JP2003249254A - Cogeneration system of electric power, hydrogen, and aromatic hydrocarbon - Google Patents

Cogeneration system of electric power, hydrogen, and aromatic hydrocarbon

Info

Publication number
JP2003249254A
JP2003249254A JP2002097388A JP2002097388A JP2003249254A JP 2003249254 A JP2003249254 A JP 2003249254A JP 2002097388 A JP2002097388 A JP 2002097388A JP 2002097388 A JP2002097388 A JP 2002097388A JP 2003249254 A JP2003249254 A JP 2003249254A
Authority
JP
Japan
Prior art keywords
hydrogen
hydrocarbon
aromatic hydrocarbons
amount
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002097388A
Other languages
Japanese (ja)
Other versions
JP4697921B2 (en
Inventor
Masaru Ichikawa
勝 市川
Junichi Iritani
淳一 入谷
Koji Sasazu
浩司 笹津
Masato Honda
正人 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electric Power Development Co Ltd
Original Assignee
Electric Power Development Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electric Power Development Co Ltd filed Critical Electric Power Development Co Ltd
Priority to JP2002097388A priority Critical patent/JP4697921B2/en
Publication of JP2003249254A publication Critical patent/JP2003249254A/en
Application granted granted Critical
Publication of JP4697921B2 publication Critical patent/JP4697921B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Landscapes

  • Fuel Cell (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a system in which aromatic hydrocarbon such as benzene which is a high value-added product, organic hydride such as cyclohexane, and hydrogen are generated efficiently from raw material gas containing low- rank hydrocarbon using high temperature waste heat while obtaining electric power by a solid oxide fuel cell. <P>SOLUTION: It is the system which consists of the solid oxide fuel cell 10 and a low-rank hydrocarbon direct reformer 20 and in which electric power, organic hydride, and hydrogen are generated efficiently. By supplying the high temperature waste heat of the solid oxide fuel cell 10 as the reaction heat to the low-rank hydrocarbon direct reformer 20 under existence of a low-rank hydrocarbon direct reform catalyst 21, the low-rank hydrocarbon direct reformer 20 is made to reform the low-rank hydrocarbon raw material gas to organic hydride and hydrogen. Then, by supplying the generated hydrogen to the solid oxide fuel cell 10 as the fuel, electric power, organic hydride, and hydrogen are cogenerated. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】 本発明は、固体酸化物形燃
料電池と低級炭化水素直接改質器を組み合わせてなる、
低級炭化水素を原料とした電力、水素、芳香族炭化水素
及び/又は有機ハイドライドの併産システムに関する。
TECHNICAL FIELD The present invention comprises a solid oxide fuel cell and a lower hydrocarbon direct reformer in combination.
The present invention relates to a co-production system of electric power, hydrogen, aromatic hydrocarbons and / or organic hydrides using lower hydrocarbons as raw materials.

【0002】[0002]

【従来の技術】 天然ガス、バイオガス、コークス炉オ
フガス等のメタン等の1〜5炭素原子を分子内に含む低
級炭化水素含有原料を、金属坦持メタロシリケート触媒
の存在下で直接改質を行い、水素およびベンゼン、ナフ
タレン等芳香族炭化水素を併産する方法は、特開平10
−270366号公報、特開平11−47606号公
報、特開平11−60514号公報、特許開2001−
334151号公報、特開2001−334152号公
報で知られている。
2. Description of the Related Art Lower hydrocarbon-containing raw materials containing 1 to 5 carbon atoms such as methane such as natural gas, biogas and off-gas of coke oven in a molecule are directly reformed in the presence of a metal-supported metallosilicate catalyst. A method for producing hydrogen and aromatic hydrocarbons such as benzene and naphthalene together is disclosed in Japanese Patent Laid-Open No.
-270366, JP-A-11-47606, JP-A-11-60514, JP-A-2001-
It is known from Japanese Patent No. 334151 and Japanese Patent Laid-Open No. 2001-334152.

【0003】上記の低級炭化水素含有原料の直接改質
は、固定床、移動床又は流動床等の流通式反応形式によ
り、低級炭化水素含有原料を金属坦持メタロシリケート
触媒に300〜800℃、好ましくは450〜775
℃、より好ましくは705〜750℃の高温下で接触さ
せて行うものであるが、常に高温の反応熱を該触媒及び
反応装置に供給する必要があり、装置規模に応じて多量
の熱をどう供給するかが実用上の課題となっていた。
In the above direct reforming of the lower hydrocarbon-containing raw material, the lower hydrocarbon-containing raw material is converted to a metal-supported metallosilicate catalyst at 300 to 800 ° C. by a flow type reaction system such as a fixed bed, a moving bed or a fluidized bed. Preferably 450-775
C., more preferably 705 to 750.degree. C., and the reaction is carried out at a high temperature. However, it is necessary to always supply high-temperature reaction heat to the catalyst and the reaction apparatus. Supply was a practical issue.

【0004】一方、固体酸化物形燃料電池(Solid
Oxide Fuel Cell、以下「SOFC」
という)は、電解質に酸化物イオン導伝体を用い、メタ
ン、水素、一酸化炭素、あるいはこれらの混合ガスを燃
料とし、空気中の酸素を酸化剤として700〜1000
℃の高温で動作する高温型燃料電池である。このタイプ
の電池は機関効率向上のため電気化学反応後の高温の余
熱を利用して、マイクロガスタービン等とコージェネレ
ーションシステムが組まれており、ハイブリッドシステ
ムとして周知である。
On the other hand, a solid oxide fuel cell (Solid
Oxide Fuel Cell, "SOFC"
Uses an oxide ion conductor as an electrolyte, and uses methane, hydrogen, carbon monoxide, or a mixed gas thereof as a fuel, and oxygen in the air as an oxidant in an amount of 700 to 1,000.
It is a high temperature fuel cell that operates at a high temperature of ℃. This type of battery utilizes a high temperature residual heat after an electrochemical reaction to improve engine efficiency, and a micro gas turbine or the like is assembled with a cogeneration system, which is well known as a hybrid system.

【0005】従来、SOFCの燃料としてはメタン等の
低級炭化水素を含有する燃料が利用されているが、前処
理として該燃料を水蒸気改質器により水素及び一酸化炭
素に改質し、その上でSOFCの燃料として利用するこ
とが多い。SOFCハイブリッド燃料電池システムに関
する特開2001−266924号公報においても水蒸
気改質による予備改質を経た水素及び一酸化炭素を燃料
としているが、実際上はSOFC自体及び組み合わせら
れる各種機関の各部でカーボンの析出現象が発生するた
め発電性能の低下が生じ、実用上の制約があった。
Conventionally, a fuel containing a lower hydrocarbon such as methane has been used as a fuel for SOFC, but as a pretreatment, the fuel is reformed into hydrogen and carbon monoxide by a steam reformer, and further Often used as SOFC fuel. In Japanese Patent Laid-Open No. 2001-266924 relating to SOFC hybrid fuel cell system, hydrogen and carbon monoxide that have undergone pre-reforming by steam reforming are used as fuels, but in reality, SOFC itself and various parts of various engines to be combined are used to generate carbon. Since the precipitation phenomenon occurs, the power generation performance deteriorates, which is a practical limitation.

【0006】また、SOFCの高温オフガスとガスター
ビンを組み合わせたコージェネレーションシステムで
は、水素の酸化により生じる多量の水分等を含んだ高温
オフガスと整合した専用のガスタービン設計が必要であ
ったり、電気化学反応による早い系とオフガスの熱機関
への利用に伴う遅い系を組み合わせるため運転制限を受
けたりするなどの問題があった。
Further, in a cogeneration system that combines a high temperature off-gas of SOFC and a gas turbine, it is necessary to design a dedicated gas turbine that is consistent with the high temperature off-gas containing a large amount of water generated by the oxidation of hydrogen, or the electrochemical There is a problem that operation is restricted because a fast system by reaction and a slow system due to the use of off-gas to the heat engine are combined.

【0007】[0007]

【発明が解決しようとする課題】 本発明は、かかる低
級炭化水素改質プロセス及びSOFCハイブリッドシス
テムに関する従来技術がそれぞれ有する問題点に鑑み、
SOFCからの高温の余熱を低級炭化水素改質プロセス
が要する高温の反応熱の供給に利用するとともに、低級
炭化水素改質プロセスにより生成する水素の一部又は全
部をSOFCの燃料として供給し、これらの熱及び水素
の均衡を図ることで、高効率かつ安定的に電力、水素及
び芳香族炭化水素を併産する装置を提供することを目的
とする。また、本発明は、低級炭化水素改質プロセスが
要する高温の反応熱の供給にSOFCからの高温の余熱
を利用するとともに、低級炭化水素改質プロセスにより
生成する水素の一部又は全部をSOFCの燃料として供
給し、これらの熱及び水素の均衡を図ることで、高効率
かつ安定的に電力、水素、芳香族炭化水素及び/又は有
機ハイドライドを併産するシステム並びに併産する方法
を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the problems of the conventional technologies related to the lower hydrocarbon reforming process and the SOFC hybrid system, respectively.
The high-temperature residual heat from SOFC is used to supply the high-temperature reaction heat required by the lower hydrocarbon reforming process, and part or all of the hydrogen produced by the lower hydrocarbon reforming process is supplied as the SOFC fuel. It is an object of the present invention to provide an apparatus for producing electric power, hydrogen and aromatic hydrocarbons in a highly efficient and stable manner by balancing the heat and hydrogen of the above. Further, the present invention utilizes the high temperature residual heat from SOFC to supply the high temperature reaction heat required for the lower hydrocarbon reforming process, and partially or entirely converts the hydrogen produced by the lower hydrocarbon reforming process into SOFC. To provide a system and a method for co-producing electricity, hydrogen, aromatic hydrocarbons and / or organic hydrides with high efficiency and stability by supplying as fuel and balancing these heat and hydrogen. With the goal.

【0008】[0008]

【課題を解決するための手段】 本願請求項1の発明
は、SOFC10と、低級炭化水素直接改質器(以下
「直接改質器」という)20と、芳香族炭化水素分離部
22と、水素分離部23と、熱交換部30と、水素保持
部40とを有する電力、水素及び芳香族炭化水素の併産
システムであって、SOFC10は、水素を燃料として
供給され発電するとともに高温の余熱を生成し、直接改
質器20は、低級炭化水素直接改質触媒(以下「直接改
質触媒」という)21の存在下で反応熱を供給されて、
系外より取り入れた低級炭化水素含有原料ガスを水素及
び芳香族炭化水素に改質し、芳香族炭化水素分離部22
及び水素分離部23を介して、水素と芳香族炭化水素と
を分離して生成し、SOFC10の高熱の余熱を利用し
て、熱交換部30により低級炭化水素含有原料ガスを予
熱するとともに直接改質器20に反応熱を供給し、かつ
直接改質器20により改質、分離する水素の全部又は一
部をSOFC10の燃料として利用することを特徴とす
る電力、水素及び芳香族炭化水素の併産システムを提供
する。
[Means for Solving the Problems] The invention of claim 1 of the present application relates to an SOFC 10, a lower hydrocarbon direct reformer (hereinafter referred to as “direct reformer”) 20, an aromatic hydrocarbon separation section 22, and hydrogen. The SOFC 10 is a co-production system of electric power, hydrogen, and aromatic hydrocarbons, which has a separation unit 23, a heat exchange unit 30, and a hydrogen holding unit 40. The SOFC 10 is supplied with hydrogen as a fuel to generate electric power and to generate high-temperature residual heat. Generated, the direct reformer 20 is supplied with reaction heat in the presence of a lower hydrocarbon direct reforming catalyst (hereinafter referred to as “direct reforming catalyst”) 21,
The lower hydrocarbon-containing raw material gas taken from outside the system is reformed into hydrogen and aromatic hydrocarbons, and the aromatic hydrocarbon separation unit 22
And, hydrogen and aromatic hydrocarbons are separated and generated through the hydrogen separation unit 23, and the high-heat residual heat of the SOFC 10 is used to preheat the lower hydrocarbon-containing raw material gas by the heat exchange unit 30 and directly modify it. A combination of electric power, hydrogen and aromatic hydrocarbons, characterized in that the heat of reaction is supplied to the quality control device 20 and all or part of the hydrogen reformed and separated by the direct reformer 20 is used as fuel for the SOFC 10. Providing an industrial system.

【0009】本願請求項2の発明は、SOFC10と、
直接改質器20と、芳香族炭化水素分離部22と、水素
分離部23と、熱交換部30と、水素保持部40と、芳
香族炭化水素保持部60と、芳香族炭化水素を水素化す
る芳香族炭化水素水素化反応器(以下「水素化反応器」
という)50と、有機ハイドライド分離部52とを有す
る電力、水素、芳香族炭化水素及び有機ハイドライドの
併産システムであって、SOFC10は、水素を燃料と
して供給され発電するとともに高温の余熱を生成し、直
接改質器20は、直接改質触媒21の存在下で反応熱を
供給されて、系外より取り入れた低級炭化水素含有原料
ガスを水素及び芳香族炭化水素に改質し、芳香族炭化水
素分離部22及び水素分離部23を介して、水素と芳香
族炭化水素とを分離して生成し、水素化反応器50は、
水素化触媒51の存在下で、芳香族炭化水素分離部22
及び水素分離部23から分離される水素及び芳香族炭化
水素を全部又は一部を利用して有機ハイドライドに改質
し、有機ハイドライド分離部52及び水素分離部23を
介して、水素及び芳香族炭化水素と有機ハイドライドに
分離して生成し、SOFC10の高熱の余熱を利用し
て、熱交換部30により低級炭化水素含有原料ガスを予
熱するとともに直接改質器20に反応熱を供給し、直接
改質器20により改質、分離する水素の全部又は一部を
SOFC10の燃料として利用することを特徴とする電
力、水素、芳香族炭化水素及び有機ハイドライドの併産
システムを提供する。
The invention of claim 2 of the present application is the SOFC 10,
Direct reformer 20, aromatic hydrocarbon separation unit 22, hydrogen separation unit 23, heat exchange unit 30, hydrogen holding unit 40, aromatic hydrocarbon holding unit 60, and hydrogenation of aromatic hydrocarbons. Aromatic hydrocarbon hydrogenation reactor (hereinafter “hydrogenation reactor”)
50) and an organic hydride separation unit 52, a co-production system of electric power, hydrogen, aromatic hydrocarbons, and organic hydride. The SOFC 10 is supplied with hydrogen as a fuel to generate electricity and generate high-temperature residual heat. The direct reformer 20 is supplied with reaction heat in the presence of the direct reforming catalyst 21, and reforms the lower hydrocarbon-containing raw material gas taken from outside the system into hydrogen and aromatic hydrocarbons, thereby aromatic hydrocarbons. Hydrogen and aromatic hydrocarbons are separated and produced via the hydrogen separation unit 22 and the hydrogen separation unit 23, and the hydrogenation reactor 50 is
In the presence of the hydrogenation catalyst 51, the aromatic hydrocarbon separation section 22
And the hydrogen and aromatic hydrocarbons separated from the hydrogen separating unit 23 are reformed into organic hydride by utilizing all or part of the hydrogen and aromatic hydrocarbons, and the hydrogen and aromatic hydrocarbons are separated through the organic hydride separating unit 52 and the hydrogen separating unit 23. It is separated into hydrogen and organic hydride, and the residual heat of high heat of the SOFC 10 is used to preheat the lower hydrocarbon-containing raw material gas by the heat exchange unit 30 and to supply the reaction heat directly to the reformer 20 to directly modify it. Provided is a co-production system of electric power, hydrogen, aromatic hydrocarbons and organic hydrides, which is characterized in that all or part of hydrogen reformed and separated by a quality device 20 is used as a fuel for the SOFC 10.

【0010】本願請求項3の発明は、水素保持部40に
より、水素分離部23により分離される水素のSOFC
10への供給量を供給路に具備した弁等の調整手段によ
り適宜調整し、発電量及び水素生成量を調整可能とする
請求項1記載の電力、水素及び芳香族炭化水素の併産シ
ステムを提供する。
According to the third aspect of the present invention, the SOFC of hydrogen separated by the hydrogen holding section 40 and the hydrogen separation section 23 is used.
The co-production system of electric power, hydrogen and aromatic hydrocarbons according to claim 1, wherein the amount of power generation and the amount of hydrogen production can be adjusted by appropriately adjusting the amount of supply to 10 by an adjusting means such as a valve provided in the supply path. provide.

【0011】本願請求項4の発明は、水素保持部40に
より、水素分離部23により分離される水素のSOFC
10又は/及び水素化反応器50への供給量を供給路に
具備した弁等の調整手段により適宜調整し、発電量、水
素発生量、有機ハイドライド生成量を相互に調整可能と
する請求項2記載の電力、水素、芳香族炭化水素及び有
機ハイドライドの併産システムを提供する。
According to the invention of claim 4 of the present application, the SOFC of hydrogen separated by the hydrogen holding section 40 by the hydrogen separation section 23.
10 or / and the supply amount to the hydrogenation reactor 50 is appropriately adjusted by an adjusting means such as a valve provided in the supply path, so that the power generation amount, the hydrogen generation amount, and the organic hydride generation amount can be mutually adjusted. A co-production system of the described electric power, hydrogen, aromatic hydrocarbon and organic hydride is provided.

【0012】[0012]

【発明の実施の形態】 図1は、本願請求項1の発明の
基本システム構成を示す。本発明は、SOFC10の発
電に伴う概900℃のオフガスを利用して、系外から取
り入れる低級炭化水素原料ガス(以下「原料ガス」とい
う)を熱交換部30により概750℃に昇温させた後、
該原料ガスを直接改質器20に供給して水素及び芳香族
化合物を生成し、該生成した水素はSOFC10の燃料
として供給される、電力、水素及び芳香族炭化水素の併
産システムである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows the basic system configuration of the invention of claim 1 of the present application. INDUSTRIAL APPLICABILITY In the present invention, the off-gas of about 900 ° C. accompanying the power generation of SOFC 10 is used to raise the temperature of a lower hydrocarbon raw material gas (hereinafter referred to as “raw material gas”) taken in from outside the system to about 750 ° C. rear,
The raw material gas is directly supplied to the reformer 20 to generate hydrogen and an aromatic compound, and the generated hydrogen is a co-production system of electric power, hydrogen and aromatic hydrocarbon, which is supplied as a fuel of the SOFC 10.

【0013】SOFC10は、電解質に酸化物イオン導
伝体を用いた高温型燃料電池である。酸化物イオン導伝
体の形式により平板方式、円筒方式、あるいは一体積層
方式などがあるが、本発明においてはいずれの方式のS
OFC10でもよい。本発明においては、SOFC10
は水素を燃料として、空気中の酸素を酸化剤として供給
して作動させるため、SOFC10からの高温オフガス
の組成は水を主として、未反応の水素、空気中の酸素、
窒素等によりなる。このため、SOFC10への一酸化
炭素燃料の利用の場合に比べ、各所へのカーボンの析出
による発電性能の低下や各種トラブルの発生が抑制さ
れ、高効率かつ安定的な作動が可能となっている。
The SOFC 10 is a high temperature fuel cell using an oxide ion conductor as an electrolyte. Depending on the type of the oxide ion conductor, there are a flat plate type, a cylindrical type, a monolithic laminated type, and the like.
It may be OFC10. In the present invention, SOFC10
Operates by supplying hydrogen as a fuel and oxygen in the air as an oxidant. Therefore, the composition of the high temperature offgas from the SOFC 10 is mainly water, unreacted hydrogen, oxygen in the air,
It consists of nitrogen, etc. Therefore, as compared with the case of using the carbon monoxide fuel for the SOFC 10, the deterioration of the power generation performance and the occurrence of various troubles due to the deposition of carbon on various places are suppressed, and the highly efficient and stable operation is enabled. .

【0014】SOFC10は、高温で作動し概900℃
の余熱を排出する。高温オフガスやSOFC10本体の
反応熱等の余熱は熱交換部30に導入され、同じく熱交
換部30に系外より導入される原料ガスが熱交換により
常温(25℃)から概750℃に加温される。加温され
た原料ガスは引続き直接改質器20に導入される。ま
た、SOFC10に供給される水素及び空気は、SOF
C10の余熱を利用して熱交換部30により概900℃
に予熱する。
The SOFC 10 operates at a high temperature, approximately 900 ° C.
Exhaust the residual heat of. Residual heat such as high-temperature off-gas and reaction heat of the SOFC 10 main body is introduced into the heat exchange section 30, and the raw material gas also introduced into the heat exchange section 30 from outside the system warms from room temperature (25 ° C) to approximately 750 ° C. To be done. The heated raw material gas is continuously introduced directly into the reformer 20. Further, hydrogen and air supplied to the SOFC 10 are SOF
Approximately 900 ° C by heat exchange unit 30 using the residual heat of C10
Preheat to.

【0015】直接改質器20においては、熱交換部30
により概750℃に加温された原料ガスが供給され、改
質触媒21に接触されて、水素及びベンゼン、ナフタレ
ン、トルエン、キシレン、メチルナフタレン等からなる
芳香族炭化水素を生成する。また、直接改質器20とS
OFC10を同一の断熱容器に入れて熱交換部30によ
る伝熱で直接改質器20内が概750℃の温度雰囲気と
することにより、安定的に概750℃の反応熱が保持さ
れて原料ガスの水素および芳香族炭化水素への転化が進
行する。
In the direct reformer 20, the heat exchange section 30
The raw material gas heated to about 750 ° C. is supplied to contact the reforming catalyst 21 to generate hydrogen and aromatic hydrocarbons such as benzene, naphthalene, toluene, xylene, and methylnaphthalene. In addition, the direct reformer 20 and the S
By placing the OFC 10 in the same heat insulating container and directly making the inside of the reformer 20 a temperature atmosphere of about 750 ° C. by heat transfer by the heat exchange section 30, the reaction heat of about 750 ° C. is stably held and the raw material gas Conversion to hydrogen and aromatic hydrocarbons proceeds.

【0016】改質触媒21としては特に制限はなく、特
開平10−270366号公報、特開平11−4760
6号公報、特開平11−60514号公報、特許開20
01−334151号公報、特開2001−33415
2号公報で知られている公知の触媒の中から、任意のも
のを適宜選択して用いることができる。
The reforming catalyst 21 is not particularly limited, and is disclosed in JP-A-10-270366 and JP-A-11-4760.
No. 6, JP-A No. 11-60514, and Japanese Patent No. 20.
01-334151, JP 2001-33415 A.
Any known catalyst can be appropriately selected and used from the known catalysts known from Japanese Patent Publication No.

【0017】直接改質器20は、固定床触媒反応形式又
は流動層触媒反応形式であることが好ましいが、原料ガ
スを改質触媒21に十分に接触させることができるなら
ばどの触媒反応形式でもよい。流動層反応形式の場合
は、変換反応後の水素、芳香族化合物及び未転化原料ガ
スの混合ガス中に含まれる固体触媒微粒子を捕集するサ
イクロンを出口に付設することが好ましい。
The direct reformer 20 is preferably of a fixed bed catalytic reaction type or a fluidized bed catalytic reaction type, but any catalytic reaction type can be used as long as the raw material gas can be sufficiently brought into contact with the reforming catalyst 21. Good. In the case of the fluidized bed reaction system, it is preferable to additionally provide a cyclone at the outlet for collecting the solid catalyst fine particles contained in the mixed gas of hydrogen, the aromatic compound and the unconverted raw material gas after the conversion reaction.

【0018】いずれの反応形式によるときも、公知の従
来技術に基づき、原料ガスに一酸化炭素又は/及び二酸
化炭素を0.01〜30容量%、好ましくは0.1〜2
5容量%、さらに好ましくは1〜10容量%添加して低
級炭化水素の反応転化率を向上してもよい。また、バイ
オガス等、原料ガス中に二酸化炭素を概30容量%以上
含むときは、直接改質器20の容量効率が低下するた
め、適宜二酸化炭素容量%の調整を施すことが好まし
い。
In any of the reaction modes, carbon monoxide or / and carbon dioxide is added to the raw material gas in an amount of 0.01 to 30% by volume, preferably 0.1 to 2 based on the known prior art.
5% by volume, more preferably 1 to 10% by volume may be added to improve the reaction conversion rate of lower hydrocarbons. Further, when carbon dioxide is contained in the raw material gas such as biogas in an amount of approximately 30% by volume or more, the volume efficiency of the direct reformer 20 directly decreases, so it is preferable to appropriately adjust the carbon dioxide volume%.

【0019】同様に、いずれの反応形式によるときも、
改質触媒21では反応時間の経過に伴い炭素の析出によ
る触媒性能の低下が生じるため、直接改質器20には、
改質触媒21に析出した炭素を酸素等により燃焼し再生
する触媒再生過程を施すことが好ましい。また、析出し
た炭素をメタン等に還元し触媒を活性化するため、水素
による触媒賦活過程を施してもよい。
Similarly, in any of the reaction modes,
In the reforming catalyst 21, the catalytic performance is deteriorated due to the deposition of carbon as the reaction time elapses.
It is preferable to perform a catalyst regeneration process in which the carbon deposited on the reforming catalyst 21 is burned with oxygen or the like to be regenerated. Further, in order to reduce the deposited carbon to methane or the like to activate the catalyst, a catalyst activation process with hydrogen may be performed.

【0020】この場合、当然に、燃焼による触媒再生過
程や水素ガスによる触媒賦活過程は、低級炭化水素の変
換反応過程と交互に連続して施してもよいし、適宜間歇
的に施してもよい。また、前記燃焼による触媒再生過程
や水素による触媒賦活過程は、直接改質器20外に装置
として付設してもよい。さらに、燃焼による触媒再生過
程や水素による触媒賦活過程は、改質触媒21を適宜循
環再生するなど、低級炭化水素の変換反応過程と並列的
に施してもよい。
In this case, naturally, the catalyst regeneration process by combustion and the catalyst activation process by hydrogen gas may be carried out alternately and continuously with the conversion reaction process of lower hydrocarbons, or may be carried out intermittently as appropriate. . Further, the catalyst regeneration process by combustion and the catalyst activation process by hydrogen may be directly provided outside the reformer 20 as a device. Furthermore, the catalyst regeneration process by combustion and the catalyst activation process by hydrogen may be performed in parallel with the conversion reaction process of lower hydrocarbons, such as by appropriately regenerating the reforming catalyst 21.

【0021】直接改質器20においては、原料ガスは改
質触媒21と高温化で接触して水素及び芳香族炭化水素
に改質され、水素、芳香族炭化水素及び未転化原料ガス
との混合ガスが生成する。該混合ガスは芳香族炭化水素
分離部22に導出され、そこで気体と液体状の芳香族炭
化水素に気液分離され、液体状の芳香族炭化水素は系外
へ導出される。分離された水素及び未転化原料ガスは水
素分離部23に導入されそれぞれ分離される。
In the direct reformer 20, the raw material gas is brought into contact with the reforming catalyst 21 at high temperature to be reformed into hydrogen and aromatic hydrocarbons, and mixed with hydrogen, aromatic hydrocarbons and unconverted raw material gas. Gas is produced. The mixed gas is led to the aromatic hydrocarbon separation section 22, where it is gas-liquid separated into a gas and a liquid aromatic hydrocarbon, and the liquid aromatic hydrocarbon is led out of the system. The separated hydrogen and unconverted raw material gas are introduced into the hydrogen separation unit 23 and separated.

【0022】また、図2に示すように、上記混合ガスを
芳香族炭化水素分離部22と水素分離部23の配置を置
換し、上記混合ガスを先ず水素分離部23に導入し、水
素を選択的に分離し、次いで芳香族分離部23により未
転化原料ガスと芳香族炭化水素とを気液分離してもよ
い。この場合、先ず水素が選択的に分離されるため、改
質触媒21での改質反応の平衡条件が好適に保たれ、原
料ガスからの水素及び芳香族化合物への転化率を飛躍的
に向上させることが可能となる。
Further, as shown in FIG. 2, the mixed gas is replaced in the arrangement of the aromatic hydrocarbon separation section 22 and the hydrogen separation section 23, and the mixed gas is first introduced into the hydrogen separation section 23 to select hydrogen. The raw material gas and the aromatic hydrocarbon may be gas-liquid separated by the aromatic separation unit 23. In this case, since hydrogen is first selectively separated, the equilibrium condition of the reforming reaction in the reforming catalyst 21 is preferably maintained, and the conversion rate from the raw material gas to hydrogen and aromatic compounds is dramatically improved. It becomes possible.

【0023】芳香族炭化水素分離部22は、水素、芳香
族炭化水素及び未転化原料ガスとの混合ガスを、芳香族
炭化水素の沸点以下の温度の冷却部に接触させる凝縮分
離方式や、デカリンやメチルナフタレン等の液体溶剤に
芳香族炭化水素を溶解し分離する方式など、公知の分離
方式を適宜選択することができる。
The aromatic hydrocarbon separation section 22 is a condensation / separation method in which a mixed gas of hydrogen, aromatic hydrocarbon and unconverted raw material gas is brought into contact with a cooling section having a temperature not higher than the boiling point of aromatic hydrocarbon, or decalin. A known separation method such as a method of dissolving and separating an aromatic hydrocarbon in a liquid solvent such as or methylnaphthalene can be appropriately selected.

【0024】水素分離部23又は芳香族炭化水素分離部
22により水素又は芳香族炭化水素と分離された残留の
未転化原料ガスは、系外からの原料ガスと混合され、再
び直接改質器20に導入される。また、水素分離部23
により分離された水素は、水素保持部40に導入され、
貯蔵されたり、系外に導出されたり、SOFC10に燃
料として導入される。水素保持部40の水素保持量並び
にSOFCまたは系外への導出は、制御装置(図示せ
ず)により制御されている。
The residual unconverted raw material gas separated from hydrogen or aromatic hydrocarbons by the hydrogen separating section 23 or the aromatic hydrocarbon separating section 22 is mixed with the raw material gas from the outside of the system and again directly reformed. Will be introduced to. In addition, the hydrogen separation unit 23
The hydrogen separated by is introduced into the hydrogen holding unit 40,
It is stored, discharged out of the system, or introduced into the SOFC 10 as a fuel. The hydrogen holding amount of the hydrogen holding unit 40 and the derivation to the SOFC or the outside of the system are controlled by a controller (not shown).

【0025】水素分離部23の分離材料としては、1n
m〜10μmの膜厚で特徴付けられるPd膜、PdとA
gの合金膜(Ag−Pd膜)、1nm〜100μmの膜
厚で特徴付けられるゼオライト膜や多孔質シリカ膜等の
ような水素分離膜、ポリイミド等のような高分子分離
膜、ゼオライト、メソ多孔質材、フェルト状活性炭、ハ
ニカム状活性炭、カーボンナノチューブ等の水素吸着作
用で水素と分離する吸着材のうち1つ以上を選択するこ
とが好ましいが、特に限定されることなく公知の分離材
料から選択することができる。
The separation material of the hydrogen separation section 23 is 1n.
Pd film, Pd and A characterized by a film thickness of m to 10 μm
g alloy film (Ag-Pd film), hydrogen separation membrane such as zeolite membrane or porous silica membrane characterized by a thickness of 1 nm to 100 μm, polymer separation membrane such as polyimide, zeolite, mesoporous It is preferable to select at least one adsorbent that separates from hydrogen by a hydrogen adsorbing action such as quality material, felt-like activated carbon, honeycomb-like activated carbon, carbon nanotube, etc., but it is not particularly limited and is selected from known separation materials. can do.

【0026】ただし、水素分離部23は、芳香族炭化水
素分離部22と置換配置する場合には、概750〜80
0℃の高温の水素、芳香族炭化水素及び未転化原料ガス
との混合ガスに接触するため、窒化ケイ素や炭化ケイ
素、非晶質シリカ膜等の高温耐性のある分離材料を用い
る必要がある。
However, when the hydrogen separation section 23 is arranged to replace the aromatic hydrocarbon separation section 22, the hydrogen separation section 23 is approximately 750 to 80.
Since it comes into contact with a mixed gas of hydrogen, aromatic hydrocarbon, and unconverted raw material gas at a high temperature of 0 ° C., it is necessary to use a separation material having high temperature resistance such as silicon nitride, silicon carbide, or an amorphous silica membrane.

【0027】水素保持部40は、水素貯蔵タンクや水素
貯蔵合金等の公知の水素貯蔵体と水素の貯蔵及び放出の
装置を具備しており、所定量の水素を保持するととも
に、水素を系外に導出する場合の水素供給装置となる。
また、水素保持部40は、本発明のシステムの起動時に
は水素を導出し、SOFC10及び直接改質器20を水
素バーナーにより所定の動作温度まで加温するととも
に、燃料としてSOFC10に水素を供給するための水
素供給装置も兼ねることができる。しかし、当然に、起
動時には系外より動作温度の供給及び燃料の水素を本発
明のシステムに供給してもよい。
The hydrogen holding unit 40 is provided with a known hydrogen storage body such as a hydrogen storage tank or a hydrogen storage alloy, and a device for storing and releasing hydrogen, and holds a predetermined amount of hydrogen and releases the hydrogen outside the system. It becomes a hydrogen supply device when it is led to.
Further, the hydrogen holding unit 40 draws out hydrogen at the time of starting the system of the present invention, heats the SOFC 10 and the direct reformer 20 to a predetermined operating temperature by the hydrogen burner, and supplies hydrogen to the SOFC 10 as fuel. It can also serve as the hydrogen supply device. However, as a matter of course, the operating temperature may be supplied and hydrogen as a fuel may be supplied to the system of the present invention from outside the system at the time of startup.

【0028】このようにして、本願請求項1の発明で
は、電力、水素及び芳香族炭化水素を効率的に併産する
ことができる。
In this way, according to the invention of claim 1 of the present application, electric power, hydrogen and aromatic hydrocarbon can be efficiently produced together.

【0029】図3は、本願請求項2の発明の基本システ
ム構成を示す。本発明は、請求項1の発明構成に、水素
化反応器50、水素化触媒51、有機ハイドライド分離
部52、水素分離部23及び芳香族炭化水素保持部60
を付加し構成され、生成される水素及び芳香族炭化水素
を利用して、水素化反応器50において、該水素雰囲気
下で所定の反応温度に保持した水素化触媒に芳香族化合
物を接触させ、シクロヘキサン、デカリン等の有機ハイ
ドライドに改質し、有機ハイドライド分離部52、水素
分離部23により、有機ハイドライド及び水素を分離し
て生成する電力、水素、芳香族炭化水素及び有機ハイド
ライドの併産システムである。なお、本発明の説明は請
求項1の発明の説明を援用するものとし、本発明に固有
な芳香族化合物水素化反応器50に関して以下に説明す
るものとする。
FIG. 3 shows the basic system configuration of the invention of claim 2 of the present application. The present invention provides the hydrogenation reactor 50, the hydrogenation catalyst 51, the organic hydride separation part 52, the hydrogen separation part 23, and the aromatic hydrocarbon holding part 60 in the invention constitution of claim 1.
In the hydrogenation reactor 50, the aromatic compound is brought into contact with the hydrogenation catalyst maintained at a predetermined reaction temperature in the hydrogen atmosphere by utilizing hydrogen and aromatic hydrocarbons produced by adding It is a co-production system of electric power, hydrogen, aromatic hydrocarbons and organic hydride that is reformed to an organic hydride such as cyclohexane and decalin, and separated by the organic hydride separator 52 and hydrogen separator 23 to generate organic hydride and hydrogen. is there. The description of the present invention is based on the description of the invention of claim 1, and the aromatic compound hydrogenation reactor 50 unique to the present invention will be described below.

【0030】本願請求項1の発明と同様の過程により分
離される水素及び芳香族炭化水素は、水素は水素保持部
40に導入され、芳香族炭化水素は芳香族炭化水素保持
部60に導入される。
Hydrogen and aromatic hydrocarbons separated by the same process as in the first aspect of the present invention are introduced into the hydrogen holding portion 40, and the aromatic hydrocarbons are introduced into the aromatic hydrocarbon holding portion 60. It

【0031】水素保持部40は、本願請求項1の発明と
同様の構成に付加して、水素保持部40の所定量満量の
ときは、水素保持部40への水素導入が遮断されるとと
もに、SOFC10に燃料として供給する水素供給量
と、芳香族炭化水素水素化反応器に供給する水素供給量
が適宜調整する制御装置(図示せず)に制御された弁
(図示せず)を具備する。
The hydrogen holding unit 40 is added to the same structure as that of the invention of claim 1 so that when the hydrogen holding unit 40 has a predetermined amount, the hydrogen introduction to the hydrogen holding unit 40 is blocked. , A valve (not shown) controlled by a controller (not shown) that appropriately adjusts the amount of hydrogen supplied to the SOFC 10 as fuel and the amount of hydrogen supplied to the aromatic hydrocarbon hydrogenation reactor. .

【0032】芳香族炭化水素保持部60は、芳香族炭化
水素分離部22により分離された液体状の芳香族炭化水
素を沸点以下かつ融点以上の温度で保持する貯蔵タンク
と芳香族炭化水素の放出の装置を具備しており、芳香族
炭化水素水素化反応器50に芳香族炭化水素を供給する
とともに、芳香族炭化水素を系外に導出する場合の芳香
族炭化水素供給装置となる。また、芳香族炭化水素の放
出の装置は制御装置(図示せず)に制御されている。な
お、必要に応じて芳香族炭化水素保持部60に分留装置
を付置し、芳香族炭化水素を分留してベンゼンやナフタ
レン等の種類ごとに保持しておくこともできる。
The aromatic hydrocarbon holding unit 60 holds the liquid aromatic hydrocarbons separated by the aromatic hydrocarbon separation unit 22 at a temperature below the boiling point and above the melting point, and releases the aromatic hydrocarbons. The above-mentioned device is provided to supply the aromatic hydrocarbon to the aromatic hydrocarbon hydrogenation reactor 50 and also serve as an aromatic hydrocarbon supply device for discharging the aromatic hydrocarbon to the outside of the system. The device for releasing aromatic hydrocarbons is controlled by a control device (not shown). If necessary, a fractionating device may be attached to the aromatic hydrocarbon holding part 60 to fractionate the aromatic hydrocarbons and hold them for each type of benzene, naphthalene and the like.

【0033】水素化反応器50は、温度はSOFC10
の余熱等を利用して概25〜400℃、好ましくは概5
0〜300℃、さらに好ましくは概100〜250℃に
保たれ、圧力は概0.1〜50気圧、好ましくは概0.
5〜15気圧、さらに好ましくは概1〜10気圧に保た
れ、水素保持部40より供給される水素雰囲気の中で、
液体状の芳香族炭化水素が供給され水素化触媒51に接
触されて、シクロヘキサン、デカリン等の有機ハイドラ
イドを生成する。
The hydrogenation reactor 50 has a temperature of SOFC10.
25-400 ℃, preferably about 5 by utilizing the residual heat of
The temperature is maintained at 0 to 300 ° C, more preferably about 100 to 250 ° C, and the pressure is about 0.1 to 50 atm, preferably about 0.
5 to 15 atm, more preferably about 1 to 10 atm, in a hydrogen atmosphere supplied from the hydrogen holding unit 40,
A liquid aromatic hydrocarbon is supplied and brought into contact with the hydrogenation catalyst 51 to generate an organic hydride such as cyclohexane or decalin.

【0034】水素化触媒51としては特に制限はなく、
特開2001−110437号公報、特開2001−1
98469号公報で知られている公知の触媒の中から、
任意のものを適宜選択して用いることができる。
The hydrogenation catalyst 51 is not particularly limited,
JP 2001-110437 A, JP 2001-1
Among known catalysts known in Japanese Patent Publication No. 98469,
Any one can be appropriately selected and used.

【0035】水素化反応器50は、上述公知の発明に基
づく反応方式をはじめとして水素化触媒51に芳香族炭
化水素を接触させることができるいずれの触媒反応方式
でもよいが、水素雰囲気下で液体状の芳香族炭化水素を
水素化触媒51に噴霧又はシャワー状にて供給して、該
触媒表面に液膜状の濡れを形成し反応させる方式が好ま
しい。
The hydrogenation reactor 50 may be any catalytic reaction system capable of bringing an aromatic hydrocarbon into contact with the hydrogenation catalyst 51, including the reaction system based on the above-mentioned known invention, but it is liquid in a hydrogen atmosphere. It is preferable that the aromatic hydrocarbons are supplied to the hydrogenation catalyst 51 in the form of spray or shower to form a liquid film-like wetting on the surface of the catalyst to cause the reaction.

【0036】水素化反応器50では、水素雰囲気下で水
素化触媒51と芳香族炭化水素が接触して有機ハイドラ
イドと未反応の水素及び芳香族炭化水素の混合ガスが生
成する。該混合ガスは有機ハイドライド分離部52に導
出され、水素及び液体状の有機ハイドライドと芳香族炭
化水素の混合物質に気液分離され、液体状の有機ハイド
ライドと芳香族炭化水素の混合物質は系外に導出され
る。
In the hydrogenation reactor 50, the hydrogenation catalyst 51 and the aromatic hydrocarbons come into contact with each other under a hydrogen atmosphere to produce a mixed gas of organic hydride and unreacted hydrogen and aromatic hydrocarbons. The mixed gas is led to the organic hydride separation unit 52, and is gas-liquid separated into a mixed substance of hydrogen and liquid organic hydride and aromatic hydrocarbon, and the mixed substance of liquid organic hydride and aromatic hydrocarbon is out of the system. Be derived to.

【0037】分離された水素は水素分離部23に導入さ
れ、水素と有機ハイドライド分離部52で未分離となっ
た残留ガスにそれぞれ分離され、水素は水素保持部40
に導入される。系外に導出された有機ハイドライドと芳
香族炭化水素の混合物質は、分留など処理により容易に
それぞれの物質に分離することでき、利用することがで
きる。また、水素分離部23で水素が分離された後の残
留ガスは、系外へ導出してもよいし、芳香族炭化水素に
混合し再び水素化触媒51へ供給してもよい。
The separated hydrogen is introduced into the hydrogen separation unit 23 and separated into hydrogen and residual gas which has not been separated in the organic hydride separation unit 52, and the hydrogen is retained in the hydrogen holding unit 40.
Will be introduced to. The mixed substance of the organic hydride and the aromatic hydrocarbon which is led out of the system can be easily separated into the respective substances by a treatment such as fractional distillation and can be used. Further, the residual gas after hydrogen is separated in the hydrogen separation unit 23 may be led out of the system, or may be mixed with the aromatic hydrocarbon and supplied to the hydrogenation catalyst 51 again.

【0038】水素分離部23は、水素分離部23と同様
に、分離材料としては、1nm〜10μmの膜厚で特徴
付けられるPd膜、PdとAgの合金膜(Ag−Pd
膜)、1nm〜100μmの膜厚で特徴付けられるゼオ
ライト膜や多孔質シリカ膜等のような水素分離膜、ポリ
イミド等の高分子分離膜、ゼオライト、メソ多孔質材、
フェルト状活性炭、ハニカム状活性炭、カーボンナノチ
ューブ等の水素吸着作用で水素と分離する吸着材のうち
1つ以上を選択することが好ましいが、特に限定される
ことなく公知の分離材料から選択することができる。
Similar to the hydrogen separating unit 23, the hydrogen separating unit 23 is a Pd film characterized by a film thickness of 1 nm to 10 μm, or an alloy film of Pd and Ag (Ag-Pd) as a separating material.
Membrane) Hydrogen separation membrane such as zeolite membrane or porous silica membrane characterized by a film thickness of 1 nm to 100 μm, polymer separation membrane such as polyimide, zeolite, mesoporous material,
It is preferable to select at least one of adsorbents such as felt-like activated carbon, honeycomb-like activated carbon, carbon nanotubes, etc. that separates from hydrogen by the hydrogen adsorption action, but it is not particularly limited and it is possible to select from known separation materials. it can.

【0039】このようにして、本願請求項2の発明で
は、電力、水素、芳香族炭化水素及び有機ハイドライド
を効率的に併産することができる。
As described above, according to the second aspect of the present invention, electric power, hydrogen, aromatic hydrocarbon and organic hydride can be efficiently produced together.

【0040】次に、本願請求項3の発明について説明す
る。本発明は、水素保持部40によりSOFC10への
水素供給量を供給路に具備した弁等の調整手段により適
宜調整し、発電量及び系外への水素導出量を調整する本
願請求項1記載の電力、水素及び芳香族炭化水素の併産
システムである。図4に水素保持部の水素供給路への調
整弁の配置例を示す。
Next, the invention of claim 3 of the present application will be described. According to the present invention, the hydrogen holding unit 40 appropriately adjusts the hydrogen supply amount to the SOFC 10 by an adjusting means such as a valve provided in the supply path to adjust the power generation amount and the hydrogen derivation amount to the outside of the system. It is a co-production system of electric power, hydrogen and aromatic hydrocarbons. FIG. 4 shows an example of the arrangement of the adjusting valve in the hydrogen supply passage of the hydrogen holding unit.

【0041】本願請求項1記載の電力、水素及び芳香族
炭化水素の併産システムでは、前述のとおり直接改質器
20で系外から取り入れた原料ガスを水素及び芳香族炭
化水素に改質し、水素分離部23により分離した水素は
水素保持部40に導入される。水素保持部40は、所定
量満量のときは弁70により水素導入が遮断され、その
全部又は一部がSOFC10に導入される。この場合、
SOFC10に導入されない水素は系外に導出され、系
外での原料若しくは燃料などの用途に供される。
In the co-production system of electric power, hydrogen and aromatic hydrocarbon according to claim 1 of the present application, the raw material gas taken from outside the system is directly reformed by the reformer 20 into hydrogen and aromatic hydrocarbon as described above. The hydrogen separated by the hydrogen separation unit 23 is introduced into the hydrogen holding unit 40. In the hydrogen holding unit 40, the hydrogen introduction is blocked by the valve 70 when the predetermined amount is full, and the whole or a part of the hydrogen is introduced into the SOFC 10. in this case,
Hydrogen that is not introduced into the SOFC 10 is discharged to the outside of the system and used as a raw material or fuel outside the system.

【0042】SOFC10は、燃料として供給される水
素に応じて電力を発生するため、水素保持部40の弁7
0によりSOFC10への水素供給量を調整すると、S
OFC10による発電電力量を調整することができる。
Since the SOFC 10 generates electric power according to hydrogen supplied as fuel, the valve 7 of the hydrogen holding unit 40 is
When the hydrogen supply amount to the SOFC 10 is adjusted to 0, S
The amount of power generated by the OFC 10 can be adjusted.

【0043】水素保持部40からSOFC10に供給す
る水素量は、SOFC10の高温の余熱により原料ガス
を予熱するとともに、直接改質器20に反応熱を供給す
るため、全量の水素をSOFC10の燃料として供給す
る場合の水素量を基準としたときの容量%で、概70〜
100容量%の範囲で調整することが望ましい。70容
量%以下に水素量を調整した場合、システム全体で必要
とする熱量が不足し、SOFC10又は/及び直接改質
器20に何らかの方法で新たに熱供給する必要が生じ、
システムの運転効率が著しく低下する。また、系外にと
りだす水素量は、SOFC10に供給する水素量に関連
して、0〜30容量%の範囲で調整することができる。
これらの生成量の調整は、制御装置(図示せず)により
弁70を制御して行う。
The amount of hydrogen supplied from the hydrogen holding unit 40 to the SOFC 10 is such that the raw gas is preheated by the high temperature residual heat of the SOFC 10 and the reaction heat is directly supplied to the reformer 20. Volume% based on the amount of hydrogen supplied, approximately 70-
It is desirable to adjust in the range of 100% by volume. When the amount of hydrogen is adjusted to 70% by volume or less, the amount of heat required in the entire system becomes insufficient, and it becomes necessary to newly supply heat to the SOFC 10 or / and the direct reformer 20 by some method.
The operating efficiency of the system is significantly reduced. Further, the amount of hydrogen taken out of the system can be adjusted in the range of 0 to 30% by volume in relation to the amount of hydrogen supplied to the SOFC 10.
The control of the valve 70 is performed by a control device (not shown) to adjust the production amount of these.

【0044】このように、SOFC10へ供給する水素
を調整することで、併産システム全体の稼動効率を低下
させることなく発電電力量が比例的に調整され、同時に
系外に導出する水素量は反比例的に調整される。実用
上、電力及び水素の需要量や市場価格の動向に応じて生
産量を好適に調整できることは有効であり、とりわけ貯
蔵の困難な電力を調整できることは大きな意義を有す
る。当然に、原料ガスの供給量を調整することで、該併
産システム全体の運転状況を調整することは可能である
が、該併産システムの規模は実用上好適な規模で建設さ
れることが多いため、システム全体の稼動効率の低下に
つながる問題点がある。
As described above, by adjusting the hydrogen supplied to the SOFC 10, the generated electric power amount is proportionally adjusted without lowering the operating efficiency of the entire co-production system, and at the same time, the hydrogen amount derived to the outside of the system is inversely proportional. Be adjusted. Practically, it is effective that the production amount can be adjusted appropriately according to the demand amount of electric power and hydrogen and the trend of the market price, and in particular, the fact that the electric power that is difficult to store can be adjusted has great significance. Naturally, it is possible to adjust the operating condition of the entire co-production system by adjusting the supply amount of the raw material gas, but the scale of the co-production system can be constructed at a scale suitable for practical use. Since there are many, there is a problem that leads to a decrease in the operating efficiency of the entire system.

【0045】次に、本願請求項4の発明について説明す
る。本発明は、水素保持部40によりSOFC10及び
水素化反応器50への水素供給量を供給路に具備した弁
等の調整手段により適宜調整し、発電量及び有機ハイド
ライド生成量と、系外への水素導出量を調整する本願請
求項2記載の電力、水素、芳香族炭化水素及び有機ハイ
ドライドの併産システムである。図5に水素保持部の水
素供給路への調整弁の配置例を示す。
Next, the invention of claim 4 of the present application will be described. According to the present invention, the hydrogen holding unit 40 appropriately adjusts the hydrogen supply amount to the SOFC 10 and the hydrogenation reactor 50 by adjusting means such as a valve provided in the supply path, and the power generation amount and the organic hydride generation amount and the amount outside the system are adjusted. It is the co-production system of electric power, hydrogen, aromatic hydrocarbon and organic hydride according to claim 2 of the present invention, which adjusts the amount of hydrogen derived. FIG. 5 shows an arrangement example of the adjusting valve in the hydrogen supply passage of the hydrogen holding unit.

【0046】本願請求項2記載の電力、水素、芳香族炭
化水素及び有機ハイドライドの併産システムでは、前述
のとおり水素保持部40は、所定量満量のときは弁70
により水素導入が遮断され、その全部又は一部がSOF
C10又は/及び水素化反応器50に導入される。この
場合、SOFC10又は/及び水素化反応器50に導入
されない水素は系外に導出され、系外での原料若しくは
燃料などの用途に供される。
In the cogeneration system for electric power, hydrogen, aromatic hydrocarbons, and organic hydride according to claim 2 of the present application, as described above, the hydrogen holding portion 40 is provided with the valve 70 when the predetermined amount is full.
The hydrogen introduction is cut off by SOF
C10 or / and is introduced into the hydrogenation reactor 50. In this case, hydrogen that is not introduced into the SOFC 10 and / or the hydrogenation reactor 50 is led out of the system and used as a raw material or a fuel outside the system.

【0047】SOFC10は、燃料として供給される水
素に応じて電力を発生するため、水素保持部40の弁7
0によりSOFC10への水素供給量を調整すると、S
OFC10による発電電力量を調整することができる。
Since the SOFC 10 generates electric power according to hydrogen supplied as fuel, the valve 7 of the hydrogen holding unit 40
When the hydrogen supply amount to the SOFC 10 is adjusted to 0, S
The amount of power generated by the OFC 10 can be adjusted.

【0048】また、水素化反応器50も、水素保持部の
弁70により水素化するための水素量を適宜調整するこ
とで、有機ハイドライドの生成量が調整され、有機ハイ
ドライド分離部52で分離される液体状の有機ハイドラ
イドと芳香族炭化水素の混合物質における有機ハイドラ
イドの割合を調整することができる。
Also in the hydrogenation reactor 50, the amount of organic hydride produced is adjusted by appropriately adjusting the amount of hydrogen for hydrogenation by the valve 70 of the hydrogen holding unit, and the organic hydride separation unit 52 separates the amount. The ratio of the organic hydride in the mixed substance of liquid organic hydride and aromatic hydrocarbon can be adjusted.

【0049】本願請求項3の発明と同様に、水素保持部
40からSOFC10に供給する水素量は、SOFC1
0の高温の余熱により原料ガスを予熱するとともに、直
接改質器20に反応熱を供給するため、全量の水素をS
OFC10の燃料として供給する場合の水素量を基準と
したときの容量%で、70〜100容量%の範囲で調整
することが望ましい。当然に、水素化反応器50に供給
する水素量は、0〜30容量%の範囲で調整することが
望ましい。また同様に、系外にとりだす水素量は、SO
FC10に供給する水素量と水素化反応器50に供給す
る水素量との双方と関連して、0〜30容量%の範囲で
調整することができる。これらの生成量の調整は、制御
装置(図示せず)により弁70を制御して行う。
Similar to the third aspect of the present invention, the amount of hydrogen supplied from the hydrogen holding section 40 to the SOFC 10 is SOFC1.
Since the raw material gas is preheated by the high temperature residual heat of 0 and the reaction heat is directly supplied to the reformer 20, the total amount of hydrogen is reduced to S.
It is desirable to adjust in the range of 70 to 100% by volume based on the amount of hydrogen when the hydrogen is supplied as the fuel of the OFC 10. Naturally, the amount of hydrogen supplied to the hydrogenation reactor 50 is preferably adjusted within the range of 0 to 30% by volume. Similarly, the amount of hydrogen taken out of the system is SO
The amount of hydrogen supplied to the FC 10 and the amount of hydrogen supplied to the hydrogenation reactor 50 can be adjusted in the range of 0 to 30% by volume. The control of the valve 70 is performed by a control device (not shown) to adjust the production amount of these.

【0050】このように、SOFC10及び水素化反応
器50へ供給する水素を調整することで、併産システム
全体の稼動効率を低下させることなく発電電力量及び有
機ハイドライド生成量が比例的に調整され、同時に系外
に導出する水素量は反比例的に調整される。実用上、電
力、水素、有機ハイドライドの需要量や市場価格の動向
に応じて生産量を好適に調整できることは有効であり、
とりわけ貯蔵の困難な電力を調整できることは大きな意
義を有する。本願請求項3の発明と同様に、原料ガスの
供給量を調整することで、該併産システム全体の運転状
況を調整することは可能であるが、該併産システムの規
模は実用上好適な規模で建設されることが多いため、シ
ステム全体の稼動効率の低下につながる問題点がある。
As described above, by adjusting the hydrogen supplied to the SOFC 10 and the hydrogenation reactor 50, the generated power amount and the organic hydride production amount are proportionally adjusted without lowering the operating efficiency of the entire co-production system. At the same time, the amount of hydrogen discharged out of the system is adjusted in inverse proportion. Practically, it is effective to be able to adjust the production amount appropriately according to the demand amount of electricity, hydrogen, organic hydride and the trend of the market price.
Especially, it is of great significance to be able to adjust the power that is difficult to store. Similarly to the invention of claim 3 of the present application, it is possible to adjust the operating condition of the entire co-production system by adjusting the supply amount of the raw material gas, but the scale of the co-production system is practically suitable. Since it is often constructed on a large scale, there is a problem that the operating efficiency of the entire system is reduced.

【0051】[0051]

【実施例】以下、本願発明の具体的態様を実施例により
説明する。以下の実施例ではいずれも出力7kWのSO
FC10を使用している。また、改質触媒21にはMo
(3%)/HZSM−5触媒(シリカ/アルミナ比=4
0)1kgを使用した。
EXAMPLES Specific embodiments of the present invention will be described below with reference to examples. In each of the following examples, SO having an output of 7 kW
FC10 is used. Further, the reforming catalyst 21 contains Mo.
(3%) / HZSM-5 catalyst (silica / alumina ratio = 4
0) 1 kg was used.

【0052】《実施例1》25℃の原料メタンガスを熱
交換部30で概9.0MJ/hの熱を供給し750℃ま
で加熱して、コンプレッサーにより5N./hの流量で
直接改質器20内に設置された改質触媒21に供給し
た。改質触媒21は、断熱容器内の熱交換部30に概
6.7MJ/hの熱が供給され750℃に維持されてい
る。4気圧の圧力下で改質触媒21に接触したメタンガ
スは水素及び芳香族炭化水素に改質され、混合ガスとし
て芳香族炭化水素分離部22へ導出した。このとき直接
改質器20の出口におけるガス成分は、メタン2.51
kg/h、ベンゼン0.58kg/h、ナフタレン0.
29kg/h及び水素0.21kg/hであった。直接
改質器20から温度を保持されたまま芳香族炭化水素分
離部22に導入された混合ガスは、5℃の冷却部に接触
し気液分離した。液相として分離される芳香族炭化水素
の成分は、ベンゼン0.39kg/h、ナフタレン0.
29kg/hであった。一方、気相分は水素分離部23
に導入され、分離効率0.7のパラジウム水素分離膜に
より水素が分離され、水素保持部40で保持された。生
成量は0.15kg/hであった。一方、未分離ガスの
成分はメタン2.50kg/h、ベンゼン0.19kg
/h、水素0.06kg/hであった。表1に上記過程
における水素、芳香族炭化水素の生成量、温度、圧力を
示した。なお表1の単位はkg/hである。
Example 1 Raw material methane gas at 25 ° C. was heated to 750 ° C. by supplying heat of about 9.0 MJ / h in the heat exchange section 30, and 5N. It was directly supplied to the reforming catalyst 21 installed in the reformer 20 at a flow rate of / h. The reforming catalyst 21 is maintained at 750 ° C. with heat of about 6.7 MJ / h being supplied to the heat exchange section 30 in the heat insulating container. The methane gas that came into contact with the reforming catalyst 21 under a pressure of 4 atm was reformed into hydrogen and aromatic hydrocarbons and led to the aromatic hydrocarbon separation section 22 as a mixed gas. At this time, the gas component at the outlet of the direct reformer 20 is methane 2.51
kg / h, benzene 0.58 kg / h, naphthalene 0.
It was 29 kg / h and hydrogen 0.21 kg / h. The mixed gas directly introduced into the aromatic hydrocarbon separation part 22 while maintaining the temperature from the reformer 20 was brought into contact with the cooling part at 5 ° C. and gas-liquid separated. Aromatic hydrocarbon components separated as a liquid phase were benzene 0.39 kg / h, naphthalene 0.
It was 29 kg / h. On the other hand, the gas phase component is the hydrogen separation unit 23.
Hydrogen was separated by a palladium hydrogen separation membrane having a separation efficiency of 0.7 and was held by the hydrogen holding unit 40. The amount produced was 0.15 kg / h. On the other hand, the components of the unseparated gas are methane 2.50 kg / h and benzene 0.19 kg.
/ H, hydrogen was 0.06 kg / h. Table 1 shows the amounts of hydrogen and aromatic hydrocarbons produced in the above process, the temperature, and the pressure. The unit of Table 1 is kg / h.

【0053】[0053]

【表1】 《符号の説明》A原料メタンガス、B直接改質器20入
口メタンガス、C直接改質器20出口改質ガス、D芳香
族炭化水素分離部22液相、E芳香族炭化水素分離部2
2気相、F水素分離部23分離水素、G水素分離部23
未分離ガス
[Table 1] << Explanation of Codes >> A raw material methane gas, B direct reformer 20 inlet methane gas, C direct reformer 20 outlet reformed gas, D aromatic hydrocarbon separation part 22 liquid phase, E aromatic hydrocarbon separation part 2
2 gas phase, F hydrogen separation part 23 separation hydrogen, G hydrogen separation part 23
Unseparated gas

【0054】次に、水素分離部23からの概5℃の未分
離ガスを原料メタンガスに混合した(以下、「混合原料
ガス」という。)。混合原料ガスは8.3℃となった。
熱交換部30にて外部加熱源により34.8MJ/hの
熱を供給し750℃まで加熱し、直接改質器20に供給
した。断熱容器内の熱交換部30に外部加熱源により2
2.4MJ/hの熱が供給され750℃に維持されてい
る。4気圧の圧力下で改質触媒21に接触した混合原料
ガスは水素及び芳香族炭化水素に改質され、直接改質器
20の出口における成分は定常状態で、メタン8.34
kg/h、ベンゼン2.76kg/h、ナフタレン0.
95kg/h及び水素0.98kg/hであった。芳香
族炭化水素分離部22において分離される芳香族炭化水
素の成分はベンゼン1.93kg/h、ナフタレン0.
95kg/で定常状態となった。一方、気相成分は水素
分離部23にて0.69kg/hの水素が分離され水素
保持部40へ供給され、未分離ガスは熱交換部30入口
へ再び混合した。さらに水素保持部40に供給される水
素の概80%を熱交換部30にて外部加熱源により7.
3MJ/hの熱を供給し900℃まで昇温した後、SO
FC10に供給したところ、SOFC10は出力5.2
9kWで発電した。
Next, the unseparated gas at about 5 ° C. from the hydrogen separation section 23 was mixed with the raw material methane gas (hereinafter referred to as “mixed raw material gas”). The mixed raw material gas became 8.3 ° C.
In the heat exchange section 30, heat of 34.8 MJ / h was supplied by an external heating source to heat up to 750 ° C. and directly supplied to the reformer 20. 2 by an external heating source in the heat exchange part 30 in the heat insulation container.
Heat of 2.4 MJ / h is supplied and maintained at 750 ° C. The mixed raw material gas contacting the reforming catalyst 21 under a pressure of 4 atm is reformed into hydrogen and aromatic hydrocarbons, and the components at the outlet of the direct reformer 20 are in a steady state, and methane is 8.34.
kg / h, benzene 2.76 kg / h, naphthalene 0.
It was 95 kg / h and hydrogen 0.98 kg / h. The aromatic hydrocarbon components separated in the aromatic hydrocarbon separation section 22 are benzene 1.93 kg / h, naphthalene 0.
A steady state was reached at 95 kg /. On the other hand, as for the gas phase component, 0.69 kg / h of hydrogen was separated in the hydrogen separation part 23 and supplied to the hydrogen holding part 40, and the unseparated gas was mixed again into the inlet of the heat exchange part 30. Further, approximately 80% of the hydrogen supplied to the hydrogen holding unit 40 is supplied to the heat exchange unit 30 by the external heating source 7.
After supplying heat of 3 MJ / h and raising the temperature to 900 ° C., SO
SOFC10 output 5.2 when supplied to FC10
It generated electricity at 9 kW.

【0055】上記のように水素分離部23からの概5℃
の未分離ガスを原料メタンガスに混合し、水素保持部4
0からの水素をSOFC10に供給し、SOFC10を
運転する操作を繰り返し連続的に行い、熱交換部30へ
の熱供給を外部加熱源からSOFC10の高温オフガス
及びSOFC10本体の反応熱に切り替え、その後は、
SOFC10の高温オフガス及びSOFC10本体の反
応熱により外部熱源を利用することなく熱的に自立させ
て本願発明の電力、水素及び芳香族炭化水素の併産シス
テムの定常的な運転ができた。表2に実施例1における
定常運転時での水素、芳香族炭化水素の生成量、温度、
圧力を示した。なお表2の単位はkg/hである。
As described above, the temperature from the hydrogen separation section 23 is approximately 5 ° C.
Unseparated gas is mixed with the raw methane gas, and the hydrogen holding unit 4
Hydrogen from 0 is supplied to the SOFC 10 and the operation of operating the SOFC 10 is repeatedly performed continuously, and the heat supply to the heat exchange unit 30 is switched from the external heating source to the high temperature offgas of the SOFC 10 and the reaction heat of the SOFC 10 main body, and thereafter. ,
The high-temperature off-gas of the SOFC 10 and the reaction heat of the SOFC 10 main body allow the electric power, hydrogen, and aromatic hydrocarbon co-production system of the present invention to operate steadily by being thermally self-sustained without using an external heat source. Table 2 shows the amounts of hydrogen and aromatic hydrocarbons produced during steady operation in Example 1, temperature,
It showed pressure. The unit of Table 2 is kg / h.

【0056】[0056]

【表2】 《符号の説明》A原料メタンガス、B水素分離部23未
分離ガス、C混合原料ガス、D直接改質器20入口混合
原料ガス、E直接改質器20出口改質ガス、F芳香族炭
化水素分離部22液相、G芳香族炭化水素分離部22気
相、/H水素分離部23分離水素、I系外へ導出される
水素、JSOFC10供給用水素、K加熱された水素、
L空気、M加熱された空気
[Table 2] << Explanation of Codes >> A raw material methane gas, B hydrogen separation unit 23 unseparated gas, C mixed raw material gas, D direct reformer 20 inlet mixed raw material gas, E direct reformer 20 outlet reformed gas, F aromatic hydrocarbon Separation part 22 liquid phase, G aromatic hydrocarbon separation part 22 gas phase, / H hydrogen separation part 23 separated hydrogen, hydrogen drawn out of I system, JSOFC10 supply hydrogen, K heated hydrogen,
L air, M heated air

【0057】《実施例2》次に本願請求項3に記載の発
明の実施例を示す。表3は、本願請求項1に記載の併産
システムに5N./hの原料メタンガスを供給し熱的に
自立した定常運転時の電力、水素及び芳香族炭化水素の
生成量を示している。このとき水素保持部40に供給さ
れる水素の量は16.53kg/日であった。また芳香
族炭化水素分離部22にて分離される芳香族炭化水素の
成分は、ベンゼン46.43kg/日、ナフタレン2
2.85kg/日であった。水素保持部40に供給され
る水素の全部をSOFC10に供給したところ、概6.
6kWの発電出力が得られた。このとき、本願発明の併
産システムを熱的に自立させて定常運転しながら、水素
保持部40よりSOFC10に供給する水素を、水素保
持部40に供給される水素の100%〜概70%の範囲
で調整することができ、水素量の調整により発電電力量
は概6.6kW〜4.6kWの概3割の範囲で電気出力
制御ができた。なお、本実施例では行わなかったが、供
給されている原料メタンガスから生成する水素によるシ
ステムの熱自立ができなくなっても、水素保持部40に
蓄えられている水素を燃焼することにより熱を供給する
ことも可能であるため、SOFC10への水素量の調整
により、電力及び系外に取り出す水素の量の調整範囲を
より拡大することもできる。
<< Embodiment 2 >> Next, an embodiment of the invention described in claim 3 of the present application will be described. Table 3 shows the co-production system according to claim 1 of the present application. / H shows the production amount of electric power, hydrogen, and aromatic hydrocarbons at the time of steady operation in which the raw material methane gas is supplied at a temperature of / h and is thermally self-sustaining. At this time, the amount of hydrogen supplied to the hydrogen holding unit 40 was 16.53 kg / day. The aromatic hydrocarbon components separated in the aromatic hydrocarbon separation unit 22 are benzene 46.43 kg / day and naphthalene 2
It was 2.85 kg / day. When all of the hydrogen supplied to the hydrogen holding unit 40 was supplied to the SOFC 10, approximately 6.
A power generation output of 6 kW was obtained. At this time, the hydrogen supplied to the SOFC 10 from the hydrogen holding unit 40 is 100% to about 70% of the hydrogen supplied to the hydrogen holding unit 40 while the co-production system of the present invention is thermally self-sustained and steadily operating. By adjusting the amount of hydrogen, the amount of generated electric power could be controlled in the range of approximately 6.6 kW to 4.6 kW in the range of approximately 30%. Although not performed in this embodiment, even if the system cannot be thermally self-sustained by the hydrogen generated from the supplied raw methane gas, the heat is supplied by burning the hydrogen stored in the hydrogen holding unit 40. Since it is also possible to adjust the amount of hydrogen to the SOFC 10, it is possible to further expand the adjustment range of the amount of electric power and the amount of hydrogen taken out of the system.

【0058】[0058]

【表3】 [Table 3]

【0059】《実施例3》次に本願請求項4に記載の発
明の実施例を示す。本願請求項2の併産システムに5
N./hの原料メタンガスを供給し熱的に自立した定常
運転時において、発電量、水素及び有機ハイドライドの
生成量を調整するべく水素保持部40からSOFC10
に供給する水素量を制御した。芳香族炭化水素分離部2
2を経て芳香族炭化水素保持部60に保持された芳香族
は、ベンゼン46.43kg/日、ナフタレン22.8
5kg/日であった。また、芳香族炭化水素分離部22
を経て水素分離部23で分離された水素の量は16.5
3kg/日であった。芳香族炭化水素保持部60で保持
された芳香族炭化水素のうちナフタレンと、水素保持部
40に保持される水素を水素化反応器50に導入し、水
素化触媒51に接触させてデカリンに改質し有機ハイド
ライド分離部52にてデカリンを抽出した。このとき、
SOFC10に水素分離部23で分離された16.53
kg/日の水素を全量供給すると、SOFC10の発電
量は6.61kWとなり、デカリンは生成されなかっ
た。徐々にSOFC10への水素供給量を減少し、水素
化反応器50に水素を供給していくとデカリンが生成さ
れたが、ナフタレンの水素化のための水素量が不足する
ためナフタレンが残留した。また、SOFC10への水
素供給量が14.74kg/日となったとき、芳香族炭
化水素保持部60で保持された芳香族炭化水素のうちナ
フタレン全量がデカリンに改質された。このときのSO
FC10の発電量は5.9kWであった。さらに、SO
FC10への水素供給量を減少していくと、芳香族炭化
水素保持部60で保持された芳香族炭化水素のうちナフ
タレン全量がデカリンに改質された上で、水素が残留し
た。ただし、SOFC10への水素供給量を11.57
kg/日以下にするとSOFC10の高温オフガス及び
SOFC10本体の反応熱による熱量が不足し、本シス
テム熱的に自立しなくなった。このように、本システム
が熱的に自立した定常運転時において、SOFC10へ
の水素供給量を11.57kg/日から16.53kg
/日に調整することで、発電量は4.63kWから6.
61kWの範囲で調整されるとともに、水素、芳香族炭
化水素及び有機ハイドライドの生成量を調整することが
できた。
<< Embodiment 3 >> Next, an embodiment of the invention described in claim 4 of the present application will be described. 5 in the co-production system of claim 2 of the present application
N. In a steady operation in which the raw material methane gas is supplied at a rate of 1 / h and the thermal operation is self-sustaining, the SOFC 10
The amount of hydrogen supplied to was controlled. Aromatic hydrocarbon separation unit 2
The aromatics held in the aromatic hydrocarbon holding part 60 via 2 are benzene 46.43 kg / day and naphthalene 22.8.
It was 5 kg / day. In addition, the aromatic hydrocarbon separation unit 22
The amount of hydrogen separated in the hydrogen separation unit 23 through 16.5 is 16.5.
It was 3 kg / day. Of the aromatic hydrocarbons held by the aromatic hydrocarbon holding unit 60, naphthalene and hydrogen held by the hydrogen holding unit 40 are introduced into the hydrogenation reactor 50 and brought into contact with the hydrogenation catalyst 51 to be converted into decalin. Decalin was extracted in the purified organic hydride separator 52. At this time,
16.53 separated into the SOFC 10 by the hydrogen separation unit 23
When all the hydrogen of kg / day was supplied, the power generation amount of the SOFC 10 was 6.61 kW, and decalin was not produced. Decalin was produced when the hydrogen supply amount to the SOFC 10 was gradually decreased and hydrogen was supplied to the hydrogenation reactor 50, but naphthalene remained because the hydrogen amount for naphthalene hydrogenation was insufficient. Further, when the hydrogen supply amount to the SOFC 10 became 14.74 kg / day, the total amount of naphthalene in the aromatic hydrocarbons held in the aromatic hydrocarbon holding portion 60 was reformed to decalin. SO at this time
The power generation amount of FC10 was 5.9 kW. Furthermore, SO
When the amount of hydrogen supplied to the FC 10 was reduced, the total amount of naphthalene among the aromatic hydrocarbons held in the aromatic hydrocarbon holding portion 60 was reformed to decalin, and then hydrogen remained. However, the amount of hydrogen supplied to the SOFC 10 was 11.57.
When the amount is less than or equal to kg / day, the amount of heat due to the high temperature off-gas of the SOFC 10 and the reaction heat of the SOFC 10 main body was insufficient, and the system became thermally independent. In this way, during steady operation in which the system is thermally self-sustaining, the hydrogen supply amount to the SOFC 10 is 11.57 kg / day to 16.53 kg.
By adjusting the amount per day, the amount of power generation can be changed from 4.63kW to 6.
The amount of hydrogen, aromatic hydrocarbons and organic hydride produced could be adjusted while being adjusted in the range of 61 kW.

【0060】本発明は、以上の発明の実施の形態に限定
されることなく、特許請求の範囲に記載された発明の範
囲内で、種々の変更が可能であり、それらも本発明の範
囲内に包含されるものであることはいうまでもない。
The present invention is not limited to the above-described embodiments of the invention, and various modifications can be made within the scope of the invention described in the claims, and they are also within the scope of the invention. Needless to say, it is included in.

【0061】また、本願発明では、SOFC10に代替
して溶融炭酸塩形燃料電池(以下「MCFC」という)
等の高温型燃料電池を利用することが容易に想定されて
いる。
Further, in the present invention, a molten carbonate fuel cell (hereinafter referred to as "MCFC") is used instead of the SOFC10.
It is easily assumed that a high temperature fuel cell such as

【0062】MCFCは、電解質にアルカリ金属炭酸塩
イオン導伝体を用いた高温型燃料電池であり、空気中の
酸素を酸化剤として、本発明に利用するときは水素を燃
料として供給して作動する。MCFCは概650℃で作
動するため、本願発明の併産システムに利用するとき
は、系外から取り入れる原料ガスをMCFCの顕熱で予
熱した上で、原料ガス又は水素保持部40に保持される
水素を用いた加熱バーナー等外部熱源で概750℃まで
加熱することが必要である。同様に、直接改質器20も
加熱バーナー等外部熱源で加熱し反応熱を供給すること
が必要となる。起動時のみならず上記の熱量の追加に
は、当然に系外より熱供給してもよい。
The MCFC is a high temperature fuel cell using an alkali metal carbonate ion conductor as an electrolyte, and operates by supplying oxygen in the air as an oxidant and hydrogen as a fuel when used in the present invention. To do. Since the MCFC operates at about 650 ° C., when used in the co-production system of the present invention, the raw material gas taken in from outside the system is preheated by the sensible heat of the MCFC and then held in the raw material gas or the hydrogen holding section 40. It is necessary to heat to about 750 ° C. with an external heat source such as a heating burner using hydrogen. Similarly, the direct reformer 20 also needs to be heated by an external heat source such as a heating burner to supply reaction heat. Of course, heat may be supplied from outside the system in addition to the above-mentioned amount of heat not only at startup.

【0063】本願発明のSOFC10をMCFC等の高
温型燃料電池に代替することは、本願発明の主要な技術
的思想の範囲にあると考えられるものであり、実用上
は、SOFC10の導入の困難性などの事情に応じて、
MCFCの利用が選択されることが想定されている。
Substituting the SOFC 10 of the present invention with a high temperature fuel cell such as an MCFC is considered to be within the scope of the main technical idea of the present invention, and practically, it is difficult to introduce the SOFC 10. Depending on circumstances such as
It is envisioned that the use of MCFC will be selected.

【0064】[0064]

【発明の効果】本発明の電力、水素及び芳香族炭化水素
の併産システムによれば、SOFCによる電力を得なが
ら、高温排熱を利用して低級炭化水素含有原料ガスから
高付加価値製品であるベンゼン、トルエン、キシレン及
びナフタレン等の芳香族炭化水素、シクロヘキサン、デ
カリン等の有機ハイドライド及び水素を特に効率的に製
造することができる。また、該水素をSOFCの燃料と
して供給することができ、炭素析出などによる発電効率
の低下や各種トラブルの発生を抑制することができSO
FCの動作が特に高効率かつ安定的に行うことができ
る。このため、電力、水素、芳香族炭化水素及び有機ハ
イドライドのいずれかを生産する従来システムよりも、
エネルギー効率上及び経済計算上の飛躍的な効率化を図
ることができる。
According to the co-production system for electric power, hydrogen and aromatic hydrocarbons of the present invention, high value-added products can be produced from raw material gas containing lower hydrocarbons by utilizing high temperature exhaust heat while obtaining electric power by SOFC. Certain benzene, toluene, xylene and naphthalene aromatic hydrocarbons, cyclohexane, decalin and other organic hydrides and hydrogen can be produced particularly efficiently. Further, the hydrogen can be supplied as a fuel for SOFC, and it is possible to suppress a decrease in power generation efficiency due to carbon deposition or the like and occurrence of various troubles.
The FC operation can be performed particularly efficiently and stably. Therefore, compared to conventional systems that produce electricity, hydrogen, aromatic hydrocarbons and organic hydrides,
It is possible to achieve dramatic improvements in energy efficiency and economic calculation.

【0065】[0065]

【図面の簡単な説明】[Brief description of drawings]

【図1】電力、水素及び芳香族炭化水素の併産システム
の基本構成を示した図。
FIG. 1 is a diagram showing a basic configuration of a co-production system of electric power, hydrogen, and aromatic hydrocarbons.

【図2】芳香族炭化水素分離部に水素分離部を置換配置
した構成を示した図
FIG. 2 is a diagram showing a configuration in which a hydrogen separation unit is replaced with an aromatic hydrocarbon separation unit.

【図3】電力、水素、芳香族炭化水素及び有機ハイドラ
イドの併産システムの基本構成を示した図。
FIG. 3 is a diagram showing a basic configuration of a co-production system of electric power, hydrogen, aromatic hydrocarbons, and organic hydride.

【図4】電力、水素及び芳香族炭化水素の併産システム
における水素保持部の水素供給路への調整弁の配置例を
示した図。
FIG. 4 is a diagram showing an example of arrangement of adjusting valves in a hydrogen supply passage of a hydrogen holding unit in a co-production system of electric power, hydrogen, and aromatic hydrocarbons.

【図5】電力、水素、芳香族炭化水素及び有機ハイドラ
イドの併産システムにおける水素保持部の水素供給路へ
の調整弁の配置例を示した図。
FIG. 5 is a diagram showing an example of arrangement of adjusting valves in a hydrogen supply passage of a hydrogen holding unit in a co-production system of electric power, hydrogen, aromatic hydrocarbons, and organic hydride.

【符号の説明】[Explanation of symbols]

10:固体酸化物形燃料電池 20:低級炭化水素直接改質器 21:低級炭化水素直接改質触媒 22:芳香族炭化水素分離部 23:水素分離部 30:熱交換部 40:水素保持部 50:芳香族炭化水素水素化反応器 51:水素化触媒 52:有機ハイドライド分離部 60:芳香族炭化水素保持部 70:弁 10: Solid oxide fuel cell 20: Lower hydrocarbon direct reformer 21: Lower hydrocarbon direct reforming catalyst 22: Aromatic hydrocarbon separation part 23: Hydrogen separation unit 30: Heat exchange section 40: Hydrogen holding part 50: Aromatic hydrocarbon hydrogenation reactor 51: Hydrogenation catalyst 52: Organic hydride separator 60: Aromatic hydrocarbon holding part 70: valve

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C07C 15/04 C07C 15/04 15/24 15/24 H01M 8/00 H01M 8/00 Z 8/12 8/12 // C07B 61/00 300 C07B 61/00 300 (72)発明者 入谷 淳一 東京都中央区銀座6丁目15番1号 電源開 発株式会社内 (72)発明者 笹津 浩司 東京都中央区銀座6丁目15番1号 電源開 発株式会社内 (72)発明者 本田 正人 東京都中央区銀座6丁目15番1号 電源開 発株式会社内 Fターム(参考) 4G040 BA03 BB03 4H006 AA02 AC11 AC28 BA14 BA55 DA25 4H039 CA41 CB10 CF10 CH10 5H026 AA06 5H027 AA06 BA01 BA16 DD05 MM08─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) C07C 15/04 C07C 15/04 15/24 15/24 H01M 8/00 H01M 8/00 Z 8/12 8 / 12 // C07B 61/00 300 C07B 61/00 300 (72) Inventor Junichi Iriya 6-15-1 Ginza, Chuo-ku, Tokyo Power source development Co., Ltd. (72) Inventor Koji Sasazu Ginza, Chuo-ku, Tokyo 6-15-1 Power supply development Co., Ltd. (72) Inventor Masato Honda 6-15-1 Ginza Chuo-ku, Tokyo Power development Co., Ltd. F-term (reference) 4G040 BA03 BB03 4H006 AA02 AC11 AC28 BA14 BA55 DA25 4H039 CA41 CB10 CF10 CH10 5H026 AA06 5H027 AA06 BA01 BA16 DD05 MM08

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 固体酸化物形燃料電池10と、低級炭化
水素直接改質器20と、芳香族炭化水素分離部22と、
水素分離部23と、熱交換部30と、水素保持部40と
を有する電力、水素及び芳香族炭化水素の併産システム
であって、 固体酸化物形燃料電池10は、水素を燃料として供給さ
れ発電するとともに高温の余熱を生成し、 低級炭化水素直接改質器20は、低級炭化水素直接改質
触媒21の存在下で反応熱を供給されて、系外より取り
入れた低級炭化水素含有原料ガスを水素及び芳香族炭化
水素に改質し、芳香族炭化水素分離部22及び水素分離
部23を介して、水素と芳香族炭化水素とを分離して生
成し、 固体酸化物形燃料電池10の余熱を利用して、熱交換部
30により低級炭化水素含有原料ガスを予熱するととも
に低級炭化水素直接改質器20に反応熱を供給し、かつ
低級炭化水素直接改質器20により改質、分離する水素
の全部又は一部を固体酸化物形燃料電池10の燃料とし
て利用することを特徴とする電力、水素及び芳香族炭化
水素の併産システム。
1. A solid oxide fuel cell 10, a lower hydrocarbon direct reformer 20, an aromatic hydrocarbon separator 22,
A co-production system of electric power, hydrogen and aromatic hydrocarbons having a hydrogen separation unit 23, a heat exchange unit 30, and a hydrogen holding unit 40. The solid oxide fuel cell 10 is supplied with hydrogen as a fuel. The lower hydrocarbon direct reformer 20 is supplied with reaction heat in the presence of the lower hydrocarbon direct reforming catalyst 21, and generates lower temperature hydrocarbon-containing raw material gas taken from outside the system. To hydrogen and aromatic hydrocarbons, and hydrogen and aromatic hydrocarbons are separated and generated through the aromatic hydrocarbon separation part 22 and the hydrogen separation part 23, and the solid oxide fuel cell 10 Utilizing the residual heat, the heat exchange section 30 preheats the lower hydrocarbon-containing raw material gas, supplies reaction heat to the lower hydrocarbon direct reformer 20, and reforms and separates by the lower hydrocarbon direct reformer 20. All of the hydrogen Co-production system of power, and aromatic hydrocarbons, which comprises utilizing a part as a fuel for a solid oxide fuel cell 10.
【請求項2】 固体酸化物形燃料電池10と、低級炭化
水素直接改質器20と、芳香族炭化水素分離部22と、
水素分離部23と、熱交換部30と、水素保持部40
と、芳香族炭化水素保持部60と、芳香族炭化水素を水
素化する芳香族炭化水素水素化反応器50と、有機ハイ
ドライド分離部52とを有する電力、水素、芳香族炭化
水素及び有機ハイドライドの併産システムであって、 固体酸化物形燃料電池10は、水素を燃料として供給さ
れ発電するとともに高温の余熱を生成し、 低級炭化水素直接改質器20は、低級炭化水素直接改質
触媒21の存在下で反応熱を供給されて、系外より取り
入れた低級炭化水素含有原料ガスを水素及び芳香族炭化
水素に改質し、芳香族炭化水素分離部22及び水素分離
部23を介して、水素と芳香族炭化水素とを分離して生
成し、 芳香族炭化水素水素化反応器50は、水素化触媒51の
存在下で、芳香族炭化水素分離部22及び水素分離部2
3から分離される水素及び芳香族炭化水素を全部又は一
部を利用して有機ハイドライドに改質し、有機ハイドラ
イド分離部52及び水素分離部23を介して、水素及び
芳香族炭化水素と有機ハイドライドに分離して生成し、 固体酸化物形燃料電池10の高熱の余熱を利用して、熱
交換部30により低級炭化水素含有原料ガスを予熱する
とともに低級炭化水素直接改質器20に反応熱を供給
し、低級炭化水素直接改質器20により改質、分離する
水素の全部又は一部を固体酸化物形燃料電池10の燃料
として利用することを特徴とする電力、水素、芳香族炭
化水素及び有機ハイドライドの併産システム。
2. A solid oxide fuel cell 10, a lower hydrocarbon direct reformer 20, an aromatic hydrocarbon separation section 22,
Hydrogen separation unit 23, heat exchange unit 30, and hydrogen holding unit 40
Of electric power, hydrogen, aromatic hydrocarbons and organic hydrides having an aromatic hydrocarbon holding unit 60, an aromatic hydrocarbon hydrogenation reactor 50 for hydrogenating aromatic hydrocarbons, and an organic hydride separation unit 52. In the co-production system, the solid oxide fuel cell 10 is supplied with hydrogen as a fuel to generate power and generates high-temperature residual heat, and the lower hydrocarbon direct reformer 20 is a lower hydrocarbon direct reforming catalyst 21. In the presence of the reaction heat, the lower hydrocarbon-containing raw material gas introduced from the outside of the system is reformed into hydrogen and aromatic hydrocarbons, and the aromatic hydrocarbon separation part 22 and the hydrogen separation part 23 Aromatic hydrocarbon hydrogenation reactor 50 is produced by separating hydrogen and aromatic hydrocarbons. In the presence of hydrogenation catalyst 51, aromatic hydrocarbon separation unit 22 and hydrogen separation unit 2 are separated.
The hydrogen and aromatic hydrocarbons separated from No. 3 are reformed into organic hydrides by utilizing all or some of them, and the hydrogens and aromatic hydrocarbons and the organic hydrides are passed through the organic hydride separation unit 52 and the hydrogen separation unit 23. Generated by being separated into, and using the high heat residual heat of the solid oxide fuel cell 10, the lower hydrocarbon-containing raw material gas is preheated by the heat exchange section 30 and the reaction heat is supplied to the lower hydrocarbon direct reformer 20. Electricity, hydrogen, aromatic hydrocarbons, and hydrogen, characterized in that all or part of hydrogen supplied and reformed and separated by the lower hydrocarbon direct reformer 20 is used as fuel for the solid oxide fuel cell 10. Organic hydride co-production system.
【請求項3】 水素保持部40により、水素分離部23
により分離される水素の固体酸化物形燃料電池10への
供給量を供給路に具備した弁等の調整手段により適宜調
整し、発電量及び水素生成量を調整可能とする請求項1
記載の電力、水素及び芳香族炭化水素の併産システム
3. The hydrogen separation unit 23 is constituted by the hydrogen holding unit 40.
2. The amount of hydrogen generated by the process of supplying hydrogen to the solid oxide fuel cell 10 is appropriately adjusted by adjusting means such as a valve provided in the supply path, so that the amount of power generation and the amount of hydrogen generation can be adjusted.
Described electricity, hydrogen and aromatic hydrocarbon co-production system
【請求項4】 水素保持部40により、水素分離部23
により分離される水素の固体酸化物形燃料電池10又は
/及び芳香族炭化水素水素化反応器50への供給量を供
給路に具備した弁等の調整手段により適宜調整し、発電
量、水素発生量、有機ハイドライド生成量を相互に調整
可能とする請求項2記載の電力、水素、芳香族炭化水素
及び有機ハイドライドの併産システム
4. The hydrogen separation unit 23 is constituted by the hydrogen holding unit 40.
The amount of hydrogen separated by means of the solid oxide fuel cell 10 and / or the aromatic hydrocarbon hydrogenation reactor 50 is appropriately adjusted by adjusting means such as a valve provided in the supply path to generate power and generate hydrogen. 3. The co-production system for electric power, hydrogen, aromatic hydrocarbons and organic hydrides according to claim 2, wherein the amount and the amount of organic hydride produced are mutually adjustable.
JP2002097388A 2002-02-22 2002-02-22 Electricity, hydrogen and aromatic hydrocarbon co-production system Expired - Lifetime JP4697921B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002097388A JP4697921B2 (en) 2002-02-22 2002-02-22 Electricity, hydrogen and aromatic hydrocarbon co-production system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002097388A JP4697921B2 (en) 2002-02-22 2002-02-22 Electricity, hydrogen and aromatic hydrocarbon co-production system

Publications (2)

Publication Number Publication Date
JP2003249254A true JP2003249254A (en) 2003-09-05
JP4697921B2 JP4697921B2 (en) 2011-06-08

Family

ID=28671909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002097388A Expired - Lifetime JP4697921B2 (en) 2002-02-22 2002-02-22 Electricity, hydrogen and aromatic hydrocarbon co-production system

Country Status (1)

Country Link
JP (1) JP4697921B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005350299A (en) * 2004-06-10 2005-12-22 Hitachi Ltd Hydrogen fuel production system, hydrogen fuel production method and hydrogen fuel production program
JP2006062884A (en) * 2004-08-24 2006-03-09 Ishikawajima Harima Heavy Ind Co Ltd Fuel reformer and fuel reforming method
JP2006273635A (en) * 2005-03-29 2006-10-12 Idemitsu Kosan Co Ltd Reformer and fuel cell system
JP2011116707A (en) * 2009-12-04 2011-06-16 Meidensha Corp Method for producing lower hydrocarbon and aromatic compound and production catalyst
JP2011213559A (en) * 2010-04-01 2011-10-27 Toshiba Corp Reformed gas or hydrogen production system
JP2012522821A (en) * 2009-04-06 2012-09-27 ビーエーエスエフ ソシエタス・ヨーロピア Method for converting natural gas to an aromatic compound while generating electric current and hydrogen by electrochemically removing hydrogen
JP2012522820A (en) * 2009-04-06 2012-09-27 ビーエーエスエフ ソシエタス・ヨーロピア Method for converting natural gas to aromatics by electrochemical separation of hydrogen and method for electrochemically converting hydrogen to water

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005350299A (en) * 2004-06-10 2005-12-22 Hitachi Ltd Hydrogen fuel production system, hydrogen fuel production method and hydrogen fuel production program
JP2006062884A (en) * 2004-08-24 2006-03-09 Ishikawajima Harima Heavy Ind Co Ltd Fuel reformer and fuel reforming method
JP2006273635A (en) * 2005-03-29 2006-10-12 Idemitsu Kosan Co Ltd Reformer and fuel cell system
JP2012522821A (en) * 2009-04-06 2012-09-27 ビーエーエスエフ ソシエタス・ヨーロピア Method for converting natural gas to an aromatic compound while generating electric current and hydrogen by electrochemically removing hydrogen
JP2012522820A (en) * 2009-04-06 2012-09-27 ビーエーエスエフ ソシエタス・ヨーロピア Method for converting natural gas to aromatics by electrochemical separation of hydrogen and method for electrochemically converting hydrogen to water
JP2011116707A (en) * 2009-12-04 2011-06-16 Meidensha Corp Method for producing lower hydrocarbon and aromatic compound and production catalyst
JP2011213559A (en) * 2010-04-01 2011-10-27 Toshiba Corp Reformed gas or hydrogen production system

Also Published As

Publication number Publication date
JP4697921B2 (en) 2011-06-08

Similar Documents

Publication Publication Date Title
JP4762314B2 (en) Hydrogen generator and method of using the same
JP3439770B2 (en) Fuel cell power generation system
EP1874682B1 (en) Process and apparatus for thermally integrated hydrogen generation system
JP4684069B2 (en) Production method of high purity hydrogen
JP2004531440A (en) Apparatus and method for producing hydrogen
JPH07315801A (en) System for producing high-purity hydrogen, production of high-purity hydrogen and fuel cell system
EP1874680A2 (en) Ammonia-based hydrogen generation apparatus and method for using same
JP5288840B2 (en) Hydrogen production system
JP5274547B2 (en) Fuel cell system operating with liquefied petroleum gas and method of use thereof
WO2002070109A1 (en) Process and apparatus for removing sulfur compounds from hydrocarbon streams
JP2009242171A (en) Apparatus for producing hydrogen and fuel cell system using the same
JP2003007321A (en) Direct reforming combined system of hybrid fuel cell using low-grade hydrocarbon
TW574137B (en) Process and apparatus for producing hydrogen
JP2004284875A (en) Hydrogen production system, and fuel cell system
JP4697921B2 (en) Electricity, hydrogen and aromatic hydrocarbon co-production system
WO2022049147A1 (en) Production of syntehsis gas in a plant comprising an electric steam reformer downstream of fired reformer
JP2005203266A (en) Hydrogen production method and hydrogen production system
WO2007132693A1 (en) Method for treatment of drain in hydrogen production and hydrogen production system
JP4297478B2 (en) Lower hydrocarbon direct reforming combined equipment
JP4008051B2 (en) Power generation method
JP2007076992A (en) Apparatus for producing hydrogen and fuel cell system using the same
JP2001202982A (en) Solid polymer fuel cell system
JP5301265B2 (en) Fuel cell system comprising an oxygen generator and a hydrogen generator
JP2003183008A (en) Hydrogen generating apparatus
JPH08321321A (en) Fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050218

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20050318

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050318

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081021

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110228

R150 Certificate of patent or registration of utility model

Ref document number: 4697921

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term