JP2003229127A - Positive active material for secondary battery and its manufacturing method - Google Patents

Positive active material for secondary battery and its manufacturing method

Info

Publication number
JP2003229127A
JP2003229127A JP2002028255A JP2002028255A JP2003229127A JP 2003229127 A JP2003229127 A JP 2003229127A JP 2002028255 A JP2002028255 A JP 2002028255A JP 2002028255 A JP2002028255 A JP 2002028255A JP 2003229127 A JP2003229127 A JP 2003229127A
Authority
JP
Japan
Prior art keywords
positive electrode
electrode material
resin
particle powder
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002028255A
Other languages
Japanese (ja)
Other versions
JP4359744B2 (en
Inventor
Toshiyuki Hakata
俊之 博多
Hiroshi Kawasaki
浩史 川崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toda Kogyo Corp
Original Assignee
Toda Kogyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toda Kogyo Corp filed Critical Toda Kogyo Corp
Priority to JP2002028255A priority Critical patent/JP4359744B2/en
Publication of JP2003229127A publication Critical patent/JP2003229127A/en
Application granted granted Critical
Publication of JP4359744B2 publication Critical patent/JP4359744B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a positive active material for a secondary battery that is superior in electrical conductivity and superior in filling and dispersing performance to the resin. <P>SOLUTION: The positive active material for a secondary battery is powder of composite positive material particles whose surface is coated with carbon that is obtained by heat-treating a thermosetting phenolic resin or a thermosetting epoxy resin under oxidizing atmosphere. The powder of the composite positive material particles is obtained by coating a thermosetting phenolic resin or a thermosetting epoxy resin of 0.01-10 wt.% to the positive material particle powder, on the powder of the positive material particles, and then by heat- treating at the temperature of 400°C or more under oxidizing atmosphere and carbonizing the resin. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電気伝導性が優れてい
ると共に樹脂への充填性及び分散性が優れている二次電
池の正極用活物質に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an active material for a positive electrode of a secondary battery, which is excellent in electric conductivity and filling property and dispersibility in a resin.

【0002】[0002]

【従来の技術】近年、パーソナルコンピュ−ター、携帯
電話等のポータブル機器の開発に伴って、その電源とし
ての電池の需要が高まっている。特に、リチウム電池は、
リチウムが原子量が小さく、かつ、イオン化エネルギー
が大きい物質であることに起因して、起電力が高く、高
エネルギー密度化が可能な電池が期待できることから各
方面で盛んに研究が行われている。
2. Description of the Related Art In recent years, with the development of portable devices such as personal computers and mobile phones, the demand for batteries as a power source has increased. In particular, lithium batteries
Due to the fact that lithium is a substance having a small atomic weight and a large ionization energy, a battery having a high electromotive force and high energy density can be expected, and therefore, various studies are actively conducted.

【0003】リチウム電池に用いられる正極材粒子粉末
としては、4V程度の高電圧を発生させることが可能な
リチウムコバルト酸化物(LiCoO2)粒子粉末、リ
チウムニッケル酸化物(LiNiO2)粒子粉末、リチ
ウムマンガンスピネル酸化物(Li1+XMn2-X4)粒
子粉末等、リチウム複合酸化物粒子の研究が盛んに行わ
れている。これらの正極材粒子粉末は、コバルト、ニッ
ケル、マンガンを含む酸化物原料粉末とリチウム化合物
粉末とを混合し、500℃以上の高温で焼成することに
より得られている。
As the positive electrode material powder used in the lithium battery, lithium cobalt oxide (LiCoO 2 ) particle powder, lithium nickel oxide (LiNiO 2 ) particle powder, lithium capable of generating a high voltage of about 4V are used. Research on lithium composite oxide particles such as manganese spinel oxide (Li 1 + X Mn 2 -X O 4 ) particle powder has been actively conducted. These positive electrode material particle powders are obtained by mixing oxide raw material powders containing cobalt, nickel and manganese with lithium compound powders and firing at a high temperature of 500 ° C. or higher.

【0004】電池の小型化、高性能化に伴って電極材料
である正極材粒子粉末の特性向上もまた強く要求されて
いる。即ち、上記正極材粒子粉末は、体積固有抵抗値が
通常105Ωcm程度と高いため、高い電気伝導性を有
する正極材粒子粉末が強く要求されている。
With the miniaturization and high performance of batteries, there is also a strong demand for improving the characteristics of the positive electrode material particle powder, which is an electrode material. That is, since the above-mentioned positive electrode material particle powder has a high volume resistivity of usually about 10 5 Ωcm, there is a strong demand for a positive electrode material particle powder having high electrical conductivity.

【0005】次に、上記正極材粒子粉末を用いて電極を
製造する場合、正極材粒子粉末とポリフッ化ビニリデン
(PVDF)やポリテトラフルオロエチレン(PTF
E)等の結着材と溶剤とを混練し得られるペーストを集
電体であるニッケルのメッシュに塗工して電極とする
が、二次電池の充放電容量を高めるためには正極材粒子
粉末の樹脂への充填性及び分散性ができるだけ優れてい
ることが強く要求されている。
Next, when manufacturing an electrode using the above-mentioned positive electrode material particle powder, the positive electrode material particle powder and polyvinylidene fluoride (PVDF) or polytetrafluoroethylene (PTF) are used.
A paste obtained by kneading a binder such as E) and a solvent is applied to a nickel mesh serving as a current collector to form an electrode. In order to increase the charge / discharge capacity of the secondary battery, positive electrode material particles are used. It is strongly demanded that the filling property and the dispersibility of the powder in the resin be as excellent as possible.

【0006】従来、正極材粒子粉末の電気伝導性を高め
る方法としては、 ケッチェンブラックやアセチレンブラック等のカーボ
ン材料をメカノケミカル法により、正極材粒子粉末の表
面に付着させることにより導電剤層を形成させる方法
(特開平9−92265号公報や特開平10−1628
25号公報、特開平11−54148号公報、特開平1
1−283623号公報、特開2001−250553
号公報等)、 正極材粒子粉末の粒子表面に炭素、Au、Ni等の金
属を蒸着させる方法(特開平11−307083号公報
等)、 正極材粒子粉末と該正極材粒子粉末に対し50重量%
程度の多量の有機物とを混合した後、混練物を解砕し、
さらに熱処理することで有機物を炭化させる方法(特開
2000−251888号公報)等が知られている。
Conventionally, as a method for increasing the electric conductivity of the positive electrode material particle powder, a carbon material such as Ketjen black or acetylene black is attached to the surface of the positive electrode material particle powder by a mechanochemical method to form a conductive agent layer. Forming method (JP-A-9-92265 and JP-A-10-1628)
25, JP-A-11-54148, JP-A-1
Japanese Patent Laid-Open No. 1-283623 and Japanese Patent Laid-Open No. 2001-250553.
No., etc.), a method of depositing a metal such as carbon, Au, Ni, etc. on the particle surface of the positive electrode material particle powder (Japanese Patent Laid-Open No. 11-307083, etc.), and 50 weight parts of the positive electrode material particle powder and the positive electrode material particle powder. %
After mixing a large amount of organic matter, crush the kneaded product,
A method of carbonizing an organic substance by further heat treatment (Japanese Patent Laid-Open No. 2000-251888) is known.

【0007】[0007]

【発明が解決しようとする課題】電気伝導性が優れてい
ると共に樹脂への充填性及び分散性が優れている正極材
粒子粉末は、現在最も要求されているところであるが、
未だこれら諸特性を満足する正極用活物質は得られてい
ない。
The positive electrode material particle powder which is excellent in electric conductivity and also in the filling property and the dispersibility in the resin is currently most demanded.
A positive electrode active material satisfying these characteristics has not yet been obtained.

【0008】即ち、前出の正極材粒子粉末は、機械的
な衝撃でカーボン等を正極材粒子粉末の粒子表面に付着
させただけの構造であるため、電極を製造する際に付着
しているカーボンが脱離してしまうという問題がある。
即ち、表面にカーボンが付着している正極材粒子粉末と
結着材と溶剤とを混練して混練物を製造する際にカーボ
ンは容易に正極材粒子粉末の粒子表面から脱離してしま
い、電気伝電度を高める効果が不十分となり、長期間の
使用においても安定した電気伝導度を得ることが困難と
なる。また、脱離したカーボンが正極材粒子粉末の樹脂
への充填性及び分散性を防げることとなる。
That is, since the above-mentioned positive electrode material particle powder has a structure in which carbon or the like is simply attached to the particle surface of the positive electrode material particle powder by mechanical impact, it is attached when the electrode is manufactured. There is a problem that carbon is desorbed.
That is, when a positive electrode material particle powder having carbon adhered to the surface, a binder and a solvent are kneaded to produce a kneaded product, the carbon easily desorbs from the particle surface of the positive electrode material particle powder, and The effect of increasing the electric conductivity becomes insufficient, and it becomes difficult to obtain stable electric conductivity even after long-term use. Also, the desorbed carbon can prevent the filling property and the dispersibility of the positive electrode material particle powder in the resin.

【0009】前出の正極材粒子粉末も上記と同様
に、結着材及び溶剤との混練の際に正極材粒子粉末の粒
子表面から蒸着金属が脱離してしまい、電気伝導度を高
める効果が不十分となり、長期間の使用においても安定
した充放電特性を得ることが困難となる。
In the same manner as described above, the positive electrode material particle powder also has the effect of increasing the electrical conductivity by removing the deposited metal from the particle surface of the positive electrode material particle powder when kneading with the binder and the solvent. It becomes insufficient, and it becomes difficult to obtain stable charge / discharge characteristics even after long-term use.

【0010】前出の正極材粒子粉末は、正極材粒子粉
末に対する樹脂の量が多量であるため正極材粒子と有機
物とを混合した際に凝集物となり、これを解砕しても、
混合する前の正極材粒子粉末の大きさまで解砕されない
ため、樹脂への充填率があまり高くならず、充電容量が
不十分であるという問題がある。
Since the positive electrode material particle powder described above has a large amount of resin relative to the positive electrode material particle powder, it becomes an agglomerate when the positive electrode material particles and the organic substance are mixed, and even if crushed,
Since the size of the positive electrode material particle powder before mixing is not crushed, there is a problem that the filling rate in the resin does not become so high and the charge capacity is insufficient.

【0011】そこで、本発明は、電気伝導度が優れてい
ると共に樹脂への充填性及び分散性が優れている正極材
粒子粉末を得ることを技術的課題とする。
Therefore, it is a technical object of the present invention to obtain a positive electrode material particle powder which is excellent in electric conductivity and is excellent in resin filling property and dispersibility.

【0012】[0012]

【課題を解決する為の手段】前記技術的課題は、次の通
りの本発明によって達成できる。即ち、本発明は、正極
材粒子の粒子表面に、熱硬化性フェノール樹脂又は熱硬
化性エポキシ樹脂を酸化雰囲気下で熱処理して得られる
カーボンが被覆されている複合正極材粒子からなる複合
正極材粒子粉末であることを特徴とする二次電池の正極
用活物質である。(発明1)
The above technical problems can be achieved by the present invention as follows. That is, the present invention relates to a composite positive electrode material comprising composite positive electrode material particles in which carbon particles obtained by heat-treating a thermosetting phenolic resin or a thermosetting epoxy resin in an oxidizing atmosphere are coated on the particle surfaces of the positive electrode material particles. It is an active material for a positive electrode of a secondary battery, which is a particle powder. (Invention 1)

【0013】また、本発明は、熱硬化性フェノール樹脂
のOH当量が130g/当量以上の熱硬化性フェノール
樹脂であることを特徴とする発明1記載の二次電池の正
極用活物質である。(発明2)
The present invention is also the active material for a positive electrode of a secondary battery according to the invention 1, characterized in that the OH equivalent of the thermosetting phenolic resin is 130 g / equivalent or more. (Invention 2)

【0014】また、本発明は、熱硬化性エポキシ樹脂が
1分子中に2個以上のエポキシ基を有し、エポキシ当量
が200g/当量以上の熱硬化性エポキシ樹脂であるこ
とを特徴とする発明1記載の二次電池の正極用活物質で
ある。(発明3)
The present invention is also characterized in that the thermosetting epoxy resin is a thermosetting epoxy resin having two or more epoxy groups in one molecule and having an epoxy equivalent of 200 g / equivalent or more. The active material for a positive electrode of the secondary battery according to 1. (Invention 3)

【0015】また、本発明は、正極材粒子粉末に該正極
材粒子粉末に対し0.01〜10重量%の熱硬化性フェ
ノール樹脂又は熱硬化性エポキシ樹脂を被覆した後、酸
化雰囲気下、400℃以上の温度で熱処理して前記樹脂
を炭化させることにより複合正極材粒子粉末を得ること
を特徴とする発明1乃至発明3のいずれかに記載の二次
電池の正極用活物質の製造方法である。(発明4)
In the present invention, the positive electrode material particle powder is coated with 0.01 to 10% by weight of the positive electrode material particle powder of a thermosetting phenolic resin or a thermosetting epoxy resin, and then the mixture is heated in an oxidizing atmosphere at 400%. A method for producing a positive electrode active material for a secondary battery according to any one of inventions 1 to 3, characterized in that a composite positive electrode material particle powder is obtained by carbonizing the resin by heat treatment at a temperature of ℃ or higher. is there. (Invention 4)

【0016】本発明の構成をより詳しく説明すれば、次
の通りである。
The structure of the present invention will be described in more detail below.

【0017】本発明における芯粒子である正極材粒子粉
末は、LiXy2(但し、MはCo,Ni,Mn,
V,Fe及びTiから選ばれた1種又は2種以上の元
素、xは0<x≦2.5の範囲であり、yは0.8≦y≦
1.25の範囲である。)で示される複合金属酸化物粒
子粉末を示す。
Positive electrode material particles as core particles in the [0017] present invention, Li X M y O 2 (where, M is Co, Ni, Mn,
One or more elements selected from V, Fe and Ti, x is in the range of 0 <x ≦ 2.5, and y is 0.8 ≦ y ≦
It is in the range of 1.25. ) Shows the composite metal oxide particle powder shown in FIG.

【0018】正極材粒子粉末の粒子形態は、立方体状、
多面体状、球状、針状、板状等のいずれの形態の粒子を
も使用することができる。正極材粒子粉末の充填量及び
分散性を考慮すると球状粒子が好ましく、集電体に塗工
する際のペーストの粘度を下げることができる。
The particle morphology of the positive electrode material particle powder is cubic,
Any form of particles such as polyhedron, sphere, needle and plate can be used. Considering the filling amount and dispersibility of the positive electrode material particle powder, spherical particles are preferable, and the viscosity of the paste when applied to the current collector can be reduced.

【0019】正極材粒子粉末の平均粒子径D50(正極材
粒子粉末の全体積を100%として累積体積で表した粒
子径を求めたときの累積割合が50%となる点)は、樹
脂への充填性及び分散性や取り扱い等の作業性を考慮す
ると、0.5〜50μmであることが好ましく、より好
ましくは0.5〜40μm、更に好ましくは0.5〜30
μmである。
The average particle diameter D 50 of the positive electrode material particle powder (the point where the cumulative proportion when the particle size expressed by the cumulative volume is 50% when the total volume of the positive electrode material particle powder is 100%) is 50%. In consideration of workability such as filling property, dispersibility, and handling, it is preferably 0.5 to 50 μm, more preferably 0.5 to 40 μm, still more preferably 0.5 to 30 μm.
μm.

【0020】本発明に係る二次電池の正極用活物質にお
けるカーボンは、正極材粒子の粒子表面に強固に固着し
て粒子表面の全部又は一部を被覆している。
The carbon in the positive electrode active material of the secondary battery according to the present invention firmly adheres to the particle surfaces of the positive electrode material particles and covers all or part of the particle surfaces.

【0021】カーボン量は、芯粒子に対し0.01〜1
0重量%、より好ましくは0.02〜3重量%、更に好
ましくは0.02〜1重量%である。0.01重量%未満
の場合には、得られる正極用活物質の電気伝導度を高め
る効果が不十分となる。10重量%を超える場合には、
得られる正極用活物質の樹脂への充填性及び分散性が不
十分となる。
The amount of carbon is 0.01 to 1 with respect to the core particles.
It is 0% by weight, more preferably 0.02 to 3% by weight, and further preferably 0.02 to 1% by weight. If it is less than 0.01% by weight, the effect of increasing the electric conductivity of the obtained positive electrode active material is insufficient. If it exceeds 10% by weight,
The filling property and the dispersibility of the obtained positive electrode active material into the resin become insufficient.

【0022】本発明に係る二次電池の正極活物質は、好
ましくは体積固有抵抗値が1×10 2〜9×104Ωcm
である。9×104Ωcmを超える場合には、電気伝導
度を高める効果が不十分であるため、二次電池としての
充放電容量を高めることが困難となる。体積固有抵抗値
の下限値は1×102Ωcmである。更に、電気伝導度
を高める場合には、カーボン量を芯粒子に対して10重
量%を超えて被覆する必要があり、その結果、正極用活
物質の充填量が低下する。
The positive electrode active material of the secondary battery according to the present invention is preferably
More preferably, the volume resistivity is 1 × 10 2~ 9 × 10FourΩ cm
Is. 9 x 10FourElectrical conductivity when exceeding Ωcm
As the effect of increasing
It becomes difficult to increase the charge / discharge capacity. Volume resistivity
Lower limit of 1 × 102Ωcm. Furthermore, the electrical conductivity
In order to increase the
It is necessary to cover more than the amount%, and as a result, the positive electrode active
Material loading is reduced.

【0023】本発明に係る正極用活物質は、好ましくは
タップ密度が2.0g/ml以上、より好ましくは2.1
g/ml以上である。その上限は3.0g/mlが好ま
しい。2.0g/ml未満の場合には、樹脂への充填量
を高くすることが困難となる。
The positive electrode active material according to the present invention preferably has a tap density of 2.0 g / ml or more, more preferably 2.1.
g / ml or more. The upper limit is preferably 3.0 g / ml. If it is less than 2.0 g / ml, it becomes difficult to increase the filling amount in the resin.

【0024】本発明に係る二次電池の正極用活物質は、
電極化する上で樹脂への分散性が優れていることが好ま
しく、平均粒子径及び粒度分布を調整することが好まし
い。即ち、本発明に係る二次電池の正極用活物質の平均
粒子径D50は、1〜50μm、より好ましくは1〜40
μm、更に好ましくは1〜30μmである。
The active material for the positive electrode of the secondary battery according to the present invention is
It is preferable that the resin has excellent dispersibility in forming an electrode, and it is preferable to adjust the average particle size and the particle size distribution. That is, the average particle diameter D 50 of the positive electrode active material of the secondary battery according to the present invention is 1 to 50 μm, more preferably 1 to 40 μm.
μm, and more preferably 1 to 30 μm.

【0025】本発明に係る二次電池の正極用活物質の平
均粒子径D10は、0.5〜5.0μm、より好ましくは
0.6〜4.8μm、更に好ましくは0.7〜4.6μmで
ある。
The active material for a positive electrode of the secondary battery according to the present invention has an average particle diameter D 10 of 0.5 to 5.0 μm, more preferably 0.6 to 4.8 μm, still more preferably 0.7 to 4 μm. It is 0.6 μm.

【0026】本発明に係る二次電池の正極用活物質の平
均粒子径D90は、3.0〜28.0μm、より好ましくは
3.2〜26.0μm、更に好ましくは3.5〜25.0μ
mである。
The average particle diameter D 90 of the active material for a positive electrode of the secondary battery according to the present invention is 3.0 to 28.0 μm, more preferably 3.2 to 26.0 μm, and further preferably 3.5 to 25. 0.0μ
m.

【0027】本発明に係る二次電池の正極用活物質の粒
度分布は、D50で示した場合の平均粒子径に対するD90
(正極材粒子粉末の全体積を100%として累積体積で
表した粒子径を求めたときの累積割合が90%となる
点)で示した場合の平均粒子径の比率(D90/D50
で、好ましくは3.0以下、より好ましくは2.8以下で
ある。D10(正極材粒子粉末の全体積を100%として
累積体積で表した粒子径を求めたときの累積割合が10
%となる点)で示した場合の平均粒子径に対するD 50
示した場合の平均粒子径の比率(D50/D10)で、好ま
しくは3.0以下、より好ましくは2.5以下である。
Particles of active material for positive electrode of secondary battery according to the present invention
The degree distribution is D50D with respect to the average particle size in the case of90
(The cumulative volume is defined as 100% of the total volume of the positive electrode material particle powder.
The cumulative proportion when the particle size shown is calculated is 90%.
Ratio of average particle size (D)90/ D50)
And preferably 3.0 or less, more preferably 2.8 or less.
is there. DTen(Assuming that the total volume of the positive electrode material particle powder is 100%
When the particle size expressed by cumulative volume is calculated, the cumulative ratio is 10
% With respect to the average particle diameter 50so
Ratio of average particle size (D50/ DTen), Like
It is preferably 3.0 or less, more preferably 2.5 or less.

【0028】本発明に係る正極用活物質の比表面積は、
電極化を考慮すると0.2〜20m2/gであることが好
ましく、より好ましくは0.2〜15m2/g、更に好ま
しくは0.2〜10m2/gの範囲である。
The specific surface area of the positive electrode active material according to the present invention is
Is preferably 0.2~20m 2 / g considering the electroded, more preferably 0.2~15m 2 / g, more preferably from 0.2 to 10 m 2 / g.

【0029】次に、本発明に係る二次電池の正極用活物
質の製造方法について述べる。
Next, a method for producing the positive electrode active material of the secondary battery according to the present invention will be described.

【0030】本発明に係る二次電池の正極用活物質は、
正極材粒子粉末に熱硬化性フェノール樹脂又は熱硬化性
エポキシ樹脂を被覆した後、酸化性雰囲気下で熱処理す
ることにより製造することができる。
The active material for the positive electrode of the secondary battery according to the present invention is
It can be manufactured by coating the positive electrode material particle powder with a thermosetting phenol resin or a thermosetting epoxy resin, and then heat treating it in an oxidizing atmosphere.

【0031】先ず、正極材粒子の粒子表面に樹脂を十分
且つ均一に被覆することが必要である。
First, it is necessary to coat the particle surfaces of the positive electrode material particles with a resin sufficiently and uniformly.

【0032】フェノール樹脂としては、フェノールとホ
ルマリンのモル比で1/1〜1/3の範囲にある、いわ
ゆるレゾ−ル系のフェノール樹脂が望ましい。OH当量
が130g/当量以上の熱硬化性フェノール樹脂が望ま
しく、より好ましくは150g/当量以上、更に好まし
くは180g/当量以上であり、上限値は300g/当
量が好ましい。130g/当量未満の場合には、樹脂に
よる被覆処理の際に正極材粒子同士の凝集が生じやす
く、その結果、得られる正極用活物質は樹脂への充填性
及び分散性が困難となる。
The phenol resin is preferably a so-called resole type phenol resin having a molar ratio of phenol to formalin in the range of 1/1 to 1/3. A thermosetting phenolic resin having an OH equivalent of 130 g / equivalent or more is desirable, more preferably 150 g / equivalent or more, further preferably 180 g / equivalent or more, and the upper limit value is preferably 300 g / equivalent. If the amount is less than 130 g / equivalent, agglomeration of the positive electrode material particles is likely to occur during the coating treatment with the resin, and as a result, the positive electrode active material obtained is difficult to fill and disperse in the resin.

【0033】本発明におけるエポキシ樹脂としては、1
分子中に2個以上のエポキシ基を有するエポキシ樹脂が
好ましく、具体的には、ビスフェノールA型エポキシ樹
脂、ノボラック型エポキシ樹脂、ハロゲン化エポキシ樹
脂、グリシジルエステル型エポキシ樹脂などが用いられ
る。エポキシ基が2個未満の場合には、正極材粒子の粒
子表面への樹脂の被覆が困難となる。
The epoxy resin used in the present invention is 1
An epoxy resin having two or more epoxy groups in the molecule is preferable, and specifically, a bisphenol A type epoxy resin, a novolac type epoxy resin, a halogenated epoxy resin, a glycidyl ester type epoxy resin and the like are used. When the number of epoxy groups is less than 2, it becomes difficult to coat the resin on the particle surfaces of the positive electrode material particles.

【0034】エポキシ樹脂は、エポキシ当量として20
0g/当量以上のものが好ましく、より好ましくは、2
00−500g/当量である。エポキシ当量が200g
/当量未満の場合には、正極材粒子の粒子表面への樹脂
の被覆処理の際に粒子同士の凝集が生じやすく、結果と
して、得られる正極用活物質は樹脂への充填性及び分散
性が困難となる。
The epoxy resin has an epoxy equivalent of 20.
It is preferably 0 g / equivalent or more, more preferably 2
00-500 g / equivalent. Epoxy equivalent is 200g
When the amount is less than the equivalent, the particles are likely to aggregate during the coating treatment of the resin on the surface of the particles of the positive electrode material particles, and as a result, the positive electrode active material obtained has a high filling property and dispersibility in the resin. It will be difficult.

【0035】本発明における樹脂の被覆量は、正極材粒
子粉末に対して0.1〜10重量%が好ましく、より好
ましくは0.5〜5重量%である。0.1重量%未満の場
合には、被覆するフェノール樹脂あるいはエポキシ樹脂
の量が正極材粒子に対して不十分となるために、得られ
る正極用活物質の電気伝導度を高める効果が不十分とな
る。10重量%を越える場合には、正極材粒子同士が凝
集してしまい、得られる正極用活物質は樹脂への充填量
を高くできない。
The coating amount of the resin in the present invention is preferably 0.1 to 10% by weight, more preferably 0.5 to 5% by weight, based on the positive electrode material particle powder. If the amount is less than 0.1% by weight, the amount of the phenol resin or epoxy resin coated is insufficient with respect to the positive electrode material particles, so that the effect of increasing the electrical conductivity of the obtained positive electrode active material is insufficient. Becomes When it exceeds 10% by weight, the positive electrode material particles are aggregated with each other, and the amount of the positive electrode active material obtained cannot be increased in the resin.

【0036】樹脂による正極材粒子粉末の被覆処理は、
正極材粒子粉末と樹脂と若干の溶剤とをハイスピードミ
キサー(深江パウテック(株)製)、ヘンシェルミキサー
(三井三池(株)製)、CFグラニュレーター(フロイン
ト産業(株)製)、バーチカル・グラニュレーター((株)
パウレック製)、フロージェットグラニュレーター
((株)大川原製作所製)、万能攪拌機((株)ダルトン
製)、ナウタミキサー((株)ホソカワミクロン製)等の
いわゆる攪拌機能を有した処理機を用いて攪拌すればよ
い。
The coating treatment of the positive electrode material particle powder with the resin is
High speed mixer (Fukae Powtech Co., Ltd.), Henschel mixer (Mitsui Miike Co., Ltd.), CF granulator (Freund Sangyo Co., Ltd.), Vertical Granules Lator (Co., Ltd.)
Stirring using a processing machine with so-called stirrer, such as Paulec), flow jet granulator (Okawara Seisakusho Co., Ltd.), universal stirrer (Dalton Co., Ltd.), Nauta mixer (Hosokawa Micron Co., Ltd.) do it.

【0037】本発明の目的とする正極用活物質を得るこ
とができれば、必ずしも正極材粒子の全表面が樹脂によ
って被覆されている必要はなく、部分的に被覆されてい
てもよい。正極材粒子間の凝集を防止するためには、ヘ
ンシェルミキサーのような高速攪拌機での処理が好まし
い。
As long as the active material for a positive electrode which is the object of the present invention can be obtained, the entire surface of the positive electrode material particles does not necessarily need to be covered with the resin, and may be partially covered. In order to prevent aggregation between the positive electrode material particles, treatment with a high-speed stirrer such as a Henschel mixer is preferable.

【0038】次に、粒子表面が樹脂で被覆されている上
記正極材粒子粉末を、酸化雰囲気下で熱処理することに
より樹脂の炭化を行う。酸化雰囲気にするためには、空
気を熱処理炉内に流せばよく、通常1 l/min以上
流すことで十分である。
Next, the positive electrode material particle powder whose particle surfaces are coated with the resin is heat-treated in an oxidizing atmosphere to carbonize the resin. In order to obtain an oxidizing atmosphere, air may be flown in the heat treatment furnace, and it is usually sufficient to flow air at 1 l / min or more.

【0039】不活性雰囲気下で熱処理を行うと、正極材
粒子が有しているLi+が還元されることによって、正
極材粒子の組成自体が変化してしまい、電池特性に悪影
響を与えるので、本発明においては酸化雰囲気下で加熱
することが肝要である。
When the heat treatment is carried out in an inert atmosphere, the composition of the positive electrode material particles changes due to the reduction of Li + contained in the positive electrode material particles, which adversely affects the battery characteristics. In the present invention, it is important to heat in an oxidizing atmosphere.

【0040】熱処理温度としては、400℃以上であ
り、好ましくは400〜1000℃の範囲であり、より
好ましくは400〜800℃の範囲である。1000℃
を越える場合には、正極材粒子の組成自体が変化してし
まい、電池特性に悪影響を与える。一方、400℃未満
である場合には、樹脂が十分に炭化されず、正極材粒子
の電気伝導度を高めることができない。
The heat treatment temperature is 400 ° C. or higher, preferably 400 to 1000 ° C., more preferably 400 to 800 ° C. 1000 ° C
If it exceeds, the composition itself of the positive electrode material particles is changed, which adversely affects the battery characteristics. On the other hand, when the temperature is lower than 400 ° C., the resin is not sufficiently carbonized and the electric conductivity of the positive electrode material particles cannot be increased.

【0041】使用する熱処理機としては、固定式のもの
や、回転式のもの等いずれでもよいが、粒子同士の凝集
を防ぐためには、回転式のものが好ましい。
The heat treatment machine to be used may be a fixed type or a rotary type, but a rotary type is preferable in order to prevent the particles from coagulating.

【0042】熱処理を行う時間は、0.5〜4時間の処
理で十分である。
The heat treatment time of 0.5 to 4 hours is sufficient.

【0043】[0043]

【発明の実施の形態】本発明の代表的な実施の形態は次
の通りである。
BEST MODE FOR CARRYING OUT THE INVENTION A typical embodiment of the present invention is as follows.

【0044】尚、以下の実施の形態及び後出実施例並び
に比較例における平均粒子径(D10 50及びD90
は、レーザー回折式粒度分布計(SYMPATEC社製
RODOS)により計測した値で示した。
In addition, the following embodiments and examples described later
The average particle diameter (DTen ,D50And D90)
Is a laser diffraction type particle size distribution meter (manufactured by SYMPATEC)
It is shown by the value measured by RODOS).

【0045】カーボン量は、カーボン溶出テストを用い
て測定した値で示した。100mlガラス製サンプル瓶
中に、溶剤としてのN−メチル−2−ピロリドン(以
下、NMPと略す。)100mlと正極材粒子各2gを
加え、手振りで50回振とうさせた後、5分間静置させ
る。上澄み液の透過度をUV測定器(UV-2400P
C;島津製作所製)を用いて600nm波長の吸収で評
価した。 正極材粒子表面からカーボンが容易に脱離する場合には
透過度は低く、一方、しっかりと正極材粒子表面に被覆
されているものでは、透過度は高い。
The amount of carbon is shown by the value measured by the carbon elution test. In a 100 ml glass sample bottle, 100 ml of N-methyl-2-pyrrolidone (hereinafter abbreviated as NMP) as a solvent and 2 g of each positive electrode material particle were added, shaken by hand 50 times, and then allowed to stand for 5 minutes. Let The transmittance of the supernatant is measured by a UV meter (UV-2400P
C; manufactured by Shimadzu Corporation) and evaluated by absorption at a wavelength of 600 nm. The permeability is low when carbon is easily desorbed from the surface of the positive electrode material particles, while the permeability is high when the surface of the positive electrode material particles is firmly covered.

【0046】体積固有抵抗値は、ホィーストンブリッジ
2768(横河電機(株)製)を用いて測定した。
The volume resistivity value was measured using a Wheatstone bridge 2768 (made by Yokogawa Electric Co., Ltd.).

【0047】BET比表面積は、窒素吸着法により測定
した。
The BET specific surface area was measured by the nitrogen adsorption method.

【0048】正極材粒子の同定及びその結晶構造の解析
は、X線回折(RIGAKU,Mn−filtered
Fe−Kα、40kV and 20mA)により行
った。
Identification of positive electrode material particles and analysis of their crystal structure were carried out by X-ray diffraction (RIGAKU, Mn-filtered).
Fe-Kα, 40 kV and 20 mA).

【0049】電極活物質の電気化学特性は、ポテンシャ
ルスイーブ法により評価した。測定用正極電極として種
々の正極材粒子粉末と、バインダーとしてポリテトラフ
ルオロエチレン、導電材としてケッチェンブラックを各
々重量比で5%混合し、この混合物を0.5g秤量し、
集電体としてのニッケルのメッシュに充填し、作用電極
とした。負極電極として金属リチウム箔をステンレス鋼
メッシュに充填した。更に参照電極としてはリチウム金
属を用いた。過塩素酸リチウム(LiClO4)を、プロピレ
ンカルボネート、ジメトキシエタンを体積比で1:1に
混合した溶媒中に1Mの濃度で溶解させたものを電解質
として用いた。
The electrochemical characteristics of the electrode active material were evaluated by the potential sweep method. Various positive electrode material particle powders for the positive electrode for measurement, polytetrafluoroethylene as a binder, and Ketjen black as a conductive material were mixed in a weight ratio of 5%, and 0.5 g of this mixture was weighed.
It was filled in a nickel mesh as a current collector and used as a working electrode. Metallic lithium foil was filled into a stainless steel mesh as a negative electrode. Further, lithium metal was used as the reference electrode. Lithium perchlorate (LiClO 4 ) was dissolved at a concentration of 1M in a solvent in which propylene carbonate and dimethoxyethane were mixed at a volume ratio of 1: 1 and used as an electrolyte.

【0050】以上の測定用正極作用電極、負極、参照電
極、電解質を用いて電気化学測定セルを構成した。この
電気化学セルを用い、金属リチウム電極基準で3.0〜
4.2Vの測定範囲、電流0.5mA/cm2にて充放電
曲線を調べた。
An electrochemical measurement cell was constructed using the above positive electrode working electrode for measurement, negative electrode, reference electrode and electrolyte. Using this electrochemical cell, 3.0 to 3.0 based on the lithium metal electrode
The charge / discharge curve was examined in a measurement range of 4.2 V and a current of 0.5 mA / cm 2 .

【0051】<正極用活物質の製造>ヘンシェルミキサ
ー内にLiCoO2粒子粉末(平均粒径4.0μm、体積
固有抵抗2.2×105Ωcm タップ密度2.42g/
ml)1kgを仕込み、窒素ガスを1 l/minで流し
ながら、960rpmで攪拌を行い、続いて、OH当量
が185g/当量であるレゾール型フェノール樹脂「フ
ェノライトJ−325」(商品名:大日本インキ化学工
業(株))8.3g及びエタノール10gを添加した。粉
体温度が70℃になるように加温し、約2時間攪拌した
後、冷却することで上記LiCoO2粒子粉末の粒子表
面を0.49重量%のフェノール樹脂で被覆処理した。
<Production of Positive Electrode Active Material> LiCoO 2 particle powder (average particle size 4.0 μm, volume specific resistance 2.2 × 10 5 Ωcm, tap density 2.42 g / in a Henschel mixer).
ml) and charged with nitrogen gas at a flow rate of 1 l / min and stirred at 960 rpm, followed by OH equivalent of 185 g / equivalent resol type phenol resin "Phenolite J-325" (trade name: large 8.3 g of Nippon Ink Chemical Industry Co., Ltd. and 10 g of ethanol were added. The powder was heated to a temperature of 70 ° C., stirred for about 2 hours, and then cooled to coat the particle surface of the above LiCoO 2 particle powder with 0.49% by weight of a phenol resin.

【0052】次に、得られたフェノール樹脂が被覆され
ているLiCoO2粒子粉末を、回転式熱処理炉内に入
れ、空気を1 l/minの流量で流しながら、品温が
500℃まで90分間で昇温し、500℃で1時間保持
を樹脂の炭化を行ってカーボンが被覆されているLiC
oO2粒子粉末を製造した後、50℃以下の温度まで冷
却して複合正極材粒子粉末(A)を取り出した。
Next, the obtained LiCoO 2 particle powder coated with the phenol resin was placed in a rotary heat treatment furnace, and air was supplied at a flow rate of 1 l / min, and the product temperature was raised to 500 ° C. for 90 minutes. LiC coated with carbon by heating at 500 ° C and holding at 500 ° C for 1 hour to carbonize the resin
After the oO 2 particle powder was produced, it was cooled to a temperature of 50 ° C. or lower and the composite positive electrode material particle powder (A) was taken out.

【0053】得られた複合正極材粒子粉末(A)の平均
粒子径は、D50で示した場合4.2μm、D10で示した
場合、2.0μm、D90で示した場合、10.5μmであ
り、(D90/D50)比率が2.5であって、(D50/D
10)比率が2.1であり、比表面積が1.0m2/g、体
積固有抵抗が2×104Ωcm、タップ密度が2.50、
カーボン量が0.04%、カーボン溶出テストは(良)
であった。さらに、この充放電の電気容量を求めたとこ
ろ、162mAh/gであった。なお、比較の為、前記
LiCoO2粒子粉末を樹脂で被覆することなくそのま
ま使用した場合の電気容量は157mAh/gであっ
た。
[0053] The average particle size of the obtained composite positive electrode material particles (A) is, 4.2 .mu.m case shown in D 50, the case shown in D 10, 2.0 .mu.m, if indicated by D 90, 10. 5 μm, (D 90 / D 50 ) ratio is 2.5, and (D 50 / D 50
10 ) The ratio is 2.1, the specific surface area is 1.0 m 2 / g, the volume resistivity is 2 × 10 4 Ωcm, the tap density is 2.50,
Carbon content is 0.04%, carbon elution test is (good)
Met. Furthermore, the electric capacity of this charge and discharge was determined to be 162 mAh / g. For comparison, the electric capacity when the LiCoO 2 particle powder was used as it was without being coated with a resin was 157 mAh / g.

【0054】[0054]

【作用】本発明において最も重要な点は、粒子表面にフ
ェノール樹脂又はエポキシ樹脂が被覆されている正極材
粒子を酸化雰囲気下で熱処理した場合には、カーボンが
被覆されている正極材粒子を得ることができ、該カーボ
ンは容易に脱離しないため、電気伝導性を高めることが
でき、長期間の使用においても安定して電気伝導性を高
めることができるという事実である。
The most important point in the present invention is to obtain positive electrode material particles coated with carbon when the positive electrode material particles whose surface is coated with phenol resin or epoxy resin are heat-treated in an oxidizing atmosphere. The fact is that the carbon does not easily desorb, so that the electrical conductivity can be enhanced and the electrical conductivity can be stably enhanced even after long-term use.

【0055】正極材粒子の粒子表面からカーボンが脱離
しにくい理由について、本発明者は、正極材粒子の粒子
表面を特定のフェノール樹脂又はエポキシ樹脂で被覆し
た後に、酸化雰囲気下で熱処理して樹脂を炭化したもの
であることに起因して、カーボンがしっかりと正極材粒
子表面に固定されているものと考えている。
Regarding the reason why carbon is difficult to be desorbed from the particle surface of the positive electrode material particles, the present inventor has found that the particle surface of the positive electrode material particles is coated with a specific phenol resin or epoxy resin and then heat-treated in an oxidizing atmosphere. It is believed that the carbon is firmly fixed to the surface of the positive electrode material particles due to the carbonization of carbon.

【0056】そして、本発明に係る二次電池の正極用活
物質は粒度分布が優れているので、正極用活物質の樹脂
への充填量を高めることが可能であるという事実であ
る。
The fact that the positive electrode active material of the secondary battery according to the present invention has an excellent particle size distribution makes it possible to increase the amount of the positive electrode active material filled in the resin.

【0057】[0057]

【実施例】次に、実施例及び比較例を挙げる。EXAMPLES Next, examples and comparative examples will be described.

【0058】実施例1 前記発明の実施の形態と同様にして、LiCoO2粒子
粉末(平均粒子径1.2μm、体積固有抵抗値3.5×1
5Ωcm)1kgをエポキシ当量が300g/当量で
あるエポキシ樹脂「エピクロン5300−70」(商品
名:大日本インキ化学工業(株)製)21gおよびメタノ
ール40gの混合溶液で表面処理を行った。粉体温度が
70℃になるように加温し、約2時間攪拌した後、冷却
することで、LiCoO2の粒子表面をエポキシ樹脂で
被覆処理した粒子粉末を得た。
Example 1 LiCoO 2 particle powder (average particle diameter 1.2 μm, volume specific resistance value 3.5 × 1) was obtained in the same manner as in the embodiment of the invention.
0 5 [Omega] cm) epoxy resin "EPICLON 5300-70" epoxy equivalent of 1kg is 300 g / equivalent: was subjected to a surface treatment with a mixed solution of (trade name Dainippon Ink and Chemicals) 21g and methanol 40 g. The powder was heated to a temperature of 70 ° C., stirred for about 2 hours, and then cooled to obtain a particle powder in which the surface of LiCoO 2 particles was coated with an epoxy resin.

【0059】次に、得られたエポキシ樹脂が被覆されて
いるLiCoO2粒子粉末を、回転式熱処理炉内に入
れ、空気を1 l/minの流量で流しながら、品温が
600℃まで2時間で昇温し、600℃で1時間保持を
行った後、50℃以下の温度まで冷却を行い取り出し
た。この時の主要製造条件を表1に、得られたLiCo
2粒子粉末(B)の諸特性を表2に示す。
Next, the LiCoO 2 particle powder coated with the obtained epoxy resin was placed in a rotary heat treatment furnace, and the product temperature was increased to 600 ° C. for 2 hours while flowing air at a flow rate of 1 l / min. The temperature was raised to 1, the temperature was held at 600 ° C. for 1 hour, the temperature was cooled to 50 ° C. or lower, and the product was taken out. The main production conditions at this time are shown in Table 1, and the obtained LiCo
Table 2 shows various properties of the O 2 particle powder (B).

【0060】実施例2〜6、比較例1〜5 正極材粒子粉末の種類、被覆する樹脂の種類及び量、熱
処理条件を種々変化させた以外は、前記発明の実施の形
態と同様にしてカーボンが被覆されている被覆正極材粒
子粉末の生成を行った。主要製造条件を表1に、及び諸
特性を表2に示す。
Examples 2 to 6, Comparative Examples 1 to 5 Carbon was prepared in the same manner as in the embodiment of the present invention except that the kind of the positive electrode material particle powder, the kind and amount of the resin to be coated, and the heat treatment conditions were variously changed. The coated positive electrode material particle powder coated with was produced. The main manufacturing conditions are shown in Table 1, and various properties are shown in Table 2.

【0061】比較例6 LiNiO2粒子粉末(平均粒子径1.5μm、体積固有
抵抗4.2×105Ωcm)300gとケッチェンブラッ
ク「ECP−600JD」(商品名:ライオン(株)製)
4.5gをメカノフュージョン装置「AM−15F」
(商品名:ホソカワミクロン製)を用いて30分間処理
を行った。この時の主要製造条件を表1に、得られた粒
子表面にカーボンが付着しているLiNiO2粒子粉末
(M)の特性を表2に示す。
Comparative Example 6 300 g of LiNiO 2 particle powder (average particle diameter 1.5 μm, volume resistivity 4.2 × 10 5 Ωcm) and Ketjen Black “ECP-600JD” (trade name: manufactured by Lion Corporation)
4.5 g of mechanofusion device "AM-15F"
(Trade name: manufactured by Hosokawa Micron) was used for 30 minutes. The main production conditions at this time are shown in Table 1, and the characteristics of the obtained LiNiO 2 particle powder (M) having carbon adhered to the particle surface are shown in Table 2.

【0062】比較例7 LiCoO2粒子粉末(平均粒径4.0μm、体積固有抵
抗値2.2×105Ωcm)1kgとOH当量100g/
当量であるノボラック型フェノール樹脂「タマノル10
0S」(商品名:荒川化学工業(株))20gをエクスル
ーダーで混練した後、粉砕・分級して複合体粒子を製造
した。得られた複合体粒子粉末は、平均粒子径が18.
2μmであった。得られた複合体粒子粉末を、回転式熱
処理炉内に入れ、空気を1 l/minの流量で流しな
がら、品温が500℃まで90分間で昇温し、500℃
で1時間保持を行った後、50℃以下の温度まで冷却を
行い取り出した。
Comparative Example 7 LiCoO 2 particle powder (average particle diameter 4.0 μm, volume resistivity 2.2 × 10 5 Ωcm) 1 kg and OH equivalent 100 g /
The equivalent amount of novolac type phenolic resin "Tamanor 10
20S "(trade name: Arakawa Chemical Industry Co., Ltd.) was kneaded with an extruder, then pulverized and classified to produce composite particles. The resulting composite particle powder has an average particle size of 18.
It was 2 μm. The obtained composite particle powder was placed in a rotary heat treatment furnace, and the temperature of the product was raised to 500 ° C in 90 minutes while flowing air at a flow rate of 1 l / min.
After holding for 1 hour, it was cooled to a temperature of 50 ° C. or lower and taken out.

【0063】得られた粒子表面にカーボンが被覆されて
いるLiCoO2粒子粉末(N)の特性を表2に示す。
Table 2 shows the characteristics of the obtained LiCoO 2 particle powder (N) whose surface is coated with carbon.

【0064】[0064]

【表1】 [Table 1]

【0065】[0065]

【表2】 [Table 2]

【0066】[0066]

【発明の効果】本発明に係る二次電池の正極用活物質
は、正極材粒子の粒子表面にしっかりとカーボンが被覆
されているため、正極を調整する際のストレスによって
も粒子表面から容易に脱離せず、電気伝導度が優れてい
るとともに、樹脂への充填性及び分散性が優れているの
で、二次電池の正極用活物資として好適である。
Since the active material for a positive electrode of the secondary battery according to the present invention has the surface of the particles of the positive electrode material particles firmly covered with carbon, it can be easily removed from the surface of the particles even by the stress when adjusting the positive electrode. It is suitable for use as a positive electrode active material of a secondary battery, since it does not desorb and has excellent electrical conductivity, and also has excellent resin filling properties and dispersibility.

【0067】そして、上記正極用活物質を用いた場合に
は、二次電池の充放電容量を高めることができる。
When the positive electrode active material is used, the charge / discharge capacity of the secondary battery can be increased.

フロントページの続き Fターム(参考) 5H029 AJ03 AJ06 AJ14 AK03 AL12 AM01 CJ02 CJ22 CJ28 DJ16 HJ02 HJ14 5H050 AA08 AA12 AA19 BA17 CA07 CB12 DA02 DA10 EA08 FA17 FA18 GA02 GA22 GA27 HA01 HA02 HA05 HA14 Continued front page    F term (reference) 5H029 AJ03 AJ06 AJ14 AK03 AL12                       AM01 CJ02 CJ22 CJ28 DJ16                       HJ02 HJ14                 5H050 AA08 AA12 AA19 BA17 CA07                       CB12 DA02 DA10 EA08 FA17                       FA18 GA02 GA22 GA27 HA01                       HA02 HA05 HA14

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 正極材粒子の粒子表面に、熱硬化性フェ
ノール樹脂又は熱硬化性エポキシ樹脂を酸化雰囲気下で
熱処理して得られるカーボンが被覆されている複合正極
材粒子からなる複合正極材粒子粉末であることを特徴と
する二次電池の正極用活物質。
1. A composite positive electrode material particle comprising composite positive electrode material particles in which carbon particles obtained by heat-treating a thermosetting phenol resin or a thermosetting epoxy resin in an oxidizing atmosphere are coated on the surface of the positive electrode material particles. An active material for a positive electrode of a secondary battery, which is a powder.
【請求項2】 熱硬化性フェノール樹脂のOH当量が1
30g/当量以上の熱硬化性フェノール樹脂であること
を特徴とする請求項1記載の二次電池の正極用活物質。
2. The OH equivalent of the thermosetting phenolic resin is 1
The active material for a positive electrode of a secondary battery according to claim 1, which is a thermosetting phenolic resin of 30 g / equivalent or more.
【請求項3】 熱硬化性エポキシ樹脂が1分子中に2個
以上のエポキシ基を有し、エポキシ当量が200g/当
量以上の熱硬化性エポキシ樹脂であることを特徴とする
請求項1記載の二次電池の正極用活物質。
3. The thermosetting epoxy resin is a thermosetting epoxy resin having two or more epoxy groups in one molecule and having an epoxy equivalent of 200 g / equivalent or more. Active material for positive electrode of secondary battery.
【請求項4】 正極材粒子粉末に該正極材粒子粉末に対
し0.01〜10重量%の熱硬化性フェノール樹脂又は
熱硬化性エポキシ樹脂を被覆した後、酸化雰囲気下、4
00℃以上の温度で熱処理して前記樹脂を炭化させるこ
とにより複合正極材粒子粉末を得ることを特徴とする請
求項1乃至請求項3のいずれかに記載の二次電池の正極
用活物質の製造方法。
4. The positive electrode material particle powder is coated with 0.01 to 10% by weight of the positive electrode material particle powder of a thermosetting phenol resin or a thermosetting epoxy resin, and then, in an oxidizing atmosphere, 4
The composite positive electrode material particle powder is obtained by heat-treating the resin at a temperature of 00 ° C. or higher to obtain a composite positive electrode material particle powder, wherein the active material for a positive electrode of a secondary battery according to any one of claims 1 to 3. Production method.
JP2002028255A 2002-02-05 2002-02-05 Active material for positive electrode of secondary battery and manufacturing method thereof Expired - Fee Related JP4359744B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002028255A JP4359744B2 (en) 2002-02-05 2002-02-05 Active material for positive electrode of secondary battery and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002028255A JP4359744B2 (en) 2002-02-05 2002-02-05 Active material for positive electrode of secondary battery and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2003229127A true JP2003229127A (en) 2003-08-15
JP4359744B2 JP4359744B2 (en) 2009-11-04

Family

ID=27749529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002028255A Expired - Fee Related JP4359744B2 (en) 2002-02-05 2002-02-05 Active material for positive electrode of secondary battery and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4359744B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008041577A (en) * 2006-08-09 2008-02-21 Kanto Denka Kogyo Co Ltd Spinel type manganate lithium and its manufacturing method, and cathode active material using spinel type manganate lithium and nonaqueous electrolyte battery
JP2009043514A (en) * 2007-08-08 2009-02-26 Toyota Motor Corp Electrode material, electrode plate, secondary battery, and manufacturing method for the electrode material
JP2011034776A (en) * 2009-07-31 2011-02-17 Toda Kogyo Corp Positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
US7964118B2 (en) 2005-09-21 2011-06-21 Kanto Denka Kogyo Co., Ltd. Positive electrode active material and method of producing the same and nonaqueous electrolyte battery having positive electrode containing positive electrode active material
JP2013069565A (en) * 2011-09-22 2013-04-18 Sumitomo Osaka Cement Co Ltd Electrode material and method for producing the same
JP2013206562A (en) * 2012-03-27 2013-10-07 Tdk Corp Cathode material for lithium-ion secondary battery, cathode for lithium-ion secondary battery, lithium-ion secondary battery, and method of producing cathode material for lithium-ion secondary battery
JP2016096150A (en) * 2011-11-09 2016-05-26 株式会社Gsユアサ Active material for nonaqueous electrolyte secondary battery, method for manufacturing active material, electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JPWO2014128814A1 (en) * 2013-02-22 2017-02-02 株式会社豊田自動織機 NEGATIVE ELECTRODE ACTIVE MATERIAL, ITS MANUFACTURING METHOD, AND POWER STORAGE DEVICE

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7964118B2 (en) 2005-09-21 2011-06-21 Kanto Denka Kogyo Co., Ltd. Positive electrode active material and method of producing the same and nonaqueous electrolyte battery having positive electrode containing positive electrode active material
JP2008041577A (en) * 2006-08-09 2008-02-21 Kanto Denka Kogyo Co Ltd Spinel type manganate lithium and its manufacturing method, and cathode active material using spinel type manganate lithium and nonaqueous electrolyte battery
JP2009043514A (en) * 2007-08-08 2009-02-26 Toyota Motor Corp Electrode material, electrode plate, secondary battery, and manufacturing method for the electrode material
JP2011034776A (en) * 2009-07-31 2011-02-17 Toda Kogyo Corp Positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2013069565A (en) * 2011-09-22 2013-04-18 Sumitomo Osaka Cement Co Ltd Electrode material and method for producing the same
JP2016096150A (en) * 2011-11-09 2016-05-26 株式会社Gsユアサ Active material for nonaqueous electrolyte secondary battery, method for manufacturing active material, electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2013206562A (en) * 2012-03-27 2013-10-07 Tdk Corp Cathode material for lithium-ion secondary battery, cathode for lithium-ion secondary battery, lithium-ion secondary battery, and method of producing cathode material for lithium-ion secondary battery
JPWO2014128814A1 (en) * 2013-02-22 2017-02-02 株式会社豊田自動織機 NEGATIVE ELECTRODE ACTIVE MATERIAL, ITS MANUFACTURING METHOD, AND POWER STORAGE DEVICE

Also Published As

Publication number Publication date
JP4359744B2 (en) 2009-11-04

Similar Documents

Publication Publication Date Title
JP5822708B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the positive electrode active material
JP5035712B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the positive electrode active material
JP5227483B1 (en) Composite active material for lithium secondary battery and method for producing the same
CN1909268B (en) Lithium ion battery negative electrode material containing PC dissolvent electrolytic solution and its preparation method
WO2015182595A1 (en) Positive electrode active material for nonaqueous electrolyte secondary cell, method for manufacturing said material, and nonaqueous electrolyte secondary cell in which said material is used
JP5606654B2 (en) Lithium metal composite oxide
WO2011033731A1 (en) Silicon oxide, and negative electrode material for lithium ion secondary battery
JP4673287B2 (en) Spinel type lithium manganese oxide and method for producing the same
CN103022444A (en) Preparation method of carbon silicon composite material
JP2003308845A (en) Electrode for lithium secondary battery and lithium secondary battery using it
EP4317080A1 (en) Composite material and preparation method therefor and lithium-ion battery positive electrode material
EP2492995A1 (en) Negative electrode active material for lithium ion secondary battery
EP3716389A1 (en) Sulfide solid electrolyte, precursor of sulfide solid electrolyte, all solid state battery and method for producing sulfide solid electrolyte
EP2579367A1 (en) Powder for negative electrode material of lithium-ion rechargeable battery electrode, and method of producing same
JP4798962B2 (en) Lithium manganese composite oxide and method for producing the same
JP2010027458A (en) Secondary battery positive electrode material and its manufacturing method
CN113632261A (en) Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP4359744B2 (en) Active material for positive electrode of secondary battery and manufacturing method thereof
JP2001243951A (en) Positive electrode active material for non-aqueous electrolyte secondary battery and battery using the same
WO2020022305A1 (en) Positive electrode active material
JP6276573B2 (en) Anode material for secondary battery and secondary battery using the same
JP2004039538A (en) Positive electrode active material for secondary battery
JP2004039539A (en) Positive electrode active material for secondary battery
JP4810729B2 (en) Lithium transition metal composite oxide and method for producing the same
JP2004179008A (en) Positive electrode material for lithium secondary battery and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090715

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090728

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120821

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120821

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120821

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120821

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees