JP2003236337A - Method and apparatus for treating exhaust gas - Google Patents

Method and apparatus for treating exhaust gas

Info

Publication number
JP2003236337A
JP2003236337A JP2002037344A JP2002037344A JP2003236337A JP 2003236337 A JP2003236337 A JP 2003236337A JP 2002037344 A JP2002037344 A JP 2002037344A JP 2002037344 A JP2002037344 A JP 2002037344A JP 2003236337 A JP2003236337 A JP 2003236337A
Authority
JP
Japan
Prior art keywords
gas
combustion
exhaust gas
combustion chamber
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002037344A
Other languages
Japanese (ja)
Other versions
JP4172938B2 (en
Inventor
Hiroyasu Taguchi
裕康 田口
Yasuyuki Hoshino
恭之 星野
Heisho Boku
炳渉 朴
Heitetsu Kin
炳哲 金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koike Sanso Kogyo Co Ltd
Koike Sanso Kogyo KK
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Koike Sanso Kogyo Co Ltd
Koike Sanso Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2002037344A priority Critical patent/JP4172938B2/en
Application filed by Showa Denko KK, Koike Sanso Kogyo Co Ltd, Koike Sanso Kogyo KK filed Critical Showa Denko KK
Priority to KR1020037013443A priority patent/KR100544760B1/en
Priority to CNB038001454A priority patent/CN1259524C/en
Priority to US10/474,765 priority patent/US20050115674A1/en
Priority to PCT/JP2003/001507 priority patent/WO2003069228A1/en
Priority to AU2003211966A priority patent/AU2003211966A1/en
Priority to TW092103139A priority patent/TW592797B/en
Publication of JP2003236337A publication Critical patent/JP2003236337A/en
Priority to HK04109106A priority patent/HK1066262A1/en
Application granted granted Critical
Publication of JP4172938B2 publication Critical patent/JP4172938B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
    • F23G7/06Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
    • F23G7/06Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases
    • F23G7/061Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases with supplementary heating
    • F23G7/065Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases with supplementary heating using gaseous or liquid fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2215/00Preventing emissions
    • F23J2215/30Halogen; Compounds thereof

Landscapes

  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Treating Waste Gases (AREA)
  • Incineration Of Waste (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for detoxicating exhaust gas by which exhaust gas containing high concentration or large quantity of gaseous fluorine or gaseous halogen fluoride and discharged from a semiconductor manufacturing process, can be treated, safety and energy saving can be attained and detoxication treatment can be more efficiently performed and to provide an apparatus for the same. <P>SOLUTION: The exhaust gas which is discharged from an etching process or a cleaning process and contains gaseous fluorine or gaseous halogen fluoride is introduced in a combustion apparatus having a combustion chamber on a surface of which a fluoridized passive film is formed and the exhaust is burned. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、排ガスの処理方法
および処理装置に関し、さらに詳細には半導体製造工程
におけるエッチング工程またはクリーニング工程から排
出されるフッ素ガスまたはフッ化ハロゲンガスを含む排
ガスを処理する方法および装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas processing method and an exhaust gas processing apparatus, and more particularly to processing exhaust gas containing fluorine gas or halogen fluoride gas discharged from an etching process or a cleaning process in a semiconductor manufacturing process. A method and apparatus.

【0002】[0002]

【従来の技術】半導体を製造する各種工程から排出され
る排ガスは、半導体材料ガス、エッチングガス、クリー
ニングガス等のガスを含み、これらのガスは有害である
場合がある。また、環境に対し負荷を与えるガスが含ま
れている場合もあり、このような成分を含む排ガスはそ
のままでは大気中に排出することができない。
Exhaust gas discharged from various processes for manufacturing semiconductors contains gases such as semiconductor material gas, etching gas and cleaning gas, and these gases may be harmful. Further, there is a case where a gas that gives a load to the environment is contained, and the exhaust gas containing such a component cannot be discharged into the atmosphere as it is.

【0003】そこで従来から、(1)苛性ソーダ(水酸
化ナトリウム)等の中和剤を用いて酸化反応ないしは中
和反応させる湿式除害方法、(2)触媒層による反応分
解方法、(3)酸化物等への吸着による乾式除害方法、
(4)電気ヒーターを組み込んだ熱分解方法、(5)燃
焼式除害方法、等の方法が広く知られ、各々の特徴を生
かして活用されている。
Therefore, conventionally, (1) a wet detoxification method in which an oxidation reaction or a neutralization reaction is performed using a neutralizing agent such as caustic soda (sodium hydroxide), (2) a reaction decomposition method using a catalyst layer, and (3) oxidation Dry type detoxification method by adsorption to substances,
Methods such as (4) thermal decomposition method incorporating an electric heater, (5) combustion-type detoxification method, etc. are widely known and utilized by making the most of their respective characteristics.

【0004】近年、半導体製造工程から排出される排ガ
ス中に含まれる有害成分は多様化しており、さらにウェ
ハーや液晶パネル等の大型化が著しく、それに伴って製
造装置も大型化し、製造工程で使用されるガスの量が大
幅に増大している。また、枚葉装置の普及に伴うマルチ
チャンバー化、製造プロセスの複雑化等によって、異な
る経路から排出される大量の排ガスを同時に処理した
り、同一経路に時間サイクルを変えて流される性状の大
きく異なる排ガスを同一の除害装置で安全に処理するこ
とが必要な場合が生じている。こうしたことから、近
年、可燃性燃料ガス等を高温で燃焼し、排ガス中に含ま
れる有毒成分や環境に負荷を与える排ガス成分を無害な
物質に変換し、あるいは容易に処理できる物質に変換す
る除害方法として燃焼方式や熱分解方式等の熱処理式除
害方法が検討されている。
In recent years, harmful components contained in the exhaust gas discharged from the semiconductor manufacturing process have been diversified, and the size of wafers and liquid crystal panels has been remarkably increased. The amount of gas that is released has increased significantly. In addition, due to the multi-chamber system and the complicated manufacturing process that accompany the spread of single-wafer equipment, the large amount of exhaust gas discharged from different routes can be treated at the same time, or the characteristics of flowing into the same route in different time cycles can vary greatly. In some cases, it is necessary to safely treat the exhaust gas with the same abatement device. For these reasons, in recent years, combustible fuel gas, etc. are burned at high temperatures to convert toxic components contained in exhaust gas and exhaust gas components that cause environmental load into harmless substances, or to substances that can be easily treated. As the harm method, heat treatment type harm removal methods such as combustion method and thermal decomposition method are being studied.

【0005】しかしながら、特に燃焼除害方式の場合に
は、半導体製造工程から排出される排気ガスを、都市ガ
ス、LPG、メタン等の燃料ガス、および空気または酸
素などの助燃ガスと供に高温で燃焼処理するため、排ガ
ス中に含まれる窒素元素分や空気中の窒素などにより、
副生物としてNOxが生成するという問題がある。
However, particularly in the case of the combustion detoxification method, the exhaust gas discharged from the semiconductor manufacturing process is used at high temperature together with city gas, LPG, fuel gas such as methane, and auxiliary combustion gas such as air or oxygen. Due to the combustion process, the nitrogen element content in the exhaust gas and the nitrogen in the air
There is a problem that NOx is produced as a by-product.

【0006】燃焼後の排ガス中に含まれるNOxの生成
量は、使用する装置や燃焼条件にもよるが、1〜30%
と非常に高濃度になる場合があり、TLV(NOで25
ppm、NO2で3ppm)を越えないようにするため
に様々な方法が検討されている。例えば、特開2001
−193918には、NOxの生成量を低くするため
に、燃焼室の形状、ノズルの形状等について様々な検討
が行われたことが記載されている。しかしながら、エッ
チングおよびクリーニング工程において大量に使用され
ているNF3ガスを含む排ガスを燃焼する場合には、特
にNOxの発生量が多くなる場合があるので改善が望ま
れている。
The amount of NOx contained in the exhaust gas after combustion is 1 to 30%, depending on the equipment used and combustion conditions.
And the concentration may become very high, and TLV (NO for 25
ppm, 3 ppm of NO 2 ) are being investigated in various ways. For example, Japanese Patent Laid-Open No. 2001
193918 describes that various studies have been conducted on the shape of the combustion chamber, the shape of the nozzle, and the like in order to reduce the amount of NOx produced. However, when burning exhaust gas containing NF 3 gas, which is used in large amounts in the etching and cleaning steps, the amount of NOx generated may increase, and therefore improvement is desired.

【0007】一方、半導体製造プロセスにおいて、より
高性能なクリーニングガスとして、フッ素ガスもしくは
フッ化ハロゲンガス、またはこれらの混合ガスによるク
リーニングが試みられている。例えば、J.APPL.Phys.P2
939 56(10)No.15 1984には、フッ素ガスおよびフッ化ハ
ロゲンガスのクリーニング性能が、NF3ガスを用いた
クリーニングに比べて優れているという研究報告がされ
ている。
On the other hand, in the semiconductor manufacturing process, as a higher performance cleaning gas, cleaning with a fluorine gas, a halogen fluoride gas, or a mixed gas thereof has been attempted. For example, J.APPL.Phys.P2
939 56 (10) No. 15 1984 reports that the cleaning performance of fluorine gas and halogen fluoride gas is superior to that of cleaning using NF 3 gas.

【0008】しかしながら、フッ素ガスやフッ化ハロゲ
ンガスは非常に活性の強い酸化剤であり、化学的な反応
性が強く、常温で酸化性物質とも反応して発火する場合
があり、また装置材料に対する腐食性も大きい。従っ
て、装置材料については特定の高耐食性金属の中から厳
選する必要があり、禁油禁水とされる他、高耐食性樹脂
として半導体製造装置に多用されている四フッ化エチレ
ン樹脂においても使用条件によって不適合とされる場合
がある。
However, fluorine gas and halogen fluoride gas are oxidants having a very strong activity, have a strong chemical reactivity, and may react with an oxidizing substance at room temperature to ignite. It is also highly corrosive. Therefore, it is necessary to carefully select the equipment material from the specific high corrosion resistant metal, and it is said that it is oil-free and water-free, and the usage conditions for tetrafluoroethylene resin, which is widely used in semiconductor manufacturing equipment as a high corrosion resistant resin. May be disqualified by.

【0009】また、フッ素ガスや三フッ化塩素ガス等の
フッ化ハロゲンガスの除害装置としては、苛性ソーダや
水酸化カリ等のアルカリ水溶液を用いたスクラバーによ
って中和吸収する湿式吸収装置や活性アルミナやソーダ
ライム等の固体吸着剤によって吸着除去する乾式除害装
置が用いられている。しかしながら、いずれも場合にお
いても、高濃度のフッ素ガスやフッ化ハロゲンガスを含
有する排ガスの処理ができないことが課題となってい
る。しかも、フッ素ガスやフッ化ハロゲンガスの使用量
が増大すると、アルカリスクラバー等の湿式除害装置の
場合、吸収塔の大型化、吸収液の廃液処理の煩雑さによ
る問題、ランニングコストの上昇等が問題となる。また
乾式分解除害装置や吸着除去除害装置では、大流量の除
害装置化が困難なうえ、固体分解剤や吸着剤等の交換頻
度の増加により運転経費が莫大になり、メンテナンス操
作の増加から安全管理上トラブルを起こし易いという問
題も発生する。
As a device for removing halogen fluoride gas such as fluorine gas or chlorine trifluoride gas, a wet absorption device for neutralizing and absorption by a scrubber using an alkaline aqueous solution such as caustic soda or potassium hydroxide, or activated alumina. A dry type detoxification device is used which adsorbs and removes with a solid adsorbent such as soda lime or soda. However, in all cases, the problem is that the exhaust gas containing a high concentration of fluorine gas or halogen fluoride gas cannot be treated. In addition, when the amount of fluorine gas or halogen fluoride gas used increases, in the case of a wet scrubber such as an alkali scrubber, the absorption tower becomes large, the problem due to the complexity of the waste liquid treatment of the absorbing liquid, and the running cost increase. It becomes a problem. In addition, it is difficult to use a dry type detoxification device and adsorption removal abatement device as a device for removing a large flow rate, and the operating cost becomes huge due to an increase in the frequency of replacement of solid decomposing agents and adsorbents, resulting in an increase in maintenance operations. Therefore, there is a problem that a trouble is easily caused in safety management.

【0010】[0010]

【発明が解決しようとする課題】本発明はこのような背
景の下、フッ素ガスまたはフッ化ハロゲンガスを、高濃
度もしくは大量に含む、半導体製造工程から排出される
排気ガスを処理することができ、安全で省エネルギーで
あり、より効率的に除害処理することが可能な除害方法
および装置を提供することを課題とする。前述のよう
に、半導体製造工程において、フッ素ガスまたはフッ化
ハロゲンガスを使用した場合は、専用の除害装置によっ
て単独にて排ガス処理されているが、本発明の方法を用
いることによって、半導体装置の大型化、マルチ化、複
雑化、また除害装置の設置スペースの縮小化ができ、前
記の課題を解決することができる。
Against this background, the present invention can treat exhaust gas discharged from a semiconductor manufacturing process, which contains fluorine gas or halogen fluoride gas in high concentration or in large amount. It is an object of the present invention to provide a harm removal method and device that are safe, energy saving, and capable of more efficiently treating harm. As described above, when fluorine gas or halogen fluoride gas is used in the semiconductor manufacturing process, the exhaust gas is treated alone by a dedicated abatement device, but by using the method of the present invention, the semiconductor device It is possible to increase the size of the device, increase the number of devices, increase the complexity of the device, and reduce the installation space of the abatement device, thereby solving the above problems.

【0011】[0011]

【課題を解決するための手段】本発明者らは前記の課題
を解決すべく鋭意検討した結果、エッチング工程または
クリーニング工程から排出される、フッ素ガスまたはフ
ッ化ハロゲンガスを含む排ガスを、表面にフッ化不動態
膜が形成された燃焼室を備えた燃焼装置に導入し、前記
排ガスを燃焼させる処理方法を用いることにより前記の
課題を解決できることを見いだし、本発明を完成させる
に至った。
As a result of intensive studies to solve the above problems, the present inventors have found that exhaust gas containing fluorine gas or halogen fluoride gas, which is discharged from an etching process or a cleaning process, on the surface. It has been found that the above problems can be solved by introducing the treatment method in which a fluorinated passivation film is formed into a combustion chamber having a combustion chamber and burning the exhaust gas, and has completed the present invention.

【0012】すなわち、本発明の排ガスの処理方法は、
エッチング工程またはクリーニング工程から排出され
る、フッ素ガスまたはフッ化ハロゲンガスを含む排ガス
を、表面にフッ化不動態膜が形成された燃焼室を備えた
燃焼装置に導入し、前記排ガスを燃焼させることを特徴
とする。前記のフッ化不動態膜がフッ化ニッケルからな
ることが好ましい。フッ素ガスまたはフッ化ハロゲンガ
スの濃度が5vol%以下であることが好ましい。燃焼
後の排ガス中に含まれる窒素酸化物の含有量が5vol
ppm未満であることが好ましい。
That is, the method for treating exhaust gas according to the present invention is
Exhaust gas containing fluorine gas or halogen fluoride gas discharged from the etching process or cleaning process is introduced into a combustion device equipped with a combustion chamber having a fluorinated passivation film formed on its surface, and the exhaust gas is burned. Is characterized by. It is preferable that the fluoride passivation film is made of nickel fluoride. The concentration of fluorine gas or halogen fluoride gas is preferably 5 vol% or less. The content of nitrogen oxides contained in the exhaust gas after combustion is 5 vol
It is preferably less than ppm.

【0013】本発明の排ガスの処理装置は、排ガス導入
口、燃料導入口、燃焼前室、燃焼室、空気導入口および
排気管を備え、少なくとも燃焼前室および燃焼室の表面
にフッ化不動態膜が形成されていることを特徴とする。
燃焼室が、ニッケル、高ニッケル含有合金およびモネル
からなる群から選ばれる金属により形成され、該金属の
表面にフッ化不動態膜が形成されていることが好まし
い。燃焼室が、ステンレスおよび鉄鋼材からなる群から
選ばれる金属により形成され、該金属の表面にニッケ
ル、ニッケル合金電気鍍金、電鋳鍍金、ニッケル合金無
電解鍍金からなる薄膜もしくはアルミナまたは窒化アル
ミニウムからなるセラミックス薄膜を有し、該薄膜の表
面にフッ化不動態膜が形成されていることが好ましい。
The exhaust gas treating apparatus of the present invention is provided with an exhaust gas inlet, a fuel inlet, a combustion front chamber, a combustion chamber, an air inlet and an exhaust pipe, and at least the surfaces of the combustion front chamber and the combustion chamber have a fluorinated passivation. It is characterized in that a film is formed.
It is preferable that the combustion chamber is made of a metal selected from the group consisting of nickel, a high nickel content alloy and monel, and a fluorinated passivation film is formed on the surface of the metal. The combustion chamber is made of a metal selected from the group consisting of stainless steel and steel, and the surface of the metal is made of nickel, nickel alloy electroplating, electroforming plating, nickel alloy electroless plating, or alumina or aluminum nitride. It is preferable to have a ceramic thin film and a fluorinated passivation film formed on the surface of the thin film.

【0014】また、本発明は半導体デバイスの製造方法
を提供するものであり、本発明の半導体デバイスの製造
方法は、エッチングガスまたはクリーニングガスとし
て、フッ素ガスまたはフッ化ハロゲンガスを用いるエッ
チング工程またはクリーニング工程と、それらの工程か
ら排出されるフッ素ガスまたはフッ化ハロゲンガスを含
有するガスを燃焼させる除害工程を有する半導体デバイ
スの製造方法において、該除害工程が表面にフッ化不動
態膜が形成された燃焼室を備えた燃焼装置を用いること
を特徴とする。前記フッ化不動態膜がフッ化ニッケルか
らなることが好ましい。
The present invention also provides a method for manufacturing a semiconductor device. The method for manufacturing a semiconductor device according to the present invention is an etching step or cleaning using a fluorine gas or a halogen fluoride gas as an etching gas or a cleaning gas. In a method of manufacturing a semiconductor device, which comprises a step and a detoxification step of burning a gas containing a fluorine gas or a halogen fluoride gas discharged from the steps, the detoxification step forms a fluorinated passivation film on the surface. It is characterized by using a combustion device provided with the above-mentioned combustion chamber. It is preferable that the fluoride passivation film is made of nickel fluoride.

【0015】[0015]

【発明の実施の形態】以下、本発明について詳しく説明
する。本発明の排ガスの処理方法は、エッチング工程ま
たはクリーニング工程から排出される、フッ素ガスまた
はフッ化ハロゲンガスを含む排ガスを、表面にフッ化不
動態膜が形成された燃焼室を備えた燃焼装置に導入し、
前記排ガスを燃焼させることを特徴とする。すなわち、
本発明はフッ素ガスまたはフッ化ハロゲンガスと共に、
例えば成膜ガスとして使用したSiH4などのガスやそ
の他のガスを含む半導体製造工程から排出される排ガス
を所定の温度にて無害化処理することを特徴とする。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below. The method for treating exhaust gas of the present invention, exhaust gas containing fluorine gas or halogen fluoride gas discharged from the etching step or the cleaning step, in a combustion apparatus having a combustion chamber having a fluorinated passivation film formed on the surface thereof. Introduced,
It is characterized in that the exhaust gas is burned. That is,
The present invention, together with fluorine gas or halogen fluoride gas,
For example, it is characterized in that exhaust gas discharged from a semiconductor manufacturing process containing a gas such as SiH 4 used as a film forming gas and other gases is detoxified at a predetermined temperature.

【0016】本発明の処理方法は、フッ素ガスやフッ化
ハロゲンガスを含まない通常の燃焼条件に比べ、燃料の
供給量を削減し、燃焼温度を低下させた条件において十
分に無害化処理、無害化し易い化合物への処理が可能で
あり、こうした条件下で運転することで、除害装置から
排出される分解副成物である二酸化炭素とNOxの量を
著しく削減することができる。
The treatment method of the present invention is sufficiently harmless and harmless under the condition that the fuel supply amount is reduced and the combustion temperature is lowered as compared with the normal combustion condition that does not contain fluorine gas or halogen fluoride gas. It is possible to treat the compound into an easily volatile compound, and by operating under such conditions, the amounts of carbon dioxide and NOx which are decomposition by-products discharged from the abatement system can be significantly reduced.

【0017】本発明は、燃焼方式の除害装置を用い、半
導体を製造する工程において通常使用される、Si
4、SiH2Cl2、NH3、PH3、WF6、Si(OC
254、NF3、H2、B26、CH4、C22等の成膜
ガス、クリーニングガスその他半導体製造プロセスで排
出されるガス成分と、フッ素ガスおよびフッ化ハロゲン
ガスを同時に除害処理する。この場合、排ガス中に含ま
れる被処理成分がフッ素ガスまたはフッ化ハロゲンガス
のみであってもよい。排ガス中に含まれるフッ素ガスま
たはフッ化ハロゲンガスの濃度は5vol%以下である
ことが好ましい。
The present invention employs a combustion-type abatement apparatus, which is commonly used in the process of manufacturing semiconductors.
H 4 , SiH 2 Cl 2 , NH 3 , PH 3 , WF 6 , Si (OC
2 H 5) 4, NF 3 , H 2, B 2 H 6, CH 4, C 2 deposition gas H 2, etc., and gas components discharged by the cleaning gas other semiconductor manufacturing process, the fluorine gas and halogen fluoride Gas is removed at the same time. In this case, the component to be treated contained in the exhaust gas may be only fluorine gas or halogen fluoride gas. The concentration of fluorine gas or halogen fluoride gas contained in the exhaust gas is preferably 5 vol% or less.

【0018】また、本発明の燃焼式除害装置の運転方法
は、導入した排ガスがフッ素ガスやフッ化ハロゲンガス
を含まない燃焼条件(例えば三フッ化窒素ガスを分解す
るために必要な燃焼条件)に比べ、燃料の供給量を10
〜30%削減し、燃焼温度を50℃以上低下させた運転
条件においても、有毒ガス成分が無害化されたり、容易
に分解除去可能な物質に変換することができる。従っ
て、本発明の処理方法を用いれば、除害装置から排出さ
れる分解副成物である二酸化炭素は使用する燃料ガスの
削減量に比例して削減することができる。また燃焼温度
の低下によってNOxの生成量も著しく削減することが
でき、NOxの生成量を5volppm未満とすること
が可能である。
Further, the operating method of the combustion type abatement system of the present invention is a combustion condition in which the introduced exhaust gas does not contain fluorine gas or halogen fluoride gas (for example, a combustion condition necessary for decomposing nitrogen trifluoride gas). ), The fuel supply is 10
Even under operating conditions where the combustion temperature is reduced by -30% and the combustion temperature is lowered by 50 ° C or more, the poisonous gas component can be detoxified or converted into a substance that can be easily decomposed and removed. Therefore, if the treatment method of the present invention is used, carbon dioxide, which is a decomposition by-product discharged from the abatement device, can be reduced in proportion to the reduction amount of the fuel gas used. Moreover, the production amount of NOx can be remarkably reduced by lowering the combustion temperature, and the production amount of NOx can be less than 5 volppm.

【0019】また、燃焼温度を低くして運転すること
は、運転管理上、安全面に大きく寄与することが明らか
であり、排ガスが燃焼している部位やその前室部分の機
器の材料表面温度が低下するので装置材料への腐食負担
等が大きく低減する。従って、装置のメンテナンスの頻
度が削減され、装置の長期的な寿命を考慮するとコスト
メリットは明らかである。また、燃焼処理された排ガス
は、最終的に燃焼式除害塔の排気管に接続しているアル
カリスクラバーのような湿式除害設備において、フッ化
水素等のハロゲン化水素、NOx、その他の分解物質で
ある四フッ化ケイ素等が吸収処理される。
Further, it is clear that operating at a low combustion temperature greatly contributes to safety in terms of operation management, and the material surface temperature of the equipment where the exhaust gas is burning and the equipment in the front chamber thereof As a result, the burden of corrosion on the material of the device is greatly reduced. Therefore, the frequency of maintenance of the device is reduced, and the cost merit is clear in view of the long-term life of the device. Further, the exhaust gas subjected to combustion treatment is decomposed into hydrogen halide such as hydrogen fluoride, NOx, and other substances in a wet detoxification equipment such as an alkali scrubber that is finally connected to the exhaust pipe of the combustion type detoxification tower. The substance such as silicon tetrafluoride is absorbed.

【0020】本発明の排ガスの処理装置は、排ガス導入
口、燃料導入口、燃焼前室、燃焼室、空気導入口および
排気管を備え、少なくとも燃焼前室および燃焼室の表面
にフッ化不動態膜が形成されていることを特徴とする。
図1は本発明の排ガスの処理方法を実施することができ
る処理装置の1例を示しており、フッ素ガスまたはフッ
化ハロゲンガスを含む混合排ガスを火炎壁へ通して助燃
ガスの渦巻流中に導入し、燃焼分解処理する方式を用い
た装置の1例である。
The exhaust gas treating apparatus of the present invention comprises an exhaust gas inlet, a fuel inlet, a combustion front chamber, a combustion chamber, an air inlet and an exhaust pipe, and at least the surfaces of the combustion front chamber and the combustion chamber are fluorinated passivated. It is characterized in that a film is formed.
FIG. 1 shows an example of a treatment apparatus capable of carrying out the method for treating exhaust gas of the present invention, in which a mixed exhaust gas containing a fluorine gas or a halogen fluoride gas is passed through a flame wall to form a swirl flow of a combustion supporting gas. It is an example of an apparatus using a method of introducing and performing combustion decomposition treatment.

【0021】図1の装置の材質は、フッ素ガスまたはフ
ッ化ハロゲンガスを流通させることから高耐食性の材料
が必須となる。燃焼室8は、燃焼熱によって高温となる
ことから、ニッケル、高ニッケル含有合金またはモネル
により形成され、その表面にフッ化不動態膜が形成され
ていることが好ましい。また、燃焼室8は通常のステン
レスや一般鉄鋼材により形成され、その表面にニッケ
ル、ニッケル合金電気鍍金、電鋳鍍金またはニッケル合
金無電解鍍金からなる薄膜、もしくは溶射法等によって
耐フッ素ガス性に優れ、耐熱性を有しているアルミナま
たは窒化アルミニウムからなるセラミックス薄膜を有
し、該薄膜の表面にフッ化不動態膜が形成されているこ
とが好ましい。ニッケル鍍金の場合は耐熱性に優れるニ
ッケルホウ素系の無電解鍍金処理が望ましい。また、燃
焼前室7も同様にしてその表面にフッ化不動態膜が形成
されていることが好ましい。装置部品については、あら
かじめフッ素ガスにて不動態化処理を実施することが望
ましい。特に排ガスの燃焼している部位の周囲部分は、
燃焼部位からの輻射熱、伝熱によってかなりの高温下に
曝される。従ってこの部位の材料については、ニッケ
ル、高ニッケル含有合金、モネル等にて作製されること
が好ましい。通常のステンレスや鉄鋼材へニッケル電気
鍍金、電鋳鍍金、ニッケル無電解鍍金等の耐食処理を施
工してもよい。また、装置部材についても同様にしてあ
らかじめフッ素ガスにて不動態化処理を実施することが
望ましい。
As the material of the apparatus shown in FIG. 1, since a fluorine gas or a halogen fluoride gas is circulated, a material having high corrosion resistance is essential. Since the combustion chamber 8 is heated to a high temperature by combustion heat, it is preferable that the combustion chamber 8 is made of nickel, a high nickel content alloy or monel, and a fluorinated passivation film is formed on the surface thereof. The combustion chamber 8 is formed of ordinary stainless steel or general steel material, and the surface thereof is made of nickel, nickel alloy electroplating, electroforming plating or nickel alloy electroless plating, or has a fluorine gas resistance by a spraying method or the like. It is preferable to have a ceramic thin film made of alumina or aluminum nitride having excellent heat resistance, and a fluorinated passivation film formed on the surface of the thin film. In the case of nickel plating, nickel-boron-based electroless plating treatment, which has excellent heat resistance, is desirable. Further, it is preferable that a fluorinated passivation film is formed on the surface of the combustion front chamber 7 in the same manner. It is desirable that the equipment parts be passivated with fluorine gas in advance. Especially around the area where the exhaust gas is burning,
It is exposed to a fairly high temperature due to radiant heat and heat transfer from the combustion site. Therefore, the material of this portion is preferably made of nickel, high nickel content alloy, monel or the like. Corrosion-resistant treatment such as nickel electroplating, electroforming plating, and nickel electroless plating may be applied to ordinary stainless steel and steel materials. Further, it is desirable that the device members are similarly passivated with fluorine gas in advance.

【0022】前述のように、本発明に従えば、エッチン
グ工程またはクリーニング工程から排出される、フッ素
ガスまたはフッ化ハロゲンガスを含む排ガスを、表面に
フッ化不動態膜が形成された燃焼室を備えた燃焼装置に
導入し、前記排ガスを燃焼させることによって効率よく
排ガスの処理を行うことができる。本発明は、エッチン
グガスまたはクリーニングガスとして、フッ素ガスまた
はフッ化ハロゲンガスを用いるエッチング工程またはク
リーニング工程と、それらの工程から排出されるフッ素
ガスまたはフッ化ハロゲンガスを含有するガスを燃焼さ
せる除害工程を有する半導体デバイスの製造方法におい
て、該除害工程が表面にフッ化不動態膜が形成された燃
焼室を備えた燃焼装置を用いることを特徴とする半導体
デバイスの製造方法を提供するものである。
As described above, according to the present invention, the exhaust gas containing the fluorine gas or the halogen fluoride gas discharged from the etching process or the cleaning process is passed through the combustion chamber having the fluorinated passivation film formed on the surface thereof. The exhaust gas can be efficiently treated by introducing it into a provided combustion device and burning the exhaust gas. The present invention is directed to an etching process or a cleaning process using a fluorine gas or a halogen fluoride gas as an etching gas or a cleaning gas, and a detoxification for burning a gas containing a fluorine gas or a halogen fluoride gas discharged from these processes. In a method of manufacturing a semiconductor device having steps, there is provided a method of manufacturing a semiconductor device, characterized in that the detoxifying step uses a combustion apparatus including a combustion chamber having a fluorinated passivation film formed on the surface thereof. is there.

【0023】[0023]

【実施例】以下に実施例および比較例を用いて本発明を
さらに詳しく説明するが、本発明はこれらの実施例に限
定されるものではない。 (実施例1)燃焼式除害装置におけるステンレス製の燃
焼室およびその周囲の部品に対してニッケルメッキおよ
びフッ素不動態化処理を施して、フッ素ガスを用いる燃
焼除害実験を行った。燃焼式除害装置の運転条件とフッ
素導入条件を表1に、燃焼除害後に排出される排ガスの
組成分析結果を表2に示した。燃焼室温度は燃焼室外壁
に取り付けた熱電対により測定した。燃焼後の排ガス中
に含まれる一酸化窒素および二酸化窒素の濃度はガス検
知管により測定し、フッ化水素ガスの濃度は赤外分光法
により測定した。三フッ化窒素は検出器を用い測定し
た。また、ヨウ化カリウム水溶液によるサンプリングを
行って、サンプル液のチオ硫酸ナトリウム溶液による滴
定でフッ素ガス濃度を測定し、サンプル液の誘導結合プ
ラズマ発光分析法により金属濃度を測定した。
EXAMPLES The present invention will be described in more detail below with reference to examples and comparative examples, but the present invention is not limited to these examples. (Example 1) A stainless steel combustion chamber and parts around it in a combustion type detoxification apparatus were subjected to nickel plating and fluorine passivation treatment, and a combustion detoxification experiment using fluorine gas was conducted. Table 1 shows the operating conditions and fluorine introduction conditions of the combustion type detoxification device, and Table 2 shows the composition analysis results of the exhaust gas discharged after the combustion detoxification. The combustion chamber temperature was measured by a thermocouple attached to the outer wall of the combustion chamber. The concentrations of nitric oxide and nitrogen dioxide contained in the exhaust gas after combustion were measured by a gas detector tube, and the concentration of hydrogen fluoride gas was measured by infrared spectroscopy. Nitrogen trifluoride was measured using a detector. Further, sampling was performed with an aqueous potassium iodide solution, the fluorine gas concentration was measured by titration of the sample liquid with a sodium thiosulfate solution, and the metal concentration was measured with the inductively coupled plasma emission spectrometry of the sample liquid.

【0024】[0024]

【表1】 [Table 1]

【0025】[0025]

【表2】 [Table 2]

【0026】表2より明らかなように、燃焼後の排ガス
中に一酸化窒素および二酸化窒素は全く含まれず、燃焼
式除害装置に導入されたフッ素は全量が反応してフッ化
水素ガスに変換された。また、燃焼排ガス中にはフッ化
水素ガス、水蒸気および二酸化炭素以外の燃焼反応生成
物がないことを赤外分光法とサンプル液の誘導結合プラ
ズマ発光分析法による測定で確認した。
As is clear from Table 2, nitric oxide and nitrogen dioxide are not contained in the exhaust gas after combustion, and all the fluorine introduced into the combustion-type abatement system reacts and is converted into hydrogen fluoride gas. Was done. In addition, it was confirmed that the combustion exhaust gas contains no combustion reaction products other than hydrogen fluoride gas, water vapor, and carbon dioxide by measurement by infrared spectroscopy and inductively coupled plasma emission spectrometry of the sample liquid.

【0027】(比較例1)導入ガスをフッ素ガスの代わ
りに三フッ化窒素として、三フッ化窒素の流量を9.0
L/minとした燃焼除害実験を行った。燃焼式除害装置の
運転条件と三フッ化窒素の導入条件を表3に、燃焼排ガ
スの組成分析結果を表4に示した。
(Comparative Example 1) The introduction gas was nitrogen trifluoride instead of fluorine gas, and the flow rate of nitrogen trifluoride was 9.0.
A combustion detoxification experiment was conducted at L / min. Table 3 shows the operating conditions of the combustion type abatement system and the introduction conditions of nitrogen trifluoride, and Table 4 shows the results of the composition analysis of the combustion exhaust gas.

【0028】[0028]

【表3】 [Table 3]

【0029】[0029]

【表4】 [Table 4]

【0030】表3に示す運転条件は、排ガス中に三フッ
化窒素ガスが検出されない燃焼運転条件として示したも
のである。従って、燃焼式除害装置に導入された三フッ
化窒素は全量が反応してフッ化水素ガスに変換された
が、排出ガス中には一酸化窒素および二酸化窒素がそれ
ぞれ生成し、許容濃度を大きく超過した。
The operating conditions shown in Table 3 are combustion operating conditions in which nitrogen trifluoride gas is not detected in the exhaust gas. Therefore, the entire amount of nitrogen trifluoride introduced into the combustion-type abatement system reacted and was converted into hydrogen fluoride gas, but nitric oxide and nitrogen dioxide were produced in the exhaust gas, respectively, and the permissible concentration was reduced. Greatly exceeded.

【0031】(比較例2)実施例1と比較して燃料メタ
ン流量を30L/minに増加し、燃焼室温度を350℃以
上に上げた以外は、実施例1と同様の燃焼除害実験を行
った。燃焼式除害装置の運転条件とフッ素導入条件を表
5に、燃焼排ガスの組成分析結果を表6に示した。
(Comparative Example 2) A combustion detoxification experiment similar to that of Example 1 was conducted except that the flow rate of fuel methane was increased to 30 L / min and the temperature of the combustion chamber was increased to 350 ° C or higher as compared with Example 1. went. Table 5 shows the operating conditions and fluorine introduction conditions of the combustion-type abatement system, and Table 6 shows the composition analysis results of the combustion exhaust gas.

【0032】[0032]

【表5】 [Table 5]

【0033】[0033]

【表6】 [Table 6]

【0034】表6より明らかなように、燃焼式除害装置
に導入されたフッ素の一部はフッ化水素として排出され
ず、燃焼室およびその周囲の部材表面と反応して消費さ
れていた。その一部は金属フッ化物が形成され、微粉化
していることが確認された。排ガス分析の結果として
は、一酸化窒素および二酸化窒素の生成も確認された。
As is clear from Table 6, part of the fluorine introduced into the combustion-type abatement system was not discharged as hydrogen fluoride, but was consumed by reacting with the surface of the combustion chamber and its surrounding members. It was confirmed that a metal fluoride was formed in a part of the powder and was pulverized. As a result of the exhaust gas analysis, formation of nitric oxide and nitrogen dioxide was also confirmed.

【0035】(比較例3)燃焼室のコーティングを行わ
ずにステンレス(SUS304材)のままとした以外は実施例
1と同一の燃焼除害実験を行った。燃焼式除害装置の運
転条件とフッ素の導入条件を表7に、燃焼排ガスの組成
分析結果を表8に示した。
Comparative Example 3 The same combustion detoxification experiment as in Example 1 was carried out except that the combustion chamber was not coated and the stainless steel (SUS304 material) was left as it was. Table 7 shows the operating conditions of the combustion-type abatement system and the introduction conditions of fluorine, and Table 8 shows the composition analysis results of the combustion exhaust gas.

【0036】[0036]

【表7】 [Table 7]

【0037】[0037]

【表8】 表8より明らかなように、燃焼式除害装置に導入された
フッ素のかなりの割合がフッ化水素として確認されず、
フッ化クロムのようなガス成分も生成していることもな
かった。
[Table 8] As is clear from Table 8, a significant proportion of the fluorine introduced into the combustion type abatement system was not confirmed as hydrogen fluoride,
Neither gas component such as chromium fluoride was generated.

【0038】(比較例4)燃焼室のコーティングをニッ
ケルメッキのみとしてフッ素処理を行わなかった以外は
実施例と同一の燃焼除害実験を行った。燃焼式除害装置
の運転条件とフッ素の導入条件を表9に、燃焼排ガスの
組成分析結果を表10に示した。
COMPARATIVE EXAMPLE 4 The same combustion detoxification experiment as in Example was carried out except that the coating of the combustion chamber was only nickel plating and no fluorine treatment was performed. Table 9 shows the operating conditions of the combustion-type abatement system and the introduction conditions of fluorine, and Table 10 shows the composition analysis results of the combustion exhaust gas.

【0039】[0039]

【表9】 [Table 9]

【0040】[0040]

【表10】 表10より明らかなように、燃焼式除害装置に導入され
たフッ素ガスは僅かに燃焼装置材料表面と反応して消費
された。
[Table 10] As is clear from Table 10, the fluorine gas introduced into the combustion-type abatement system was slightly consumed by reacting with the surface of the material of the combustion system.

【0041】(比較例5)導入ガスを三フッ化窒素とし
て、三フッ化窒素の流量を9.0L/minとした以外は実
施例1と同一の燃焼除害実験を行った。但し燃焼室の表
面処理はせずステンレス(SUS304)をそのまま使用し
た。燃焼式除害装置の運転条件と三フッ化窒素の導入条
件を表11に、燃焼排ガスの組成分析結果を表12に示
した。
(Comparative Example 5) The same combustion detoxification experiment as in Example 1 was conducted except that the introduction gas was nitrogen trifluoride and the flow rate of nitrogen trifluoride was 9.0 L / min. However, the surface of the combustion chamber was not treated and stainless steel (SUS304) was used as it was. Table 11 shows the operating conditions of the combustion-type abatement system and the introduction conditions of nitrogen trifluoride, and Table 12 shows the composition analysis results of the combustion exhaust gas.

【0042】[0042]

【表11】 [Table 11]

【0043】[0043]

【表12】 [Table 12]

【0044】表12より明らかなように、燃焼式除害装
置に導入された三フッ化窒素は反応してフッ化水素ガス
に変換されたが、一部が装置材料との反応により消失し
た他、一酸化窒素および二酸化窒素がそれぞれ生成し許
容濃度を大きく超過した。さらに燃焼除害の運転終了
後、実施例1および比較例1、比較例2、比較例3、比
較例4、比較例5の燃焼室の内面についての金属表面分
析を行った。測定はエネルギー分散型X線分析装置にて
行った。
As is clear from Table 12, the nitrogen trifluoride introduced into the combustion type abatement system reacted and was converted into hydrogen fluoride gas, but part of it disappeared due to the reaction with the equipment material. , Nitric oxide and nitrogen dioxide were produced, and the permissible concentrations were greatly exceeded. Further, after the combustion detoxifying operation was completed, metal surface analysis was performed on the inner surfaces of the combustion chambers of Example 1, Comparative Example 1, Comparative Example 2, Comparative Example 3, Comparative Example 4, and Comparative Example 5. The measurement was performed with an energy dispersive X-ray analyzer.

【0045】[0045]

【表13】 [Table 13]

【0046】ニッケルを表面処理した燃焼室は大きな損
傷もなくフッ素ガス、三フッ化窒素に対して大きな耐食
性を示した。次に実施例1および比較例1、比較例2、
比較例3、比較例4、比較例5の燃焼除害を行った後の
燃焼前室の内面について金属表面分析を行った。測定は
エネルギー分散型X線分析装置にて行った。
The combustion chamber surface-treated with nickel showed great corrosion resistance to fluorine gas and nitrogen trifluoride without significant damage. Next, Example 1, Comparative Example 1, and Comparative Example 2,
Metal surface analysis was performed on the inner surface of the pre-combustion chamber after the combustion removal of Comparative Examples 3, 4, and 5. The measurement was performed with an energy dispersive X-ray analyzer.

【0047】[0047]

【表14】 [Table 14]

【0048】比較例3は著しく素材からCrが消失して
いることが確認された。また比較例5の場合においても
Cr濃度がわずかに減少している。顕微鏡による観察で
はクラックも生じており、Crのフッ化物が形成され気
化する現象やステンレス素材のFeの二価から三価への
高次フッ化物形成反応が起こる等、フッ化形成膜の剥が
れが生じていた。燃焼室と燃焼前室のステンレスの損傷
状態は、フッ素ガスと三フッ化窒素を比較するとフッ素
ガスを燃焼した比較例3のCr濃度変化がいずれも大き
く、外観上も著しく劣化していた。また燃焼室と燃焼前
室のステンレスの損傷状態燃焼室と比べると燃焼室より
燃焼前室の方がフッ素ガス、三フッ化窒素いずれの場合
においても燃焼前室の方がCr濃度変化がいずれも大き
く、外観上も著しく劣化していた。このことは燃焼室、
特にその壁の部位では、燃料ガスの燃焼の際に酸化炎に
よる酸化反応が優勢であるためと考えられる。
In Comparative Example 3, it was confirmed that Cr was remarkably disappeared from the material. Also in the case of Comparative Example 5, the Cr concentration is slightly decreased. Cracks have also occurred under observation with a microscope, and the fluoride formation film is peeled off due to the phenomenon that the fluoride of Cr is formed and vaporized and the high order fluoride formation reaction of divalent to trivalent Fe of the stainless steel material occurs. It was happening. Regarding the damaged state of the stainless steel in the combustion chamber and the pre-combustion chamber, when the fluorine gas and nitrogen trifluoride were compared, the change in the Cr concentration in Comparative Example 3 in which the fluorine gas was burned was large, and the appearance was significantly deteriorated. Damaged state of stainless steel in the combustion chamber and the pre-combustion chamber Compared to the combustion chamber, in both cases of fluorine gas and nitrogen trifluoride, the pre-combustion chamber has a change in Cr concentration more than the combustion chamber. It was large and significantly deteriorated in appearance. This is the combustion chamber,
It is considered that the oxidation reaction due to the oxidative flame is predominant at the time of combustion of the fuel gas especially at the site of the wall.

【0049】[0049]

【発明の効果】以上述べたように、本発明の処理方法を
用いることにより、フッ素ガスまたはフッ素化ハロゲン
ガスが高濃度、大量に排出された場合、またこれらを含
み、異なった性状のガスを、同時に同一の除害装置にて
処理することができる。本発明の方法は半導体の製造工
程において好ましく使用され、安全対策を十分に考慮し
た効率的・経済的な除害処理方法であり、地球環境を保
全することから、産業上の利用価値が高いものである。
As described above, by using the treatment method of the present invention, when fluorine gas or fluorinated halogen gas is discharged in high concentration and in a large amount, it is possible to generate gas having different properties including these gases. At the same time, they can be processed by the same abatement device. INDUSTRIAL APPLICABILITY The method of the present invention is an efficient and economical detoxification treatment method that is preferably used in the semiconductor manufacturing process and fully considers safety measures, and has a high industrial utility value because it preserves the global environment. Is.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の排ガスの処理方法を実施することが
できる処理装置の1例である。
FIG. 1 is an example of a treatment apparatus capable of carrying out the method for treating exhaust gas of the present invention.

【符号の説明】[Explanation of symbols]

1 プロセス排ガス 2 希釈用ガス 3 助燃用ガス 4 燃焼用可燃性ガス 5 空気 6 大気放出ガス 7 燃焼前室 8 燃焼室 9 燃焼ガス冷却装置 10 アルカリスクラバ− 11 排気ブロアー 1 process exhaust gas 2 dilution gas 3 auxiliary gas 4 Combustible gas for combustion 5 air 6 atmospheric release gas 7 Combustion front chamber 8 Combustion chamber 9 Combustion gas cooling device 10 Alkali scrubber 11 Exhaust blower

───────────────────────────────────────────────────── フロントページの続き (72)発明者 星野 恭之 神奈川県川崎市川崎区扇町5−1 昭和電 工株式会社川崎生産・技術統括部内 (72)発明者 朴 炳渉 東京都墨田区太平三丁目4番8号 小池酸 素工業株式会社内 (72)発明者 金 炳哲 東京都墨田区太平三丁目4番8号 小池酸 素工業株式会社内 Fターム(参考) 3K078 AA09 BA20 BA26 CA01 4D002 AA22 AC10 BA05 DA56 GA01 GB20 HA03 5F004 AA13 AA16 DA00 FA08    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Yasuyuki Hoshino             Showaden 5-1 Ogimachi, Kawasaki-ku, Kawasaki-shi, Kanagawa             Kawasaki Production & Engineering Department (72) Inventor Bak Wataru             Koike acid, 3-4-8 Taihei, Sumida-ku, Tokyo             Inside (72) Inventor Kim Satoshi             Koike acid, 3-4-8 Taihei, Sumida-ku, Tokyo             Inside F-term (reference) 3K078 AA09 BA20 BA26 CA01                 4D002 AA22 AC10 BA05 DA56 GA01                       GB20 HA03                 5F004 AA13 AA16 DA00 FA08

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 エッチング工程またはクリーニング工程
から排出される、フッ素ガスまたはフッ化ハロゲンガス
を含む排ガスを、表面にフッ化不動態膜が形成された燃
焼室を備えた燃焼装置に導入し、前記排ガスを燃焼させ
ることを特徴とする排ガスの処理方法。
1. Exhaust gas containing fluorine gas or halogen fluoride gas discharged from an etching process or a cleaning process is introduced into a combustion apparatus having a combustion chamber having a fluorinated passivation film formed on the surface thereof, A method for treating exhaust gas, which comprises burning the exhaust gas.
【請求項2】 前記フッ化不動態膜がフッ化ニッケルか
らなる請求項1に記載の処理方法。
2. The processing method according to claim 1, wherein the fluorinated passivation film is made of nickel fluoride.
【請求項3】 フッ素ガスまたはフッ化ハロゲンガスの
濃度が5vol%以下である請求項1または2に記載の
処理方法。
3. The treatment method according to claim 1, wherein the concentration of fluorine gas or halogen fluoride gas is 5 vol% or less.
【請求項4】 燃焼後の排ガス中に含まれる窒素酸化物
の含有量が5volppm未満である請求項1〜3のい
ずれかに記載の処理方法。
4. The treatment method according to claim 1, wherein the content of nitrogen oxides contained in the exhaust gas after combustion is less than 5 volppm.
【請求項5】 排ガス導入口、燃料導入口、燃焼前室、
燃焼室、空気導入口および排気管を備え、少なくとも燃
焼前室および燃焼室の表面にフッ化不動態膜が形成され
ていることを特徴とする排ガスの処理装置。
5. An exhaust gas inlet, a fuel inlet, a combustion front chamber,
An exhaust gas treating apparatus comprising a combustion chamber, an air inlet, and an exhaust pipe, wherein a fluorinated passivation film is formed on at least the surfaces of the pre-combustion chamber and the combustion chamber.
【請求項6】 燃焼室が、ニッケル、高ニッケル含有合
金およびモネルからなる群から選ばれる金属により形成
され、該金属の表面にフッ化不動態膜が形成されている
請求項5に記載の処理装置。
6. The process according to claim 5, wherein the combustion chamber is formed of a metal selected from the group consisting of nickel, a high nickel content alloy and monel, and a fluorinated passivation film is formed on the surface of the metal. apparatus.
【請求項7】 燃焼室が、ステンレスおよび鉄鋼材から
なる群から選ばれる金属により形成され、該金属の表面
にニッケル、ニッケル合金電気鍍金、電鋳鍍金またはニ
ッケル合金無電解鍍金からなる薄膜もしくはアルミナま
たは窒化アルミニウムからなるセラミックス薄膜を有
し、該薄膜の表面にフッ化不動態膜が形成されている請
求項5に記載の処理装置。
7. The combustion chamber is formed of a metal selected from the group consisting of stainless steel and steel, and the surface of the metal is a thin film or alumina formed of nickel, nickel alloy electroplating, electroforming plating or nickel alloy electroless plating. The processing apparatus according to claim 5, further comprising a ceramic thin film made of aluminum nitride, and a fluorinated passivation film formed on the surface of the thin film.
【請求項8】 エッチングガスまたはクリーニングガス
として、フッ素ガスまたはフッ化ハロゲンガスを用いる
エッチング工程またはクリーニング工程と、それらの工
程から排出されるフッ素ガスまたはフッ化ハロゲンガス
を含有するガスを燃焼させる除害工程を有する半導体デ
バイスの製造方法において、該除害工程が表面にフッ化
不動態膜が形成された燃焼室を備えた燃焼装置を用いる
ことを特徴とする半導体デバイスの製造方法。
8. An etching process or a cleaning process using a fluorine gas or a halogen fluoride gas as an etching gas or a cleaning gas, and a method of burning a gas containing a fluorine gas or a halogen fluoride gas discharged from these processes. In the method of manufacturing a semiconductor device having a damaging step, the method of manufacturing a semiconductor device, wherein the damaging step uses a combustion apparatus having a combustion chamber having a fluorinated passivation film formed on the surface thereof.
【請求項9】 前記フッ化不動態膜がフッ化ニッケルか
らなる請求項8に記載の製造方法。
9. The manufacturing method according to claim 8, wherein the fluorinated passivation film is made of nickel fluoride.
JP2002037344A 2002-02-14 2002-02-14 Exhaust gas treatment method and treatment apparatus Expired - Fee Related JP4172938B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2002037344A JP4172938B2 (en) 2002-02-14 2002-02-14 Exhaust gas treatment method and treatment apparatus
CNB038001454A CN1259524C (en) 2002-02-14 2003-02-13 Method and system for treating exhaust gas
US10/474,765 US20050115674A1 (en) 2002-02-14 2003-02-13 Method for treating exhaust gas
PCT/JP2003/001507 WO2003069228A1 (en) 2002-02-14 2003-02-13 Method for treating exhaust gas
KR1020037013443A KR100544760B1 (en) 2002-02-14 2003-02-13 Exhaust gas treatment process and treatment system
AU2003211966A AU2003211966A1 (en) 2002-02-14 2003-02-13 Method for treating exhaust gas
TW092103139A TW592797B (en) 2002-02-14 2003-02-14 Exhaust gas treatment process and treatment system
HK04109106A HK1066262A1 (en) 2002-02-14 2004-11-18 Method for treating exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002037344A JP4172938B2 (en) 2002-02-14 2002-02-14 Exhaust gas treatment method and treatment apparatus

Publications (2)

Publication Number Publication Date
JP2003236337A true JP2003236337A (en) 2003-08-26
JP4172938B2 JP4172938B2 (en) 2008-10-29

Family

ID=27678109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002037344A Expired - Fee Related JP4172938B2 (en) 2002-02-14 2002-02-14 Exhaust gas treatment method and treatment apparatus

Country Status (8)

Country Link
US (1) US20050115674A1 (en)
JP (1) JP4172938B2 (en)
KR (1) KR100544760B1 (en)
CN (1) CN1259524C (en)
AU (1) AU2003211966A1 (en)
HK (1) HK1066262A1 (en)
TW (1) TW592797B (en)
WO (1) WO2003069228A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006289238A (en) * 2005-04-08 2006-10-26 Kanto Denka Kogyo Co Ltd Waste gas treatment method
JP2008169448A (en) * 2007-01-12 2008-07-24 Stella Chemifa Corp Carbon steel or special steel with fluorinated passive film formed, and method for forming the same
JP2010276307A (en) * 2009-05-29 2010-12-09 Japan Pionics Co Ltd Thermal decomposition device
CN106524191A (en) * 2016-10-31 2017-03-22 江苏优瑞德环境科技有限公司 Fluorine-contained alkane waste gas incineration treatment process and device
CN112827341A (en) * 2020-12-25 2021-05-25 北京京仪自动化装备技术有限公司 Waste gas treatment system of semiconductor process and waste gas treatment method thereof
WO2021106602A1 (en) * 2019-11-27 2021-06-03 昭和電工株式会社 Method for measuring concentration of fluorine gas contained in halogen fluoride-containing gas by ultraviolet spectroscopy

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0509944D0 (en) * 2005-05-16 2005-06-22 Boc Group Plc Gas combustion apparatus
JP5659491B2 (en) * 2009-01-30 2015-01-28 セントラル硝子株式会社 Semiconductor manufacturing equipment including fluorine gas generator
CN102163643B (en) * 2010-10-09 2013-01-02 浙江哈氟龙新能源有限公司 Waste gas treatment thermal cycle drying system
KR101970807B1 (en) * 2012-08-20 2019-04-19 사빅 글로벌 테크놀러지스 비.브이. Real-time online determination of caustic in process scrubbers using near infrared spectroscopy and chemometrics
JP6257442B2 (en) * 2014-05-15 2018-01-10 東京エレクトロン株式会社 Exhaust gas explosion-proof method in vacuum processing equipment
FR3043080B1 (en) * 2015-11-04 2021-01-08 Haffner Energy HYPERGAS SYNTHETIC GAS PRODUCTION PROCESS
CN106884134B (en) * 2015-12-16 2020-07-03 中国科学院上海应用物理研究所 Surface passivation treatment method of nickel-based alloy
GB2554406A (en) * 2016-09-26 2018-04-04 Edwards Korea Ltd Plasma abatement
EP4067300A4 (en) * 2019-11-27 2024-01-03 Resonac Corp Method for measuring fluorine gas concentration in halogen-fluoride-containing gas using mass spectrometer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63166783A (en) * 1986-12-27 1988-07-09 三石耐火煉瓦株式会社 Refractory brick for trash incinerator
JPH1179871A (en) * 1997-08-27 1999-03-23 Harima Ceramic Co Ltd Lining structure of incinerator
JP2001065838A (en) * 1999-08-26 2001-03-16 Nisshin Steel Co Ltd Incinerator excellent in high temperature corrosion resistance and equipment annexed to incinerator
JP2001082723A (en) * 1999-07-14 2001-03-30 Nippon Sanso Corp Combustion type noxious substance removing device and burner for combustion type noxious substance removing device
WO2001033141A1 (en) * 1999-11-02 2001-05-10 Ebara Corporation Combustor for exhaust gas treatment

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4236464A (en) * 1978-03-06 1980-12-02 Aerojet-General Corporation Incineration of noxious materials
DE68907366T2 (en) * 1988-04-11 1993-12-02 Mitsui Toatsu Chemicals Process for refining nitrogen trifluoride gas.
JPH01261208A (en) * 1988-04-11 1989-10-18 Mitsui Toatsu Chem Inc Method for purifying nitrogen trifluoride gas
US5009963A (en) * 1988-07-20 1991-04-23 Tadahiro Ohmi Metal material with film passivated by fluorination and apparatus composed of the metal material
FR2667134B1 (en) * 1990-09-24 1995-07-21 Pavese Guy METHOD FOR IMPROVING COMBUSTION FOR A BLOW AIR BURNER AND MEANS FOR CARRYING OUT IT.
US5510093A (en) * 1994-07-25 1996-04-23 Alzeta Corporation Combustive destruction of halogenated compounds
US6146606A (en) * 1999-02-09 2000-11-14 Showa Denko Kabushiki Kaisha Reactive agent and process for decomposing nitrogen fluoride
US6630421B1 (en) * 1999-04-28 2003-10-07 Showa Denko Kabushiki Kaisha Reactive agent and process for decomposing fluorine compounds and use thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63166783A (en) * 1986-12-27 1988-07-09 三石耐火煉瓦株式会社 Refractory brick for trash incinerator
JPH1179871A (en) * 1997-08-27 1999-03-23 Harima Ceramic Co Ltd Lining structure of incinerator
JP2001082723A (en) * 1999-07-14 2001-03-30 Nippon Sanso Corp Combustion type noxious substance removing device and burner for combustion type noxious substance removing device
JP2001065838A (en) * 1999-08-26 2001-03-16 Nisshin Steel Co Ltd Incinerator excellent in high temperature corrosion resistance and equipment annexed to incinerator
WO2001033141A1 (en) * 1999-11-02 2001-05-10 Ebara Corporation Combustor for exhaust gas treatment

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006289238A (en) * 2005-04-08 2006-10-26 Kanto Denka Kogyo Co Ltd Waste gas treatment method
JP2008169448A (en) * 2007-01-12 2008-07-24 Stella Chemifa Corp Carbon steel or special steel with fluorinated passive film formed, and method for forming the same
JP2010276307A (en) * 2009-05-29 2010-12-09 Japan Pionics Co Ltd Thermal decomposition device
CN106524191A (en) * 2016-10-31 2017-03-22 江苏优瑞德环境科技有限公司 Fluorine-contained alkane waste gas incineration treatment process and device
WO2021106602A1 (en) * 2019-11-27 2021-06-03 昭和電工株式会社 Method for measuring concentration of fluorine gas contained in halogen fluoride-containing gas by ultraviolet spectroscopy
CN112827341A (en) * 2020-12-25 2021-05-25 北京京仪自动化装备技术有限公司 Waste gas treatment system of semiconductor process and waste gas treatment method thereof

Also Published As

Publication number Publication date
US20050115674A1 (en) 2005-06-02
TW592797B (en) 2004-06-21
CN1498328A (en) 2004-05-19
JP4172938B2 (en) 2008-10-29
CN1259524C (en) 2006-06-14
WO2003069228A1 (en) 2003-08-21
KR20030085596A (en) 2003-11-05
AU2003211966A1 (en) 2003-09-04
HK1066262A1 (en) 2005-03-18
KR100544760B1 (en) 2006-01-24
TW200303236A (en) 2003-09-01

Similar Documents

Publication Publication Date Title
JP4172938B2 (en) Exhaust gas treatment method and treatment apparatus
JP5307556B2 (en) Gas processing equipment
JP2022002845A (en) Steam plasma arc hydrolysis of ozone depleting substance
EP0885648A1 (en) A treatment method for decomposing fluorine compounds, and catalyst and apparatus therefor
US20050249643A1 (en) Apparatus and process for the abatement of semiconductor manufacturing effluents containing fluorine gas
EP2000195B1 (en) Method of making hcd gas harmless and apparatus therefor
EP1450936A1 (en) Method and apparatus for treating exhaust gas
US6126906A (en) Apparatus for removing harmful components in a semiconductor exhaust gas
KR20120021651A (en) Apparatus and method for pfcs gas decomposition
KR101097240B1 (en) Method and apparatus for treating exhaust gas
JP2008253903A (en) Gas treatment method and gas treatment apparatus
JP2001054721A (en) Method and device for decomposing fluorocarbons
JP4518460B2 (en) Method for selectively recovering fluorine components from exhaust gas
JP2010058009A (en) Method of decomposing nitrogen trifluoride and device using this method
JP4937548B2 (en) Perfluorocarbon gas removal method and removal device
JP4400067B2 (en) Halogen corrosion resistant member and perfluoro compound decomposition treatment equipment
CN1341478A (en) Evil-removing method of perfluocarbon or perfluoride and evil-removing device
JP3971843B2 (en) Semiconductor manufacturing exhaust gas abatement apparatus and abatement method
KR102296714B1 (en) An apparatus for removing NOx
JP2007237150A (en) Catalyst detoxifying treatment method of emission gas
KR20040007676A (en) Exhaust gas treating method and treating device
KR200405302Y1 (en) Burning chamber of a exhausted gas purifying nevice
JPH0985045A (en) Method for detoxifying nf3 exhaust gas and apparatus therefor
JP3734963B2 (en) Detoxification method for organochlorine compounds, etc. with mixed molten salt
JP2005111433A (en) Treating method for fluorine compound-containing exhaust gas and apparatus therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080213

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080715

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080812

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4172938

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140822

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees