JP2003263986A - Electrode material and lithium battery using the same - Google Patents

Electrode material and lithium battery using the same

Info

Publication number
JP2003263986A
JP2003263986A JP2002065724A JP2002065724A JP2003263986A JP 2003263986 A JP2003263986 A JP 2003263986A JP 2002065724 A JP2002065724 A JP 2002065724A JP 2002065724 A JP2002065724 A JP 2002065724A JP 2003263986 A JP2003263986 A JP 2003263986A
Authority
JP
Japan
Prior art keywords
carbon
lithium
silicon
negative electrode
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002065724A
Other languages
Japanese (ja)
Other versions
JP3985143B2 (en
Inventor
Taku Kozono
卓 小園
Tokuo Inamasu
徳雄 稲益
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Corp
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Corp, Yuasa Battery Corp filed Critical Yuasa Corp
Priority to JP2002065724A priority Critical patent/JP3985143B2/en
Publication of JP2003263986A publication Critical patent/JP2003263986A/en
Application granted granted Critical
Publication of JP3985143B2 publication Critical patent/JP3985143B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a carbon material which is superior in cycle performance as a negative electrode material of a lithium secondary battery, and effective in improvement of energy density. <P>SOLUTION: The negative electrode of the lithium battery is formed of a carbonaceous material in which silicon (Si) is carried on the surface of a carbon particle whose lattice spacing (d<SB>002</SB>) of 002 plane is 0.34 nm or more, and moreover, its surface is coated with a carbon material. Especially, it is preferred to coat the surface with the carbon material consisting of a heat decomposition product of hydrocarbon or a hydrocarbon derivative. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は電極材料、特にリチ
ウム電池に用いる炭素質材料の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to improvements in electrode materials, particularly carbonaceous materials used in lithium batteries.

【0002】[0002]

【従来の技術】近年、携帯電話、PHS、PDA等の小
型小電力用途、あるいは、ハイブリッドカー、据置用無
停電電源、電力貯蔵用、電気自動車用等の大容量高出力
が求められる用途に用いる電源として、リチウム電池が
期待され、その高容量化、高エネルギー密度化、長寿命
化が求められている。
2. Description of the Related Art In recent years, it has been used for small and small electric power applications such as mobile phones, PHS and PDA, or for applications requiring large capacity and high output such as hybrid cars, stationary uninterruptible power supplies, electric power storage and electric vehicles. Lithium batteries are expected as a power source, and higher capacity, higher energy density, and longer life are required.

【0003】現在実用化されている一般的なリチウム二
次電池は、電極材料として、正極には遷移金属複合酸化
物等が用いられ、負極には炭素質材料が主に用いられて
いる。
In a general lithium secondary battery which has been put to practical use at present, a transition metal composite oxide or the like is used as a positive electrode and a carbonaceous material is mainly used as a negative electrode.

【0004】負極に用いる炭素質材料としては、可逆的
にリチウムイオンを吸蔵・放出できる容量が大きく、繰
り返し充放電を行っても容量の低下が小さく、高い電流
での充電や放電に対応できる材料が好ましく、そのため
の改良が種々行われている。
The carbonaceous material used for the negative electrode has a large capacity capable of reversibly occluding and releasing lithium ions, has a small decrease in capacity even after repeated charging and discharging, and is a material that can be charged and discharged at high current. Is preferred, and various improvements have been made for that purpose.

【0005】例えば、特開平2−121258号公報に
は、炭素材料の表面にAlを有する材料が提案されてい
る。この技術によれば、金属リチウムを用いた場合に問
題となっていたデンドライト析出が抑えられ、炭素材料
に比べて容量が向上し、クーロン効率も向上するので充
放電サイクルにも優れるとしている。
For example, Japanese Patent Application Laid-Open No. 2-121258 proposes a material having Al on the surface of a carbon material. According to this technique, the dendrite precipitation, which is a problem when metallic lithium is used, is suppressed, the capacity is improved and the Coulomb efficiency is improved as compared with the carbon material, and thus the charging / discharging cycle is also excellent.

【0006】しかしながら、この技術を用いても、近年
求められている長寿命化の要求を満たすものではなかっ
た。本発明者らが検討したところ、100サイクル程度
の充放電サイクルを行う限りにおいては確かに上記効果
は認められるものの、300サイクルを超える長期の充
放電サイクルを行った場合には容量の低下が著しく、A
lを有さない炭素材料を用いた場合の性能を逆に下回る
結果となった。この原因については必ずしも明らかでは
ないが、Alの微細化が進行して脱落すること、微細化
したAlが電解質等と反応して不活性化すること、ある
いは前記不活性化した反応生成物が炭素材料表面を高抵
抗被膜として覆ってしまうことにより、炭素材料の粒子
同士の電子伝導が不充分となるといったことなどが原因
として考えられる。
However, even if this technique is used, the demand for longer life which has been demanded in recent years has not been satisfied. As a result of examination by the present inventors, although the above effect is certainly observed as long as a charge / discharge cycle of about 100 cycles is performed, the capacity is remarkably reduced when a long-term charge / discharge cycle of more than 300 cycles is performed. , A
On the contrary, the result was lower than the performance when the carbon material not having 1 was used. The cause of this is not necessarily clear, but the refinement of Al is eliminated and the refined Al reacts with the electrolyte or the like to be inactivated, or the inactivated reaction product is carbon. It is considered that the electron conduction between the particles of the carbon material becomes insufficient by covering the surface of the material with a high resistance coating, and the like.

【0007】また、特開平10−326612号公報に
は、スズを担持した炭素材料が開示され、これによって
充放電サイクル性能が向上できるとしている。同公報に
よれば、炭素材料の表面に単に金属スズや金属銀を形成
した場合には脆化・脱落はないが、容量増加が認められ
ず、液体の四塩化スズを経由して担持させた場合に容量
増加が認められたとしている。
Further, Japanese Patent Application Laid-Open No. 10-326612 discloses a carbon material supporting tin, and it is stated that the charge / discharge cycle performance can be improved by this. According to the publication, when metallic tin or metallic silver is simply formed on the surface of the carbon material, there is no embrittlement / falloff, but no increase in capacity was observed, and it was supported via liquid tin tetrachloride. In that case, an increase in capacity was recognized.

【0008】しかしながら、この技術を用いても性能向
上の程度は顕著ではなく、近年求められている高エネル
ギー密度化の要求を満たすものではなかった。容量をさ
らに向上させるには、炭素材料の表面に形成する金属ス
ズの量を増加させることで達成できるが、この場合に
は、前述したAlの場合と同様の理由により、充分な繰
り返し充放電サイクル性能を達成することができないと
いった問題点があった。
However, even if this technique is used, the degree of performance improvement is not remarkable, and it has not satisfied the demand for high energy density demanded in recent years. The capacity can be further improved by increasing the amount of metallic tin formed on the surface of the carbon material, but in this case, due to the same reason as in the case of Al described above, sufficient repeated charge / discharge cycles are performed. There was a problem that the performance could not be achieved.

【0009】さらに、特開平5−299073号公報に
は、芯を形成する高結晶炭素粒子の表面に、乱層構造を
有する炭素材料を比較的低温かつ短時間で被覆するため
に前記高結晶炭素粒子の表面をVIII族の金属元素を含む
膜で被覆する技術が開示され、これによって表面乱層構
造を有する炭素材がリチウムイオンのインターカレーシ
ョンを助けると同時に、電極の表面積が大きいために充
放電容量および充放電速度が向上するとしている。
Further, in Japanese Unexamined Patent Publication (Kokai) No. 5-299073, the surface of the highly crystalline carbon particles forming the core is coated with a carbon material having a turbostratic structure at a relatively low temperature and in a short time. A technique for coating the surface of the particles with a film containing a Group VIII metal element is disclosed, whereby a carbon material having a surface disordered layer structure assists intercalation of lithium ions and, at the same time, the surface area of the electrode is large. It is said that the discharge capacity and charge / discharge speed will be improved.

【0010】しかしながら、この技術を用いても、特
に、繰り返し充放電サイクル性能を顕著に向上させるに
は至らず、高率放電特性やエネルギー密度の点において
も不十分であった。
However, even if this technique is used, the repetitive charge / discharge cycle performance cannot be remarkably improved, and the high rate discharge characteristics and the energy density are not sufficient.

【0011】特開2002−8652号公報には、黒鉛
粒子の表面にSi微粒子が付着されるとともに、前記黒
鉛粒子の少なくとも一部に炭素皮膜が被覆されてなる負
極材料が開示されている。
Japanese Unexamined Patent Publication No. 2002-8652 discloses a negative electrode material in which Si particles are attached to the surface of graphite particles and at least a part of the graphite particles is coated with a carbon film.

【0012】この技術を用いれば、充放電サイクルの初
期においては充放電容量が向上するものの、充放電サイ
クルの経過に伴う容量低下が大きいという問題点があっ
た。
When this technique is used, the charge and discharge capacity is improved in the early stage of the charge and discharge cycle, but there is a problem that the capacity is largely reduced with the progress of the charge and discharge cycle.

【0013】[0013]

【発明が解決しようとする課題】本発明は、上記問題点
を解決するためになされたものであって、エネルギー密
度が高く、高率放電特性に優れ、繰り返し充放電サイク
ル性能が顕著に向上された電極材料及びこれを用いたリ
チウム電池を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems and has a high energy density, excellent high rate discharge characteristics, and remarkably improved repeated charge / discharge cycle performance. Another object is to provide an electrode material and a lithium battery using the same.

【0014】[0014]

【課題を解決するための手段】本発明は、請求項1に記
載したように、結晶子の002面の格子面間隔
(d00 2)が0.34nm以上である炭素粒子に少なく
ともケイ素(Si)が担持され、さらにケイ素が坦持さ
れた炭素粒子の表面が炭素材で被覆されてなる炭素質材
料を用いた電極材料である。
According to the present invention, as described in claim 1, carbon particles having a lattice spacing (d 00 2 ) on the 002 plane of a crystallite of 0.34 nm or more are contained in at least silicon (Si). ) Is further supported, and the surface of the carbon particles on which silicon is further supported is coated with a carbon material to form an electrode material using a carbonaceous material.

【0015】このような構成によれば、ケイ素を担持す
ることにより容量を増加させることができ、炭素粒子の
表面をさらに炭素材で被覆しているので、充放電を繰り
返しても、ケイ素またはケイ素−リチウム合金が炭素粒
子表面から脱落することがない。さらに驚くべきことに
は、ケイ素を単体で存在させても容量増加の効果が認め
られるばかりではなく、充電によってケイ素がリチウム
と合金化すると考えられるにもかかわらず、長期の充放
電サイクルを繰り返しても、ケイ素を単体で負極に用い
た場合にみられるような微粉化や不活性化の進行に伴う
性能低下がほとんど起こらず、炭素粒子または炭素材と
ケイ素またはケイ素−リチウム合金との電子伝導性が充
分に保たれる。
According to this structure, the capacity can be increased by supporting silicon, and the surface of the carbon particles is further covered with the carbon material. Therefore, even if charging and discharging are repeated, silicon or silicon can be used. -The lithium alloy does not fall off the surface of the carbon particles. Even more surprisingly, the presence of silicon alone does not only show the effect of increasing the capacity, but even though it is considered that silicon alloys with lithium upon charging, a long-term charge / discharge cycle is repeated. Also, there is almost no performance deterioration due to the progress of pulverization and inactivation as seen when using silicon alone for the negative electrode, and the electron conductivity of carbon particles or carbon material and silicon or silicon-lithium alloy Is fully maintained.

【0016】本発明は、前記したように、炭素質材料の
芯材を形成する炭素粒子としてエックス線回折による結
晶子の002面の格子面間隔(d002)が0.340n
m以上であるカーボンを用いることを特徴としている。
このようなカーボンとしては、格子面間隔(d002)が
0.340〜0.37nmの黒鉛化していない低温処理
カーボンや、(002)面の格子面間隔(d002)が
0.37nm以上の低温処理ハードカーボン等が挙げら
れる。なかでも、(002)面の格子面間隔(d 002
が0.37nmの低温処理ハードカーボンはリチウムの
吸蔵放出に伴う体積変化がほとんど無いことからより好
ましい。前記ハードカーボンのd002の値は高々0.3
9nm以下である。d002の値が0.39より大きいカ
ーボンはリチウムイオンの吸蔵性において不適当であ
る。
The present invention, as described above, includes a carbonaceous material.
The carbon particles that form the core material are bonded by X-ray diffraction.
The lattice spacing of the 002 plane of the crystallite (d002) Is 0.340n
It is characterized by using carbon of m or more.
Such carbon has a lattice spacing (d002)But
Non-graphitized low temperature treatment of 0.340-0.37 nm
Carbon or lattice spacing of (002) plane (d002)But
Examples include low-temperature treated hard carbon of 0.37 nm or more.
Be done. Above all, the lattice spacing of the (002) plane (d 002)
Of 0.37 nm is low temperature treated hard carbon
It is better because there is almost no volume change associated with occlusion and release.
Good D of the hard carbon002Value of 0.3 at most
It is 9 nm or less. d002Value of is greater than 0.39
Carbon is not suitable for absorbing lithium ions
It

【0017】これに対して、炭素質材料の芯材を形成す
る炭素粒子として002面の格子面間隔(d002)が
0.340nmより小さいカーボン、即ち(002)面
の格子面間隔(d002)が0.3354〜0.338n
mの天然黒鉛、キッシュ黒鉛、人造黒鉛等の黒鉛または
黒鉛化品を用いると、リチウムの吸蔵・放出に伴う体積
変化が大きく、長期の繰り返し充放電を行うと、被覆す
る炭素材と、芯材を形成する炭素粒子または金属ケイ素
との間の結合が不安定となり、良好な充放電サイクル性
能を得ることが困難となる。
[0017] By contrast, the lattice spacing of a 002 plane as a carbon particles forming the core of the carbonaceous material (d 002) is 0.340nm less carbon, i.e. (002) plane lattice spacing (d 002 ) Is 0.3354 to 0.338n
When graphite or graphitized product such as m natural graphite, Kish graphite, artificial graphite, or the like is used, the volume change due to the occlusion / release of lithium is large, and the carbon material to be coated and the core material are subjected to repeated charge / discharge for a long time. The bond between the carbon particles or the metal silicon forming the carbon becomes unstable, and it becomes difficult to obtain good charge / discharge cycle performance.

【0018】即ち、格子面間隔(d002)が0.340
nm以上のいわゆる非黒鉛化カーボンを用いると、電池
の充放電、即ちカーボンへのリチウムイオンの吸蔵・放
出に伴う格子面間隔の変化が小さく、特に0.37nm
以上のハードカーボンでは、この変化がほとんど起こら
ない。このため、前記芯材となる炭素粒子に格子面間隔
(d002)が0.340nm以上のカーボンを適用する
ことで、充放電サイクル性能を効果的に向上させること
ができる。
That is, the lattice spacing (d 002 ) is 0.340.
When so-called non-graphitized carbon having a size of nm or more is used, the change in the lattice spacing due to the charging / discharging of the battery, that is, the occlusion / release of lithium ions into the carbon is small, and especially 0.37 nm.
With the above hard carbon, this change hardly occurs. Therefore, by applying carbon having a lattice spacing (d 002 ) of 0.340 nm or more to the carbon particles as the core material, the charge / discharge cycle performance can be effectively improved.

【0019】また、本発明は、請求項2に記載したよう
に、前記炭素材は、炭化水素または炭化水素誘導体の熱
分解生成物からなることを特徴としている。
Further, according to the present invention, as described in claim 2, the carbon material is composed of a thermal decomposition product of a hydrocarbon or a hydrocarbon derivative.

【0020】表面を被覆する炭素材を炭化水素または炭
化水素誘導体の熱分解生成物によって構成することによ
り、強固で緻密な導電性に優れた炭素材となるばかりで
はなく、芯材を形成する炭素材とその表面に担持された
ケイ素とを強固に繋ぐ効果が生まれるため、電極材料が
リチウムの吸蔵・放出を繰り返しても、炭素粒子または
炭素材とケイ素またはケイ素−リチウム合金との電子伝
導性をさらに充分に保つことができる。
By constructing the carbon material for coating the surface with a pyrolysis product of hydrocarbon or a hydrocarbon derivative, not only a strong and dense carbon material excellent in conductivity but also a carbon forming a core material is formed. Since the effect of firmly connecting the material and the silicon supported on the surface is created, even if the electrode material repeatedly occludes and releases lithium, the electron conductivity between the carbon particles or the carbon material and the silicon or the silicon-lithium alloy is maintained. Furthermore, it can be sufficiently maintained.

【0021】また、本発明は、請求項3に記載したよう
に、これらの電極材料を有するリチウム電池である。
Further, the present invention provides a lithium battery having these electrode materials as described in claim 3.

【0022】このような構成によれば、電極材料が上記
した特徴を有しているので、エネルギー密度が高く、高
率放電特性に優れ、繰り返し充放電サイクル性能が顕著
に向上されたリチウム電池を提供できる。
According to this structure, since the electrode material has the above-mentioned characteristics, a lithium battery having a high energy density, excellent high rate discharge characteristics, and remarkably improved repeated charge / discharge cycle performance can be obtained. Can be provided.

【0023】[0023]

【発明の実施の形態】以下に本発明の実施形態について
述べるが、本発明は以下の記載に限定されるものではな
い。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below, but the present invention is not limited to the following description.

【0024】芯材を形成する炭素材の比表面積は1m2
/g以上であることが好ましい。さらに、芯材を形成す
る炭素材の比表面積を2m2/g以上、より好ましくは
5m2/g以上、さらに好ましくは10m2/g以上、特
に好ましくは100m2/g以上、最も好ましくは10
00m2/g以上とすることにより、ケイ素の担持量を
充分とすることができる。
The specific surface area of the carbon material forming the core material is 1 m 2
/ G or more is preferable. Further, the specific surface area of the carbon material forming the core material is 2 m 2 / g or more, more preferably 5 m 2 / g or more, further preferably 10 m 2 / g or more, particularly preferably 100 m 2 / g or more, most preferably 10 m 2 / g or more.
When the amount is 00 m 2 / g or more, the amount of silicon supported can be sufficient.

【0025】ケイ素を炭素粒子に担持させる方法として
は、ケイ素を炭素材に蒸着する方法、ケイ素化合物を化
学的に還元してケイ素を析出させる方法、あるいはメカ
ノフュージョン等によって物理的に担持させる方法等を
選択することができ、いずれの方法を用いても、ケイ素
の粒子が炭素粒子の表面に形成される。担持させるケイ
素の粒子径は、5μm以下とすると、リチウムの吸蔵・
放出に伴う体積変化を小さくすることができるため、好
ましい。さらに、担持させるケイ素の粒子径は、1μm
以下、より好ましくは0.5μm以下、さらに好ましく
は0.1μm以下、特に好ましくは0.05μm以下、
最も好ましくは0.03μm以下とすれば、リチウムの
吸蔵・放出に伴う体積変化を充分に小さくすることがで
きる。
As a method of supporting silicon on carbon particles, a method of depositing silicon on a carbon material, a method of chemically reducing a silicon compound to precipitate silicon, a method of physically supporting silicon by mechanofusion, etc. Can be selected, and using either method, particles of silicon are formed on the surface of the carbon particles. If the particle size of silicon to be supported is 5 μm or less, the absorption of lithium
It is preferable because the change in volume accompanying release can be reduced. Furthermore, the particle size of silicon to be supported is 1 μm.
Or less, more preferably 0.5 μm or less, further preferably 0.1 μm or less, particularly preferably 0.05 μm or less,
Most preferably, if it is 0.03 μm or less, the volume change accompanying the occlusion / release of lithium can be made sufficiently small.

【0026】ケイ素を担持した炭素粒子の表面を被覆す
る炭素材は、有機化合物を不活性ガス流の下で加熱して
分解し、炭化して、前記炭素粒子表面上に形成させるこ
とが好ましい。炭素粒子の表面を被覆する具体的な方法
としては、次の(A)〜(C)に述べる方法が例示さ
れ、任意に選択することができる。
The carbon material coating the surface of the carbon particles supporting silicon is preferably formed by heating an organic compound under a flow of an inert gas to decompose and carbonize the organic compound to form on the surface of the carbon particles. Specific methods for coating the surface of the carbon particles are exemplified by the methods described in (A) to (C) below, and can be arbitrarily selected.

【0027】(A)ケイ素を担持した炭素粒子の表面を
有機高分子化合物で被覆し、固相で熱分解して炭素材を
形成させる。前記有機高分子化合物としては、例えば、
ポリビニルアルコール;カルボキシメチルセルロースに
代表されるセルロース類;フェノール樹脂;ポリアクリ
ロニトリル、ポリ(α−ハロゲン化アクリロニトリル)
等のアクリル系樹脂;ポリアミドイミド樹脂;ポリアミ
ド樹脂;等を用いることができる。これらの中で、水溶
性のポリビニルアルコールやセルロース類は作業性に優
れ好ましい。
(A) The surface of carbon particles carrying silicon is coated with an organic polymer compound and pyrolyzed in a solid phase to form a carbon material. Examples of the organic polymer compound include:
Polyvinyl alcohol; Cellulose typified by carboxymethyl cellulose; Phenolic resin; Polyacrylonitrile, Poly (α-halogenated acrylonitrile)
Acrylic resins such as; polyamide imide resins; polyamide resins; and the like can be used. Among these, water-soluble polyvinyl alcohol and celluloses are preferable because of their excellent workability.

【0028】(B)比較的低分子の有機化合物、例えば
炭素数が25以下のパラフィン、オレフィン、芳香族化
合物等のガス状物または霧滴状物を熱分解して炭素材を
生成させ、前記炭素粒子の表面に堆積させる。具体的に
は、プロパン、プロピレン等の飽和又は不飽和の脂肪族
炭化水素;ベンゼン、トルエン等の芳香族単環炭化水
素;ナフタレン、フェナンスレン、アントラセン、トリ
フェニレン、ピレン、クリセン、ナフタセン、ピセン、
ペリレン、ペンタフェン、ペンタセン等の縮合多環式炭
化水素のカルボン酸、カルボン酸無水物、カルボン酸イ
ミド等の誘導体;インドール、イソインドール、キノリ
ン等の3員環以上の複素多環化合物のカルボン酸、カル
ボン酸無水物、カルボン酸イミド等の誘導体;等を挙げ
ることができる。またこれらは置換基(ハロゲン原子、
水酸基、スルホン基、ニトロ基、アミノ基、カルボキシ
ル基等)を一部有するものであっても良い。
(B) A relatively low-molecular organic compound such as paraffin, olefin or aromatic compound having a carbon number of 25 or less, such as a gaseous substance or a mist droplet, is thermally decomposed to produce a carbon material, Deposit on the surface of carbon particles. Specifically, saturated or unsaturated aliphatic hydrocarbons such as propane and propylene; aromatic monocyclic hydrocarbons such as benzene and toluene; naphthalene, phenanthrene, anthracene, triphenylene, pyrene, chrysene, naphthacene, picene,
Derivatives of condensed polycyclic hydrocarbons such as perylene, pentaphene and pentacene, such as carboxylic acids, carboxylic acid anhydrides and carboxylic acid imides; carboxylic acids of 3- or more-membered heteropolycyclic compounds such as indole, isoindole and quinoline, And derivatives thereof such as carboxylic acid anhydride and carboxylic acid imide. In addition, these are substituents (halogen atom,
(A hydroxyl group, a sulfone group, a nitro group, an amino group, a carboxyl group, etc.) may be partially contained.

【0029】(C)縮合多環式炭化水素、複素多環化合
物等を加熱し、ケイ素を担持した炭素粒子に液相で接触
させながら熱分解し、前記炭素粒子表面に炭素材を形成
させる。縮合多環式炭化水素としては、ピッチを用いる
ことが好ましい。ピッチについてさらに詳述すると、ナ
フサの分解の際に生成するエチレンヘビーエンドピッ
チ、原油の分解の時に生成する原油ピッチ、石炭の熱分
解の際に生成するコールピッチ、アスファルトの分解に
よって生成するアスファルト分解ピッチ、ポリ塩化ビニ
ル等を熱分解して生成するピッチ等を例示することがで
きる。また、これら各種ピッチをさらに不活性ガス流の
下で加熱し、キノリン不溶分が好ましくは80%以上、
より好ましくは90%以上、さらに好ましくは95%以
上のメソフェーズピッチとして用いてもよい。特に、ケ
イ素を担持した炭素粒子の表面で、縮合多環式炭化水素
を加熱する方法において、メソフェーズと呼ばれる液晶
状態を経由して炭素化を進め、表層の炭素材を形成する
ことが好ましい。表層の炭素材を形成するための熱分解
温度は、300〜3000℃が好ましい。
(C) A condensed polycyclic hydrocarbon, a heteropolycyclic compound, or the like is heated and pyrolyzed while being brought into contact with silicon-supporting carbon particles in a liquid phase to form a carbon material on the surface of the carbon particles. Pitch is preferably used as the condensed polycyclic hydrocarbon. Pitch is described in more detail.Ethylene heavy-end pitch generated during naphtha cracking, crude oil pitch generated during crude oil cracking, coal pitch generated during coal thermal cracking, asphalt cracking generated during asphalt cracking. Examples thereof include pitch, polyvinyl chloride and the like, which are generated by thermally decomposing them. Further, these various pitches are further heated under an inert gas flow, and the quinoline insoluble content is preferably 80% or more,
More preferably, 90% or more, and further preferably 95% or more may be used as the mesophase pitch. In particular, in the method of heating condensed polycyclic hydrocarbons on the surface of carbon particles supporting silicon, it is preferable to promote carbonization via a liquid crystal state called mesophase to form a carbon material for the surface layer. The thermal decomposition temperature for forming the surface carbon material is preferably 300 to 3000 ° C.

【0030】前記した芯材を形成する炭素粒子を形成す
る目的において、上記した(A)〜(C)から選択され
る方法を用いることもできる。即ち、上記した(A)〜
(C)から選択される方法を用いて芯材を形成する炭素
粒子を形成し、ケイ素を担持させた後、同じく(A)〜
(C)から選択される方法を用いて表層となる炭素材を
形成してもよい。また、表層となる炭素材は、多段階で
多相の表層となるように形成してもよい。
For the purpose of forming the carbon particles forming the core material, a method selected from the above (A) to (C) can be used. That is, (A) to
After the carbon particles forming the core material are formed using the method selected from (C) and silicon is supported, the same procedure as in (A) to
You may form the carbon material used as a surface layer using the method selected from (C). Further, the carbon material to be the surface layer may be formed so as to form a multi-phase surface layer in multiple stages.

【0031】このようにして得られた本発明の電極材料
であるケイ素を内包した多相構造の炭素質材料に占める
芯材の炭素粒子の割合は、好ましくは20〜95重量
%、より好ましくは25〜90重量%、さらに好ましく
は30〜85重量%、特に好ましくは35〜80重量
%、最も好ましくは40〜75重量%である。また、前
記炭素質材料に占める表層の炭素材の割合は、好ましく
は、5〜80重量%、より好ましくは10〜75重量
%、さらに好ましくは15〜70重量%、特に好ましく
は20〜65重量%、最も好ましくは25〜60重量%
である。また、前記炭素質材料に占めるケイ素の含有量
は、0.1〜80重量%、より好ましくは0.5〜75
重量%、さらに好ましくは1〜70重量%、特に好まし
くは5〜65重量%、最も好ましくは10〜60重量%
である。
The proportion of carbon particles of the core material in the thus obtained electrode material of the present invention which has a silicon-containing multiphase carbonaceous material is preferably 20 to 95% by weight, more preferably 25 to 90% by weight, more preferably 30 to 85% by weight, particularly preferably 35 to 80% by weight, and most preferably 40 to 75% by weight. The ratio of the surface carbon material in the carbonaceous material is preferably 5 to 80% by weight, more preferably 10 to 75% by weight, further preferably 15 to 70% by weight, and particularly preferably 20 to 65% by weight. %, Most preferably 25-60% by weight
Is. The content of silicon in the carbonaceous material is 0.1 to 80% by weight, more preferably 0.5 to 75%.
% By weight, more preferably 1-70% by weight, particularly preferably 5-65% by weight, most preferably 10-60% by weight.
Is.

【0032】また、前記表層の炭素材の厚さは、好まし
くは10nm〜5μm、より好ましくは20nm〜4μ
m、さらに好ましくは30nm〜3μm、特に好ましく
は50nm〜2μm、最も好ましくは70nm〜1.5
μmである。
The thickness of the surface carbon material is preferably 10 nm to 5 μm, more preferably 20 nm to 4 μm.
m, more preferably 30 nm to 3 μm, particularly preferably 50 nm to 2 μm, and most preferably 70 nm to 1.5.
μm.

【0033】本発明に係るリチウム二次電池は、正極活
物質を主要構成成分とする正極と、本発明の炭素質材料
を主要構成成分とする負極と、電解質塩が非水溶媒に含
有された非水電解質とから構成され、一般的には、正極
と負極との間に、セパレータが設けられる。
The lithium secondary battery according to the present invention contains a positive electrode containing a positive electrode active material as a main constituent, a negative electrode containing the carbonaceous material of the present invention as a main constituent, and an electrolyte salt in a non-aqueous solvent. It is composed of a non-aqueous electrolyte, and generally, a separator is provided between the positive electrode and the negative electrode.

【0034】非水電解質は、一般にリチウム電池等への
使用が提案されているものが使用可能である。非水溶媒
としては、プロピレンカーボネート、エチレンカーボネ
ート、ブチレンカーボネート、クロロエチレンカーボネ
ート、ビニレンカーボネート等の環状炭酸エステル類;
γ−ブチロラクトン、γ−バレロラクトン等の環状エス
テル類;ジメチルカーボネート、ジエチルカーボネー
ト、メチルエチルカーボネート等の鎖状カーボネート
類;ギ酸メチル、酢酸メチル、酪酸メチル等の鎖状エス
テル類;テトラヒドロフランまたはその誘導体;1,3
−ジオキサン、1,4−ジオキサン、1,2−ジメトキ
シエタン、1,4−ジブトキシエタン、メチルジグライ
ム等のエーテル類;アセトニトリル、ベンゾニトリル等
のニトリル類;ジオキソランまたはその誘導体;スルホ
ラン、スルトンまたはその誘導体等を1種以上混合物す
ることができるが、これらに限定されるものではない。
As the non-aqueous electrolyte, those generally proposed for use in lithium batteries and the like can be used. Non-aqueous solvents include cyclic carbonic acid esters such as propylene carbonate, ethylene carbonate, butylene carbonate, chloroethylene carbonate, vinylene carbonate;
Cyclic esters such as γ-butyrolactone and γ-valerolactone; chain carbonates such as dimethyl carbonate, diethyl carbonate and methyl ethyl carbonate; chain esters such as methyl formate, methyl acetate and methyl butyrate; tetrahydrofuran or its derivatives; 1,3
Ethers such as dioxane, 1,4-dioxane, 1,2-dimethoxyethane, 1,4-dibutoxyethane, methyldiglyme; nitriles such as acetonitrile and benzonitrile; dioxolane or its derivatives; sulfolane, sultone or One or more derivatives thereof may be mixed, but the mixture is not limited thereto.

【0035】電解質塩としては、例えば、LiCl
4,LiBF4,LiAsF6,LiPF6,LiSC
N,LiBr,LiI,Li2SO4,Li210
10,NaClO4,NaI,NaSCN,NaBr,
KClO4,KSCN等のリチウム(Li)、ナトリウ
ム(Na)またはカリウム(K)の1種を含む無機イオ
ン塩、LiCF3SO3,LiN(CF3SO22,Li
N(C25SO22,LiN(CF3SO2)(C49
2),LiC(CF3SO23,LiC(C25
23,LiPF3(C253,LiPF3(C
33,(CH34NBF4,(CH34NBr,(C2
54NClO4,(C254NI,(C374NB
r,(n−C494NClO4,(n−C494
I,(C254N−maleate,(C254N−
benzoate,(C254N−phtalat
e、ステアリルスルホン酸リチウム、オクチルスルホン
酸リチウム、ドデシルベンゼンスルホン酸リチウム等の
有機イオン塩等が挙げられ、これらのイオン性化合物を
単独、あるいは2種類以上混合して用いることが可能で
ある。
Examples of the electrolyte salt include LiCl
O 4 , LiBF 4 , LiAsF 6 , LiPF 6 , LiSC
N, LiBr, LiI, Li 2 SO 4 , Li 2 B 10 C
l 10 , NaClO 4 , NaI, NaSCN, NaBr,
Inorganic ion salt containing one kind of lithium (Li), sodium (Na) or potassium (K) such as KClO 4 and KSCN, LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 and Li
N (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 S
O 2 ), LiC (CF 3 SO 2 ) 3 , LiC (C 2 F 5 S
O 2 ) 3 , LiPF 3 (C 2 F 5 ) 3 , LiPF 3 (C
F 3 ) 3 , (CH 3 ) 4 NBF 4 , (CH 3 ) 4 NBr, (C 2
H 5) 4 NClO 4, ( C 2 H 5) 4 NI, (C 3 H 7) 4 NB
r, (n-C 4 H 9) 4 NClO 4, (n-C 4 H 9) 4 N
I, (C 2 H 5) 4 N-maleate, (C 2 H 5) 4 N-
benzoate, (C 2 H 5) 4 N-phtalat
Examples thereof include organic ionic salts such as e, lithium stearyl sulfonate, lithium octyl sulfonate, and lithium dodecylbenzene sulfonate. These ionic compounds can be used alone or in combination of two or more.

【0036】これらの塩の中で、LiPF6は解離性に
優れ、優れた伝導度が得られる点で好ましい。また、L
iBF4は、LiPF6と比較して解離度や伝導度は低い
ものの、電解液中に存在する水分との反応性が低いの
で、電解液の水分管理を簡素化することが可能であり製
造コストを低減することが可能である点で好ましい。さ
らに、電極や外装材の腐食を引き起こすフッ酸発生の程
度が少なく、外装材として金属樹脂複合フィルム等の2
00μm以下の薄い材料を採用した場合であっても、高
い耐久性を有する非水電解質電池が得られる点で好まし
い。
Among these salts, LiPF 6 is preferable because it is excellent in dissociation property and excellent conductivity is obtained. Also, L
Although iBF 4 has lower dissociation degree and conductivity than LiPF 6 , iBF 4 has low reactivity with water present in the electrolytic solution, so that it is possible to simplify the water management of the electrolytic solution and reduce the manufacturing cost. Is preferable in that it can be reduced. Furthermore, the degree of generation of hydrofluoric acid that causes corrosion of the electrodes and the exterior material is small, and the exterior material such as a metal-resin composite film is used as the exterior material.
Even when a thin material of 00 μm or less is adopted, it is preferable in that a non-aqueous electrolyte battery having high durability can be obtained.

【0037】あるいは、LiPF6やLiBF4と、Li
N(C25SO22のようなパーフルオロアルキル基を
有するリチウム塩とを混合して用いると、電解液の粘度
をさらに下げることができる点、保存性を向上させる効
果がある点で好ましい。
Alternatively, LiPF 6 or LiBF 4 and Li
When used in combination with a lithium salt having a perfluoroalkyl group such as N (C 2 F 5 SO 2 ) 2 , it is possible to further reduce the viscosity of the electrolytic solution and to improve the storage stability. Is preferred.

【0038】非水電解質における電解質塩の濃度として
は、高い電池特性を有する非水電解質電池を確実に得る
ために、0.1mol/l〜5mol/lが好ましく、
さらに好ましくは、1mol/l〜2.5mol/lで
ある。
The concentration of the electrolyte salt in the non-aqueous electrolyte is preferably 0.1 mol / l to 5 mol / l in order to reliably obtain a non-aqueous electrolyte battery having high battery characteristics.
More preferably, it is 1 mol / l to 2.5 mol / l.

【0039】正極に用いる正極活物質としては、何ら限
定されるものではないが、リチウム含有遷移金属酸化
物、リチウム含有リン酸塩、リチウム含有硫酸塩等を単
独あるいは混合して用いることが好ましい。リチウム含
有遷移金属酸化物としては、一般式LiyCo1-x
x2、LiyNi1-xx2、LiyMn2-xX4(M
は、IからVIII族の金属(例えば、Li,Ca,C
r,Ni,Fe,Co,Mnから選ばれる1種類以上の
元素)であり、異種元素置換量を示すx値については置
換できる最大量まで有効であるが、好ましくは放電容量
の点から0≦x≦1である。また、リチウム量を示すy
値についてはリチウムを可逆的に利用しうる最大量が有
効であり、好ましくは放電容量の点から0≦y≦2であ
る。)が挙げられるが、これらに限定されるものではな
い。
The positive electrode active material used for the positive electrode is not particularly limited, but it is preferable to use a lithium-containing transition metal oxide, a lithium-containing phosphate, a lithium-containing sulfate, etc., alone or in combination. The lithium-containing transition metal oxide has a general formula of Li y Co 1-x M
x O 2 , Li y Ni 1-x M x O 2 , Li y Mn 2-x M X O 4 (M
Is a group I to VIII metal (eg, Li, Ca, C
One or more elements selected from r, Ni, Fe, Co, and Mn), and is effective up to the maximum substitutable amount for x value indicating the substitution amount of different elements, but preferably 0 ≦ from the viewpoint of discharge capacity. x ≦ 1. In addition, y indicating the amount of lithium
Regarding the value, the maximum amount that can reversibly utilize lithium is effective, and preferably 0 ≦ y ≦ 2 from the viewpoint of discharge capacity. ), But is not limited thereto.

【0040】また、前記リチウム含有化合物に他の正極
活物質を混合して用いてもよく、他の正極活物質として
は、CuO,Cu2O,Ag2O,CuS,CuSO4
のI族金属化合物、TiS2,SiO2,SnO等のIV
族金属化合物、V25,V612,VOx,Nb25,B
23,Sb23等のV族金属化合物、CrO3,Cr2
3,MoO3,MoS2,WO3,SeO2等のVI族金
属化合物、MnO2,Mn23等のVII族金属化合
物、Fe23,FeO,Fe34,Ni23,NiO,
CoO3,CoO等のVIII族金属化合物、または、
一般式LixMX2,LixMNy2(M、NはIからV
III族の金属、Xは酸素、硫黄等のカルコゲン化合物
を示す。)等で表される、例えばリチウム−コバルト系
複合酸化物やリチウム−マンガン系複合酸化物等の金属
化合物、さらに、ジスルフィド,ポリピロール,ポリア
ニリン,ポリパラフェニレン,ポリアセチレン,ポリア
セン系材料等の導電性高分子化合物、擬グラファイト構
造炭素材等が挙げられるが、これらに限定されるもので
はない。
Further, other positive electrode active material may be mixed with the lithium-containing compound, and as the other positive electrode active material, CuO, Cu 2 O, Ag 2 O, CuS, CuSO 4 and the like can be used. IV of metal compounds, TiS 2 , SiO 2 , SnO, etc.
Group metal compound, V 2 O 5 , V 6 O 12 , VO x , Nb 2 O 5 , B
Group V metal compounds such as i 2 O 3 and Sb 2 O 3 , CrO 3 and Cr 2
Group VI metal compounds such as O 3 , MoO 3 , MoS 2 , WO 3 , and SeO 2 , Group VII metal compounds such as MnO 2 , Mn 2 O 3 , Fe 2 O 3 , FeO, Fe 3 O 4 , and Ni 2 O 3 , NiO,
Group VIII metal compounds such as CoO 3 and CoO, or
General formula Li x MX 2 , Li x MN y X 2 (M and N are from I to V
Group III metal, X represents a chalcogen compound such as oxygen or sulfur. ) Or the like, for example, a metal compound such as a lithium-cobalt-based composite oxide or a lithium-manganese-based composite oxide, and a conductive high material such as disulfide, polypyrrole, polyaniline, polyparaphenylene, polyacetylene, or polyacene Examples thereof include molecular compounds and pseudo-graphite structure carbon materials, but are not limited to these.

【0041】負極には、本発明の炭素質材料に加えて、
他の炭素質材料を混合して用いてもよい。ここでは黒鉛
を用いることができる。黒鉛は、金属リチウムに極めて
近い作動電位を有するので電解質塩としてリチウム塩を
採用した場合に自己放電を少なくでき、かつ充放電にお
ける不可逆容量を少なくできるので、前記他の炭素質材
料として好ましい。黒鉛結晶には良く知られている六方
晶系とその他に菱面体晶系に属するものがある。特に、
菱面体晶系構造が含まれる黒鉛は、電解液中の溶媒の選
択性が広く、例えばプロピレンカーボネートのような溶
剤を用いても、層剥離が抑制され優れた充放電効率を示
すことから好ましい。
For the negative electrode, in addition to the carbonaceous material of the present invention,
Other carbonaceous materials may be mixed and used. Here, graphite can be used. Since graphite has an operating potential extremely close to that of metallic lithium, self-discharge can be reduced when lithium salt is used as an electrolyte salt, and irreversible capacity during charge / discharge can be reduced, so that graphite is preferable as the other carbonaceous material. Graphite crystals include the well-known hexagonal system and others belonging to the rhombohedral system. In particular,
Graphite containing a rhombohedral structure is preferable because it has wide selectivity of the solvent in the electrolytic solution, and even when a solvent such as propylene carbonate is used, delamination is suppressed and excellent charge / discharge efficiency is exhibited.

【0042】また、負極には、さらに、スズ酸化物,ケ
イ素酸化物等の金属酸化物、リン、ホウ素、アモルファ
スカーボン等を添加して改質を行うことも可能である。
特に、炭素材の表面を上記の方法によって改質すること
で、電解液の分解を抑制し電池特性を高めることが可能
であり好ましい。さらに、上述した炭素複合体負極材と
炭素材以外にリチウム金属、リチウム−アルミニウム,
リチウム−鉛,リチウム−スズ,リチウム−アルミニウ
ム−スズ,リチウム−ガリウム,およびウッド合金等の
リチウム金属含有合金等を併用することや、上述した炭
素複合体負極材や炭素材あらかじめ電気化学的に還元す
ることによってリチウムが挿入することも可能である。
Further, the negative electrode can be modified by further adding metal oxides such as tin oxide and silicon oxide, phosphorus, boron, amorphous carbon and the like.
Particularly, by modifying the surface of the carbon material by the above method, it is possible to suppress the decomposition of the electrolytic solution and enhance the battery characteristics, which is preferable. Further, in addition to the carbon composite negative electrode material and the carbon material described above, lithium metal, lithium-aluminum,
Lithium-lead, lithium-tin, lithium-aluminum-tin, lithium-gallium, and lithium metal-containing alloys such as wood alloys are used together, and the above-mentioned carbon composite negative electrode material and carbon material are electrochemically reduced in advance. By doing so, lithium can be inserted.

【0043】また、正極活物質の粉体及び負極材の粉体
の少なくとも表面層部分を電子伝導性やイオン伝導性の
良いもの、あるいは疎水基を有する化合物で修飾するこ
とも可能である。例えば、金,銀,カーボン,ニッケ
ル,銅等の電子伝導性のよい物質や、炭酸リチウム,ホ
ウ素ガラス,固体電解質等のイオン伝導性のよい物質、
あるいはシリコーンオイル等の疎水基を有する物質をメ
ッキ,焼結,メカノフュージョン,蒸着,焼き付け等の
技術を応用して被覆することが挙げられる。
It is also possible to modify at least the surface layer portion of the powder of the positive electrode active material and the powder of the negative electrode material with a material having good electron conductivity or ion conductivity, or a compound having a hydrophobic group. For example, substances having good electron conductivity such as gold, silver, carbon, nickel, and copper, substances having good ion conductivity such as lithium carbonate, boron glass, and solid electrolyte,
Alternatively, a material having a hydrophobic group such as silicone oil may be coated by applying a technique such as plating, sintering, mechanofusion, vapor deposition, or baking.

【0044】正極活物質の粉体及び負極材の粉体は、平
均粒子サイズ100μm以下であることが好ましい。特
に、正極活物質の粉体は、リチウム二次電池の高出力特
性を向上する目的で10μm以下であることが好まし
い。粉体を所定の形状で得るためには粉砕機や分級機が
用いることが可能である。例えば乳鉢、ボールミル、サ
ンドミル、振動ボールミル、遊星ボールミル、ジェット
ミル、カウンタージェットミル、旋回気流型ジェットミ
ルや篩等が用いられる。粉砕時には水、あるいはヘキサ
ン等の有機溶剤を共存させた湿式粉砕を用いることもで
きる。分級方法としては、特に限定はなく、篩や風力分
級機等が、乾式、湿式ともに必要に応じて用いられる。
The powder of the positive electrode active material and the powder of the negative electrode material preferably have an average particle size of 100 μm or less. In particular, the powder of the positive electrode active material is preferably 10 μm or less for the purpose of improving the high output characteristics of the lithium secondary battery. A crusher or a classifier can be used to obtain the powder in a predetermined shape. For example, a mortar, a ball mill, a sand mill, a vibrating ball mill, a planetary ball mill, a jet mill, a counter jet mill, a swirling airflow type jet mill, a sieve and the like are used. Wet grinding in which water or an organic solvent such as hexane coexists may be used during grinding. The classification method is not particularly limited, and a sieve, an air classifier, or the like may be used in both dry and wet methods as needed.

【0045】前記正極及び負極には、導電剤、結着剤ま
たはフィラーをさらに含有させてもよい。
The positive electrode and the negative electrode may further contain a conductive agent, a binder or a filler.

【0046】導電剤としては、電池性能に悪影響を及ぼ
さない電子伝導性材料であれば限定されないが、通常、
天然黒鉛(鱗状黒鉛,鱗片状黒鉛,土状黒鉛等)、人造
黒鉛、カーボンブラック、アセチレンブラック、ケッチ
ェンブラック、カーボンウイスカー、炭素繊維、金属
(銅,ニッケル,アルミニウム,銀,金等)粉、金属繊
維、導電性セラミックス材料等の導電性材料を1種また
はそれらの混合物として含ませることができる。
The conductive agent is not limited as long as it is an electron conductive material which does not adversely affect the battery performance, but usually,
Natural graphite (scaly graphite, flake graphite, earth graphite, etc.), artificial graphite, carbon black, acetylene black, Ketjen black, carbon whiskers, carbon fiber, metal (copper, nickel, aluminum, silver, gold, etc.) powder, A conductive material such as a metal fiber or a conductive ceramic material may be contained as one kind or a mixture thereof.

【0047】これらの中で、導電剤としては、電子伝導
性及び塗工性の観点よりアセチレンブラックが好まし
い。導電剤の添加量は、正極または負極の総重量に対し
て1重量%〜50重量%が好ましく、特に2重量%〜3
0重量%が好ましい。これらの混合方法は、物理的な混
合であり、その理想とするところは均一混合である。そ
のため、V型混合機、S型混合機、擂かい機、ボールミ
ル、遊星ボールミルといったような粉体混合機を乾式、
あるいは湿式で混合することが可能である。
Of these, acetylene black is preferable as the conductive agent from the viewpoint of electron conductivity and coatability. The amount of the conductive agent added is preferably 1% by weight to 50% by weight, particularly 2% by weight to 3% by weight, based on the total weight of the positive electrode or the negative electrode.
0% by weight is preferred. These mixing methods are physical mixing, and ideally, they are homogeneous mixing. Therefore, powder type mixers such as V type mixer, S type mixer, grinding machine, ball mill and planetary ball mill are dry type,
Alternatively, it is possible to mix them by a wet method.

【0048】結着剤としては、通常、ポリテトラフルオ
ロエチレン,ポリフッ化ビニリデン,ポリエチレン,ポ
リプロピレン等の熱可塑性樹脂、エチレン−プロピレン
ジエンターポリマー(EPDM),スルホン化EPD
M,スチレンブタジエンゴム(SBR)、フッ素ゴム等
のゴム弾性を有するポリマー、カルボキシメチルセルロ
ース等の多糖類等を1種または2種以上の混合物として
用いることができる。また、多糖類の様にリチウムと反
応する官能基を有する結着剤は、例えばメチル化する等
してその官能基を失活させておくことが好ましい。結着
剤の添加量は、正極または負極の総重量に対して1〜5
0重量%が好ましく、特に2〜30重量%が好ましい。
The binder is usually a thermoplastic resin such as polytetrafluoroethylene, polyvinylidene fluoride, polyethylene or polypropylene, ethylene-propylene diene terpolymer (EPDM), sulfonated EPD.
Polymers having rubber elasticity such as M, styrene-butadiene rubber (SBR) and fluororubber, polysaccharides such as carboxymethyl cellulose and the like can be used as one kind or as a mixture of two or more kinds. Further, the binder having a functional group that reacts with lithium like a polysaccharide is preferably deactivated by, for example, methylating. The amount of the binder added is 1 to 5 with respect to the total weight of the positive electrode or the negative electrode.
0 wt% is preferable, and 2 to 30 wt% is particularly preferable.

【0049】フィラーとしては、電池性能に悪影響を及
ぼさない材料であれば何でも良い。通常、ポリプロピレ
ン,ポリエチレン等のオレフィン系ポリマー、アエロジ
ル、ゼオライト、ガラス、炭素等が用いられる。フィラ
ーの添加量は、正極または負極の総重量に対して添加量
は30重量%以下が好ましい。
As the filler, any material may be used as long as it does not adversely affect the battery performance. Usually, olefin polymers such as polypropylene and polyethylene, aerosil, zeolite, glass, carbon and the like are used. The amount of the filler added is preferably 30% by weight or less with respect to the total weight of the positive electrode or the negative electrode.

【0050】正極および負極は、前記活物質、導電剤お
よび結着剤をN−メチルピロリドン,トルエン等の有機
溶媒や水に混合させた後、得られた混合液を下記に詳述
する集電体の上に塗布し、乾燥することによって、好適
に作製される。前記塗布方法については、例えば、アプ
リケーターロール等のローラーコーティング、スクリー
ンコーティング、ドクターブレード方式、スピンコーテ
ィング、バーコータ、コンマコータ、ダイコータ等の手
段を用いて任意の厚みおよび任意の形状に塗布すること
が好ましいが、これらに限定されるものではない。
For the positive electrode and the negative electrode, the active material, the conductive agent, and the binder are mixed with an organic solvent such as N-methylpyrrolidone or toluene or water, and the resulting mixed solution is collected as described in detail below. It is suitably prepared by applying it on the body and drying. With respect to the coating method, for example, it is preferable to use roller coating such as an applicator roll, screen coating, doctor blade method, spin coating, bar coater, comma coater, die coater, or the like to have any thickness and any shape. However, the present invention is not limited to these.

【0051】集電体としては、構成された電池において
悪影響を及ぼさない電子伝導体であれば何でもよい。例
えば、正極用集電体としては、アルミニウム、チタン、
ステンレス鋼、ニッケル、焼成炭素、導電性高分子、導
電性ガラス等の他に、接着性、導電性および耐酸化性向
上の目的で、アルミニウムや銅等の表面をカーボン、ニ
ッケル、チタンや銀等で処理した物を用いることができ
る。負極用集電体としては、銅、ニッケル、鉄、ステン
レス鋼、チタン、アルミニウム、焼成炭素、導電性高分
子、導電性ガラス、Al−Cd合金等の他に、接着性、
導電性、耐還元性向上の目的で、銅等の表面をカーボ
ン、ニッケル、チタンや銀等で処理した物を用いること
ができる。これらの材料については表面を酸化処理する
ことも可能である。
The current collector may be any electron conductor as long as it does not adversely affect the constructed battery. For example, as the current collector for the positive electrode, aluminum, titanium,
In addition to stainless steel, nickel, baked carbon, conductive polymers, conductive glass, etc., the surface of aluminum, copper, etc. is carbon, nickel, titanium, silver, etc. for the purpose of improving adhesion, conductivity, and oxidation resistance. The product treated with can be used. As the negative electrode current collector, in addition to copper, nickel, iron, stainless steel, titanium, aluminum, baked carbon, conductive polymer, conductive glass, Al-Cd alloy, adhesiveness,
For the purpose of improving conductivity and resistance to reduction, a material obtained by treating the surface of copper or the like with carbon, nickel, titanium, silver or the like can be used. It is also possible to oxidize the surface of these materials.

【0052】集電体の形状については、フォイル状の
他、フィルム状、シート状、ネット状、パンチ又はエキ
スパンドされた物、ラス体、多孔質体、発泡体、繊維群
の形成体等が用いられる。厚みの限定は特にないが、1
〜500μmのものが用いられる。これらの集電体の中
で、正極としては、耐酸化性に優れているアルミニウム
箔が、負極としては、還元場において安定であり、且つ
電導性に優れ、安価な銅箔、ニッケル箔、鉄箔、および
それらの一部を含む合金箔を使用することが好ましい。
さらに、粗面表面粗さが0.2μmRa以上の箔である
ことが好ましく、これにより正極活物質または負極活物
質と集電体との密着性は優れたものとなる。よって、こ
のような粗面を有することから、電解箔を使用するのが
好ましい。特に、ハナ付き処理を施した電解箔は最も好
ましい。また、集電体の両面を使用する場合、その表面
粗さは等しいか、ほぼ同等であることが好ましい。
With respect to the shape of the current collector, in addition to the foil shape, a film shape, a sheet shape, a net shape, a punched or expanded material, a lath material, a porous material, a foamed material, a fiber group forming material, or the like is used. To be There is no particular limitation on the thickness, but 1
Those having a thickness of up to 500 μm are used. Among these current collectors, the positive electrode is an aluminum foil having excellent oxidation resistance, and the negative electrode is a stable copper foil in a reducing field and has excellent electrical conductivity, and an inexpensive copper foil, nickel foil, or iron. Preference is given to using foils and alloy foils containing them.
Further, it is preferable that the foil has a rough surface with a surface roughness of 0.2 μmRa or more, and thereby the adhesion between the positive electrode active material or the negative electrode active material and the current collector becomes excellent. Therefore, it is preferable to use the electrolytic foil because it has such a rough surface. In particular, an electrolytic foil that has been treated with a hook is most preferable. Further, when both surfaces of the current collector are used, it is preferable that the surface roughness thereof is equal or almost equal.

【0053】リチウム二次電池用セパレータとしては、
優れたレート特性を示す多孔膜や不織布等を、単独ある
いは併用することが好ましい。リチウム二次電池用セパ
レータを構成する材料としては、例えばポリエチレン,
ポリプロピレン等に代表されるポリオレフィン系樹脂、
ポリエチレンテレフタレート,ポリブチレンテレフタレ
ート等に代表されるポリエステル系樹脂、ポリフッ化ビ
ニリデン、フッ化ビニリデン−ヘキサフルオロプロピレ
ン共重合体、フッ化ビニリデン−パーフルオロビニルエ
ーテル共重合体、フッ化ビニリデン−テトラフルオロエ
チレン共重合体、フッ化ビニリデン−トリフルオロエチ
レン共重合体、フッ化ビニリデン−フルオロエチレン共
重合体、フッ化ビニリデン−ヘキサフルオロアセトン共
重合体、フッ化ビニリデン−エチレン共重合体、フッ化
ビニリデン−プロピレン共重合体、フッ化ビニリデン−
トリフルオロプロピレン共重合体、フッ化ビニリデン−
テトラフルオロエチレン−ヘキサフルオロプロピレン共
重合体、フッ化ビニリデン−エチレン−テトラフルオロ
エチレン共重合体等を挙げることができる。
As a lithium secondary battery separator,
It is preferable to use, alone or in combination, a porous membrane, a non-woven fabric or the like that exhibits excellent rate characteristics. Examples of the material forming the lithium secondary battery separator include polyethylene,
Polyolefin resin represented by polypropylene etc.,
Polyester resins represented by polyethylene terephthalate, polybutylene terephthalate, etc., polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-perfluorovinyl ether copolymer, vinylidene fluoride-tetrafluoroethylene copolymer Combined, vinylidene fluoride-trifluoroethylene copolymer, vinylidene fluoride-fluoroethylene copolymer, vinylidene fluoride-hexafluoroacetone copolymer, vinylidene fluoride-ethylene copolymer, vinylidene fluoride-propylene copolymer Combined, vinylidene fluoride
Trifluoropropylene copolymer, vinylidene fluoride-
Examples thereof include tetrafluoroethylene-hexafluoropropylene copolymer and vinylidene fluoride-ethylene-tetrafluoroethylene copolymer.

【0054】リチウム二次電池用セパレータの空孔率は
強度の観点から98体積%以下が好ましい。また、充放
電特性の観点から空孔率は20体積%以上が好ましい。
From the viewpoint of strength, the porosity of the lithium secondary battery separator is preferably 98% by volume or less. From the viewpoint of charge / discharge characteristics, the porosity is preferably 20% by volume or more.

【0055】また、リチウム二次電池用セパレータは、
例えばアクリロニトリル、エチレンオキシド、プロピレ
ンオキシド、メチルメタアクリレート、ビニルアセテー
ト、ビニルピロリドン、ポリフッ化ビニリデン等のポリ
マーと電解液とで構成されるポリマーゲルを用いてもよ
い。
The lithium secondary battery separator is
For example, a polymer gel composed of a polymer such as acrylonitrile, ethylene oxide, propylene oxide, methyl methacrylate, vinyl acetate, vinylpyrrolidone, or polyvinylidene fluoride and an electrolytic solution may be used.

【0056】さらに、リチウム二次電池用セパレータ
は、上述したような多孔膜や不織布等とポリマーゲルを
併用して用いると、電解液の保液性が向上すため好まし
い。即ち、ポリエチレン微孔膜の表面及び微孔壁面に厚
さ数μm以下の親溶媒性ポリマーを被覆したフィルムを
形成し、前記フィルムの微孔内に電解液を保持させるこ
とで、前記親溶媒性ポリマーがゲル化する。
Further, the lithium secondary battery separator is preferably used in combination with the above-mentioned porous membrane, non-woven fabric or the like in combination with the polymer gel because the liquid retaining property of the electrolytic solution is improved. That is, by forming a film in which the surface of the polyethylene microporous membrane and the wall surface of the micropores are coated with a lyophilic polymer having a thickness of several μm or less, and holding an electrolytic solution in the micropores of the film, the lyophilic property is obtained. The polymer gels.

【0057】前記親溶媒性ポリマーとしては、ポリフッ
化ビニリデンの他、エチレンオキシド基やエステル基等
を有するアクリレートモノマー、エポキシモノマー、イ
ソシアナート基を有するモノマー等が架橋したポリマー
等が挙げられる。架橋にあたっては、紫外線(UV)や
電子線(EB)等の活性光線等を用いることができる。
Examples of the solvent-philic polymer include polyvinylidene fluoride, acrylate monomers having ethylene oxide groups and ester groups, epoxy monomers, and polymers obtained by crosslinking monomers having isocyanate groups. For the cross-linking, an actinic ray such as an ultraviolet ray (UV) or an electron beam (EB) can be used.

【0058】前記親溶媒性ポリマーには、強度や物性制
御の目的で、架橋体の形成を妨害しない範囲の物性調整
剤を配合して使用することができる。前記物性調整剤の
例としては、無機フィラー類{酸化ケイ素、酸化チタ
ン、酸化アルミニウム、酸化マグネシウム、酸化ジルコ
ニウム、酸化亜鉛、酸化鉄等の金属酸化物、炭酸カルシ
ウム、炭酸マグネシウム等の金属炭酸塩}、ポリマー類
{ポリフッ化ビニリデン、フッ化ビニリデン/ヘキサフ
ルオロプロピレン共重合体、ポリアクリロニトリル、ポ
リメチルメタクリレート等}等が挙げられる。前記物性
調整剤の添加量は、架橋性モノマーに対して通常50重
量%以下、好ましくは20重量%以下である。
For the purpose of controlling the strength and the physical properties, the above-mentioned solvent-philic polymer may be used by blending with a physical property adjusting agent within a range that does not interfere with the formation of a crosslinked product. Examples of the physical property adjusting agent include inorganic fillers {metal oxides such as silicon oxide, titanium oxide, aluminum oxide, magnesium oxide, zirconium oxide, zinc oxide and iron oxide, metal carbonates such as calcium carbonate and magnesium carbonate}. , Polymers {polyvinylidene fluoride, vinylidene fluoride / hexafluoropropylene copolymer, polyacrylonitrile, polymethyl methacrylate, etc.} and the like. The addition amount of the physical property adjusting agent is usually 50% by weight or less, preferably 20% by weight or less with respect to the crosslinkable monomer.

【0059】本発明に係るリチウム二次電池は、電解液
を、例えば、リチウム二次電池用セパレータと正極と負
極とを積層する前または積層した後に注液し、最終的
に、外装材で封止することによって好適に作製される。
また、正極と負極とがリチウム二次電池用セパレータを
介して積層された発電要素を巻回してなるリチウム二次
電池においては、電解液は、前記巻回の前後に発電要素
に注液されるのが好ましい。注液法としては、常圧で注
液することも可能であるが、真空含浸方法や加圧含浸方
法も使用可能である。
In the lithium secondary battery according to the present invention, the electrolyte solution is injected before or after the lithium secondary battery separator, the positive electrode and the negative electrode are laminated, and finally sealed with an exterior material. It is preferably made by stopping.
Further, in a lithium secondary battery formed by winding a power generation element in which a positive electrode and a negative electrode are laminated with a lithium secondary battery separator interposed therebetween, an electrolytic solution is injected into the power generation element before and after the winding. Is preferred. As the injection method, it is possible to inject at normal pressure, but a vacuum impregnation method or a pressure impregnation method can also be used.

【0060】外装材としては、リチウム二次電池の軽量
化の観点から、薄い材料が好ましく、例えば、金属箔を
樹脂フィルムで挟み込んだ構成の金属樹脂複合フィルム
が好ましい。金属箔の具体例としては、アルミニウム、
鉄、ニッケル、銅、ステンレス鋼、チタン、金、銀等、
ピンホールのない箔であれば限定されないが、好ましく
は軽量且つ安価なアルミニウム箔が好ましい。また、電
池外部側の樹脂フィルムとしては、ポリエチレンテレフ
タレートフィルム,ナイロンフィルム等の突き刺し強度
に優れた樹脂フィルムを、電池内部側の樹脂フィルムと
しては、ポリエチレンフィルム,ナイロンフィルム等
の、熱融着可能であり、かつ耐溶剤性を有するフィルム
が好ましい。
From the viewpoint of reducing the weight of the lithium secondary battery, a thin material is preferable as the exterior material, for example, a metal-resin composite film in which a metal foil is sandwiched between resin films is preferable. Specific examples of the metal foil include aluminum,
Iron, nickel, copper, stainless steel, titanium, gold, silver, etc.
The foil is not limited as long as it is a pinhole-free foil, but a lightweight and inexpensive aluminum foil is preferable. As the resin film on the outside of the battery, a resin film having excellent puncture strength such as polyethylene terephthalate film or nylon film can be heat-sealed as the resin film on the inside of the battery such as polyethylene film or nylon film. A film that is present and has solvent resistance is preferable.

【0061】[0061]

【実施例】以下、本発明の詳細を実施例により説明する
が、本発明はこれらに限定されるものではない。
The details of the present invention will be described below with reference to examples, but the present invention is not limited thereto.

【0062】(実施例1)球状フェノール樹脂を100
0℃で焼成したカーボンを酸化雰囲気中で熱処理して不
活化し、芯材を形成する炭素粒子を得た。この炭素粒子
は、本発明の炭素質材料において芯材を形成する。該炭
素粒子の平均粒径は8μmであり、比表面積は50m2
/gであった。また、該炭素粒子のエックス線回折によ
る(002)面の格子面間隔(d002)は0.37nm
であり、c軸方向の結晶子の大きさ(Lc)は2nmで
あった。該炭素粒子の表面にケイ素を蒸着により担持さ
せた。担持させたケイ素の粒子径は走査型電子顕微鏡
(SEM)による観察像より100〜200nm程度で
あった。
Example 1 100% spherical phenol resin was used.
The carbon fired at 0 ° C. was heat-treated in an oxidizing atmosphere to be inactivated to obtain carbon particles forming a core material. The carbon particles form a core material in the carbonaceous material of the present invention. The carbon particles have an average particle size of 8 μm and a specific surface area of 50 m 2.
/ G. The lattice spacing (d 002 ) of the (002) plane of the carbon particles by X-ray diffraction is 0.37 nm.
And the crystallite size (Lc) in the c-axis direction was 2 nm. Silicon was supported on the surface of the carbon particles by vapor deposition. The particle size of the carried silicon was about 100 to 200 nm from an image observed by a scanning electron microscope (SEM).

【0063】このようにして得られたケイ素を担持した
炭素粒子と、カルボキシメチルセルロース(CMC)と
を1:1の重量比で混合し、高純度アルゴン気流の雰囲
気下、1000℃で5時間焼成することにより表面を炭
素材で被覆した。このようにして本発明の炭素質材料を
得た。該炭素質材料の比表面積は5m2/gであった。
芯材を形成する炭素粒子、ケイ素及び表層の炭素材の重
量比は50:20:30であった。ケイ素を担持した炭
素材を被覆している表層の炭素材の厚さは約1μmであ
った。
The silicon-supported carbon particles thus obtained and carboxymethyl cellulose (CMC) were mixed at a weight ratio of 1: 1 and calcined at 1000 ° C. for 5 hours in an atmosphere of a high-purity argon stream. Thus, the surface was covered with the carbon material. Thus, the carbonaceous material of the present invention was obtained. The specific surface area of the carbonaceous material was 5 m 2 / g.
The weight ratio of the carbon particles forming the core material, silicon and the carbon material of the surface layer was 50:20:30. The thickness of the carbon material in the surface layer covering the carbon material supporting silicon was about 1 μm.

【0064】次に下記の手順に従って、実施例のリチウ
ム二次電池を作製した。
Next, the lithium secondary battery of the example was manufactured according to the following procedure.

【0065】正極は以下のように作製した。正極活物質
としてのLiCoO2、導電剤としてアセチレンブラッ
ク及びバインダーとしてポリフッ化ビニリデンを、9
4:3:3の重量比で混合した。ここで、前記ポリフッ
化ビニリデンはNMP(N−メチルピロリドン)溶液と
して用いた。前記重量比はポリフッ化ビニリデンの固形
分換算値である。さらにNMPを添加して正極スラリー
を作製した。得られたスラリーを正極集電体としてのア
ルミニウム箔(厚さ20μm)の両面に塗布し、乾燥す
ることによってNMPを除去し、正極板を得た。該正極
板をロールプレスし、正極を得た。
The positive electrode was manufactured as follows. LiCoO 2 as a positive electrode active material, acetylene black as a conductive agent, and polyvinylidene fluoride as a binder,
Mixed in a weight ratio of 4: 3: 3. Here, the polyvinylidene fluoride was used as an NMP (N-methylpyrrolidone) solution. The weight ratio is a solid content conversion value of polyvinylidene fluoride. Further, NMP was added to prepare a positive electrode slurry. The obtained slurry was applied to both surfaces of an aluminum foil (thickness 20 μm) as a positive electrode current collector, and dried to remove NMP, thereby obtaining a positive electrode plate. The positive electrode plate was roll-pressed to obtain a positive electrode.

【0066】負極は以下のように作製した。負極活物質
としての前記炭素質材料、バインダーとしてのカルボキ
シメチルセルロース(CMC)及び同じくバインダーと
してのスチレン・ブタジエンゴムを、98:1:1の重
量比で混合し、精製水を用いて負極スラリーを作製し
た。得られたスラリーを負極集電体としての電解銅箔
(表面粗さ0.3μmRa)の両面に塗布し、乾燥し、
負極板を得た。該負極板をロールプレスし、負極を得
た。
The negative electrode was produced as follows. The carbonaceous material as the negative electrode active material, carboxymethyl cellulose (CMC) as the binder, and styrene-butadiene rubber as the binder were mixed in a weight ratio of 98: 1: 1, and a negative electrode slurry was prepared using purified water. did. The obtained slurry is applied to both surfaces of an electrolytic copper foil (surface roughness 0.3 μmRa) as a negative electrode current collector and dried,
A negative electrode plate was obtained. The negative electrode plate was roll-pressed to obtain a negative electrode.

【0067】セパレータは以下のように作製した。ま
ず、(化1)で示される構造を持つ2官能アクリレート
モノマーを3重量パーセント溶解するエタノール溶液を
作製し、多孔性基材であるポリエチレン微孔膜(平均孔
径0.1μm、開孔率50%、厚さ23μm、重量1
2.52g/m2、透気度89秒/100ml)に塗布
した後、電子線照射によりモノマーを架橋させて有機ポ
リマー層を形成し、温度60℃で5分間乾燥させた。以
上の工程により、セパレータを得た。なお、得られたセ
パレータは、厚さ24μm、重量13.04g/m2
透気度103秒/100mlであり、有機ポリマー層の
重量は、多孔性材料の重量に対して約4重量%、架橋体
層の厚さは約1μmで、多孔性基材の孔がほぼそのまま
維持されているものであった。
The separator was manufactured as follows. First, an ethanol solution in which 3% by weight of a bifunctional acrylate monomer having the structure shown in (Chemical Formula 1) was dissolved was prepared, and a polyethylene microporous membrane (average pore diameter 0.1 μm, porosity 50%) as a porous substrate , Thickness 23μm, weight 1
After coating at 2.52 g / m 2 and air permeability of 89 seconds / 100 ml), the monomer was cross-linked by electron beam irradiation to form an organic polymer layer, and dried at a temperature of 60 ° C. for 5 minutes. A separator was obtained through the above steps. The obtained separator had a thickness of 24 μm, a weight of 13.04 g / m 2 ,
The air permeability was 103 seconds / 100 ml, the weight of the organic polymer layer was about 4% by weight with respect to the weight of the porous material, the thickness of the crosslinked body layer was about 1 μm, and the pores of the porous substrate were almost the same. It was maintained.

【0068】[0068]

【化1】 [Chemical 1]

【0069】γ−ブチロラクトン、エチレンカーボネー
ト及びビニレンカーボネートを体積比49:49:2の
割合で混合した混合溶媒1リットルに、2モルのLiP
6を溶解させることにより非水電解質を得た。
2 mol of LiP was added to 1 liter of a mixed solvent in which γ-butyrolactone, ethylene carbonate and vinylene carbonate were mixed at a volume ratio of 49: 49: 2.
A non-aqueous electrolyte was obtained by dissolving F 6 .

【0070】正極端子としてのアルミニウム板(幅5m
m、厚さ100μm)及び負極端子としてのニッケル板
(幅5mm、厚さ100μm)を、正極集電体及び負極
集電体に、それぞれ電気抵抗溶接により接続し、セパレ
ータを介して正極及び負極を巻回させ発電要素を得た。
前記発電要素を、{ポリエチレンテレフタレート製外装
樹脂/アルミニウム箔/変性ポリプロピレン製熱融着樹
脂}がラミネートされた金属樹脂複合フィルムからなる
筒状の外装材中に配置した。発電要素が配置された前記
外装材中に前記非水電解質を1333Paの減圧下で注
液し、さらに、1333Paの減圧下で封口することに
よって、設計容量500mAhの本発明のリチウム電池
を作製した。これを本発明電池とする。
Aluminum plate as positive electrode terminal (width 5 m
m, thickness 100 μm) and a nickel plate (width 5 mm, thickness 100 μm) as a negative electrode terminal are respectively connected to the positive electrode current collector and the negative electrode current collector by electric resistance welding, and the positive electrode and the negative electrode are connected via a separator. It was wound and the power generation element was obtained.
The power generating element was placed in a cylindrical outer casing made of a metal-resin composite film laminated with {polyethylene terephthalate exterior resin / aluminum foil / modified polypropylene heat-sealing resin}. The non-aqueous electrolyte was poured into the exterior material in which the power generation element was placed under a reduced pressure of 1333 Pa, and the container was sealed under a reduced pressure of 1333 Pa to produce a lithium battery of the present invention having a designed capacity of 500 mAh. This is the battery of the present invention.

【0071】(比較例1)実施例1で得られたケイ素を
担持した炭素粒子をそのまま負極活物質として用いたこ
とを除いては、実施例1と同様の方法で、設計容量50
0mAhのリチウム二次電池を作製した。これを比較電
池1とする。
(Comparative Example 1) A design capacity of 50 was obtained in the same manner as in Example 1 except that the silicon-supported carbon particles obtained in Example 1 were used as they were as the negative electrode active material.
A 0 mAh lithium secondary battery was produced. This is referred to as Comparative Battery 1.

【0072】(比較例2)平均粒子径10μm、エック
ス線回折による(002)面の格子面間隔(d00 2)が
0.3354nm、c軸方向の結晶子の大きさ(Lc)
が100nm以上の天然黒鉛を芯材を形成する炭素粒子
として用いたことを除いては、実施例1と同様の方法
で、設計容量500mAhのリチウム二次電池を作製し
た。これを比較電池2とする。
(Comparative Example 2) The average particle diameter is 10 μm, the lattice spacing (d 00 2 ) of the (002) plane by X-ray diffraction is 0.3354 nm, and the crystallite size in the c-axis direction (Lc).
A lithium secondary battery having a designed capacity of 500 mAh was produced in the same manner as in Example 1, except that natural graphite having a particle size of 100 nm or more was used as the carbon particles forming the core material. This is referred to as Comparative Battery 2.

【0073】(比較例3)平均粒子径10μm、エック
ス線回折による(002)面の格子面間隔(d00 2)が
0.3354nm、c軸方向の結晶子の大きさ(Lc)
が100nm以上の天然黒鉛をそのまま負極活物質とし
て用いたことを除いては、実施例1と同様の方法で、設
計容量500mAhのリチウム二次電池を作製した。こ
れを比較電池3とする。
Comparative Example 3 Average particle diameter 10 μm, lattice spacing (d 00 2 ) of (002) plane by X-ray diffraction is 0.3354 nm, and crystallite size in the c-axis direction (Lc).
A lithium secondary battery with a designed capacity of 500 mAh was produced in the same manner as in Example 1, except that natural graphite having a particle size of 100 nm or more was used as it was as the negative electrode active material. This is referred to as Comparative Battery 3.

【0074】(電池性能試験)本発明電池及び比較電池
1,2の外形寸法を測定し、体積当たりのエネルギー密
度を算出した。本発明電池及び比較電池1,2を用い
て、20℃における高率放電特性を測定した。充電は
4.2V,1ItmA(1時間率),2時間の定電流定
電圧充電とし、放電は0.2ItmA(5時間率)1I
tmA(1時間率)、2ItmA(0.5時間率)及び
3ItmA(0.33時間率)の各電流値を用い、終止
電圧2.7Vの定電流放電とした。放電電流0.2It
mAのときの放電容量に対する1ItmA、2ItmA
及び3ItmAの各放電電流のときの放電容量の割合を
百分率で評価した。結果を表1に示す。
(Battery Performance Test) The outer dimensions of the batteries of the present invention and the comparative batteries 1 and 2 were measured, and the energy density per volume was calculated. The high rate discharge characteristics at 20 ° C. were measured using the present battery and the comparative batteries 1 and 2. Charging was 4.2V, 1 ItmA (1 hour rate), 2 hours constant current constant voltage charging, discharge was 0.2 ItmA (5 hour rate) 1I.
A constant current discharge having a final voltage of 2.7 V was performed using each current value of tmA (1 hour rate), 2 ItmA (0.5 hour rate) and 3 ItmA (0.33 hour rate). Discharge current 0.2 It
1 ItmA, 2 ItmA for discharge capacity at mA
And the ratio of the discharge capacity at each discharge current of 3 ItmA was evaluated in percentage. The results are shown in Table 1.

【0075】また、20℃における繰り返し充放電サイ
クル性能を測定した。充電は4.2V,1ItmA(1
時間率),2時間の定電流定電圧充電とし、放電は1I
tmA(1時間率)、終止電圧2.7Vの定電流放電と
し、放電容量が初期容量に対して70%にまで低下した
サイクル数を「サイクル性能値」とした。結果を表1に
併せて示す。
Further, the repeated charge / discharge cycle performance at 20 ° C. was measured. Charging is 4.2V, 1 ItmA (1
Time rate), constant current and constant voltage charging for 2 hours, discharging 1I
The constant current discharge with tmA (1 hour rate) and final voltage of 2.7 V was performed, and the number of cycles in which the discharge capacity decreased to 70% of the initial capacity was defined as the "cycle performance value". The results are also shown in Table 1.

【0076】[0076]

【表1】 [Table 1]

【0077】表1に示すように、本発明電池は、比較電
池3と比べ、エネルギー密度に優れるものとなった。即
ち、本発明電池に用いた負極活物質は比較電池3に用い
た負極活物質に比べて可逆な容量が大きいので、本発明
電池の負極は、比較電池3の負極よりも薄いものとなっ
た。即ち、負極にケイ素を用いることにより高容量化が
可能となった。さらに、本発明電池は、比較例1,2と
比べて繰り返し充放電サイクル性能に優れるものとなっ
た。即ちそのケイ素を炭素材で覆うことで、ケイ素表面
での電解液の分解反応が抑制された結果充放電効率が向
上し、さらにケイ素を単独で用いた場合に見られるよう
な微細化に伴う充放電サイクル劣化が抑制されたものと
考えられる。また、炭素質材料の芯材に黒鉛化していな
いカーボンを用いることにより、芯材のリチウムの吸
蔵、放出に伴う体積変化が抑制されたことにより炭素質
材料の体積変化に伴う表面坦持層のヒビや割れによる孤
立化も抑制され、充放電サイクル劣化が抑制されたもの
と考えられる。さらに、本発明電池は、比較例1と比べ
て高率放電特性に優れるものとなった。即ち、表面を炭
素材で覆うことにより、高率放電特性も改善されること
がわかった。即ち、本発明電池はエネルギー密度が高
く、高率放電特性及び繰り返し充放電サイクル性能に優
れたリチウム二次電池を提供できることが確認された。
As shown in Table 1, the battery of the present invention was superior to Comparative battery 3 in energy density. That is, since the negative electrode active material used in the battery of the present invention has a reversible capacity larger than that of the negative electrode active material used in the comparative battery 3, the negative electrode of the battery of the present invention was thinner than the negative electrode of the comparative battery 3. . That is, it was possible to increase the capacity by using silicon for the negative electrode. Furthermore, the battery of the present invention has excellent repeated charge / discharge cycle performance as compared with Comparative Examples 1 and 2. That is, by covering the silicon with a carbon material, the decomposition reaction of the electrolytic solution on the surface of the silicon is suppressed, resulting in an improvement in charge / discharge efficiency, and further, with the miniaturization as seen when silicon is used alone. It is considered that the deterioration of the discharge cycle was suppressed. Further, by using non-graphitized carbon as the core material of the carbonaceous material, the volume change due to the occlusion and release of lithium in the core material was suppressed, and thus the surface-supporting layer It is considered that isolation due to cracks and cracks was also suppressed, and deterioration of charge / discharge cycles was suppressed. Further, the battery of the present invention has excellent high rate discharge characteristics as compared with Comparative Example 1. That is, it was found that the high rate discharge characteristics were also improved by covering the surface with the carbon material. That is, it was confirmed that the battery of the present invention has a high energy density and can provide a lithium secondary battery excellent in high rate discharge characteristics and repeated charge / discharge cycle performance.

【0078】[0078]

【発明の効果】以上、説明したように、本発明によれ
ば、負極材に、芯材を形成する炭素粒子の表面に少なく
ともケイ素を担持させ、さらにその上を、炭素材で被覆
してなる炭素質材料をリチウム電池の電極材料として用
いることにより、高いエネルギー密度と良好な繰り返し
充放電サイクル性能を兼ね備え、さらに高率放電特性が
改善されたリチウム電池を提供できる。
As described above, according to the present invention, the negative electrode material has at least silicon supported on the surface of the carbon particles forming the core material, and further coated with the carbon material. By using a carbonaceous material as an electrode material for a lithium battery, it is possible to provide a lithium battery having both high energy density and good repeated charge / discharge cycle performance, and further improved high-rate discharge characteristics.

【0079】また、本発明によれば、被覆する表層の炭
素材が、炭化水素およびその誘導体を熱分解によって生
成した炭素材とすることにより、上記した炭素材の効果
を確実なものとすることができ、且つ、容易に合成する
ことができる。
Further, according to the present invention, the effect of the above-mentioned carbon material is ensured by using the carbon material of the surface layer to be coated as the carbon material produced by the thermal decomposition of hydrocarbon and its derivatives. And can be easily synthesized.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H029 AJ03 AJ05 AJ14 AK02 AK03 AK05 AK16 AK18 AL02 AL06 AL07 AL11 AL12 AL18 AM02 AM03 AM04 AM05 AM07 CJ02 CJ21 EJ04 EJ12 HJ13 5H050 AA07 AA08 AA19 BA17 CA02 CA08 CA09 CA11 CA22 CA29 CB02 CB07 CB08 CB11 CB12 CB29 EA08 EA10 EA24 GA02 GA22 HA13    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 5H029 AJ03 AJ05 AJ14 AK02 AK03                       AK05 AK16 AK18 AL02 AL06                       AL07 AL11 AL12 AL18 AM02                       AM03 AM04 AM05 AM07 CJ02                       CJ21 EJ04 EJ12 HJ13                 5H050 AA07 AA08 AA19 BA17 CA02                       CA08 CA09 CA11 CA22 CA29                       CB02 CB07 CB08 CB11 CB12                       CB29 EA08 EA10 EA24 GA02                       GA22 HA13

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 002面の格子面間隔(d002)が0.
34nm以上である炭素粒子に少なくともケイ素(S
i)が担持され、前記炭素粒子の表面がさらに炭素材で
被覆されてなる炭素質材料を用いた電極材料。
1. The lattice spacing (d 002 ) of the 002 plane is 0.
At least silicon (S
An electrode material using a carbonaceous material in which i) is supported and the surface of the carbon particles is further coated with a carbon material.
【請求項2】 002面の格子面間隔(d002)が0.
34nm以上である炭素粒子に少なくともケイ素(S
i)が担持され、前記炭素粒子の表面がさらに炭化水素
または炭化水素誘導体の熱分解生成物からなる炭素材で
被覆されてなる炭素質材料を用いた電極材料。
2. The lattice spacing (d 002 ) of the 002 plane is 0.
At least silicon (S
An electrode material using a carbonaceous material in which i) is supported and the surface of the carbon particles is further coated with a carbon material composed of a thermal decomposition product of a hydrocarbon or a hydrocarbon derivative.
【請求項3】 請求項1または2に記載の電極材料を有
するリチウム電池。
3. A lithium battery containing the electrode material according to claim 1.
JP2002065724A 2002-03-11 2002-03-11 Electrode material and lithium battery using the same Expired - Lifetime JP3985143B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002065724A JP3985143B2 (en) 2002-03-11 2002-03-11 Electrode material and lithium battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002065724A JP3985143B2 (en) 2002-03-11 2002-03-11 Electrode material and lithium battery using the same

Publications (2)

Publication Number Publication Date
JP2003263986A true JP2003263986A (en) 2003-09-19
JP3985143B2 JP3985143B2 (en) 2007-10-03

Family

ID=29197885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002065724A Expired - Lifetime JP3985143B2 (en) 2002-03-11 2002-03-11 Electrode material and lithium battery using the same

Country Status (1)

Country Link
JP (1) JP3985143B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006173121A (en) * 2004-12-18 2006-06-29 Samsung Sdi Co Ltd Anode active material, its manufacturing method, and anode and lithium cell using this anode active material
JP2007294286A (en) * 2006-04-26 2007-11-08 Kri Inc Negative electrode for nonaqueous system secondary battery and nonaqueous system secondary battery using it
JP2008192488A (en) * 2007-02-06 2008-08-21 Nec Tokin Corp Nonaqueous electrolyte secondary battery
JP2008234937A (en) * 2007-03-19 2008-10-02 Kureha Elastomer Co Ltd Active material for lithium secondary battery and manufacturing method therefor
JP2009026760A (en) * 2007-07-19 2009-02-05 Samsung Sdi Co Ltd Composite negative electrode active material, and negative electrode and lithium battery adopting the same
JP2009245762A (en) * 2008-03-31 2009-10-22 Mitsui Eng & Shipbuild Co Ltd Carbon coating method of particle used for electrode material and secondary battery
US20100196755A1 (en) * 2009-02-05 2010-08-05 Samsung Sdi Co., Ltd. Electrode assembly and secondary battery having the same
JP2011150920A (en) * 2010-01-22 2011-08-04 Hitachi Vehicle Energy Ltd Lithium ion battery
JP2012507114A (en) * 2008-10-24 2012-03-22 プリメット プレシジョン マテリアルズ, インコーポレイテッド Group IVA small particle compositions and related methods
JP2012119079A (en) * 2010-11-29 2012-06-21 Hiramatsu Sangyo Kk Negative electrode active material, method of manufacturing negative electrode, negative electrode, and secondary battery
JP2012527735A (en) * 2009-05-19 2012-11-08 ナノシス・インク. Nanostructured materials for battery applications
JP2013051216A (en) * 2012-12-10 2013-03-14 Nec Energy Devices Ltd Nonaqueous electrolyte secondary battery
EP2475032A3 (en) * 2003-06-25 2013-11-06 Hydro-Quebec Method for preparing an electrode using a porous material, electrode thus obtained and corresponding electrochemical system
KR20160002281A (en) * 2014-06-30 2016-01-07 주식회사 지엘비이 Anode material for lithium ion secondary battery which is composed of carbon and nanosilicon diffused on the conducting material and the manufacturing method thereof
CN113223871A (en) * 2021-04-15 2021-08-06 山东科技大学 Preparation and application of NiO/C composite electrode material with foam nickel sheet as substrate

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101057162B1 (en) 2008-12-01 2011-08-16 삼성에스디아이 주식회사 Anode active material, anode and lithium secondary battery having same

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2475032A3 (en) * 2003-06-25 2013-11-06 Hydro-Quebec Method for preparing an electrode using a porous material, electrode thus obtained and corresponding electrochemical system
JP2006173121A (en) * 2004-12-18 2006-06-29 Samsung Sdi Co Ltd Anode active material, its manufacturing method, and anode and lithium cell using this anode active material
US8029931B2 (en) 2004-12-18 2011-10-04 Samsung Sdi Co., Ltd. Anode active material, method of preparing the same, and anode and lithium battery containing the material
JP2007294286A (en) * 2006-04-26 2007-11-08 Kri Inc Negative electrode for nonaqueous system secondary battery and nonaqueous system secondary battery using it
JP2008192488A (en) * 2007-02-06 2008-08-21 Nec Tokin Corp Nonaqueous electrolyte secondary battery
JP2008234937A (en) * 2007-03-19 2008-10-02 Kureha Elastomer Co Ltd Active material for lithium secondary battery and manufacturing method therefor
JP4509130B2 (en) * 2007-03-19 2010-07-21 クレハエラストマー株式会社 Active material for lithium secondary battery and method for producing the same
JP2009026760A (en) * 2007-07-19 2009-02-05 Samsung Sdi Co Ltd Composite negative electrode active material, and negative electrode and lithium battery adopting the same
JP2009245762A (en) * 2008-03-31 2009-10-22 Mitsui Eng & Shipbuild Co Ltd Carbon coating method of particle used for electrode material and secondary battery
JP2012507114A (en) * 2008-10-24 2012-03-22 プリメット プレシジョン マテリアルズ, インコーポレイテッド Group IVA small particle compositions and related methods
US20100196755A1 (en) * 2009-02-05 2010-08-05 Samsung Sdi Co., Ltd. Electrode assembly and secondary battery having the same
JP2012527735A (en) * 2009-05-19 2012-11-08 ナノシス・インク. Nanostructured materials for battery applications
KR20190002755A (en) * 2009-05-19 2019-01-08 원드 매터리얼 엘엘씨 Nanostructured materials for battery applications
US10490817B2 (en) 2009-05-19 2019-11-26 Oned Material Llc Nanostructured materials for battery applications
KR102067922B1 (en) 2009-05-19 2020-01-17 원드 매터리얼 엘엘씨 Nanostructured materials for battery applications
US11233240B2 (en) 2009-05-19 2022-01-25 Oned Material, Inc. Nanostructured materials for battery applications
US11600821B2 (en) 2009-05-19 2023-03-07 Oned Material, Inc. Nanostructured materials for battery applications
JP2011150920A (en) * 2010-01-22 2011-08-04 Hitachi Vehicle Energy Ltd Lithium ion battery
JP2012119079A (en) * 2010-11-29 2012-06-21 Hiramatsu Sangyo Kk Negative electrode active material, method of manufacturing negative electrode, negative electrode, and secondary battery
JP2013051216A (en) * 2012-12-10 2013-03-14 Nec Energy Devices Ltd Nonaqueous electrolyte secondary battery
KR20160002281A (en) * 2014-06-30 2016-01-07 주식회사 지엘비이 Anode material for lithium ion secondary battery which is composed of carbon and nanosilicon diffused on the conducting material and the manufacturing method thereof
KR101718367B1 (en) * 2014-06-30 2017-03-21 주식회사 지엘비이 Anode material for lithium ion secondary battery which is composed of carbon and nanosilicon diffused on the conducting material and the manufacturing method thereof
CN113223871A (en) * 2021-04-15 2021-08-06 山东科技大学 Preparation and application of NiO/C composite electrode material with foam nickel sheet as substrate
CN113223871B (en) * 2021-04-15 2023-06-16 山东科技大学 Preparation and application of NiO/C composite electrode material with foam nickel sheet as substrate

Also Published As

Publication number Publication date
JP3985143B2 (en) 2007-10-03

Similar Documents

Publication Publication Date Title
EP2927996B1 (en) Cathode active material for lithium-sulfur battery and manufacturing method therefor
JP2007165061A (en) Electrode structure for lithium secondary battery and secondary battery having such electrode structure
WO2017006713A1 (en) Electricity storage device
KR102194750B1 (en) Multi-shell Anode Active Material, Manufacturing Method thereof and Lithium Secondary Battery Comprising the Same
KR20090066019A (en) Anode comprising surface treated anode active material and lithium battery using the same
JP2020525993A (en) Positive electrode active material for lithium secondary battery, method for producing the same, positive electrode for lithium secondary battery including the same, and lithium secondary battery
KR101108189B1 (en) Negative active material, and electrode and lithium battery containing the material
JP3985143B2 (en) Electrode material and lithium battery using the same
JP3868231B2 (en) Carbon material, negative electrode for lithium ion secondary battery and lithium ion secondary battery
KR20070076686A (en) Anode active material and lithium battery using the same
TW201742298A (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery and lithium ion secondary battery
WO2016147976A1 (en) Lithium ion cell, negative electrode for lithium ion cell, battery module, automobile, and power storage device
JP2012181975A (en) Nonaqueous secondary battery
JP2012174546A (en) Nonaqueous electrolyte secondary battery
JP2016076342A (en) Electrode for nonaqueous secondary battery, and nonaqueous secondary battery
WO2017216822A1 (en) Fast chargeable lithium ion batteries with nano-carbon coated anode material and imide anion based lithium salt electrolyte
JP2017152337A (en) Negative electrode for nonaqueous lithium ion secondary battery, manufacturing method thereof, and nonaqueous lithium ion secondary battery
JP4021652B2 (en) Positive electrode plate for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery using the positive electrode plate
WO2016031085A1 (en) Anode material for lithium ion battery
JP6346733B2 (en) Electrode, non-aqueous secondary battery and electrode manufacturing method
JP2023508273A (en) Positive electrode for secondary battery, method for producing the same, and lithium secondary battery including the same
JP2017050204A (en) Positive electrode material for nonaqueous electrolyte secondary batteries, method for manufacturing the same and nonaqueous electrolyte secondary battery
JP2005025991A (en) Nonaqueous electrolyte secondary battery
JP2013062099A (en) Lithium ion secondary battery electrode and lithium ion secondary battery
WO2018066110A1 (en) Spacer Included Electrodes Structure and Its Application for High Energy Density and Fast Chargeable Lithium Ion Batteries

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041110

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070319

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070626

R150 Certificate of patent or registration of utility model

Ref document number: 3985143

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110720

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110720

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110720

Year of fee payment: 4

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110720

Year of fee payment: 4

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110720

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110720

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120720

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130720

Year of fee payment: 6

EXPY Cancellation because of completion of term