JP2011116707A - Method for producing lower hydrocarbon and aromatic compound and production catalyst - Google Patents

Method for producing lower hydrocarbon and aromatic compound and production catalyst Download PDF

Info

Publication number
JP2011116707A
JP2011116707A JP2009276070A JP2009276070A JP2011116707A JP 2011116707 A JP2011116707 A JP 2011116707A JP 2009276070 A JP2009276070 A JP 2009276070A JP 2009276070 A JP2009276070 A JP 2009276070A JP 2011116707 A JP2011116707 A JP 2011116707A
Authority
JP
Japan
Prior art keywords
methane
catalyst
hydrogen storage
reaction
reforming catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009276070A
Other languages
Japanese (ja)
Other versions
JP5499669B2 (en
Inventor
Yuji Ogawa
裕治 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2009276070A priority Critical patent/JP5499669B2/en
Publication of JP2011116707A publication Critical patent/JP2011116707A/en
Application granted granted Critical
Publication of JP5499669B2 publication Critical patent/JP5499669B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To preferentially produce benzenes and C2 compounds (ethane, ethylene or the like). <P>SOLUTION: A metallosilicate (methane direct reforming catalyst 3) supporting a catalytic metal and a hydrogen storage substance 4 are contacted with methane to produce a lower hydrocarbon and an aromatic compound. In performing a catalytic reaction, a mixture of the methane direct reforming catalyst 3 and the hydrogen storage substance 4 may be packed into a reaction tube 2 and methane is catalytically reacted. The similar effect is obtained by alternately packing layers of the methane direct reforming catalyst 3 and layers of the hydrogen storage substance 4 into a reaction tube 2 and catalytically reacting methane. A metal titanium, titanium carbide, etc., may be exemplified as the hydrogen storage substance 4. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明はメタンを主成分とする天然ガス、バイオガス、メタンハイドレートの高度利用に関する。天然ガス、バイオガス、メタンハイドレートは地球温暖化対策として最も効果的なエネルギー資源と考えられ、その利用技術に関心が高まっている。メタン資源はそのままクリーン性を活かして次世代の新しい有機資源、燃料電池用の水素資源として注目されている。   The present invention relates to advanced utilization of natural gas, biogas, and methane hydrate mainly composed of methane. Natural gas, biogas, and methane hydrate are considered to be the most effective energy resources as a countermeasure against global warming, and there is an increasing interest in their utilization technologies. Methane resources are attracting attention as the next generation of new organic resources and hydrogen resources for fuel cells, taking advantage of cleanliness.

本発明はメタンからプラスチック類などの化学製品原料であるベンゼンを主成分とする芳香族化合物とエタン、エチレンなどC2化合物を効率よく製造するための触媒化学変換技術及びその触媒製造方法に関する。   The present invention relates to a catalytic chemical conversion technique for efficiently producing an aromatic compound mainly composed of benzene which is a raw material for chemical products such as plastics from methane, and a C2 compound such as ethane and ethylene, and a method for producing the catalyst.

メタン等の低級炭化水素からベンゼン等の芳香族化合物と水素とを製造する方法としては触媒の存在下に低級炭化水素を反応させる方法が知られている。この際の触媒としてはZSM−5系のゼオライトに担持されたモリブデンが有効とされている(非特許文献1)。   As a method for producing an aromatic compound such as benzene and hydrogen from a lower hydrocarbon such as methane, a method of reacting the lower hydrocarbon in the presence of a catalyst is known. As the catalyst at this time, molybdenum supported on ZSM-5-based zeolite is effective (Non-patent Document 1).

これらの反応では、芳香族化合物としてベンゼンやトルエン、ナフタレンが多く生成する。   In these reactions, a large amount of benzene, toluene and naphthalene are produced as aromatic compounds.

メタンからベンゼン等の芳香族化合物と水素を製造する反応では、下記の式(1)、(2)のような反応が進行する。
6CH4 → C66 + 9H2 …(1)
10CH4 → C108 + 16H2 …(2)
In the reaction of producing an aromatic compound such as benzene and hydrogen from methane, reactions such as the following formulas (1) and (2) proceed.
6CH 4 → C 6 H 6 + 9H 2 (1)
10CH 4 → C 10 H 8 + 16H 2 (2)

特開平06−249983号公報Japanese Patent Laid-Open No. 06-249983

JOURNAL OF CATALYSIS、1997、pp.165、pp.150−161JOURNAL OF CATALYSIS, 1997, pp. 165, pp. 150-161

しかしながら、メタンから直接的にエタンやエチレンなどを選択的に製造する反応の報告例は少ない。また、メタンから直接的にエタンやエチレンを製造する場合、副反応としてベンゼンよりも分子量が大きいナフタレンが生成してしまうという問題があった。ナフタレンは常温で固体であるので取扱いが困難であった。   However, there are few reports of reactions that selectively produce ethane, ethylene, etc. directly from methane. Further, when ethane or ethylene is produced directly from methane, there is a problem that naphthalene having a molecular weight larger than that of benzene is generated as a side reaction. Naphthalene was difficult to handle because it was solid at room temperature.

上記課題を解決する本発明に係る低級炭化水素及び芳香族化合物の製造方法は、触媒金属を担持したメタロシリケートと、水素吸蔵物質に、メタンを接触させて低級炭化水素及び芳香族化合物を製造することを特徴としている。   The method for producing lower hydrocarbons and aromatic compounds according to the present invention for solving the above-mentioned problems is to produce lower hydrocarbons and aromatic compounds by bringing methane into contact with a metallosilicate carrying a catalytic metal and a hydrogen storage material. It is characterized by that.

また、本発明に係る低級炭化水素及び芳香族化合物の製造方法は、上記低級炭化水素及び芳香族化合物の製造方法において、前記水素吸蔵物質がチタン、若しくは炭化チタンのいずれかであることを特徴としている。   The method for producing lower hydrocarbons and aromatic compounds according to the present invention is characterized in that, in the method for producing lower hydrocarbons and aromatic compounds, the hydrogen storage material is either titanium or titanium carbide. Yes.

そして、本発明に係る低級炭化水素及び芳香族化合物の製造方法は、上記低級炭化水素及び芳香族化合物の製造方法において、前記メタロシリケートと前記水素吸蔵物質を混合したものにメタンを接触させることを特徴としている。   The method for producing lower hydrocarbons and aromatic compounds according to the present invention comprises contacting methane with a mixture of the metallosilicate and the hydrogen storage material in the method for producing lower hydrocarbons and aromatic compounds. It is a feature.

さらに、本発明に係る低級炭化水素及び芳香族化合物の製造方法は、上記低級炭化水素及び芳香族化合物の製造方法において、前記メタロシリケートの層と前記水素吸蔵物質の層を交互に配置したものにメタンを接触させることを特徴としている。   Furthermore, the method for producing lower hydrocarbons and aromatic compounds according to the present invention is the method for producing lower hydrocarbons and aromatic compounds, wherein the metallosilicate layer and the hydrogen storage material layer are alternately arranged. It is characterized by contacting methane.

また、上記課題を解決する本発明に係る低級炭化水素及び芳香族化合物製造触媒は、メタンを接触反応させて、低級炭化水素及び芳香族化合物を製造する触媒であって、触媒金属を担持したメタロシリケートと、水素吸蔵物質を混合してなることを特徴としている。   The lower hydrocarbon and aromatic compound production catalyst according to the present invention for solving the above problems is a catalyst for producing a lower hydrocarbon and an aromatic compound by catalytic reaction of methane, and comprises a metallo metal carrying a catalyst metal. It is characterized by mixing silicate and hydrogen storage material.

以上の発明によれば、ベンゼン類とエタン、エチレン等のC2類を優先的に製造することができる。   According to the above invention, benzene and C2 such as ethane and ethylene can be preferentially produced.

本発明に係るメタン直接改質触媒及び水素吸蔵物質の充填形態を例示する図であり、(a)メタン直接改質触媒の層と水素吸蔵物質の層を交互に配置した図、(b)メタン直接改質触媒と水素吸蔵物質を混合して配置した図。It is a figure which illustrates the filling form of the methane direct reforming catalyst and hydrogen storage material which concerns on this invention, (a) The figure which arrange | positioned the layer of the methane direct reforming catalyst and the layer of hydrogen storage material alternately, (b) Methane The figure which mixed and arranged the direct reforming catalyst and the hydrogen storage material. 本発明に係る低級炭化水素及び芳香族化合物の製造方法で用いた固定床流通式反応装置の概略図。Schematic of the fixed bed flow type reactor used in the method for producing lower hydrocarbons and aromatic compounds according to the present invention.

本発明の実施形態に係る低級炭化水素及び芳香族化合物の製造方法は、触媒金属を担持したメタロシリケート(例えば、ZSM−5)と水素吸蔵物質(例えば、金属チタンや炭化チタン)を共存させて、低級炭化水素を接触反応させるものである。   In the method for producing lower hydrocarbons and aromatic compounds according to the embodiment of the present invention, a metallosilicate (for example, ZSM-5) supporting a catalytic metal and a hydrogen storage material (for example, metallic titanium or titanium carbide) coexist. The lower hydrocarbon is subjected to catalytic reaction.

そして、本発明の実施形態に係る低級炭化水素及び芳香族化合物の製造触媒は、メタンをベンゼン等の芳香族化合物に転化する触媒(以下、メタン直接改質触媒とする)と水素吸蔵物質より構成される。   The catalyst for producing lower hydrocarbons and aromatic compounds according to the embodiment of the present invention is composed of a catalyst for converting methane into an aromatic compound such as benzene (hereinafter referred to as a methane direct reforming catalyst) and a hydrogen storage material. Is done.

上記低級炭化水素及び芳香族化合物の製造方法及び製造触媒によれば、反応生成物におけるナフタレンの生成を抑制し、C2化合物(例えば、エタン、エチレン等)とベンゼンを優先的に生成することができる。   According to the production method and production catalyst of the lower hydrocarbon and aromatic compound, it is possible to suppress the production of naphthalene in the reaction product and preferentially produce a C2 compound (for example, ethane, ethylene, etc.) and benzene. .

本発明の実施形態に用いられるメタン直接改質触媒は、メタロシリケートに触媒金属を担持することにより調製される。   The methane direct reforming catalyst used in the embodiment of the present invention is prepared by supporting a catalytic metal on a metallosilicate.

メタン直接改質触媒に使用するメタロシリケートとしては、シリカ及びアルミナからなる多孔質体であるモレキュラーシーブ5A(UTA)、フォジャサイト(NaY)及びNaX、ZSM−5、H−ZSM−5のようなアルミノシリケートが例示される。また、リン酸を主成分とするALPO−5、VPI−5等の多孔質担体で、0.6nm〜1.3nmのミクロ細孔やチャンネルからなることを特徴とするゼオライト担体も触媒に使用するメタロシリケート例として挙げられる。その他、シリカを主成分とし一部アルミナを成分として含むメゾ細孔(1nm〜10nm)の筒状細孔(チャンネル)で特徴づけられるFSM−16やMCM−41などのメゾ細孔多孔質担体なども触媒に使用するメタロシリケートとして例示できる。   Metallosilicates used for methane direct reforming catalysts include molecular sieve 5A (UTA), faujasite (NaY) and NaX, ZSM-5, and H-ZSM-5, which are porous bodies made of silica and alumina. An aluminosilicate is exemplified. Further, a zeolite carrier characterized in that it is composed of a porous carrier such as ALPO-5, VPI-5, etc. mainly composed of phosphoric acid and having micropores and channels of 0.6 nm to 1.3 nm is also used for the catalyst. An example of a metallosilicate. In addition, mesoporous porous carriers such as FSM-16 and MCM-41 characterized by cylindrical pores (channels) of mesopores (1 nm to 10 nm) containing silica as a main component and partly alumina as a component, etc. Can also be exemplified as a metallosilicate used in the catalyst.

一方、上記メタロシリケートに担持する触媒金属としては、モリブデン、クロム、バナジウム、レニウム、タングステン等が例示される。また、これらの触媒金属を組み合わせてメタロシリケートに担持してもよい。   On the other hand, examples of the catalyst metal supported on the metallosilicate include molybdenum, chromium, vanadium, rhenium, and tungsten. These catalytic metals may be combined and supported on the metallosilicate.

触媒金属の担持方法についてモリブデンを例示して説明する。上記触媒金属も同様の方法によりメタロシリケートに担持することができる。モリブデンをメタロシリケートに担持させる方法としては、モリブデンを含む前駆体の水溶液をメタロシリケート担体に含浸担持させた後、空気中で加熱処理する方法が一般的である。   The method for supporting the catalytic metal will be described by exemplifying molybdenum. The catalyst metal can also be supported on the metallosilicate by the same method. As a method for supporting molybdenum on a metallosilicate, a method in which an aqueous solution of a precursor containing molybdenum is impregnated and supported on a metallosilicate support and then heat-treated in air is generally used.

モリブデンを含む前駆体の例としては、パラモリブデン酸アンモニウム、リンモリブデン酸、12ケイモリブデン酸、その塩化物、臭化物等のハロゲン化物、硝酸塩、硫酸塩、リン酸塩等の鉱酸塩、炭酸塩、蓚酸塩等のカルボン酸塩等が例示できる。   Examples of precursors containing molybdenum include ammonium paramolybdate, phosphomolybdic acid, 12 silicomolybdic acid, halides such as chlorides and bromides, mineral salts such as nitrates, sulfates and phosphates, carbonates And carboxylates such as oxalates.

具体的な例としては、メタロシリケート担体にモリブデン酸アンモニウムを含浸担持させ、乾燥させた後、空気気流中で250℃〜800℃、好ましくは400℃〜700℃で加熱処理して、モリブデンを担持したメタン直接改質触媒を製造する方法が挙げられる。   As a specific example, a metallosilicate carrier is impregnated and supported with ammonium molybdate, dried, and then heat-treated in an air stream at 250 ° C. to 800 ° C., preferably 400 ° C. to 700 ° C. to support molybdenum. And a method for producing a methane direct reforming catalyst.

上記メタロシリケートに触媒金属を担持する前に、シランカップリング剤による修飾(シラン処理)を施すとよい。シラン処理を行うことにより、メタロシリケート同士の接着性が向上する。   Before carrying the catalyst metal on the metallosilicate, modification with a silane coupling agent (silane treatment) may be performed. By performing the silane treatment, the adhesion between the metallosilicates is improved.

本発明に係るメタン直接改質触媒は、シリカ、アルミナ、粘土などのバインダーを添加して、ペレット状若しくは押出品に成形して使用することができる。   The methane direct reforming catalyst according to the present invention can be used by adding a binder such as silica, alumina, clay, etc., and molding it into pellets or extrudates.

また、本発明に係る水素吸蔵物質は、既知の水素吸蔵物質を用いればよく、Ti、Zr、V、Nb、Mg、La、Pd、Ni、Fe、Cu、Ag、Cr、Thや他の遷移金属等の水素吸蔵金属、2つ以上の前記水素吸蔵金属の組合せ等が例示される。また、1つ以上の前記水素吸蔵金属と、O、Al、Y、Ca、Mo、Co、N、Mn、B、Cの中から1つ以上選んで組合せによる合金等の水素を内部に吸蔵できる物質も水素吸蔵物質として例示できる(例えば、特許文献1)。   The hydrogen storage material according to the present invention may be a known hydrogen storage material, such as Ti, Zr, V, Nb, Mg, La, Pd, Ni, Fe, Cu, Ag, Cr, Th, and other transitions. Examples include a hydrogen storage metal such as a metal, a combination of two or more hydrogen storage metals, and the like. In addition, one or more hydrogen storage metals and one or more of O, Al, Y, Ca, Mo, Co, N, Mn, B, and C can be selected to store hydrogen such as an alloy. A substance can also be illustrated as a hydrogen storage substance (for example, patent document 1).

これらメタン直接改質触媒及び水素吸蔵物質と反応させるメタンには、水素、他の低級炭化水素、希ガス等が含まれていてもよい。ただし、反応させる気体としては、少なくとも50重量%、好ましくは少なくとも70重量%のメタンを含有することが望ましい。   The methane reacted with the methane direct reforming catalyst and the hydrogen storage material may contain hydrogen, other lower hydrocarbons, rare gases, and the like. However, it is desirable that the gas to be reacted contains at least 50% by weight, preferably at least 70% by weight of methane.

本発明の実施形態に係る低級炭化水素及び芳香族炭化水素の製造方法は、回分式あるいは流通式の反応形式で実施することが可能である。特に、固定床、移動床または流動化床等の流通式の反応形式で実施することが好ましい。   The method for producing lower hydrocarbons and aromatic hydrocarbons according to the embodiment of the present invention can be carried out in a batch-type or flow-type reaction mode. In particular, the reaction is preferably carried out in a flow-type reaction mode such as a fixed bed, a moving bed or a fluidized bed.

そして、反応温度は300℃〜900℃、好ましくは450℃〜800℃とし、反応圧力は0.01MPa〜1MPa、好ましくは0.1MPa〜0.7MPaで、メタンをメタン直接改質触媒及び水素吸蔵物質と接触させ触媒反応を行う。   The reaction temperature is 300 ° C. to 900 ° C., preferably 450 ° C. to 800 ° C., the reaction pressure is 0.01 MPa to 1 MPa, preferably 0.1 MPa to 0.7 MPa, and methane is directly reformed with a methane catalyst and hydrogen. Catalytic reaction is carried out in contact with the substance.

本発明において、低級炭化水素とは、炭素数2から炭素数6の飽和、または不飽和炭化水素をさすものとする。炭素数が2〜6の飽和または不飽和炭化水素の例としては、エタン、エチレン、プロパン、プロピレン、n−ブタン、イソブタン、n−ブテン及びイソブテン等が例示できる。また、本発明において、芳香族化合物としては、ベンゼン、トルエン、キシレン等が例示される。   In the present invention, the lower hydrocarbon refers to a saturated or unsaturated hydrocarbon having 2 to 6 carbon atoms. Examples of saturated or unsaturated hydrocarbons having 2 to 6 carbon atoms include ethane, ethylene, propane, propylene, n-butane, isobutane, n-butene, and isobutene. In the present invention, examples of the aromatic compound include benzene, toluene, xylene and the like.

図1に示すように、低級炭化水素及び芳香族化合物の製造反応を行う反応管2には、メタン直接改質触媒3と水素吸蔵物質4が充填される。メタン直接改質触媒3と水素吸蔵物質4の充填形態は、図1(a)のようにメタン直接改質触媒3の層と水素吸蔵物質4の層を交互に配置する充填形態、図1(b)のようにメタン直接改質触媒3と水素吸蔵物質4を物理的に混合した混合物5を充填する充填形態等が例示される。   As shown in FIG. 1, a reaction tube 2 that performs a production reaction of lower hydrocarbons and aromatic compounds is filled with a methane direct reforming catalyst 3 and a hydrogen storage material 4. The filling form of the methane direct reforming catalyst 3 and the hydrogen storage material 4 is a filling form in which the layers of the methane direct reforming catalyst 3 and the layers of the hydrogen storage material 4 are alternately arranged as shown in FIG. As shown in b), a filling form in which the mixture 5 in which the methane direct reforming catalyst 3 and the hydrogen storage material 4 are physically mixed is filled is exemplified.

後述する実施例に示されるように、本発明に係る低級炭化水素及び芳香族化合物の製造方法において、メタン直接改質触媒3の層と水素吸蔵物質4の層を反応管2に交互に配置しても、混合して充填しても、メタンを反応させた時の反応生成物の組成に顕著な変化が生じない。これは、本発明に係る水素吸蔵物質4が、水素または含水素化合物を吸蔵するだけでなく、この水素等の吸放出を繰り返し、さらに何らかの炭化水素の遷移体を形成しているものと考えられ、この吸放出速度とメタン直接改質触媒3の触媒反応速度の差異が少なく、十分速いために反応生成物の組成の変化が生じなかったものと考えられる。一方、前記吸放出速度と前記触媒反応速度の差異が顕著な反応条件で触媒反応を行う場合には、各充填層の条件(厚さ、層の数、充填する順番)の変化により反応性生成物の組成が変化する可能性がある。したがって、図1(a)のように、メタン直接改質触媒3の層と水素吸蔵物質4の層の厚さ、及び重ねる層の数等は、反応生成物の組成が最適になるように適宜設定すればよい。   As shown in the examples described later, in the method for producing lower hydrocarbons and aromatic compounds according to the present invention, the layer of the methane direct reforming catalyst 3 and the layer of the hydrogen storage material 4 are alternately arranged in the reaction tube 2. Even if they are mixed and filled, there is no significant change in the composition of the reaction product when methane is reacted. This is considered that the hydrogen storage material 4 according to the present invention not only stores hydrogen or a hydrogen-containing compound, but also repeatedly absorbs and releases such hydrogen and forms a hydrocarbon transition body. The difference between the absorption / release rate and the catalytic reaction rate of the methane direct reforming catalyst 3 is small, and it is considered that the change in the composition of the reaction product did not occur because it was sufficiently fast. On the other hand, when the catalytic reaction is performed under a reaction condition in which the difference between the absorption / release rate and the catalytic reaction rate is significant, the reactivity is generated by changing the conditions (thickness, number of layers, filling order) of each packed bed. The composition of the product may change. Accordingly, as shown in FIG. 1 (a), the thickness of the methane direct reforming catalyst 3 and the layer of the hydrogen storage material 4, the number of layers to be stacked, and the like are appropriately set so that the composition of the reaction product is optimized. You only have to set it.

本発明の実施形態に係る低級炭化水素及び芳香族化合物の製造方法及び製造触媒について、具体的な実施例を挙げて詳細に説明する。なお、本発明に係る低級炭化水素及び芳香族化合物の製造方法及び製造触媒は、この実施例に限定されるものではない。例えば、前記実施例ではモリブデンの担持量が焼成後の触媒全体量に対して6重量%となっているが、その担持量が触媒全体量に対して2〜12重量%の範囲で前述の実施例と同様な効果を奏する。   The production method and production catalyst for lower hydrocarbons and aromatic compounds according to the embodiment of the present invention will be described in detail with specific examples. In addition, the manufacturing method and manufacturing catalyst of the lower hydrocarbon and aromatic compound which concern on this invention are not limited to this Example. For example, in the above embodiment, the supported amount of molybdenum is 6% by weight with respect to the total amount of the catalyst after calcination. The effect is similar to the example.

(実施例1)
本発明の実施例1に係る低級炭化水素及び芳香族化合物の製造方法は、図1(a)に示すようにメタン直接改質触媒3の層と水素吸蔵物質4(金属チタン)の層を交互に重ねて反応管2に配置し、配置されたメタン直接改質触媒3と水素吸蔵物質4にメタンを接触反応させたものである。
Example 1
In the method for producing lower hydrocarbons and aromatic compounds according to Example 1 of the present invention, as shown in FIG. 1 (a), the layers of the methane direct reforming catalyst 3 and the layers of the hydrogen storage material 4 (metallic titanium) are alternately formed. The methane is placed in the reaction tube 2 so as to contact the methane direct reforming catalyst 3 and the hydrogen storage material 4 with methane.

1.触媒の作成方法
実施例1では、メタン直接改質触媒に用いるメタロシリケートとしてアンモニウム型ZSM−5(SiO2/Al23=25〜70)を用いた。また、水素吸蔵物質としては、粒子径が45μm〜75μmの金属チタン粉末(和光純薬製)を使用した。なお、金属チタンを一旦圧縮成型して1〜2mmの顆粒状にして使用した場合でも同様の効果を得ることができる。
1. Catalyst Preparation Method In Example 1, ammonium type ZSM-5 (SiO 2 / Al 2 O 3 = 25 to 70) was used as the metallosilicate used for the methane direct reforming catalyst. Further, as the hydrogen storage material, metal titanium powder (manufactured by Wako Pure Chemical Industries) having a particle size of 45 μm to 75 μm was used. In addition, the same effect can be acquired even when metal titanium is once compression-molded and used in the form of granules of 1 to 2 mm.

(1)配合
無機成分の配合:ZSM−5(82.5重量%)、粘土(12.5重量%)、ガラス繊維(5重量%)
全体配合:前記無機成分(76.5重量%)、有機バインダー(17.3重量%)、水分(24.3重量%)
(2)成型
前記配合比率で前記無機成分と有機バインダーと水分とを配合し混練手段(ニーダ)によって混合、混練した。次に、この混合体を真空押し出し成型機によって棒状(径2.4mm×長さ5mm)に成型した。この時の成型時の押し出し圧力は2〜8MPaに設定した。
(1) Blending Blending of inorganic components: ZSM-5 (82.5 wt%), clay (12.5 wt%), glass fiber (5 wt%)
Total formulation: inorganic component (76.5 wt%), organic binder (17.3 wt%), moisture (24.3 wt%)
(2) Molding The inorganic component, organic binder, and moisture were blended at the blending ratio, and mixed and kneaded by a kneading means (kneader). Next, this mixture was molded into a rod shape (diameter 2.4 mm × length 5 mm) with a vacuum extrusion molding machine. The extrusion pressure at the time of molding at this time was set to 2 to 8 MPa.

通常炭化水素を改質するために使用する触媒担体は数μmから数百μmの粒径の粒子を用いて流動床触媒として使用している。この場合の触媒担体の製造方法は触媒の担体材料と有機バインダー、無機バインダー(通常は粘土を使用)と水を混合しスラリー状としてスプレードライヤーで造粒成型(成型圧力はない)した後に焼成する。この場合、成型圧力がないため、焼成速度を確保するために焼成助材として加える粘土の添加量が40〜60重量%程度であった。ここでは触媒の成型を真空押出成型機を用いて高圧成型することにより焼成助材として加える粘土等の添加材の添加量を15〜25重量%に低減することができる。そのため触媒活性も向上させることができる。   Usually, the catalyst support used for reforming hydrocarbons is used as a fluidized bed catalyst using particles having a particle size of several μm to several hundred μm. In this case, the catalyst carrier is produced by mixing a catalyst carrier material, an organic binder, an inorganic binder (usually using clay) and water, forming a slurry and granulating it with a spray dryer (no molding pressure), followed by firing. . In this case, since there was no molding pressure, the amount of clay added as a firing aid to ensure the firing rate was about 40 to 60% by weight. Here, the amount of the additive such as clay added as a firing aid can be reduced to 15 to 25% by weight by molding the catalyst at a high pressure using a vacuum extrusion molding machine. Therefore, the catalytic activity can also be improved.

(3)乾燥、焼成
乾燥工程では成型工程時に添加した水分を除去するために70℃で約12時間乾燥した後、90℃で36時間乾燥した。焼成工程では空気中で550℃、5時間焼成した。焼成工程での焼成温度は550〜800℃の範囲とした。550℃以下では担体の強度低下、800℃以上では特性(活性)の低下が起こるためである。焼成工程における昇温速度及び降温速度は90〜100℃/時に設定した。このとき、成型時に添加した有機バインダーが瞬時に燃焼しないように250〜500℃の温度範囲の中に2〜6時間程度の温度キープを2回実施してバインダーを除去した。昇温速度及び降温速度が前記速度以上であってバインダーを除去するキープ時間を確保しない場合にはバインダーが瞬時に燃焼して焼成体の強度が低下するためである。
(3) Drying and calcination In the drying process, the film was dried at 70 ° C. for about 12 hours and then dried at 90 ° C. for 36 hours in order to remove moisture added during the molding process. In the firing step, firing was performed in air at 550 ° C. for 5 hours. The firing temperature in the firing step was in the range of 550 to 800 ° C. This is because the strength of the carrier is lowered at 550 ° C. or lower, and the property (activity) is lowered at 800 ° C. or higher. The temperature increase rate and temperature decrease rate in the firing step were set to 90 to 100 ° C./hour. At this time, in order to prevent the organic binder added at the time of molding from burning instantaneously, the binder was removed by performing temperature keeping for about 2 to 6 hours twice in a temperature range of 250 to 500 ° C. This is because when the temperature increase rate and the temperature decrease rate are equal to or higher than the above rate and the keeping time for removing the binder is not secured, the binder burns instantaneously and the strength of the fired body decreases.

(4)触媒金属の含浸
シラン化合物を溶解させたエタノールに所定時間メタロシリケート担体を含浸させ、これを乾燥させた後に、550℃で6時間焼成することにより前記シラン化合物でシラン処理したメタロシリケートを得た。次に、モリブデン酸アンモニウムと硝酸亜鉛(酢酸亜鉛でもよい)を担持後に所定のモル比となるように含浸水溶液を調製し、第2金属をメタロシリケート担体へ共含浸した。Mo担持量は6wt%であり、共含浸する亜鉛は金属モル比でZn:Mo=0.3:1の比率であった。含浸後の担体は、湿度と温度を管理しながら乾燥した。最後に、乾燥品を空気中で550℃、5時間焼成し、シラン修飾亜鉛/モリブデン担持ゼオライトを得た。
(4) Impregnation of catalyst metal The metallosilicate carrier impregnated with ethanol in which the silane compound is dissolved for a predetermined time, dried, and then fired at 550 ° C. for 6 hours to obtain a silane-treated metallosilicate. Obtained. Next, an impregnation aqueous solution was prepared so as to have a predetermined molar ratio after supporting ammonium molybdate and zinc nitrate (which may be zinc acetate), and a second metal was co-impregnated onto the metallosilicate support. The amount of Mo supported was 6 wt%, and the co-impregnated zinc had a metal molar ratio of Zn: Mo = 0.3: 1. The impregnated carrier was dried while controlling the humidity and temperature. Finally, the dried product was fired in air at 550 ° C. for 5 hours to obtain a silane-modified zinc / molybdenum-supported zeolite.

2.触媒の評価
実施例1の触媒の評価法について述べる。実施例1では、メタン直接改質触媒10gと金属チタン粉末10gを用いた。メタン直接改質触媒と金属チタン粉末は、それぞれ5gずつ上記固定床流通式反応装置1に層状に重ねた。具体的な充填形態を説明すると、成型して得られたφ2.4mmの棒状担体を長さ5mmに切断して得られる含浸金属担持処理をした触媒(メタン直接改質触媒)の層と、金属チタン粉末の層を、図2に示した固定床流通式反応装置1のインコネル800H接ガス部カロライジング処理製反応管2(内径18mm)に交互に配置した。メタン直接改質触媒の層の高さは、2.5cmであり、金属チタン粉末の層の高さは、1.5cmであった。そして、メタン直接改質触媒の層と金属チタン粉末の層を2層ずつ配置したので、全層高は8cmであった。
2. Evaluation of catalyst The evaluation method of the catalyst of Example 1 will be described. In Example 1, 10 g of a methane direct reforming catalyst and 10 g of metal titanium powder were used. 5 g each of the methane direct reforming catalyst and the metal titanium powder were layered on the above fixed bed flow reactor 1. A specific packing form will be described. A layer of a catalyst (methane direct reforming catalyst) subjected to impregnation metal supporting treatment obtained by cutting a rod-shaped carrier of φ2.4 mm obtained by molding into a length of 5 mm, a metal The layers of titanium powder were alternately arranged in the reaction tube 2 (inner diameter: 18 mm) made by the inconel 800H gas contact part calorizing treatment of the fixed bed flow reactor 1 shown in FIG. The height of the methane direct reforming catalyst layer was 2.5 cm, and the height of the metal titanium powder layer was 1.5 cm. And since the layer of the methane direct reforming catalyst and the layer of the titanium metal powder were disposed two by two, the total layer height was 8 cm.

前処理として、メタン直接改質触媒と金属チタン粉末が充填された固定床流通式反応装置1に水素ガスを500cc/min流通させながら、100℃/hで780℃まで昇温した後、反応ガスであるメタンに切り替えて反応を行った。表1に示した反応条件に基づき固定床流通式反応装置1に対して反応ガスとして100%メタンガスを供給して、反応空間速度=3000ml/g−MFI/h(CH4gas flow base)、反応温度780℃、反応時間3時間、反応圧力0.3MPaの条件で触媒と反応ガスとを反応させた。 As a pretreatment, the temperature of the reaction gas is raised to 780 ° C. at 100 ° C./h while flowing 500 cc / min of hydrogen gas through the fixed bed flow reactor 1 filled with the methane direct reforming catalyst and the metal titanium powder. The reaction was carried out by switching to methane. Based on the reaction conditions shown in Table 1, 100% methane gas was supplied as a reaction gas to the fixed bed flow reactor 1 and the reaction space velocity = 3000 ml / g-MFI / h (CH 4 gas flow base), reaction The catalyst and the reaction gas were reacted under the conditions of a temperature of 780 ° C., a reaction time of 3 hours, and a reaction pressure of 0.3 MPa.

Figure 2011116707
Figure 2011116707

水素、メタンは、TCD−GCで分析し、ベンゼン、トルエン、キシレン、ナフタレンなどの芳香族化合物は、FID−GCで分析した。   Hydrogen and methane were analyzed by TCD-GC, and aromatic compounds such as benzene, toluene, xylene and naphthalene were analyzed by FID-GC.

(実施例2)
本発明の実施例2に係る低級炭化水素及び芳香族化合物の製造方法は、メタン直接改質触媒と水素吸蔵物質の充填方法が異なる以外は実施例1と同様の製造方法であるので、その詳細な説明を省略する。
(Example 2)
The method for producing lower hydrocarbons and aromatic compounds according to Example 2 of the present invention is the same as that of Example 1 except that the method for filling the methane direct reforming catalyst and the hydrogen storage material is different. The detailed explanation is omitted.

本発明の実施例2に係る低級炭化水素及び芳香族化合物の製造方法は、図1(b)に示すようにメタン直接改質触媒と水素吸蔵物質(金属チタン)を混合した混合物5を反応管2に充填し、この混合物5にメタンを接触反応させたものである。   In the method for producing lower hydrocarbons and aromatic compounds according to Example 2 of the present invention, a mixture 5 in which a methane direct reforming catalyst and a hydrogen storage material (metal titanium) are mixed is used as a reaction tube as shown in FIG. 2 and this mixture 5 is contacted with methane.

1.触媒の充填方法
実施例1の触媒作成方法(1)〜(4)で作成したメタン直接改質触媒ペレット25gと粒子径が45μm〜75μmの金属チタン粉末(和光純薬製)25gを混合し、ペレットを粉砕しながらめのう乳鉢で混合し、得られた混合粉末を圧縮機で再ペレット化した。そして、粒径1〜2mmにふるい分けして、図2に示した固定床流通式反応装置1のインコネル800H接ガス部カロライジング処理製反応管2(内径18mm)に20g充填した。
1. Catalyst Filling Method 25 g of the methane direct reforming catalyst pellets prepared in the catalyst preparation methods (1) to (4) of Example 1 and 25 g of metal titanium powder (made by Wako Pure Chemical Industries) having a particle size of 45 μm to 75 μm are mixed, The pellets were mixed in an agate mortar while being pulverized, and the resulting mixed powder was re-pelletized with a compressor. And it sifted to the particle size of 1-2 mm, and 20g was filled in the reaction tube 2 (inner diameter 18mm) made from the Inconel 800H gas contact part calorizing process of the fixed bed flow-type reaction apparatus 1 shown in FIG.

2.触媒の評価
前処理として、メタン直接改質触媒と金属チタン粉末が充填された固定床流通式反応装置1に水素ガスを500cc/min流通させながら、100℃/hで780℃まで昇温した後、反応ガスであるメタンに切り替えて反応を行った。表1に示した反応条件に基づき固定床流通式反応装置1に対して反応ガスとして100%メタンガスを供給して、反応空間速度=3000ml/g−MFI/h(CH4gas flow base)、反応温度780℃、反応時間3時間、反応圧力0.3MPaの条件で触媒と反応ガスとを反応させた。
2. Evaluation of the catalyst As pretreatment, the temperature was raised to 780 ° C. at 100 ° C./h while flowing 500 cc / min of hydrogen gas through the fixed bed flow reactor 1 filled with the methane direct reforming catalyst and the metal titanium powder. The reaction was carried out by switching to methane, which is a reaction gas. Based on the reaction conditions shown in Table 1, 100% methane gas was supplied as a reaction gas to the fixed bed flow reactor 1 and the reaction space velocity = 3000 ml / g-MFI / h (CH 4 gas flow base), reaction The catalyst and the reaction gas were reacted under the conditions of a temperature of 780 ° C., a reaction time of 3 hours, and a reaction pressure of 0.3 MPa.

水素、メタンは、TCD−GCで分析し、ベンゼン、トルエン、キシレン、ナフタレンなどの芳香族化合物は、FID−GCで分析した。   Hydrogen and methane were analyzed by TCD-GC, and aromatic compounds such as benzene, toluene, xylene and naphthalene were analyzed by FID-GC.

(実施例3)
本発明の実施例3に係る低級炭化水素及び芳香族化合物の製造方法は、水素吸蔵物質の種類が異なる以外は実施例1で説明した製造方法と同様であるので、その詳細な説明を省略する。
(Example 3)
The method for producing lower hydrocarbons and aromatic compounds according to Example 3 of the present invention is the same as the production method described in Example 1 except that the kind of the hydrogen storage material is different, and thus detailed description thereof is omitted. .

本発明の実施例3に係る低級炭化水素及び芳香族化合物の製造方法は、水素吸蔵物質4として炭化チタンを用い、図1(a)に示すようにメタン直接改質触媒3の層と水素吸蔵物質4の層を交互に反応管2に配置し、配置されたメタン直接改質触媒3と水素吸蔵物質4にメタンを接触反応させたものである。   In the method for producing lower hydrocarbons and aromatic compounds according to Example 3 of the present invention, titanium carbide is used as the hydrogen storage material 4, and the layer of the methane direct reforming catalyst 3 and the hydrogen storage as shown in FIG. The layers of the substance 4 are alternately arranged in the reaction tube 2, and the arranged methane direct reforming catalyst 3 and the hydrogen storage substance 4 are brought into contact with methane.

1.触媒の充填方法
実施例1の触媒作成方法(1)〜(4)で作成したメタン直接改質触媒ペレット10gと粒子径が45μm〜75μmの炭化チタン粉末(和光純薬製)10gを、それぞれ5gずつ固定床流通式反応装置1に層状に重ねて配置した。具体的な充填形態を説明すると、成型して得られたφ2.4mmの棒状担体を長さ5mmに切断して得られた含浸金属担持処理をした触媒(メタン直接改質触媒)の層と、炭化チタン粉末の層を、図2に示した固定床流通式反応装置1のインコネル800H接ガス部カロライジング処理製反応管2(内径18mm)に交互に配置した。メタン直接改質触媒の層の高さは、2.5cmであり、炭化チタン粉末の層の高さは、2cmであった。そして、メタン直接改質触媒層と金属チタン粉末層を2層ずつ配置したので、全層高は9cmであった。
1. Catalyst Filling Method 10 g of the methane direct reforming catalyst pellets prepared in the catalyst preparation methods (1) to (4) of Example 1 and 10 g of titanium carbide powder (manufactured by Wako Pure Chemical Industries) having a particle size of 45 μm to 75 μm are each 5 g. Each was placed in a layered manner on the fixed bed flow reactor 1. A specific filling form will be described. A layer of a catalyst (methane direct reforming catalyst) subjected to impregnated metal support obtained by cutting a rod-shaped carrier of φ2.4 mm obtained by molding into a length of 5 mm; The layers of titanium carbide powder were alternately arranged in the reaction tube 2 (inner diameter: 18 mm) made by the inconel 800H gas contact part calorizing treatment of the fixed bed flow type reactor 1 shown in FIG. The layer height of the methane direct reforming catalyst was 2.5 cm, and the layer height of the titanium carbide powder was 2 cm. And since the methane direct reforming catalyst layer and the metal titanium powder layer were disposed two by two, the total layer height was 9 cm.

2.触媒の評価
前処理として、メタン直接改質触媒と炭化チタン粉末が充填された固定床流通式反応装置1に水素ガスを500cc/min流通させながら、100℃/hで780℃まで昇温した後、反応ガスであるメタンに切り替えて反応を行った。表1に示した反応条件に基づき固定床流通式反応装置1に対して反応ガスとして100%メタンガスを供給して、反応空間速度=3000ml/g−MFI/h(CH4gas flow base)、反応温度780℃、反応時間3時間、反応圧力0.3MPaの条件で触媒と反応ガスとを反応させた。
2. Evaluation of the catalyst As pretreatment, after raising the temperature to 780 ° C. at 100 ° C./h while flowing 500 cc / min of hydrogen gas through the fixed bed flow reactor 1 filled with the methane direct reforming catalyst and titanium carbide powder The reaction was carried out by switching to methane, which is a reaction gas. Based on the reaction conditions shown in Table 1, 100% methane gas was supplied as a reaction gas to the fixed bed flow reactor 1 and the reaction space velocity = 3000 ml / g-MFI / h (CH 4 gas flow base), reaction The catalyst and the reaction gas were reacted under the conditions of a temperature of 780 ° C., a reaction time of 3 hours, and a reaction pressure of 0.3 MPa.

水素、メタンは、TCD−GCで分析し、ベンゼン、トルエン、キシレン、ナフタレンなどの芳香族化合物は、FID−GCで分析した。   Hydrogen and methane were analyzed by TCD-GC, and aromatic compounds such as benzene, toluene, xylene and naphthalene were analyzed by FID-GC.

(比較例1)
本発明の比較例1に係る低級炭化水素及び芳香族化合物の製造方法は、メタン直接改質触媒のみを低級炭化水素及び芳香族化合物の製造方法に用いた以外は実施例1と同様の製造方法であるので、その詳細な説明を省略する。
(Comparative Example 1)
The method for producing lower hydrocarbons and aromatic compounds according to Comparative Example 1 of the present invention is the same production method as in Example 1 except that only the methane direct reforming catalyst is used in the method for producing lower hydrocarbons and aromatic compounds. Therefore, detailed description thereof is omitted.

本発明の比較例1に係る低級炭化水素及び芳香族化合物の製造方法は、メタン直接改質触媒のみを反応管2に充填し、充填されたメタン直接改質触媒にメタンを接触反応させたものである。   In the method for producing lower hydrocarbons and aromatic compounds according to Comparative Example 1 of the present invention, the reaction tube 2 is filled with only the methane direct reforming catalyst, and the charged methane direct reforming catalyst is contacted with methane. It is.

1.触媒の充填方法
実施例1の触媒作成方法(1)〜(4)で作成したメタン直接改質触媒ペレット10gを、固定床流通式反応装置1のインコネル800H接ガス部カロライジング処理製反応管2(内径18mm)に充填した。
1. Catalyst Filling Method 10 g of the methane direct reforming catalyst pellet prepared in the catalyst preparation methods (1) to (4) of Example 1 is used as the reaction tube 2 for the inconel 800H gas contacting part calorizing treatment of the fixed bed flow type reactor 1. (Inner diameter 18 mm) was filled.

2.触媒の評価
前処理として、メタン直接改質触媒が充填された固定床流通式反応装置1に水素ガスを500cc/min流通させながら、100℃/hで780℃まで昇温した後、反応ガスであるメタンに切り替えて反応を行った。表1に示した反応条件に基づき固定床流通式反応装置1に対して反応ガスとして100%メタンガスを供給して、反応空間速度=3000ml/g−MFI/h(CH4gas flow base)、反応温度780℃、反応時間3時間、反応圧力0.3MPaの条件で触媒と反応ガスとを反応させた。
2. Evaluation of the catalyst As pretreatment, the hydrogen gas was passed through the fixed bed flow reactor 1 filled with the methane direct reforming catalyst at 500 cc / min, the temperature was raised to 780 ° C. at 100 ° C./h, The reaction was switched to a certain methane. Based on the reaction conditions shown in Table 1, 100% methane gas was supplied as a reaction gas to the fixed bed flow reactor 1 and the reaction space velocity = 3000 ml / g-MFI / h (CH 4 gas flow base), reaction The catalyst and the reaction gas were reacted under the conditions of a temperature of 780 ° C., a reaction time of 3 hours, and a reaction pressure of 0.3 MPa.

水素、メタンは、TCD−GCで分析し、ベンゼン、トルエン、キシレン、ナフタレンなどの芳香族化合物は、FID−GCで分析した。   Hydrogen and methane were analyzed by TCD-GC, and aromatic compounds such as benzene, toluene, xylene and naphthalene were analyzed by FID-GC.

上記実施例1〜3及び比較例1の条件で低級炭化水素及び芳香族化合物を製造した時の触媒評価結果を表2に示す。   Table 2 shows the catalyst evaluation results when lower hydrocarbons and aromatic compounds were produced under the conditions of Examples 1 to 3 and Comparative Example 1.

Figure 2011116707
Figure 2011116707

触媒性能を評価する指標として、以下に示す式(3)〜式(6)により算出される収率を用いた。
ベンゼン収率(%)=生成したベンゼン量/メタン改質反応に供されたメタン量×100 …(3)
C2類収率(%)=生成したC2類量/メタン改質反応に供されたメタン量×100 …(4)
C3類収率(%)=生成したC3類量/メタン改質反応に供されたメタン量×100 …(5)
ナフタレン収率(%)=生成したナフタレン量/メタン改質反応に供されたメタン量×100 …(6)
表2に示すように、同量のメタン直接改質触媒を充填した比較例1と比較すると、実施例1から3のいずれにおいてもナフタレンの生成が確認されず、C2類とベンゼン、トルエンの生成が確認された。
As an index for evaluating the catalyst performance, the yield calculated by the following formulas (3) to (6) was used.
Benzene yield (%) = the amount of benzene produced / the amount of methane subjected to the methane reforming reaction × 100 (3)
C2 class yield (%) = generated C2 class quantity / methane quantity subjected to methane reforming reaction × 100 (4)
C3 class yield (%) = the amount of C3 class produced / the amount of methane subjected to the methane reforming reaction × 100 (5)
Naphthalene yield (%) = produced naphthalene amount / methane amount subjected to methane reforming reaction × 100 (6)
As shown in Table 2, in comparison with Comparative Example 1 in which the same amount of methane direct reforming catalyst was charged, formation of naphthalene was not confirmed in any of Examples 1 to 3, and C2s, benzene and toluene were produced. Was confirmed.

また、実施例1、2の評価結果によれば、水素吸蔵物質として金属チタンを用いた場合、メタン直接改質触媒の層と水素吸蔵物質の層を交互に配置した場合(実施例1)と、メタン直接改質触媒と水素吸蔵物質を混合して配置した場合(実施例2)のいずれの充填方法においても、ベンゼン類とC2類が1対1で生成した。また、実施例1、3の評価結果によれば、炭化チタンを水素吸蔵物質として用いた場合(実施例3)では、金属チタンを水素吸蔵物質として用いた場合(実施例1)と比較すると、収率は低いものの金属チタンと同様に、ナフタレン等の生成を抑制し、C2類及びベンゼン類を選択的に生成する効果があることが確認された。   Further, according to the evaluation results of Examples 1 and 2, when metal titanium is used as the hydrogen storage material, the case where the methane direct reforming catalyst layer and the hydrogen storage material layer are alternately arranged (Example 1) and In any of the filling methods in the case where the methane direct reforming catalyst and the hydrogen storage material were mixed and arranged (Example 2), benzenes and C2s were produced in a one-to-one relationship. Moreover, according to the evaluation results of Examples 1 and 3, when titanium carbide was used as a hydrogen storage material (Example 3), compared to the case where metal titanium was used as a hydrogen storage material (Example 1), Although the yield was low, it was confirmed that there was an effect of suppressing the production of naphthalene and the like and selectively producing C2s and benzenes in the same manner as titanium metal.

なお、上記実施例1〜3では、反応開始から3時間後の収率により性能評価を行っているが、反応時間は3時間に限定するものではなく、適宜最適な時間を選択して反応させればよい。また、表2において、C3類とはプロパン、プロピレン等の炭素数が3の炭化水素を示す。   In Examples 1 to 3, the performance was evaluated based on the yield after 3 hours from the start of the reaction. However, the reaction time is not limited to 3 hours, and an optimum time is appropriately selected for reaction. Just do it. In Table 2, C3 refers to hydrocarbons having 3 carbon atoms such as propane and propylene.

以上のように、本発明に係る低級炭化水素及び芳香族化合物の製造方法及び製造触媒によれば、メタン直接改質触媒に水素吸蔵物質を物理的に混合する(または、メタン直接改質触媒の層と水素吸蔵物質の層を交互に配置する)だけで、反応生成物の収率が変化し、扱いにくい常温で固体のナフタレンの生成を抑制することができる。そして、化学基礎原料として有用な、ベンゼン類とC2類(エタン、エチレン等)を優先的に製造することができる。   As described above, according to the method for producing lower hydrocarbons and aromatic compounds and the production catalyst according to the present invention, the hydrogen storage material is physically mixed in the methane direct reforming catalyst (or the methane direct reforming catalyst). By simply arranging the layers and the hydrogen storage material layers alternately), the yield of the reaction product changes, and the formation of solid naphthalene at room temperature, which is difficult to handle, can be suppressed. And benzene and C2 (ethane, ethylene, etc.) useful as chemical basic materials can be preferentially produced.

1…固定床流通式反応装置
2…反応管
3…メタン直接改質触媒(触媒金属を担持したメタロシリケート)
4…水素吸蔵物質
5…メタン直接改質触媒と水素吸蔵物質を混合した混合物
DESCRIPTION OF SYMBOLS 1 ... Fixed bed flow type reactor 2 ... Reaction tube 3 ... Methane direct reforming catalyst (metallosilicate carrying a catalyst metal)
4 ... Hydrogen storage material 5 ... Mixture of methane direct reforming catalyst and hydrogen storage material

Claims (5)

触媒金属を担持したメタロシリケートと、水素吸蔵物質に、メタンを接触させて低級炭化水素及び芳香族化合物を製造する
ことを特徴とする低級炭化水素及び芳香族化合物の製造方法。
A method for producing a lower hydrocarbon and an aromatic compound, characterized by producing a lower hydrocarbon and an aromatic compound by contacting a metallosilicate carrying a catalyst metal with a hydrogen storage material and methane.
前記水素吸蔵物質は、チタン、若しくは炭化チタンのいずれかである
ことを特徴とする請求項1に記載の低級炭化水素及び芳香族化合物の製造方法。
The method for producing lower hydrocarbons and aromatic compounds according to claim 1, wherein the hydrogen storage material is either titanium or titanium carbide.
前記メタロシリケートと前記水素吸蔵物質を混合したものに、メタンを接触させる
ことを特徴とする請求項1または請求項2に記載の低級炭化水素及び芳香族化合物の製造方法。
The method for producing lower hydrocarbons and aromatic compounds according to claim 1 or 2, wherein methane is brought into contact with a mixture of the metallosilicate and the hydrogen storage material.
前記メタロシリケートの層と前記水素吸蔵物質の層を交互に配置したものに、メタンを接触させる
ことを特徴とする請求項1または請求項2に記載の低級炭化水素及び芳香族化合物の製造方法。
The method for producing a lower hydrocarbon and an aromatic compound according to claim 1 or 2, wherein methane is brought into contact with the metallosilicate layer and the hydrogen storage material layer alternately arranged.
メタンを接触反応させて、低級炭化水素及び芳香族化合物を製造する触媒であって、
触媒金属を担持したメタロシリケートと、水素吸蔵物質を混合してなる
ことを特徴とする低級炭化水素及び芳香族化合物製造触媒。
A catalyst for producing lower hydrocarbons and aromatic compounds by catalytic reaction of methane,
A catalyst for producing lower hydrocarbons and aromatic compounds, comprising a mixture of a metallosilicate supporting a catalytic metal and a hydrogen storage material.
JP2009276070A 2009-12-04 2009-12-04 Process for producing lower hydrocarbon and aromatic compound and production catalyst Active JP5499669B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009276070A JP5499669B2 (en) 2009-12-04 2009-12-04 Process for producing lower hydrocarbon and aromatic compound and production catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009276070A JP5499669B2 (en) 2009-12-04 2009-12-04 Process for producing lower hydrocarbon and aromatic compound and production catalyst

Publications (2)

Publication Number Publication Date
JP2011116707A true JP2011116707A (en) 2011-06-16
JP5499669B2 JP5499669B2 (en) 2014-05-21

Family

ID=44282464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009276070A Active JP5499669B2 (en) 2009-12-04 2009-12-04 Process for producing lower hydrocarbon and aromatic compound and production catalyst

Country Status (1)

Country Link
JP (1) JP5499669B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018039010A (en) * 2014-11-28 2018-03-15 旭化成株式会社 Manufacturing method of hydrocarbon
CN111439723A (en) * 2020-04-16 2020-07-24 安泰科技股份有限公司 Doped Mg (BH)4)2Hydrogen-based storage material and preparation method thereof
CN116239077A (en) * 2023-03-09 2023-06-09 中国电力科学研究院有限公司 Magnesium-based hydrogen storage material loaded with heteropolyacid catalyst and preparation method thereof
WO2024058487A1 (en) * 2022-09-16 2024-03-21 한국화학연구원 Reactor for non-oxidative direct conversion of methane, and method for preparing c2 hydrocarbon compounds and aromatic compounds by using same

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP1529316S (en) 2014-12-17 2015-07-21
USD767398S1 (en) 2014-12-18 2016-09-27 Hisamitsu Pharmaceutical Co., Ltd. Package
USD769121S1 (en) 2014-12-22 2016-10-18 Hisamitsu Pharmaceutical Co., Inc. Package
USD775964S1 (en) 2015-04-22 2017-01-10 Hisamitsu Pharmaceutical Co., Inc. Packing box
JP1537113S (en) 2015-04-22 2015-11-02
USD801185S1 (en) 2016-05-18 2017-10-31 Hisamitsu Pharmaceuticals Co., Inc. Packing box

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0446130A (en) * 1990-06-14 1992-02-17 Sekiyu Shigen Kaihatsu Kk Production of ethane and ethylene by partial oxidation of methane
JP2000300987A (en) * 1999-01-15 2000-10-31 Uop Inc Process of converting small carbon number aliphatic hydrocarbon into greater carbon number hydrocarbon, and catalyst therefor
JP2003249254A (en) * 2002-02-22 2003-09-05 Masaru Ichikawa Cogeneration system of electric power, hydrogen, and aromatic hydrocarbon
JP2004224632A (en) * 2003-01-22 2004-08-12 Masaru Ichikawa Direct reforming composite system for low-grade hydrocarbon
JP2005015423A (en) * 2003-06-27 2005-01-20 Saudi Basic Industries Corp Method for preparing benzene, ethylene and gas for synthesis

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0446130A (en) * 1990-06-14 1992-02-17 Sekiyu Shigen Kaihatsu Kk Production of ethane and ethylene by partial oxidation of methane
JP2000300987A (en) * 1999-01-15 2000-10-31 Uop Inc Process of converting small carbon number aliphatic hydrocarbon into greater carbon number hydrocarbon, and catalyst therefor
JP2003249254A (en) * 2002-02-22 2003-09-05 Masaru Ichikawa Cogeneration system of electric power, hydrogen, and aromatic hydrocarbon
JP2004224632A (en) * 2003-01-22 2004-08-12 Masaru Ichikawa Direct reforming composite system for low-grade hydrocarbon
JP2005015423A (en) * 2003-06-27 2005-01-20 Saudi Basic Industries Corp Method for preparing benzene, ethylene and gas for synthesis

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018039010A (en) * 2014-11-28 2018-03-15 旭化成株式会社 Manufacturing method of hydrocarbon
CN111439723A (en) * 2020-04-16 2020-07-24 安泰科技股份有限公司 Doped Mg (BH)4)2Hydrogen-based storage material and preparation method thereof
WO2024058487A1 (en) * 2022-09-16 2024-03-21 한국화학연구원 Reactor for non-oxidative direct conversion of methane, and method for preparing c2 hydrocarbon compounds and aromatic compounds by using same
CN116239077A (en) * 2023-03-09 2023-06-09 中国电力科学研究院有限公司 Magnesium-based hydrogen storage material loaded with heteropolyacid catalyst and preparation method thereof

Also Published As

Publication number Publication date
JP5499669B2 (en) 2014-05-21

Similar Documents

Publication Publication Date Title
JP5499669B2 (en) Process for producing lower hydrocarbon and aromatic compound and production catalyst
US10369552B2 (en) Method of forming a catalyst with an ion-modified binder
JP4112943B2 (en) Process for producing olefins by catalytic cracking of hydrocarbons
JP5481996B2 (en) Aromatic hydrocarbon production method
WO2005105710A1 (en) Method for producing lower olefin
JP4452021B2 (en) Hydrocarbon catalytic cracking process
WO2012002269A1 (en) Method for producing aromatic hydrocarbon
JP5402354B2 (en) Aromatic compound production method
JP2001334151A (en) Catalyst useful for aromatizing lower hydrocarbon and method of producing aromatic compound and hydrogen using lower hydrocarbon as raw material
JP4414169B2 (en) Olefin production method
JP5564769B2 (en) Lower hydrocarbon aromatization catalyst and method for producing aromatic compound
JP4677194B2 (en) Method for converting lower hydrocarbons using catalysts
JP4790356B2 (en) Lower hydrocarbon reforming catalyst
TW201305087A (en) Process for alkylation of toluene to form styrene and ethylbenzene
JP2006335730A (en) Method for producing propylene
JP2001334152A (en) Catalyst useful for aromatizing lower hydrocarbon and method of producing aromatic compound and hydrogen using lower hydrocarbon as raw material
WO2011118279A1 (en) Method of manufacture for aromatic compound
JP5286815B2 (en) Lower hydrocarbon aromatization catalyst and method for producing aromatic compound
JP5949069B2 (en) Process for producing lower hydrocarbon aromatization catalyst
JP4159853B2 (en) Catalyst for catalytic cracking of hydrocarbon and catalytic cracking method using the same
JP5283666B2 (en) Lower hydrocarbon aromatic compound catalyst, aromatic compound using lower hydrocarbon as raw material, and method for producing hydrogen
JP5151951B2 (en) Lower hydrocarbon aromatization catalyst and method for producing the catalyst
JP2006263682A (en) Method for manufacturing catalyst for reforming lower hydrocarbon directly
JP2006335729A (en) Method for producing propylene
JP5283665B2 (en) Lower hydrocarbon aromatic compound catalyst, aromatic compound using lower hydrocarbon as raw material, and method for producing hydrogen

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130820

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131021

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20131021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140225

R150 Certificate of patent or registration of utility model

Ref document number: 5499669

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150