JP4400067B2 - Halogen corrosion resistant member and perfluoro compound decomposition treatment equipment - Google Patents

Halogen corrosion resistant member and perfluoro compound decomposition treatment equipment Download PDF

Info

Publication number
JP4400067B2
JP4400067B2 JP2003060777A JP2003060777A JP4400067B2 JP 4400067 B2 JP4400067 B2 JP 4400067B2 JP 2003060777 A JP2003060777 A JP 2003060777A JP 2003060777 A JP2003060777 A JP 2003060777A JP 4400067 B2 JP4400067 B2 JP 4400067B2
Authority
JP
Japan
Prior art keywords
mass
gas
based alloy
oxide film
fluorine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003060777A
Other languages
Japanese (ja)
Other versions
JP2004269946A (en
Inventor
周一 菅野
慎 玉田
和寿 東山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2003060777A priority Critical patent/JP4400067B2/en
Publication of JP2004269946A publication Critical patent/JP2004269946A/en
Application granted granted Critical
Publication of JP4400067B2 publication Critical patent/JP4400067B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/30Capture or disposal of greenhouse gases of perfluorocarbons [PFC], hydrofluorocarbons [HFC] or sulfur hexafluoride [SF6]

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、Cl2を含む高温の腐食性ガスにさらされる部材に係り、またCl2とパーフルオロコンパウンドを含むガスからパーフルオロコンパウンドを分解する処理装置に関する。
【0002】
【従来の技術】
ごみ焼却炉の排ガスには、通常、2500ppm 程度のCl2 が含まれている。また、半導体や液晶産業などでは、エッチングやクリーニングのためにパーフルオロコンパウンド(CF4 などようにハロゲンとしてフッ素のみを含有する化合物をいう。以下PFCと記載する)が使用されるが、これらのエッチング排ガスやクリーニング排ガスにも1%程度のCl2 が含まれている。
【0003】
Cl2 は高温で激しい腐食性を有する。このため、ごみ焼却炉の排熱を利用するごみ発電や廃プラスチック発電などでは、Cl2 ガスに対する腐蝕対策が必要になる。また、半導体や液晶産業において使用されるPFCは、地球の温暖化を引き起こす温暖化物質であるため、エッチング排ガス或いはクリーニング排ガスの処理が必要であり、Cl2 ガスに対する腐蝕対策が必要になる。
【0004】
Cl2 含有ガスの腐蝕対策の一例として、廃棄物焼却ボイラに使用される熱交換用チューブに、セラミックス被膜を形成することが知られている(例えば特許文献1参照)。
【0005】
また、有機ハロゲン化合物の触媒分解装置において、触媒分解塔の材質をNi,インコネル,Ni−Cr合金,SUS310S等の金属、又はセラミックスコーティングやグラスライニングを施した部材で形成することが知られている(例えば特許文献2参照)。
【0006】
【特許文献1】
特開平10−274401号公報(特許請求の範囲)
【特許文献2】
特開平6−63357号公報([0012])
【0007】
【発明が解決しようとする課題】
従来の技術は、450〜500℃或いは100〜600℃の温度に加熱される部材を対象にしたものである。
【0008】
本発明の目的は、1000℃に及ぶ非常に高い温度に加熱される部材において、Cl2 を含む腐食性ガスに対する耐食性を改善することにある。
【0009】
【課題を解決するための手段】
本発明は、Cl2を含むガスに曝される部材において、500〜1000℃の前記ガスに曝される部材が、Ni56〜77mass%,Cr10〜30mass%,Fe1〜10mass%,C0.1mass%以下,Al4〜6mass%,Y0.01mass%からなるNi基合金、またはCr10〜20mass%,Ni0.05〜0.20mass%,Al4〜5mass%,C0.01mass%以下,Si0.16〜0.26mass%,Mn0.16〜0.17mass%,Ti0.05〜0.13mass%,P0.021〜0.032mass%,Nb0.08mass%もしくはS0.0007mass%、残部FeからなるFe基合金により形成され、200〜500℃の前記Cl2を含むガスに曝される部材がNiにより形成されていることを特徴とする。
【0011】
本発明において、200℃から500℃のCl2 を含む腐食性ガスにさらされる部材は、Niにより形成されることが望ましい。
【0012】
前記Ni基合金よりなる部材の表面には、酸化クロムの皮膜を有することが望ましい。また、前記Ni基合金と前記酸化クロムの皮膜との間には、酸化アルミニウムの皮膜を有することが望ましい。
【0013】
本発明はパーフルオロコンパウンド分解触媒が充填された触媒反応塔にCl 2 とパーフルオロコンパウンドを含むガスを導入し、前記触媒反応塔内で前記パーフルオロコンパウンドを分解するパーフルオロコンパウンドの分解処理装置であって、前記触媒反応塔内で加熱される部材が、上記のハロゲン耐食性部材であることを特徴とする。
【0014】
本発明者らは、CF4,C26,SF6などのPFC含有ガスを水蒸気の存在下で触媒と接触させて分解する場合に、処理ガス中にCl2 またはHClが共存すると、長時間の連続使用において、PFCを分解する反応塔材料が腐食劣化することを究明した。これは反応塔中で生成する酸性のハロゲン化合物量が増大したためである。本発明は、金属部材の腐食挙動を詳細に検討した結果、見出された。
【0015】
本発明で使用される部材は、Cl2を含む腐蝕性ガスに対して高い耐食性を示すが、その理由は次の様に考えられる。通常、酸化クロムや酸化アルミニウムの皮膜は耐食性を有することが知られているが、高濃度のCl2またはCl2を含むPFCガスと500〜1000℃の温度で接触する場合には、材料中のクロム,アルミニウムの組成、さらには金属中の微量成分の種類によっては耐食性が不十分であることが判った。Niを56〜77mass%、Crを10〜30mass%、Feを1〜10mass%、Cを0.1mass%以下、Alを4〜6mass%の範囲で含むNi基合金により前記部材を形成した場合には、材料表面に耐食性の優れた酸化クロム層またはアルミナ層が容易に形成され、Cl2又はCl2を含むPFCガスに対する耐食性が改善されることがわかった。
【0016】
被膜として効果的な厚さは、酸化クロムでは0.5μm以上、アルミナでは0.2μm以上である。材料中のCr量,Al量が少ないと、十分な酸化被膜が形成されない。材料中のCr量,Al量の上限値は、機械的強度等の問題からCrは30mass%、Feは10mass%、Cは0.1mass%以下、Alは6mass%が望ましい。
【0017】
Ni基合金の表面に酸化クロム層とアルミナ層の両方が存在すると、耐食性は著しく改善される。塩素ガス等は主に孔食で腐食が進行する。このため、酸化クロム層が金属表面に形成されたとしても、わずかずつ材料内部の金属を腐食していく。酸化クロム層の内側にアルミナ層が形成されることで、内部腐食の速度を遅らせることができる。
【0018】
上記Ni基合金中にMo,Co,Wを含む材料は、腐食が進行しやすく不適である。逆にYは腐食抑制に効果がある。
【0019】
被膜の形成法としては、酸素共存化,Cl2 などを流通させて金属材料中のクロム,アルミニウムを酸化させて形成させることができる。酸化被膜が形成されていない材料で作られた反応塔で前記フッ素含有化合物を分解処理し、酸化被膜を形成させてもよい。
【0020】
また、予め反応塔を形成する金属材料の表面に酸化クロム,アルミナの被膜を形成させてから使用してもよい。予備酸化の方法としては、たとえばAr気流中にH22を約3vol% 添加し、この気流中に、800℃で24h処理する方法がある。
【0021】
本発明の材料で形成されたPFC分解装置は、触媒式分解装置の場合には、たとえば以下の条件で分解が行われる。まず、窒素などの不活性ガスとCl2 及びPFCを含むガスに、空気を添加し、さらに水蒸気を添加して、所定の温度に設定された反応塔に導入する。前記PFC含有ガスは約750℃に予熱し、触媒に接触させる。添加する空気の量は、フッ素含有化合物の濃度で決定する。PFCの種類によっては、H2O と反応した際に一酸化炭素を生成するものがある。この種のPFCの場合は、一酸化炭素を酸化するため、予め理論量の1〜5倍程度の酸素を空気として供給する。水蒸気はフッ素含有化合物の分解に必要な理論量の2〜75倍程度を添加する。反応ガス流量としては空間速度が100〜10000h-1となるようにする。燃焼法の場合は前記反応ガスに都市ガスなどの燃料を添加し、さらにH2 などを添加して反応塔中で燃焼分解する。
【0022】
本発明の対象とするフッ素含有化合物は、ハロゲンとしてフッ素のみを含有する化合物である。化合物の構成成分としては、フッ素,炭素,水素,酸素,硫黄,窒素であり、具体的には炭素とフッ素からなる化合物,炭素と水素とフッ素からなる化合物,炭素とフッ素と水素と酸素からなる化合物,炭素とフッ素と酸素からなる化合物,硫黄とフッ素からなる化合物,硫黄とフッ素と酸素からなる化合物,窒素とフッ素からなる化合物,窒素とフッ素と酸素からなる化合物がある。化合物の一例はCF4,CHF3,CH22,CH3F,C26,C2HF5,C2HF5,C224,C233,C242,C25F,C38,CH3OCF2CF3,C48,C58,SF6,SO22,NF3等である。
【0023】
また、処理ガス中にフッ素含有化合物と共存する主要な物質は、N2,O2
2Oである。酸性物質としては、Cl2,HCl,Br2,HBr,CO 等のように、半導体や液晶のエッチング排ガス,クリーニング排ガス中に含まれる化合物が含まれる。また、処理ガスによってはCO2,He,H2などが含まれる。
【0024】
フッ素含有化合物の代表的な分解反応には次のようなものがある。(式1)〜(式5)は水蒸気を添加して分解した場合である。
【0025】
CF4+2H2O → CO2+4HF (式1)
26+3H2O → CO+CO2+6HF (式2)
CHF3+H2O → CO+3HF (式3)
SF6+3H2O → SO3+6HF (式4)
NF3+3/2H2O → NO+1/2O2+3HF (式5)
(式2)及び(式3)の反応ではCOが生成するが、CO酸化性能を有するPFC分解触媒を用いれば、酸素が存在する条件下で分解を行うことにより、
COをCO2 に変換することができる。
【0026】
PFC化合物中のFは、分解によりHFになる。HF等のハロゲン化水素は、水或いはアルカリ水溶液で洗浄することにより、容易に液中に吸収されるので、分解ガス中から除去することができる。
【0027】
触媒式分解装置において使用される反応塔は、通常、固定床,移動床あるいは流動床型のものでよい。反応塔には、ガス流中のフッ素含有化合物の濃度を調節する手段例えばガス流に対して窒素及び/または空気を供給する手段,ガス流と前記触媒とを所定の温度で接触させるために少なくとも一方を加熱する手段,フッ素含有化合物を分解するのに有効量の反応剤を前記ガス流に対して添加する手段,前記反応塔でフッ素含有化合物が分解して生成したHFなどのハロゲン化合物分解生成物を水またはアルカリ水溶液により洗浄して該分解生成物中の二酸化炭素の一部とSO2 ,SO3 等の硫黄酸化物の一部とNO,NO2 等の窒素酸化物の一部とフッ化水素とを除去する排ガス洗浄槽等が取り付けられる。排ガス洗浄槽の後段に洗浄により中和されなかった前記分解生成物中の一酸化炭素,硫黄酸化物,窒素酸化物を吸着する手段を設けることもある。
【0028】
既設の半導体工場エッチング工程,液晶工場エッチング工程へ本発明のフッ素含有化合物の処理方法を適用する場合、エッチング工程から排出されるフッ素含有化合物を含むガス流には、エッチングで生成したSiF4 等の不純物が含まれており、これらはH2O と反応してSiO2 などの固形物を形成するので、SiF4等の不純物を予め触媒分解工程前段で除去することが望ましい。除去後のガスに空気及び水蒸気を添加し、触媒でフッ素含有化合物を分解する。前段での不純物除去法としては水スクラバ,乾式の吸着剤を使用することができる。排ガス洗浄工程を通過させたガスは、排ガスとして放出する。半導体工場には一般に酸成分ガスの排ガス処理装置があるため、これを利用し、本発明の触媒のみをCF4 などのフッ素含有化合物の排ガスラインに設置し、水蒸気を添加して加熱すれば、フッ素含有化合物を分解処理することができる。また、本材料を、熱酸化などの耐食性材料として使用することも可能である。
【0029】
【発明の実施の形態】
図6は、触媒式PFC分解装置の触媒反応塔の一例を示している。
【0030】
触媒反応塔は、触媒槽1と予熱槽2を有し、両者の槽はフランジ3で固定されている。予熱槽及び触媒槽の内壁には断熱材4が設けられている。また、両者の槽は、ヒータ5で加熱されるようになっている。予熱槽の上部には天板6が設けられている。天板6の部分には、Cl2 含有PFCガス導入管7が取り付けられ、この管を通してCl2 含有PFCガスが予熱槽に導入される。また、予熱槽に水を供給するための反応水導入管8が設けられている。この構造の触媒反応塔において、Cl2 含有PFCガス導入管7,反応水導入管8及び天板6は、いずれも加熱温度が500℃以下であるので、Niにより形成することができる。予熱槽及び触媒槽及びフランジは、所定の化学成分を有するNi基合金又はFe基合金或いはこれらの金属の表面に酸化クロム被膜を形成したものにより形成される。
【0031】
試験例1
各種金属材料試験片を、700〜750℃の反応ガス中に設置して、303.5h,614.5h,303.5h+614.5h暴露試験後の試験片質量及び有効厚さを調べた。表1に試験片の化学成分を示す。なお、表1中にbal.とあるのは残部を意味する。
【0032】
【表1】

Figure 0004400067
【0033】
試験片No.1(SUS310S)は、303.5hのみ、No.2〜5及び10は303.5hの試験の後、614.5hの試験(303.5h+614.5h)に用いた。No.7〜9は614.5hの試験に用いた。反応ガスの組成は、Cl2:CF4:H2O:O2:N2=0.42〜0.46:0.83〜0.92:10.33〜10.61:1.31〜1.34:86.68〜87.11(vol%)である。この組成のガスを1518ml/min から1537ml/min で流通させた。
【0034】
図1に試験片No.1〜No.5の結果を示す。図1の縦軸は質量変化率、横軸は反応時間を示す。反応時間614.5 時間での分析結果は、300h試験後に試験片の1枚を抜き出し614.5h試験を行ったものである。No.1(SUS310S)は、303.5h後では、試験前の質量に比べて0.3mass%も減少した。また、表面腐蝕がひどく、ハロゲンに対する耐食性がないと判断した。No.2(インコネル600)の試験片は、質量変化が少なく優れた耐食性を示した。No.2の試験片を、303.5h試験に引き続き、614.5h試験を行った後の質量減少は、初期の質量に対して0.23mass%であり、良好なハロゲン耐食性を示した。
【0035】
No.3(インコネル625),No.4(ハステロイC276),No.5(ハステロイC22)は、No.2に比べると質量減少が大きかった。
【0036】
図2に、試験後の試験片No.2〜No.5の金属被膜部分の結晶形態をX線回折分析で調べた結果を示す。No.2では、Cr23,NiCr24,NiFe24が確認され、これらが腐蝕抑制に寄与しているものと考えられた。
【0037】
図3には、No.2の試験片断面SEM像を撮像し、Cr及びFeのEDX線分析を行った結果を示す。写真中央よりやや上側に白色線で示される部分のCr及びFeの存在状態が、写真下部に示してある。金属材料表面に厚さ2μmの酸化被膜が形成されている。最外部には酸化鉄の被膜が形成されていたが、被膜と母材との界面には酸化クロム被膜が形成されており、この酸化クロム被膜が腐蝕を抑制していると考えられた。
【0038】
次にNo.6からNo.9の試験片の結果を示す。No.6(MA956)は、614.5h 後の質量変化は、試験前に比べて増加していた。腐蝕と金属の酸化とが同時に起こっているために、質量増加の原因は特定できないが、いずれにしても大きな質量変化は認められなかった。No.6について、図3と同様に断面SEM像を調べた結果、母材表面には酸化アルミニウム被膜が確認された。No.7(Fe−25Cr−20Ni)の質量変化は、試験前に比べて0.0429mass%減少したが、No.2よりも少なかった。No.7の被膜分析では、酸化クロム皮膜の間に酸化アルミニウム被膜の存在が確認された。
【0039】
No.8(高AlフェライトSUSA1)及びNo.9(高AlフェライトSUSA2)は、SUSベースの金属母材にAlを含有したものであり、No.8に比べてNo.9の方がAl量は少ない。これらの試験片の試験後の質量変化は、No.9では0.0098mass%減少したのに対し、No.8では0.0597mass%増加していた。しかし、いずれも大きな質量変化は見られなかった。No.8とNo.9の表面には酸化クロムの被膜が形成され、又、酸化クロム被膜と母材との間には酸化アルミニウムの被膜が形成されていた。
【0040】
試験例2
各種金属材料試験片を800〜850℃の反応ガス中に設置して、900h後の試験片重量及び有効厚さを調べた。反応ガスの組成は、Cl2 :CF4:H2O:O2:N2=0.42:0.81:11.35:1.22:86.19(vol% )である。この組成のガスを757ml/min で流通させた。
【0041】
その結果、試験例1と同様に、No.2は質量変化が−0.08mass%であり、良好な耐食性を示した。また、試験片No.10(ヘインズ214)も質量変化が小さく、試験前に比べて−0.06mass%であった。
【0042】
試験例1では、優れた耐久性を示したNo.6(MA956)及びNo.7(Fe−25Cr−20Ni)は、表面剥離が激しく、使用温度が試験例1よりも上昇したことで腐蝕が進行した。No.9(高AlフェライトSUSA2)は、表面剥離は見られたものの、母材の腐蝕はNo.6,No.7ほどではなかった。図4に、No.2の試験片の断面SEM像を撮像し、Cr及びFeのEDX線分析を行った結果を示す。図5に、No.10の試験片の断面SEM像を示し、Cr及びFeのEDX線分析を行った結果を示す。No.2の試験片では厚さ15μmの酸化クロムの被膜が認められ、No.10の試験片では酸化クロム被膜の内部に厚さ5μmのアルミナ被膜が認められた。
【0043】
【発明の効果】
本発明によれば、500〜1000℃の高温において、Cl2又はCl2をPFCガスに対する耐食性を改善することができる。
【図面の簡単な説明】
【図1】各種試験片の試験後の質量変化率と反応時間との関係を示すグラフ。
【図2】各種試験片の試験後の金属被膜部分の結晶形態を、X線回折分析で調べた結果を示す図。
【図3】No.2の試験片の断面SEM像を撮像し、Cr及びFeのEDX線分析を行った結果を示す図。
【図4】No.2の試験片の断面SEM像を撮像し、Cr及びFeのEDX線分析を行った結果を示す図。
【図5】No.10の試験片の断面SEM像を撮像し、Cr及びFeのEDX線分析を行った結果を示す図。
【図6】触媒式PFC分解装置の触媒反応塔の概略図。
【符号の説明】
1…触媒槽、2…予熱槽、3…フランジ、4…断熱材、5…ヒータ、6…天板、7…Cl2 含有PFCガス導入管、8…反応水導入管。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a member to be exposed to a high temperature corrosive gas containing Cl 2, also it relates to decompose processor perfluoro compound from a gas containing Cl 2 and perfluoro compound.
[0002]
[Prior art]
Waste gas from incinerators usually contains about 2500 ppm of Cl 2 . In the semiconductor and liquid crystal industries, perfluoro compounds (compounds containing only fluorine as a halogen, such as CF 4, which will be referred to as PFC hereinafter) are used for etching and cleaning. Exhaust gas and cleaning exhaust gas contain about 1% of Cl 2 .
[0003]
Cl 2 is highly corrosive at high temperatures. For this reason, in the case of waste power generation or waste plastic power generation using waste heat from a waste incinerator, it is necessary to take measures against corrosion of Cl 2 gas. Moreover, since PFC used in the semiconductor and liquid crystal industries is a warming substance that causes global warming, it is necessary to treat the etching exhaust gas or the cleaning exhaust gas, and it is necessary to take measures against corrosion with respect to Cl 2 gas.
[0004]
As an example of countermeasures against corrosion of Cl 2 -containing gas, it is known to form a ceramic film on a heat exchange tube used in a waste incineration boiler (see, for example, Patent Document 1).
[0005]
In addition, in an organic halogen compound catalytic decomposition apparatus, it is known that the catalytic decomposition tower is made of a metal such as Ni, Inconel, Ni-Cr alloy, SUS310S, or a member subjected to ceramic coating or glass lining. (For example, refer to Patent Document 2).
[0006]
[Patent Document 1]
JP-A-10-274401 (Claims)
[Patent Document 2]
JP-A-6-63357 ([0012])
[0007]
[Problems to be solved by the invention]
The conventional technique is intended for a member heated to a temperature of 450 to 500 ° C. or 100 to 600 ° C.
[0008]
An object of the present invention is to improve the corrosion resistance against a corrosive gas containing Cl 2 in a member heated to a very high temperature of 1000 ° C.
[0009]
[Means for Solving the Problems]
In the present invention, in the member exposed to the gas containing Cl 2 , the member exposed to the gas at 500 to 1000 ° C. is Ni 56 to 77 mass%, Cr 10 to 30 mass%, Fe 1 to 10 mass%, C 0.1 mass% or less. , Al 4-6 mass%, Ni-based alloy consisting of Y0.01 mass%, or Cr 10-20 mass%, Ni 0.05-0.20 mass%, Al4-5 mass%, C0.01 mass% or less, Si 0.16-0.26 mass% , Mn 0.16 to 0.17 mass%, Ti 0.05 to 0.13 mass%, P 0.021 to 0.032 mass%, Nb 0.08 mass% or S 0.0007 mass% , and a Fe-based alloy composed of the remainder Fe , 200 The member exposed to the gas containing Cl 2 at ˜500 ° C. is formed of Ni.
[0011]
In the present invention, the member exposed to the corrosive gas containing Cl 2 at 200 ° C. to 500 ° C. is preferably made of Ni.
[0012]
It is desirable to have a chromium oxide film on the surface of the Ni-based alloy member. Moreover, it is desirable to have an aluminum oxide film between the Ni-based alloy and the chromium oxide film.
[0013]
The present invention is a perfluoro compound decomposition treatment apparatus for introducing a gas containing Cl 2 and a perfluoro compound into a catalytic reaction column packed with a perfluoro compound decomposition catalyst and decomposing the perfluoro compound in the catalytic reaction column. And the member heated in the said catalytic reaction tower is said halogen corrosion-resistant member, It is characterized by the above-mentioned .
[0014]
When the present inventors decompose PFC-containing gas such as CF 4 , C 2 F 6 , SF 6 by contacting with a catalyst in the presence of water vapor when Cl 2 or HCl coexists in the process gas, It has been found that the reaction tower material that decomposes PFC undergoes corrosion deterioration over a continuous use of time. This is because the amount of acidic halogen compounds produced in the reaction tower has increased. The present invention has been found as a result of detailed examination of the corrosion behavior of metal members.
[0015]
The member used in the present invention exhibits high corrosion resistance against a corrosive gas containing Cl 2 , and the reason is considered as follows. Usually, a chromium oxide or aluminum oxide film is known to have corrosion resistance, but when it comes into contact with a PFC gas containing a high concentration of Cl 2 or Cl 2 at a temperature of 500 to 1000 ° C., It was found that the corrosion resistance was insufficient depending on the composition of chromium and aluminum and the kind of trace components in the metal. The member is formed of a Ni-based alloy containing Ni in a range of 56 to 77 mass %, Cr in a range of 10 to 30 mass%, Fe in a range of 1 to 10 mass%, C in a range of 0.1 mass% or less, and Al in a range of 4 to 6 mass%. In this case, it was found that a chromium oxide layer or an alumina layer having excellent corrosion resistance was easily formed on the surface of the material, and the corrosion resistance against PFC gas containing Cl 2 or Cl 2 was improved.
[0016]
The effective thickness for the coating is 0.5 μm or more for chromium oxide and 0.2 μm or more for alumina. If the amount of Cr and Al in the material is small, a sufficient oxide film cannot be formed. The upper limit of the Cr content and Al content in the material is preferably 30 mass% for Cr, 10 mass% for Fe, 0.1 mass% or less for C, and 6 mass% for Al due to problems such as mechanical strength.
[0017]
When both a chromium oxide layer and an alumina layer are present on the surface of the Ni-based alloy, the corrosion resistance is significantly improved. Chlorine gas etc. is corroded mainly by pitting corrosion. For this reason, even if the chromium oxide layer is formed on the metal surface, the metal inside the material is gradually corroded. By forming the alumina layer inside the chromium oxide layer, the rate of internal corrosion can be delayed.
[0018]
A material containing Mo, Co, and W in the Ni-based alloy is not suitable because corrosion easily proceeds. Conversely, Y is effective in inhibiting corrosion.
[0019]
As a method of forming the film, it can be formed by coexisting oxygen, circulating Cl 2 or the like, and oxidizing chromium and aluminum in the metal material. The fluorine-containing compound may be decomposed in a reaction tower made of a material on which no oxide film is formed to form an oxide film.
[0020]
Alternatively, a chromium oxide or alumina film may be formed on the surface of the metal material that forms the reaction tower in advance. As a pre-oxidation method, for example, there is a method in which about 3 vol% of H 2 O 2 is added to an Ar gas stream, and this gas stream is treated at 800 ° C. for 24 hours.
[0021]
In the case of a catalytic cracker, the PFC cracker formed of the material of the present invention is cracked, for example, under the following conditions. First, air is added to an inert gas such as nitrogen and a gas containing Cl 2 and PFC, and water vapor is further added to the reaction tower set at a predetermined temperature. The PFC-containing gas is preheated to about 750 ° C. and brought into contact with the catalyst. The amount of air to be added is determined by the concentration of the fluorine-containing compound. Some types of PFCs produce carbon monoxide when reacted with H 2 O. In the case of this type of PFC, in order to oxidize carbon monoxide, oxygen of about 1 to 5 times the theoretical amount is supplied as air in advance. Water vapor is added in an amount of about 2 to 75 times the theoretical amount necessary for the decomposition of the fluorine-containing compound. The reaction gas flow rate is set so that the space velocity is 100 to 10,000 h −1 . In the case of the combustion method, a fuel such as city gas is added to the reaction gas, and H 2 or the like is further added, followed by combustion decomposition in a reaction tower.
[0022]
The fluorine-containing compound targeted by the present invention is a compound containing only fluorine as a halogen. The constituent components of the compound are fluorine, carbon, hydrogen, oxygen, sulfur and nitrogen, specifically, a compound composed of carbon and fluorine, a compound composed of carbon, hydrogen and fluorine, and composed of carbon, fluorine, hydrogen and oxygen. There are compounds, compounds composed of carbon, fluorine and oxygen, compounds composed of sulfur and fluorine, compounds composed of sulfur, fluorine and oxygen, compounds composed of nitrogen and fluorine, and compounds composed of nitrogen, fluorine and oxygen. Examples of compounds are CF 4 , CHF 3 , CH 2 F 2 , CH 3 F, C 2 F 6 , C 2 HF 5 , C 2 HF 5 , C 2 H 2 F 4 , C 2 H 3 F 3 , C 2. H 4 F 2 , C 2 H 5 F, C 3 F 8 , CH 3 OCF 2 CF 3 , C 4 F 8 , C 5 F 8 , SF 6 , SO 2 F 2 , NF 3 and the like.
[0023]
The main substances that coexist with fluorine-containing compounds in the processing gas are N 2 , O 2 ,
H 2 O. Examples of the acidic substance include compounds contained in etching exhaust gases and cleaning exhaust gases of semiconductors and liquid crystals such as Cl 2 , HCl, Br 2 , HBr, and CO 2 . Depending on the processing gas, CO 2 , He, H 2 and the like are included.
[0024]
Typical decomposition reactions of fluorine-containing compounds include the following. (Formula 1)-(Formula 5) are the cases where water vapor is added and decomposed.
[0025]
CF 4 + 2H 2 O → CO 2 + 4HF (Formula 1)
C 2 F 6 + 3H 2 O → CO + CO 2 + 6HF (Formula 2)
CHF 3 + H 2 O → CO + 3HF (Formula 3)
SF 6 + 3H 2 O → SO 3 + 6HF (Formula 4)
NF 3 + 3 / 2H 2 O → NO + 1 / 2O 2 + 3HF (Formula 5)
In the reactions of (Formula 2) and (Formula 3), CO is generated, but if a PFC decomposition catalyst having CO oxidation performance is used, decomposition is performed under conditions where oxygen is present,
CO can be converted to CO 2 .
[0026]
F in the PFC compound becomes HF by decomposition. Hydrogen halides such as HF are easily absorbed in the liquid by washing with water or an alkaline aqueous solution, and therefore can be removed from the cracked gas.
[0027]
The reaction tower used in the catalytic cracking apparatus may usually be a fixed bed, moving bed or fluidized bed type. The reaction column includes means for adjusting the concentration of the fluorine-containing compound in the gas stream, such as means for supplying nitrogen and / or air to the gas stream, at least for contacting the gas stream with the catalyst at a predetermined temperature. Means for heating one side, means for adding an effective amount of a reactant to the gas stream to decompose the fluorine-containing compound, and decomposition of halogen compounds such as HF produced by decomposition of the fluorine-containing compound in the reaction tower The product is washed with water or an aqueous alkali solution, and a part of carbon dioxide in the decomposition product, a part of sulfur oxide such as SO 2 and SO 3 , a part of nitrogen oxide such as NO and NO 2 , and fluorine. An exhaust gas cleaning tank or the like for removing hydrogen fluoride is attached. A means for adsorbing carbon monoxide, sulfur oxides, and nitrogen oxides in the decomposition products that have not been neutralized by washing may be provided after the exhaust gas washing tank.
[0028]
When the fluorine-containing compound processing method of the present invention is applied to an existing semiconductor factory etching process and liquid crystal factory etching process, the gas stream containing the fluorine-containing compound discharged from the etching process contains SiF 4 or the like produced by etching. Since impurities are contained and these react with H 2 O to form solids such as SiO 2, it is desirable to remove impurities such as SiF 4 in advance of the catalytic decomposition step. Air and water vapor are added to the removed gas, and the fluorine-containing compound is decomposed with a catalyst. As a method for removing impurities in the previous stage, a water scrubber or a dry adsorbent can be used. The gas that has passed through the exhaust gas cleaning step is released as exhaust gas. Since semiconductor factories generally have an exhaust gas treatment device for acid component gas, using this, if only the catalyst of the present invention is installed in the exhaust gas line of a fluorine-containing compound such as CF 4 , steam is added and heated, The fluorine-containing compound can be decomposed. Moreover, this material can also be used as a corrosion-resistant material such as thermal oxidation.
[0029]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 6 shows an example of a catalytic reaction tower of a catalytic PFC decomposition apparatus.
[0030]
The catalytic reaction tower has a catalyst tank 1 and a preheating tank 2, and both tanks are fixed by a flange 3. A heat insulating material 4 is provided on the inner walls of the preheating tank and the catalyst tank. Both tanks are heated by the heater 5. A top plate 6 is provided at the top of the preheating tank. A Cl 2 -containing PFC gas introduction pipe 7 is attached to the top plate 6, and the Cl 2 -containing PFC gas is introduced into the preheating tank through this pipe. Further, a reaction water introduction pipe 8 for supplying water to the preheating tank is provided. In the catalytic reaction tower having this structure, the Cl 2 -containing PFC gas introduction pipe 7, the reaction water introduction pipe 8 and the top plate 6 are all heated at a temperature of 500 ° C. or less, and can be formed of Ni. The preheating tank, the catalyst tank, and the flange are formed of a Ni-based alloy or a Fe-based alloy having a predetermined chemical component, or a chromium oxide film formed on the surface of these metals.
[0031]
Test example 1
Various metal material test pieces were placed in a reaction gas at 700 to 750 ° C., and the test piece mass and the effective thickness after the 303.5 h, 614.5 h, 303.5 h + 614.5 h exposure test were examined. Table 1 shows chemical components of the test pieces. In Table 1, “bal.” Means the balance.
[0032]
[Table 1]
Figure 0004400067
[0033]
Specimen No. 1 (SUS310S) was used only for 303.5 h, and Nos. 2 to 5 and 10 were used for a test of 614.5 h (303.5 h + 614.5 h) after a test of 303.5 h. Nos. 7-9 were used for the 614.5 h test. The composition of the reaction gas is Cl 2 : CF 4 : H 2 O: O 2 : N 2 = 0.42 to 0.46: 0.83 to 0.92: 10.33 to 10.61: 1.31 1.34: 86.68 to 87.11 (vol%). A gas having this composition was circulated at 1518 ml / min to 1537 ml / min.
[0034]
FIG. 1 shows the results of test pieces No. 1 to No. 5. In FIG. 1, the vertical axis represents the mass change rate, and the horizontal axis represents the reaction time. The analysis result at a reaction time of 614.5 hours was obtained by extracting one of the test pieces after the 300 h test and performing the 614.5 h test. No. 1 (SUS310S) decreased by 0.3 mass% after 303.5 h compared to the mass before the test. Further, it was judged that the surface corrosion was severe and there was no corrosion resistance against halogen. The No. 2 (Inconel 600) test piece showed excellent corrosion resistance with little mass change. After the No. 2 test piece was subjected to the 304.5h test and the 614.5h test, the mass loss was 0.23 mass% with respect to the initial mass , indicating good halogen corrosion resistance.
[0035]
No. 3 (Inconel 625), No. 4 (Hastelloy C276), and No. 5 (Hastelloy C22) had a larger mass loss than No. 2.
[0036]
In FIG. 2, the result of having investigated the crystal form of the metal film part of test piece No.2-No.5 after a test by X-ray diffraction analysis is shown. In No. 2, Cr 2 O 3 , NiCr 2 O 4 , and NiFe 2 O 4 were confirmed, and these were considered to contribute to corrosion inhibition.
[0037]
FIG. 3 shows the result of taking a cross-sectional SEM image of No. 2 test piece and performing EDX ray analysis of Cr and Fe. The existence state of Cr and Fe in a portion indicated by a white line slightly above the center of the photograph is shown at the bottom of the photograph. An oxide film having a thickness of 2 μm is formed on the surface of the metal material. An iron oxide film was formed on the outermost part, but a chromium oxide film was formed at the interface between the film and the base material, and this chromium oxide film was considered to suppress corrosion.
[0038]
Next, the results of test pieces No. 6 to No. 9 are shown. In No. 6 (MA956), the mass change after 614.5 h was increased compared with that before the test. The cause of mass increase cannot be identified because corrosion and metal oxidation occur simultaneously, but in any case, no significant mass change was observed. As for No. 6, as a result of examining the cross-sectional SEM image in the same manner as in FIG. 3, an aluminum oxide film was confirmed on the surface of the base material. The mass change of No. 7 (Fe-25Cr-20Ni) was decreased by 0.0429 mass% compared with that before the test, but less than that of No. 2. In the film analysis of No. 7, the presence of an aluminum oxide film was confirmed between the chromium oxide films.
[0039]
No. 8 (high Al ferrite SUSA1) and No. 9 (high Al ferrite SUSA2) are those in which Al is contained in a SUS-based metal base material. There are few. Weight change after testing of these specimens, whereas decreased 0.0098 mass% In No.9, was increased 0.0597 mass% in No.8. However, no significant mass change was observed. A chromium oxide film was formed on the surfaces of No. 8 and No. 9, and an aluminum oxide film was formed between the chromium oxide film and the base material.
[0040]
Test example 2
Various metal material test pieces were placed in a reaction gas at 800 to 850 ° C., and the test piece weight and effective thickness after 900 hours were examined. The composition of the reaction gas is Cl 2 : CF 4 : H 2 O: O 2 : N 2 = 0.42: 0.81: 11.35: 1.22: 86.19 (vol%). A gas having this composition was circulated at 757 ml / min.
[0041]
As a result, as in Test Example 1, No. 2 had a mass change of −0.08 mass% and exhibited good corrosion resistance. Moreover, the test piece No. 10 (Hanes 214) also had a small mass change, and was -0.06 mass% compared with before a test.
[0042]
In Test Example 1, No. 6 (MA956) and No. 7 (Fe-25Cr-20Ni), which showed excellent durability, had severe surface peeling, and corrosion was caused by the use temperature rising from Test Example 1. Progressed. In No. 9 (high Al ferrite SUSA2), although surface peeling was observed, the corrosion of the base material was not as high as No. 6 and No. 7. FIG. 4 shows the results of taking a cross-sectional SEM image of the No. 2 test piece and performing EDX ray analysis of Cr and Fe. FIG. 5 shows a cross-sectional SEM image of a No. 10 test piece, and shows the results of EDX ray analysis of Cr and Fe. In the No. 2 test piece, a chromium oxide film having a thickness of 15 μm was observed, and in the No. 10 test piece, an alumina film having a thickness of 5 μm was observed inside the chromium oxide film.
[0043]
【The invention's effect】
According to the present invention, Cl 2 or Cl 2 can be improved in corrosion resistance to PFC gas at a high temperature of 500 to 1000 ° C.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a graph showing the relationship between the rate of change in mass after various test pieces and the reaction time.
FIG. 2 is a diagram showing the results of examining the crystal form of the metal coating portion of various test pieces after the test by X-ray diffraction analysis.
3 is a diagram showing a result of taking a cross-sectional SEM image of a test piece of No. 2 and performing EDX ray analysis of Cr and Fe.
4 is a diagram showing a result of taking a cross-sectional SEM image of a test piece of No. 2 and performing EDX ray analysis of Cr and Fe.
5 is a view showing a result of taking a cross-sectional SEM image of a No. 10 test piece and performing EDX ray analysis of Cr and Fe.
FIG. 6 is a schematic view of a catalytic reaction tower of a catalytic PFC decomposition apparatus.
[Explanation of symbols]
1 ... catalyst reservoir, 2 ... preheater, 3 ... flange, 4 ... insulation, 5 ... heater, 6 ... top plate, 7 ... Cl 2 containing PFC gas inlet tube, 8 ... reaction water inlet pipe.

Claims (5)

Cl2を含むガスに曝される部材において、500〜1000℃の前記ガスに曝される部材が、Ni56〜77mass%,Cr10〜30mass%,Fe1〜10mass%,C0.1mass%以下,Al4〜6mass%,Y0.01mass%からなるNi基合金、またはCr10〜20mass%,Ni0.05〜0.20mass%,Al4〜5mass%,C0.01mass%以下,Si0.16〜0.26mass%,Mn0.16〜0.17mass%,Ti0.05〜0.13mass%,P0.021〜0.032mass%,Nb0.08mass%もしくはS0.0007mass%、残部FeからなるFe基合金により形成され、200〜500℃の前記Cl2を含むガスに曝される部材がNiにより形成されていることを特徴とするハロゲン耐食性部材。In the member exposed to the gas containing Cl 2 , the member exposed to the gas at 500 to 1000 ° C. is Ni 56 to 77 mass%, Cr 10 to 30 mass%, Fe 1 to 10 mass%, C 0.1 mass% or less, Al 4 to 6 mass. %, Y 0.01 mass% Ni-based alloy, or Cr 10-20 mass%, Ni 0.05-0.20 mass%, Al 4-5 mass%, C 0.01 mass% or less, Si 0.16-0.26 mass%, Mn 0.16 ~ 0.17 mass%, Ti 0.05-0.13 mass%, P0.021-0.032 mass%, Nb 0.08 mass% or S0.0067 mass% , formed of Fe-based alloy consisting of the balance Fe , 200-500 ° C A halogen corrosion-resistant member, wherein the member exposed to the gas containing Cl 2 is formed of Ni. 請求項1において、前記Ni基合金またはFe基合金よりなる部材の表面に酸化クロムの皮膜を有することを特徴とするハロゲン耐食性部材。  2. The halogen corrosion resistant member according to claim 1, further comprising a chromium oxide film on a surface of the member made of the Ni-based alloy or the Fe-based alloy. 請求項2において、前記酸化クロムの皮膜と、前記Ni基合金またはFe基合金との間に、酸化アルミニウムの皮膜を有することを特徴とするハロゲン耐食性部材。  3. The halogen corrosion resistant member according to claim 2, further comprising an aluminum oxide film between the chromium oxide film and the Ni-based alloy or Fe-based alloy. 請求項1において、前記Cl2を含むガスは、さらに、パーフルオロコンパウンドを含むことを特徴とするハロゲン耐食性部材。The halogen corrosion-resistant member according to claim 1, wherein the gas containing Cl 2 further contains a perfluoro compound. パーフルオロコンパウンド分解触媒が充填された触媒反応塔にCl2とパーフルオロコンパウンドを含むガスを導入し、前記触媒反応塔内で前記パーフルオロコンパウンドを分解するパーフルオロコンパウンドの分解処理装置であって、前記触媒反応塔内で加熱される部材が、請求項1に記載のハロゲン耐食性部材であることを特徴とするパーフルオロコンパウンドの分解処理装置。A perfluoro compound decomposition treatment apparatus for introducing a gas containing Cl 2 and a perfluoro compound into a catalyst reaction column packed with a perfluoro compound decomposition catalyst, and decomposing the perfluoro compound in the catalyst reaction column, The perfluoro-compound decomposition treatment apparatus, wherein the member heated in the catalytic reaction tower is the halogen corrosion-resistant member according to claim 1.
JP2003060777A 2003-03-07 2003-03-07 Halogen corrosion resistant member and perfluoro compound decomposition treatment equipment Expired - Fee Related JP4400067B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003060777A JP4400067B2 (en) 2003-03-07 2003-03-07 Halogen corrosion resistant member and perfluoro compound decomposition treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003060777A JP4400067B2 (en) 2003-03-07 2003-03-07 Halogen corrosion resistant member and perfluoro compound decomposition treatment equipment

Publications (2)

Publication Number Publication Date
JP2004269946A JP2004269946A (en) 2004-09-30
JP4400067B2 true JP4400067B2 (en) 2010-01-20

Family

ID=33123182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003060777A Expired - Fee Related JP4400067B2 (en) 2003-03-07 2003-03-07 Halogen corrosion resistant member and perfluoro compound decomposition treatment equipment

Country Status (1)

Country Link
JP (1) JP4400067B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007332076A (en) * 2006-06-15 2007-12-27 Sumitomo Chemical Co Ltd Method for producing allyl chloride
JP5391929B2 (en) * 2009-08-25 2014-01-15 三菱マテリアル株式会社 Ni-based alloy halogen gas cylinder valve member
JP2012229459A (en) * 2011-04-25 2012-11-22 Mmc Superalloy Corp Member for exhaust gas treating apparatus from semiconductor and liquid crystal manufacturing device
CN112981056B (en) * 2021-02-08 2022-04-12 南昌大学 Preparation method of modified 904L alloy applied to oxygen-containing high-temperature chlorine corrosion environment

Also Published As

Publication number Publication date
JP2004269946A (en) 2004-09-30

Similar Documents

Publication Publication Date Title
JP4424783B2 (en) Method for removing NOx and SOx from gaseous effluent from a metal pickling bath
JP4172938B2 (en) Exhaust gas treatment method and treatment apparatus
JP2011230121A (en) SYSTEM AND METHOD FOR CONTROLLING AND REDUCING NOx EMISSION
JP4400067B2 (en) Halogen corrosion resistant member and perfluoro compound decomposition treatment equipment
JP2006075743A (en) Exhaust gas decomposition processor
WO2002045823A1 (en) Exhaust gas treatment device
KR101548315B1 (en) Device and method for thermal treatment of fluorine-containing and noble metal-containing products
JPH08323133A (en) Detoxicating treatment of waste gas generated by high temperature hydrolysis of organic halogen compounds using high-frequency induction heat plasma
JP4518460B2 (en) Method for selectively recovering fluorine components from exhaust gas
JP2004082013A (en) Method and catalyst for decomposing perfluorocompound and apparatus for treating perfluorocompound
JP2002058961A (en) Exhaust gas treating equipment
JP3368820B2 (en) Method for treating fluorine compound-containing gas and catalyst
JP2002224535A (en) Method and apparatus for treating gas containing fluorocompound and carbon monoxide
JP2008214187A (en) Carbonyl fluoride having reduced content of hydrogen fluoride and method for producing the same
JP2005506444A (en) Extending the furnace operation period by suppressing fouling
JP4698201B2 (en) Fluorine-containing gas decomposition treatment apparatus and fluorine compound recovery method using the same
WO2005077496A1 (en) Method and apparatus for treating gas containing fluorine-containing compounds
JP2010158620A (en) Method of treating emission comprising fluorine-containing compound, and reaction vessel for treating emission
JP4596432B2 (en) Method and apparatus for decomposing fluorine-containing compounds
JP5132489B2 (en) Fluoride gas decomposition treatment method, decomposition treatment agent, and decomposition treatment apparatus
JP4188815B2 (en) Perfluorocompound decomposition method and apparatus
JP2007237150A (en) Catalyst detoxifying treatment method of emission gas
JP2010179249A (en) Apparatus and method for decomposing perfluoro compound
SU1667911A1 (en) Method for purifying off-gases from hydrogen chloride and ethyl chloride
JP2007054720A (en) Perfluorocarbon gas detoxifying method and detoxifying device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040830

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060322

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080331

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080509

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090331

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091006

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091019

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121106

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121106

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131106

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees