 2.
0 to 20.0 μm, BET specific surface area value is 0.04
It is preferably about 2.0 m 2 / g. Also, Mn 2
It may contain O 3 .

【0045】リチウム原料としては炭酸リチウム、水酸
化リチウム、硝酸リチウム、塩化リチウムなどが使用出
来るが、炭酸リチウムが好ましい。
As the lithium raw material, lithium carbonate, lithium hydroxide, lithium nitrate, lithium chloride and the like can be used, but lithium carbonate is preferred.

【0046】酸化マンガン粒子粉末とリチウム原料との
混合割合は、モル比でLi/Mn=0.525〜0.6
2程度とするのが好ましい。0.525以下の場合には
容量は高いがJahn―Teller効果による歪みの
発生のため充放電サイクル特性が低下する。また、0.
62を越える場合には初期容量が十分ではない。
The manganese oxide particle powder and the lithium raw material are mixed in a molar ratio of Li / Mn = 0.525 to 0.6.
It is preferably about 2. When it is 0.525 or less, the capacity is high, but the charge-discharge cycle characteristics deteriorate due to the occurrence of strain due to the John-Teller effect. Also, 0.
If it exceeds 62, the initial capacity is not sufficient.

【0047】酸化マンガン粒子粉末とリチウム原料は均
一な混合状態とする必要がある。均一に混合されていな
いと、部分的に組成比のズレが生じ容量及び可逆性の異
なるマンガン酸リチウムが合成されることになり、ま
た、マンガン酸リチウム以外の異相の発生原因にもな
る。
The manganese oxide particle powder and the lithium raw material must be in a uniform mixed state. If they are not mixed homogeneously, the composition ratio will be partially shifted, and lithium manganate having different capacities and reversibility will be synthesized, and it will also be a cause of generation of a different phase other than lithium manganate.

【0048】混合物の焼成温度は700〜1000℃で
ある。700℃未満の場合には、高い結晶性を有するマ
ンガン酸リチウム粒子粉末を得ることができない。10
00℃以上では一次粒子の平均粒子径が大きくなりすぎ
Liイオンの脱挿入が生じ難くなる。
The firing temperature of the mixture is 700 to 1000 ° C. When the temperature is lower than 700 ° C., lithium manganate particles having high crystallinity cannot be obtained. 10
At a temperature of 00 ° C. or higher, the average particle size of the primary particles becomes too large and it becomes difficult for Li ions to be de-inserted.

【0049】焼成雰囲気は、酸素含有ガス、例えば空気
中でよい。焼成時間は反応が均一に進行するように選択
すればよいが、1〜48時間が好ましく、より好ましく
は10〜24時間である。
The firing atmosphere may be an oxygen-containing gas such as air. The firing time may be selected so that the reaction proceeds uniformly, but is preferably 1 to 48 hours, more preferably 10 to 24 hours.

【0050】焼成後、粉砕してマンガン酸リチウム粒子
粉末を得る。
After firing, the powder is pulverized to obtain lithium manganate particles.

【0051】本発明に係るマンガン酸リチウム粒子粉末
を非水電解液二次電池用の正極活物質として用いて正極
材を製造する場合には、アセチレンブラック、カーボン
ブラック等の導電剤及びポリテトラフルオロエチレン、
ポリフッ化ビニリデン等の結着材などと混合して、所定
の形状に成形して正極材とする。
When a positive electrode material is manufactured by using the lithium manganate particles according to the present invention as a positive electrode active material for a non-aqueous electrolyte secondary battery, a conductive agent such as acetylene black or carbon black and polytetrafluorocarbon are used. ethylene,
It is mixed with a binder such as polyvinylidene fluoride and molded into a predetermined shape to obtain a positive electrode material.

【0052】また、負極活物質は特に制限されないが、
例えば、リチウム金属、リチウム合金、リチウムを吸蔵
放出可能な物質を用いることができ、例えば、リチウム
/アルミニウム合金、リチウム/スズ合金、グラファイ
トや黒鉛等が挙げられる。
The negative electrode active material is not particularly limited,
For example, a lithium metal, a lithium alloy, a substance capable of inserting and extracting lithium can be used, and examples thereof include a lithium / aluminum alloy, a lithium / tin alloy, graphite, and graphite.

【0053】また、電解質も特に制限されないが、例え
ば、炭酸プロピレン、炭酸ジエチル、炭酸ジメチル等の
カーボネート類やジメトキシエタン等のエーテル類の少
なくとも1種類の有機溶媒中に、過塩素酸リチウム、四
フッ化ホウ酸リチウム、六フッ化リン酸リチウム等のリ
チウム塩の少なくとも1種を溶解したものを用いること
ができる。
The electrolyte is also not particularly limited, but for example, in at least one organic solvent such as carbonates such as propylene carbonate, diethyl carbonate, dimethyl carbonate and ethers such as dimethoxyethane, lithium perchlorate, tetrafluoride and tetrafluoride are used. What melt | dissolved at least 1 sort (s) of lithium salt, such as lithium borate and lithium hexafluorophosphate, can be used.

【0054】本発明に係る正極活物質を用いて製造した
二次電池は、初期放電容量が85〜135mAh/g、
60℃での50サイクル後の容量維持率が93%以上で
ある。
The secondary battery manufactured using the positive electrode active material according to the present invention has an initial discharge capacity of 85 to 135 mAh / g,
The capacity retention rate after 50 cycles at 60 ° C. is 93% or more.

【0055】[0055]

【発明の実施の形態】本発明の代表的な実施の形態は次
の通りである。
BEST MODE FOR CARRYING OUT THE INVENTION A typical embodiment of the present invention is as follows.

【0056】正極活物質の粒子径は下記2種類の方法で
測定した。
The particle size of the positive electrode active material was measured by the following two methods.

【0057】レーザー散乱・回折方式「NIKKISO
MICROTRAC HRA、MODEL9320−
X100:日機装社製」を用いて各粒子粉末の体積換算
の粒度分布から二次粒子のD10、D50、D90を測
定した。平均二次粒子径はD 50の値とした。
Laser scattering / diffraction system "NIKKISO
  MICROTRAC HRA, MODEL9320-
X100: manufactured by Nikkiso Co., Ltd.
Of secondary particles from the particle size distribution of10, DFifty, D90Measure
Decided Average secondary particle size is D FiftyThe value of

【0058】平均一次粒子径は走査型電子顕微鏡(日立
製作所製)で測定した。走査型電子顕微鏡写真の対角線
上に存在する粒子から任意に一次粒子を10個選び、粒
径を測定して、その平均値を平均一次粒子径とした。走
査型電子顕微鏡写真は対角線上に20〜40個の粒子が
存在する倍率が粒径を測定精度の点から好ましい。
The average primary particle diameter was measured with a scanning electron microscope (manufactured by Hitachi Ltd.). Ten primary particles were arbitrarily selected from the particles existing on the diagonal line of the scanning electron microscope photograph, the particle size was measured, and the average value was defined as the average primary particle size. In the scanning electron micrograph, a magnification at which 20 to 40 particles are present on the diagonal line is preferable from the viewpoint of measuring accuracy of the particle size.

【0059】正極活物質の同定及び結晶構造及び結晶子
サイズは、X線回折(RIGAKUCu−Kα 40k
V 40mA)により調べた。
The positive electrode active material was identified and its crystal structure and crystallite size were determined by X-ray diffraction (RIGAKUCu-Kα 40k).
V 40 mA).

【0060】また、前駆体の粒子の形態については走査
型電子顕微鏡(日立製作所製)により観察した。
The morphology of the precursor particles was observed with a scanning electron microscope (Hitachi Ltd.).

【0061】BET比表面積はBET法により測定し
た。
The BET specific surface area was measured by the BET method.

【0062】タップ密度は、「SEISHIN TAP
DENSER KYT−3000:(株)セイシン企業
製」を用いて測定した。
The tap density is "SEISHIN TAP".
DENSER KYT-3000: manufactured by Seishin Enterprise Co., Ltd. ”.

【0063】<正極の作製>マンガン酸リチウム粒子粉
末と導電剤であるアセチレンブラックと結着材であるポ
リフッ化ビニリデンとを重量比85:10:5の割合で
混合し、N−メチル−2−ピロリドンを加えペースト化
し、該ペーストをアルミニウム箔に0.15mm厚で塗
布し、乾燥後、直径16mmの円盤に打ち抜いて正極を
作製した。
<Production of Positive Electrode> Lithium manganate particle powder, acetylene black as a conductive agent, and polyvinylidene fluoride as a binder were mixed at a weight ratio of 85: 10: 5, and N-methyl-2- Pyrrolidone was added to form a paste, the paste was applied to an aluminum foil with a thickness of 0.15 mm, dried and punched into a disk having a diameter of 16 mm to produce a positive electrode.

【0064】負極にはリチウム箔を用い、これを16m
mの円盤状に打ち抜いた。
Lithium foil was used for the negative electrode,
It was punched into a disk shape of m.

【0065】<二次電池の作製>セパレータはポリエチ
レン製からなり、これを19mmの円盤状に打ち抜い
た。電解液にはLiPFを支持塩とするエチレンカー
ボネート(EC)とジエチルカーボネート(DEC)を
体積比1:1で混合したものを用いた。そして、アルゴ
ン雰囲気のグローブボックス中でコイン型セル電池を作
製した。
<Preparation of Secondary Battery> The separator was made of polyethylene and was punched into a 19 mm disk shape. The electrolyte used was a mixture of ethylene carbonate (EC) with LiPF 6 as a supporting salt and diethyl carbonate (DEC) at a volume ratio of 1: 1. Then, a coin-type cell battery was manufactured in a glove box in an argon atmosphere.

【0066】二次電池の充放電サイクル試験は、前記コ
イン型電池セルを用いて、正極に対する電流密度を0.
5mA/cmとし、カットオフ電圧が4.5Vから
3.0Vの間、60℃の温度下で充放電を50サイクル
繰り返した後、放電容量を測定して初期放電容量に対す
る割合を求めた。
In the charge / discharge cycle test of the secondary battery, the current density with respect to the positive electrode was 0.
After charging / discharging was repeated 50 cycles at a temperature of 60 ° C. at a cutoff voltage of 4.5 V to 3.0 V at 5 mA / cm 2 , the discharge capacity was measured and the ratio to the initial discharge capacity was obtained.

【0067】<マンガン酸リチウム粒子粉末の製造>窒
素通気のもと、3.5モルの水酸化ナトリウムに0.5
モルの硫酸マンガンを加え全量を1Lとし、得られた水
酸化マンガンを90℃で1時間熟成させた。熟成後、空
気を通気させ90℃で酸化させ、水洗、乾燥後、酸化マ
ンガン粒子粉末を得た。
<Production of Lithium Manganese Oxide Particle Powder> 0.5 mol of 3.5 mol sodium hydroxide was added under nitrogen aeration.
Molar manganese sulfate was added to make the total amount 1 L, and the obtained manganese hydroxide was aged at 90 ° C. for 1 hour. After aging, air was ventilated to oxidize at 90 ° C., and after washing with water and drying, manganese oxide particle powder was obtained.

【0068】得られた酸化マンガン粒子粉末はMn
であり、粒子形状は粒状であり、平均粒子径4.8μ
m、BET比表面積が0.6m/gであった。
The obtained manganese oxide particle powder was Mn 3 O.
4 , the particle shape is granular, and the average particle diameter is 4.8 μm.
m, BET specific surface area was 0.6 m 2 / g.

【0069】前記Mn粒子粉末と炭酸リチウムと
をLi/Mnが0.55の割合になるように1時間混合
し、均一な混合物を得た。得られた混合物50gをアル
ミナるつぼに入れ、750℃、空気雰囲気で10時間保
持してマンガン酸リチウム粒子粉末を得た。得られたマ
ンガン酸リチウム粒子粉末をボールミルで1時間解砕し
た。
The Mn 3 O 4 particle powder and lithium carbonate were mixed for 1 hour at a Li / Mn ratio of 0.55 to obtain a uniform mixture. 50 g of the obtained mixture was put in an alumina crucible and kept in an air atmosphere at 750 ° C. for 10 hours to obtain lithium manganate particles. The obtained lithium manganate particle powder was crushed with a ball mill for 1 hour.

【0070】得られたマンガン酸リチウム粒子粉末は平
均一次粒子径5.0μmであって平均二次粒子径(D
50)7.0μmであって平均一次粒子径/平均二次粒
子径が0.71であり、D10/D50が0.74であ
ってD90/D50が1.39であり、BET比表面積
値が0.4m/g、タップ密度が2.1g/mlであ
った。得られたマンガン酸リチウム粒子粉末の走査型電
子顕微鏡写真の観察結果を図1に示す。同図に示す通
り、その粒子形状は鋭角部を有していない粒状であっ
た。
The obtained lithium manganate particles had an average primary particle diameter of 5.0 μm and an average secondary particle diameter (D
50 ) 7.0 μm, the average primary particle diameter / average secondary particle diameter is 0.71, D 10 / D 50 is 0.74, D 90 / D 50 is 1.39, and BET The specific surface area value was 0.4 m 2 / g and the tap density was 2.1 g / ml. The observation result of the scanning electron micrograph of the obtained lithium manganate particle powder is shown in FIG. As shown in the figure, the particle shape was granular without sharp corners.

【0071】ここで得たマンガン酸リチウム粒子粉末か
らなる正極活物質を用いて作製したコイン型電池は、初
期放電容量が120mAh/g、60℃での50サイク
ル後の容量維持率が97%/50cycleであった。
The coin-type battery prepared by using the positive electrode active material composed of the lithium manganate particles powder obtained here had an initial discharge capacity of 120 mAh / g and a capacity retention rate of 97% / after 50 cycles at 60 ° C. It was 50 cycles.

【0072】[0072]

【作用】本発明において最も重要な点は、本発明に係る
正極活物質は、大きな一次粒子径を有し、しかも、凝集
せず分散性に優れているという点である。
The most important point in the present invention is that the positive electrode active material according to the present invention has a large primary particle size and is excellent in dispersibility without agglomeration.

【0073】本発明においては、マンガン塩を中和した
後、熟成工程を設けたこと、高アルカリ、且つ、高温下
で酸化反応を行ったことによって、粒度分布が均一で大
きな酸化マンガン粒子を得ることができる。
In the present invention, a manganese oxide particle having a uniform particle size distribution and large size is obtained by providing a aging step after neutralizing the manganese salt and performing an oxidation reaction at a high alkali and a high temperature. be able to.

【0074】マンガン酸リチウム粒子の粒径は前駆体に
なる酸化マンガン粒子の粒径に大きく依存するから、前
記酸化マンガン粒子を用いることによって、マンガン酸
リチウム粒子粉末からなる正極活物質も大きな一次粒子
となり、粒度分布も優れている。
Since the particle size of the lithium manganate particles largely depends on the particle size of the manganese oxide particles used as the precursor, by using the manganese oxide particles, the positive electrode active material composed of the lithium manganate particles is also a large primary particle. The particle size distribution is also excellent.

【0075】本発明に係る正極活物質を用いた二次電池
の充放電サイクル特性が優れているのは、正極活物質の
比表面積が小さく、また、粒状であり鋭角部を有さない
粒子形状であるため電解液との反応性が押さえられ、塗
料化時の分散性及び充填性に優れることによるものと推
定している。
The secondary battery using the positive electrode active material according to the present invention has excellent charge / discharge cycle characteristics because the positive electrode active material has a small specific surface area and is in the form of particles having no sharp corners. Therefore, it is presumed that this is because the reactivity with the electrolytic solution is suppressed, and the dispersibility and filling property at the time of forming a coating are excellent.

【0076】[0076]

【実施例】次に、実施例及び比較例を示す。EXAMPLES Next, examples and comparative examples will be shown.

【0077】実施例1〜6:実施例1は反応温度を80
℃とした以外は、前記発明の実施の形態と同様にして、
マンガン酸リチウム粒子粉末を得た。実施例2は水酸化
ナトリウムの添加量を4.0モルとした以外は前記発明
の実施の形態と同様にして、マンガン酸リチウム粒子粉
末を得た。実施例3はLi/Mn比を0.60とした以
外は実施例2と同様にしてマンガン酸リチウム粒子粉末
を得た。実施例4はボールミル解砕時間を20分とした
以外は、実施例2と同様にしてマンガン酸リチウム粒子
粉末を得た。実施例5は水酸化ナトリウムの添加量を
6.0モルとした以外は前記発明の実施の形態と同様に
して、マンガン酸リチウム粒子粉末を得た。実施例6は
ボールミル解砕時間を20分とした以外は、実施例5と
同様にしてマンガン酸リチウム粒子粉末を得た。
Examples 1 to 6: In Example 1, the reaction temperature was 80.
Except for the temperature was set in the same manner as in the embodiment of the invention,
Lithium manganate particles were obtained. In Example 2, lithium manganate particles were obtained in the same manner as in the embodiment of the present invention except that the amount of sodium hydroxide added was 4.0 mol. Lithium manganate particles were obtained in the same manner as in Example 2 except that the Li / Mn ratio was changed to 0.60. In Example 4, lithium manganate particles were obtained in the same manner as in Example 2 except that the ball mill crushing time was 20 minutes. In Example 5, lithium manganate particle powder was obtained in the same manner as in the embodiment of the present invention except that the amount of sodium hydroxide added was 6.0 mol. In Example 6, lithium manganate particles were obtained in the same manner as in Example 5 except that the ball mill crushing time was 20 minutes.

【0078】比較例1〜4:比較例1として、前駆体の
Mn粒子の代わりに電解MnOを用いた以外
は、前記発明の実施の形態と同様にして、マンガン酸リ
チウム粒子粉末を得た。比較例2として、水酸化ナトリ
ウムの添加量を1.05モルとした以外は、前記発明の
実施の形態と同様にして、マンガン酸リチウム粒子粉末
を得た。比較例3として、熟成及び酸化反応温度を60
℃とした以外は、比較例2と同様にして、マンガン酸リ
チウム粒子粉末を得た。比較例4として、水酸化ナトリ
ウムの添加量を2.0モルとした以外は、比較例2と同
様にして、マンガン酸リチウム粒子粉末を得た。
Comparative Examples 1 to 4 As Comparative Example 1, lithium manganate particle powder was obtained in the same manner as in the embodiment of the present invention except that electrolytic MnO 2 was used in place of the precursor Mn 3 O 4 particles. Got As Comparative Example 2, lithium manganate particle powder was obtained in the same manner as the embodiment of the present invention except that the amount of sodium hydroxide added was 1.05 mol. As Comparative Example 3, the aging and oxidation reaction temperatures were set to 60.
Lithium manganate particles were obtained in the same manner as in Comparative Example 2 except that the temperature was changed to ° C. As Comparative Example 4, lithium manganate particles were obtained in the same manner as Comparative Example 2 except that the amount of sodium hydroxide added was 2.0 mol.

【0079】このときの製造条件を表1に、得られたマ
ンガン酸リチウム粒子粉末の諸特性及び前記発明の実施
の形態と同様にして行った電池評価の結果を表2に示
す。
The production conditions at this time are shown in Table 1, and various characteristics of the obtained lithium manganate particles and the results of battery evaluation conducted in the same manner as the embodiment of the invention are shown in Table 2.

【0080】[0080]

【表1】 [Table 1]

【0081】[0081]

【表2】 [Table 2]

【0082】表2から明らかなように、比較例1〜4の
電池は充放電サイクル時の容量が大きく劣化しているの
に対して、前記発明の実施の形態の電池及び実施例1〜
6の各電池は容量の劣化が押さえられ、より良好な充放
電サイクル維持率を示している。また、充填密度に関し
ても、比較例1〜4では低いのに対して、前記発明の実
施の形態及び実施例1〜6では2.0g/mlより高
く、良好な充填密度を示している。これは、大粒子で分
散性の良い粒子であるため、比表面積が小さく粒状であ
ることが影響しているものと考えられる。
As is clear from Table 2, the batteries of Comparative Examples 1 to 4 had a large deterioration in capacity during charge / discharge cycles, whereas the batteries of the embodiment of the invention and Examples 1 to
In each of the batteries of No. 6, deterioration of the capacity was suppressed, and a better charge / discharge cycle maintenance rate was shown. Further, the packing density is low in Comparative Examples 1 to 4, whereas it is higher than 2.0 g / ml in the embodiments and Examples 1 to 6 of the present invention, showing a good packing density. It is considered that this is because the particles are large particles and have good dispersibility, and thus have a small specific surface area and are granular.

【0083】[0083]

【発明の効果】本発明に係る正極活物質は分散性及び充
填性が優れているので、充放電サイクル特性に優れた非
水電解液二次電池を提供することができる。
Since the positive electrode active material according to the present invention has excellent dispersibility and filling properties, it is possible to provide a non-aqueous electrolyte secondary battery having excellent charge / discharge cycle characteristics.

【図面の簡単な説明】[Brief description of drawings]

【図1】発明の実施の形態で得られたマンガン酸リチウ
ム粒子粉末からなる正極活物質の電子顕微鏡写真(15
00倍)を示す。
FIG. 1 is an electron micrograph (15) of a positive electrode active material composed of lithium manganate particles obtained according to an embodiment of the invention.
00 times).

【図2】比較例1で作製したマンガン酸リチウム粒子粉
末の電子顕微鏡写真(3500倍)を示す。
FIG. 2 shows an electron micrograph (3500 times) of the lithium manganate particles powder produced in Comparative Example 1.

【図3】比較例3で作製したマンガン酸リチウム粒子粉
末の電子顕微鏡写真(30000倍)を示す。
FIG. 3 shows an electron micrograph (30000 times) of the lithium manganate particles powder produced in Comparative Example 3.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 前田 英明 山口県小野田市新沖1丁目1番1号 戸田 工業株式会社小野田工場内 (72)発明者 貞村 英昭 山口県小野田市新沖1丁目1番1号 戸田 工業株式会社小野田工場内 Fターム(参考) 4G048 AA04 AB02 AB06 AC06 AD04 AD06 AE05 5H029 AJ05 AK03 AL07 AL12 AM03 AM04 AM05 AM07 CJ02 CJ08 CJ11 CJ14 DJ16 EJ04 EJ12 HJ05 HJ14 5H050 AA07 BA16 BA17 CA09 CB08 CB12 EA10 EA24 FA17 GA02 GA10 GA14 GA15 HA05 HA14   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Hideaki Maeda             1-1-1 Shinoki, Onoda City, Yamaguchi Prefecture             Industrial Co., Ltd. Onoda Factory (72) Inventor Hideaki Sadamura             1-1-1 Shinoki, Onoda City, Yamaguchi Prefecture             Industrial Co., Ltd. Onoda Factory F-term (reference) 4G048 AA04 AB02 AB06 AC06 AD04                       AD06 AE05                 5H029 AJ05 AK03 AL07 AL12 AM03                       AM04 AM05 AM07 CJ02 CJ08                       CJ11 CJ14 DJ16 EJ04 EJ12                       HJ05 HJ14                 5H050 AA07 BA16 BA17 CA09 CB08                       CB12 EA10 EA24 FA17 GA02                       GA10 GA14 GA15 HA05 HA14

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 平均一次粒子径が3.0〜20.0μm
であって平均二次粒子径D50(マンガン酸リチウム粒
子粉末の全体積を100%として粒子径に対する累積割
合を求めたときの累積割合が50%となる粒子径)が
2.5〜40.0μmであり、前記平均一次粒子径と前
記平均二次粒子径との比(平均一次粒子径/平均二次粒
子径)が0.5〜1.2であるマンガン酸リチウム粒子
粉末からなることを特徴とする非水電解質二次電池用正
極活物質。
1. The average primary particle diameter is 3.0 to 20.0 μm.
And the average secondary particle diameter D 50 (the particle diameter at which the cumulative proportion with respect to the particle diameter is 50% when the total volume of the lithium manganate particle powder is 100%) is 2.5 to 40. And a ratio of the average primary particle diameter to the average secondary particle diameter (average primary particle diameter / average secondary particle diameter) of 0.5 to 1.2, which is composed of lithium manganate particle powder. A characteristic positive electrode active material for a non-aqueous electrolyte secondary battery.
【請求項2】 マンガン酸リチウム粒子粉末の平均二次
粒子径D50に対するD10(マンガン酸リチウム粒子
粉末の全体積を100%として粒子径に対する累積割合
を求めたときの累積割合が10%となる粒子径)の比
(D10/D )が0.50以上であってD50に対
するD90(マンガン酸リチウム粒子粉末の全体積を1
00%として粒子径に対する累積割合を求めたときの累
積割合が90%となる粒子径)の比(D90/D50
が2.0以下である請求項1記載の非水電解質二次電池
用正極活物質。
Cumulative percentage of time of obtaining the cumulative ratio wherein the particle diameter on the total volume of the D 10 (lithium manganate particles to the average secondary particle diameter D 50 of the lithium manganate particles as 100% and 10% Ratio (D 10 / D 5 0 ) of 0.50 or more and the total volume of D 90 (lithium manganate particle powder) to D 50 is 1
The ratio (D 90 / D 50 ) of the particle diameter at which the cumulative proportion is 90% when the cumulative proportion is calculated as 00%.
Is 2.0 or less, The positive electrode active material for a non-aqueous electrolyte secondary battery according to claim 1.
【請求項3】 マンガン塩を含有する反応溶液を中和
し、次いで熟成した後、酸化反応を行って酸化マンガン
粒子粉末を得、該酸化マンガン粒子粉末とリチウム化合
物とを混合し、該混合物を700〜1000℃の温度範
囲で加熱することを特徴とする請求項1又は請求項2記
載の非水電解質二次電池用正極活物質の製造法。
3. A manganese salt-containing reaction solution is neutralized and then aged, and then an oxidation reaction is performed to obtain manganese oxide particle powder. The manganese oxide particle powder and a lithium compound are mixed, and the mixture is mixed. The method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery according to claim 1 or 2, wherein heating is performed in a temperature range of 700 to 1000 ° C.
JP2002075919A 2002-03-19 2002-03-19 Method for producing positive electrode active material for non-aqueous electrolyte secondary battery Expired - Lifetime JP4620926B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002075919A JP4620926B2 (en) 2002-03-19 2002-03-19 Method for producing positive electrode active material for non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002075919A JP4620926B2 (en) 2002-03-19 2002-03-19 Method for producing positive electrode active material for non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2003272629A true JP2003272629A (en) 2003-09-26
JP4620926B2 JP4620926B2 (en) 2011-01-26

Family

ID=29204865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002075919A Expired - Lifetime JP4620926B2 (en) 2002-03-19 2002-03-19 Method for producing positive electrode active material for non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP4620926B2 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005135691A (en) * 2003-10-29 2005-05-26 Nichia Chem Ind Ltd Positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode for non-aqueous electrolyte secondary battery, and the non-aqueous electrolyte secondary battery
WO2006095594A1 (en) * 2005-03-09 2006-09-14 Matsushita Electric Industrial Co., Ltd. Nonaqueous electrolyte secondary battery
WO2007011053A1 (en) 2005-07-21 2007-01-25 Sumitomo Chemical Company, Limited Positive electrode active material for nonaqueous electrolyte secondary battery
WO2008018634A1 (en) * 2006-08-09 2008-02-14 Kanto Denka Kogyo Co., Ltd. Spinel lithium manganate, method for producing the same, positive electrode active material using spinel lithium manganate, and nonaqueous electrolyte battery
WO2009099058A1 (en) * 2008-02-04 2009-08-13 Sumitomo Chemical Company, Limited Powder for positive electrode active material, positive electrode active material, and sodium rechargeable battery
JP2010212262A (en) * 2009-09-29 2010-09-24 Ngk Insulators Ltd Positive electrode active material and lithium secondary battery
JP2010212260A (en) * 2009-09-29 2010-09-24 Ngk Insulators Ltd Positive electrode active material and lithium secondary battery
CN102132444A (en) * 2008-08-27 2011-07-20 住友化学株式会社 Electrode active material and method for producing same
WO2012046735A1 (en) * 2010-10-06 2012-04-12 東ソー株式会社 Manganese oxide and method for producing same, and method for producing lithium manganese composite oxide using same
JP2012246199A (en) * 2011-05-30 2012-12-13 Sumitomo Metal Mining Co Ltd Manganese composite hydroxide particle, positive pole active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery, and method for producing them
WO2013141317A1 (en) 2012-03-22 2013-09-26 東ソー株式会社 Manganomanganic oxide and process for producing same
WO2013157587A1 (en) * 2012-04-20 2013-10-24 東ソー株式会社 Manganese(iii, iv) oxide and method for producing same
JP2014058435A (en) * 2012-06-26 2014-04-03 Shenzhen Xinhaoqing Technology Co Ltd Low bet spherical manganese tetraoxide and its production method
WO2015009077A1 (en) * 2013-07-18 2015-01-22 전남대학교산학협력단 Method for preparing manganese compound and potassium sulfate from low-purity manganese and potassium inclusion
US9023530B2 (en) 2005-03-09 2015-05-05 Panasonic Intellectual Property Management Co., Ltd. Non-aqueous electrolyte secondary battery
KR101542748B1 (en) 2014-12-01 2015-08-07 전남대학교산학협력단 Process for producing manganese compound and potassium sulfate from material comprising potassium and manganese
US9142860B2 (en) 2008-02-04 2015-09-22 Sumitomo Chemical Company, Limited Mixed metal oxide and sodium secondary battery
US10122014B2 (en) 2008-02-04 2018-11-06 Sumitomo Chemical Company, Limited Mixed metal oxide and sodium secondary battery
US11296317B2 (en) 2017-06-01 2022-04-05 Nichia Corporation Positive-electrode active material for non-aqueous electrolyte secondary battery and method of producing the same

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005135691A (en) * 2003-10-29 2005-05-26 Nichia Chem Ind Ltd Positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode for non-aqueous electrolyte secondary battery, and the non-aqueous electrolyte secondary battery
WO2006095594A1 (en) * 2005-03-09 2006-09-14 Matsushita Electric Industrial Co., Ltd. Nonaqueous electrolyte secondary battery
US9023530B2 (en) 2005-03-09 2015-05-05 Panasonic Intellectual Property Management Co., Ltd. Non-aqueous electrolyte secondary battery
WO2007011053A1 (en) 2005-07-21 2007-01-25 Sumitomo Chemical Company, Limited Positive electrode active material for nonaqueous electrolyte secondary battery
WO2008018634A1 (en) * 2006-08-09 2008-02-14 Kanto Denka Kogyo Co., Ltd. Spinel lithium manganate, method for producing the same, positive electrode active material using spinel lithium manganate, and nonaqueous electrolyte battery
JP2008041577A (en) * 2006-08-09 2008-02-21 Kanto Denka Kogyo Co Ltd Spinel type manganate lithium and its manufacturing method, and cathode active material using spinel type manganate lithium and nonaqueous electrolyte battery
US8790831B2 (en) 2008-02-04 2014-07-29 Sumitomo Chemical Company, Limited Powder for positive electrode active material, positive active electrode active material, and sodium secondary battery
WO2009099058A1 (en) * 2008-02-04 2009-08-13 Sumitomo Chemical Company, Limited Powder for positive electrode active material, positive electrode active material, and sodium rechargeable battery
US10122014B2 (en) 2008-02-04 2018-11-06 Sumitomo Chemical Company, Limited Mixed metal oxide and sodium secondary battery
US9142860B2 (en) 2008-02-04 2015-09-22 Sumitomo Chemical Company, Limited Mixed metal oxide and sodium secondary battery
CN102132444A (en) * 2008-08-27 2011-07-20 住友化学株式会社 Electrode active material and method for producing same
JP2010212260A (en) * 2009-09-29 2010-09-24 Ngk Insulators Ltd Positive electrode active material and lithium secondary battery
JP2010212262A (en) * 2009-09-29 2010-09-24 Ngk Insulators Ltd Positive electrode active material and lithium secondary battery
KR101566595B1 (en) 2010-10-06 2015-11-05 도소 가부시키가이샤 Manganese oxide and method for producing same, and method for producing lithium manganese composite oxide using same
JP2012188341A (en) * 2010-10-06 2012-10-04 Tosoh Corp Manganese oxide, method for producing the same, and method for producing lithium manganese based composite oxide using manganese oxide
CN103153871A (en) * 2010-10-06 2013-06-12 东曹株式会社 Manganese oxide and method for producing same, and method for producing lithium manganese composite oxide using same
US9150427B2 (en) 2010-10-06 2015-10-06 Tosoh Corporation Manganese oxide and method for producing same, and method for producing lithium manganese composite oxide using same
WO2012046735A1 (en) * 2010-10-06 2012-04-12 東ソー株式会社 Manganese oxide and method for producing same, and method for producing lithium manganese composite oxide using same
JP2012246199A (en) * 2011-05-30 2012-12-13 Sumitomo Metal Mining Co Ltd Manganese composite hydroxide particle, positive pole active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery, and method for producing them
WO2013141317A1 (en) 2012-03-22 2013-09-26 東ソー株式会社 Manganomanganic oxide and process for producing same
KR20140139507A (en) 2012-03-22 2014-12-05 도소 가부시키가이샤 Manganomanganic oxide and process for producing same
US9450243B2 (en) 2012-03-22 2016-09-20 Tosoh Corporation Production process of trimanganese tetraoxide and lithium manganese oxide
JP2014028737A (en) * 2012-03-22 2014-02-13 Tosoh Corp Manganomanganic oxide and method for manufacturing the same
US9487883B2 (en) 2012-04-20 2016-11-08 Tosoh Corporation Trimanganese tetraoxide and its production process
WO2013157587A1 (en) * 2012-04-20 2013-10-24 東ソー株式会社 Manganese(iii, iv) oxide and method for producing same
JP2013237606A (en) * 2012-04-20 2013-11-28 Tosoh Corp Trimanganese tetroxide and method for producing the same
JP2014058435A (en) * 2012-06-26 2014-04-03 Shenzhen Xinhaoqing Technology Co Ltd Low bet spherical manganese tetraoxide and its production method
KR101519861B1 (en) 2013-07-18 2015-05-13 전남대학교산학협력단 Process for producing manganese compound and potassium sulfate from material comprising potassium and manganese
WO2015009077A1 (en) * 2013-07-18 2015-01-22 전남대학교산학협력단 Method for preparing manganese compound and potassium sulfate from low-purity manganese and potassium inclusion
KR101542748B1 (en) 2014-12-01 2015-08-07 전남대학교산학협력단 Process for producing manganese compound and potassium sulfate from material comprising potassium and manganese
US11296317B2 (en) 2017-06-01 2022-04-05 Nichia Corporation Positive-electrode active material for non-aqueous electrolyte secondary battery and method of producing the same
US11862796B2 (en) 2017-06-01 2024-01-02 Nichia Corporation Positive-electrode active material for non-aqueous electrolyte secondary battery and method of producing the same

Also Published As

Publication number Publication date
JP4620926B2 (en) 2011-01-26

Similar Documents

Publication Publication Date Title
JP4305629B2 (en) Trimanganese tetroxide powder and production method thereof, positive electrode active material for nonaqueous electrolyte secondary battery and production method thereof, and nonaqueous electrolyte secondary battery
US10056612B2 (en) Lithium manganate particles for non-aqueous electrolyte secondary battery, process for producing the same, and nonaqueous electrolyte secondary battery
JP5344111B2 (en) Method for producing lithium manganate for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
KR101593725B1 (en) Method for producing lithium manganate particle powder and nonaqueous electrolyte secondary battery
JP2016197611A (en) Li-Ni COMPOSITE OXIDE PARTICLE POWDER AND METHOD FOR PRODUCING THE SAME, AND NONAQUEOUS ELECTROLYTE SECONDARY BATTERY
WO2011040383A1 (en) Positive electrode active material powder, method for producing same, and nonaqueous electrolyte secondary battery
JP4620926B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
KR101487468B1 (en) Spinel type lithium-manganese-nickel-containing composite oxide
JP5114998B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP2002151077A (en) Positive electrode active material for non-aqueous electrolyte secondary battery and its manufacturing process
JP2009176732A (en) Lithium manganate for nonaqueous electrolyte secondary battery and its manufacturing method, and nonaqueous electrolyte secondary battery
JP4250886B2 (en) Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same
JP4655599B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP2008156163A (en) Spinel type lithium manganese oxide and method for manufacturing the same
JP6968844B2 (en) Positive electrode active material particles for non-aqueous electrolyte secondary batteries and their manufacturing methods, and non-aqueous electrolyte secondary batteries
JP6341095B2 (en) Non-aqueous electrolyte secondary battery lithium manganate particle powder, method for producing the same, and non-aqueous electrolyte secondary battery
JP6142868B2 (en) Positive electrode active material particle powder for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP2002124258A (en) Lithium manganate particle powder and its manufacturing method
EP3767720A1 (en) Positive electrode active material particles for non-aqueous electrolyte secondary battery and production method therefor, and non-aqueous electrolyte secondary battery
WO2017170543A1 (en) Positive-electrode active material particles for nonaqueous-electrolyte secondary cell, method for manufacturing said particles, and nonaqueous-electrolyte secondary cell
JP4553095B2 (en) Cobalt oxide particle powder and production method thereof, positive electrode active material for non-aqueous electrolyte secondary battery, production method thereof, and non-aqueous electrolyte secondary battery
JP2002231246A (en) Positive electrode active maerail for nonaqueous electrolyte secondary battery and method of manufacturing the same
JP5594500B2 (en) Lithium manganate for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP2005183088A (en) Cathode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP2005285487A (en) Nonaqueous electrolyte secondary battery, positive electrode active material for it, and positive electrode mix for it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080319

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080519

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100921

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101029

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4620926

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term