JP2004179008A - Positive electrode material for lithium secondary battery and its manufacturing method - Google Patents

Positive electrode material for lithium secondary battery and its manufacturing method Download PDF

Info

Publication number
JP2004179008A
JP2004179008A JP2002344584A JP2002344584A JP2004179008A JP 2004179008 A JP2004179008 A JP 2004179008A JP 2002344584 A JP2002344584 A JP 2002344584A JP 2002344584 A JP2002344584 A JP 2002344584A JP 2004179008 A JP2004179008 A JP 2004179008A
Authority
JP
Japan
Prior art keywords
particles
positive electrode
active material
electrode material
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002344584A
Other languages
Japanese (ja)
Inventor
Kenji Fukuda
憲二 福田
Tadanori Tsunawake
忠則 綱分
Hiroshi Onoda
宏 小野田
Yoshinori Yasumoto
義徳 安元
Tatsuo Umeno
達夫 梅野
Takashi Iwao
孝士 岩尾
Kohei Murayama
孝平 村山
Jugo Sumitomo
十五 住友
Yoichiro Hara
陽一郎 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining Co Ltd
Original Assignee
Mitsui Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining Co Ltd filed Critical Mitsui Mining Co Ltd
Priority to JP2002344584A priority Critical patent/JP2004179008A/en
Publication of JP2004179008A publication Critical patent/JP2004179008A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a positive electrode material for a secondary battery endowed with a high energy density and excellent charge discharge cycle characteristics and with an excellent rapid discharging property and cycle life as well as to provide a method of efficiently and stably manufacturing the positive electrode material for the lithium secondary battery satisfying both high-load characteristics and high capacity. <P>SOLUTION: The positive electrode material for the lithium secondary battery is of particles with a transition metal chalcogen compound as an active material and containing a carbonaceous matter as a conductive auxiliary agent, the particles integrated with the carbonaceous matter adhered to the surface of the particles of the active material. Further, in a manufacturing method of the particulate positive electrode material for the lithium secondary battery with the transition metal chalcogen compound as the active material and containing the carbonaceous matter as the conductive auxiliary agent, a mixture containing the particulate active material and the particulate carbonaceous matter is treated with a crusher to make the carbonaceous matter adhered on the surface of the particles of the active material to integrate the particles. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明はリチウム二次電池用正極材料及びその製造方法に関する。
【0002】
【従来の技術】
電子機器の小型軽量化に伴い、高いエネルギー密度と優れた充放電サイクル特性とを備えた二次電池として、リチウム二次電池の利用が急速に進んでいる。
【0003】
リチウム二次電池は、電解質の種類によって、リチウムイオン二次電池、リチウムポリマー二次電池、全固体リチウム二次電池等があるが、特に有機溶媒を電解質とするリチウムイオン二次電池が広く使用されている。
【0004】
リチウム二次電池の負極としては、当初、金属リチウムが使用されたが(リチウム金属二次電池)、急速充電性やサイクル寿命に問題があり、また、安全性についても問題があったために、現在では炭素材料が広く使用されている。また、炭素材料としては、黒鉛を主体とするものが多く使用されている。
【0005】
一方、正極としては、TiS、TiS、TiO等の遷移金属カルコゲン化合物や、LiCoO、LiNiO、LiMn等のリチウム化した遷移金属カルコゲン化合物が多く用いられている(特許文献1)。本発明においては、これらを総称して「遷移金属カルコゲン化合物」ということにする。
【0006】
リチウム二次電池は、主に携帯電話や携帯用パソコンの電源として飛躍的な成長を遂げているが、これらの携帯機器においては、取り扱う情報量の増大と高速化が著しく、これに対応する高出力の電池が要求されるようになった。
【0007】
即ち、当初はリチウム二次電池は主に高容量とサイクル特性が重要視されていたが、現在は同時に高負荷特性が要求されるようになった。ここで、「高容量」とは、電池又は電極の単位質量当たりの実用的な放電量が大きいことをいう。また、「高負荷」とは、電池又は電極の単位質量について単位時間当たりの放電量が大きいことをいう。
【0008】
リチウム二次電池の負荷特性は、電池系全体の導電性に大きく依存する。即ち、正極、電解質(高分子電解質、電解液やセパレーター等を含む)、及び負極の電気抵抗は低いことが好ましい。例えば、電極については、その厚みを薄くすると共に電極面積を広くして電気抵抗を低くしている。また、電解液については、電解質濃度を高くすると共に、低粘度で高導電性とするために、種種の電解液を組み合わせる工夫等がなされている。
【0009】
使用する活物質から両電極の導電性を比較すると、正極の遷移金属カルコゲン化合物は、負極の炭素材料よりも導電性が非常に低い。従って、リチウム二次電池の負荷特性を向上させるためには、正極の導電性を向上させることが重要であり、カーボンブラックや黒鉛等の導電助剤を添加することが不可欠である。
【0010】
通常、正極は次のような方法で調製されている。まず活物質、導電助剤、バインダー及び溶媒からなるスラリーを調製する。次に、このスラリーをアルミニウム箔等の集電体に塗布し、乾燥、展圧、及び裁断して形成される。しかしながら、正極の調製には次のような問題がある。
【0011】
第1の問題は、導電助剤の添加量が多いことである。負荷特性の向上に必要な導電助剤の添加量は、活物質に対して2〜10質量%と多いために、電池容量を低下させることになる。電池を高負荷とするためには、導電助剤の添加量を多くする必要がある。しかし、正極において導電助剤やバインダーは不活物質であり、電池を高容量化するためには、これらの添加量を少なくする必要がある。従って、高負荷特性と高容量との要求を同時に満たすことは困難である。
【0012】
第2の問題は、使用する活物質粒子が、通常単一粒子では存在しえず、多くの一次粒子が凝集して二次粒子を形成していることである。遷移金属カルコゲン化合物は、通常、遷移金属酸化物をリチウム炭酸塩と共に溶融してリチウム化する固相合成法か、遷移金属酸塩の水溶液に水酸化リチウムを滴下中和してリチウム化する溶液合成法によって製造されるが、何れの場合においても二次粒子化することが避けられないためである。二次粒子化することにより、粒子の導電性は一次粒子よりも低いものとなる。また、導電助剤を添加した場合に、二次粒子化しているため導電助剤粒子のなかには一次粒子と直接接触していない粒子が存在することになり、導電助剤の添加効果を十分に発揮することができない。従って、前記のスラリー調製においては、導電助剤が二次粒子の内部に浸透するように、或いは、二次粒子を解して一次粒子とすることを目的として、特殊な混合機を用いてスラリーを長時間混合している。
【0013】
第3の問題は、安定したスラリーを調製することが非常に困難なことである。調製されたスラリーは、集電体への塗布やその後の乾燥においても、分離することなく、均一組成が安定して保持されなければならない。また、塗布に適した性状が長時間安定して保持されなければならない。しかし、活物質粒子と導電助剤粒子とは、比重が大きく異なるために、このような安定したスラリーを得ることは非常に困難である。即ち、活物質の比重が5.1(嵩比重1.5)程度であるのに対して、導電助剤の比重は2.2(嵩比重0.1)程度であるため、これらはスラリー中で相互に分離し易い。また、高い導電性を付与することが可能な高導電性カーボンブラックは、表面積が大きく、溶媒を吸着してゲル化し易いために、塗布に適したスラリーとするための条件設定が非常に困難である。このため、導電助剤及びバインダーの選定、或いは配合量の決定には、高度な知識と経験が必要である。
【0014】
【特許文献1】
特開平9−106834号公報(特許請求の範囲)
【0015】
【発明が解決しようとする課題】
本発明者らは、導電助剤の添加をスラリーの調製段階で行う限り、上記の諸問題を解決することは困難と考え、正極活物質と導電助剤とが一体化した正極材料の開発を課題として検討した。
【0016】
例えば、遷移金属カルコゲン化合物の粒子表面を炭素質物質で被覆し、二重構造の粒子とすれば、スラリーの調製は簡素化され、また容易に安定したスラリーを得ることができると考えられる。
【0017】
そこで、まずCVD法により、正極活物質粒子の表面に炭素被覆を形成することを検討した。しかしながら、CVD処理は高温かつ還元性雰囲気で行われるために、多くの場合精緻に価数を制御された酸化物又は硫化物である正極活物質は、容易に還元されてその活性を失い、有効な結果を得ることができなかった。
【0018】
このため、CVD以外の方法により、活物質と導電助剤との一体化を得る方法について鋭意研究を重ねた。
【0019】
【課題を解決するための手段】
研究の結果、活物質粒子と導電助剤粒子との混合物を、圧縮力を与える粉砕機で処理した場合には、これらが一体化した粒子が得られることを発見した。即ち、活物質粒子と炭素質粒子とを粉砕機で処理すると、活物質粒子の表面に炭素質粒子が付着して一体化することを発見した。しかも、活物質粒子と炭素質粒子とは、それぞれ都合の良い変化を示す。二次凝集した活物質粒子は、粉砕力によって解され、1次粒子化することができる。また、活物質粒子の表面に付着した炭素質粒子は、圧縮力によって延展し、活物質粒子の表面を被覆するように広がる。更に、この一体化した粒子状の正極材料が、リチウム二次電池の上記諸問題を解決できることを確認し、下記の本発明を完成した。
【0020】
〔1〕 遷移金属カルコゲン化合物を活物質とし、かつ導電助剤としての炭素質物質を含むリチウム二次電池用の粒子状正極材料であって、該正極材料が活物質の粒子表面に炭素質物質が付着して一体化した粒子であることを特徴とする正極材料。
【0021】
〔2〕 正極材料中の炭素質物質の含有量が、0.2質量%以上である〔1〕に記載の正極材料。
【0022】
〔3〕 炭素質物質が黒鉛である〔1〕又は〔2〕に記載の正極材料。
【0023】
〔4〕 炭素質物質の格子定数が0.77nm以下である〔1〕乃至〔3〕の何れか1に記載の正極材料。
【0024】
〔5〕 〔1〕乃至〔4〕の何れか1に記載の正極材料を用いたリチウム二次電池。
【0025】
〔6〕 遷移金属カルコゲン化合物を活物質とし、かつ導電助剤としての炭素質物質を含むリチウム二次電池用の粒子状正極材料の製造方法において、粒子状の活物質と粒子状の炭素質物質とを含む混合物を、粉砕機を用いて処理することにより、活物質の粒子表面に炭素質物質を付着させ、一体化した粒子とすることを特徴とする正極材料の製造方法。
【0026】
【発明の実施の形態】
以下、本発明について更に詳しく説明する。
【0027】
本発明の正極材料に用いる活物質は、リチウムイオンを受け入れることが可能な、遷移金属カルコゲン化合物であり、前述した通りの既に知られた材料を使用することができる。即ち、TiS、TiS、TiO、V、NbSe等の他、現在賞用されているLiCoO、LiNiO、LiMn、Fe(SO、LiFeOPO等である。
【0028】
また、LiNiOのNiの一部がCo、Al、Mn、Ga、Nb等で置換された材料や、スピネルLiMnのMnの一部がNi、Cr、Fe、Mg等で置換された材料、或いは酸素欠損のないスピネルLiMn等も有効であり、本発明の活物質に含まれるものである。
【0029】
これらの活物質は、粒子径が1〜20μmの単一粒子であることが好ましい。しかし、後述するように粉砕機を用いて処理をするので、20μ以上の粒子や二次粒子化した材料を使用することができる。
【0030】
本発明の正極材料に導電助剤として用いる炭素質物質は、天然黒鉛、人造黒鉛、膨張黒鉛等の黒鉛や、ファーネスブラック、アセチレンブラック、ケッチェンブラック等のカーボンブラック等を使用することができる。
【0031】
また、カーボンブラックの中心部分に存在する低結晶部分を空気酸化により消失させ、高結晶である外殻部分のみとした高導電性カーボンブラックも、勿論使用することができる。しかし、中でも好ましい材料は黒鉛であり、特に天然黒鉛が好ましい。黒鉛はカーボンブラックよりも導電性に優れており、かつ圧着性や延展性に優れているからである。また、リチウムイオンとの反応性が低く、サイクル劣化が少ないからである。更に、天然黒鉛は入手の容易さや価格的にも優れているからである。
【0032】
これらの炭素質物質は、高導電性であるほど好ましいので、その格子定数は0.77nm以下であることが好ましく、0.68nm以下であることがより好ましい。また、これらの粒子径は、活物質と同程度、又はより小さいことが好ましく、0.2〜20μmが好ましい。
【0033】
本発明の正極材料は、上記の活物質粒子と炭素質粒子とを、例えば、処理物に対して圧縮力を与える粉砕機で処理することにより、活物質粒子の表面に炭素質粒子を付着させ、一体化した粒子としたものである。
【0034】
使用する粉砕機としては、振動ロッドミル、振動ボールミル、遊星ボールミル、振動ディスクミル、ローラーミル、媒体攪拌型ミル等、処理物に大きな圧縮力を与える形式のものが好ましい。これに対し、ハンマーミル、ピンミル、ターボミル等の圧縮力の小さい高速回転式の粉砕機は不適である。
【0035】
処理する雰囲気としては、不活性ガス雰囲気でも大気中でもよい。処理時間は、炭素質粒子の種類などによって異なり、2分〜2時間である。上記粉砕処理後、必要に応じて、過度に粉砕された正極材粒子や付着しなかった炭素質微粒子を除去するための分級処理を行ない本発明の正極材料を得る。分級処理は、篩を用いることもできるが空気分級が好ましい。
【0036】
この処理における第1の特徴は、材料粒子が2次粒子を形成していても、粉砕されて1次粒子となることである。即ち、使用する活物質粒子は、2次粒子化していても問題なく使用することが可能であり、得られる粒子は、1次粒子の表面に炭素質粒子が付着して一体化した粒子とすることができる。
【0037】
第2の特徴は、炭素質粒子の付着が強固なことである。即ち、単純な混合処理による場合の付着と異なり、強く固着して一体化した粒子を形成することである。一体化した粒子の状態は、走査型電子顕微鏡(SEM)で観察することができる。その一例を図1〜3に示す。
【0038】
また、次の粒度分布の測定によっても、一体化していることが確認できる。例えば、平均粒子径8μmの活物質粒子を、遊星ボールミルを用いて10分間処理し、その粒度分布を測定する。次に、平均粒子径8μmの活物質粒子と平均粒子径6μmの炭素質粒子とを、98:2の質量割合で混合し、これを同様に10分間処理し、その粒度分布を測定する。後者の粒度分布は、小粒子径側に僅かなテールが見られるものの、前者の粒度分布とほぼ一致するので、一体化していることが明らかである。
【0039】
更に、一体化した粒子を水中で超音波処理し、処理の前後における粒度を測定した場合にも、粒度分布に大きな変化は見られない。従って、付着した炭素質粒子は、超音波処理によっても剥離しない程度に、強固に一体化していることが確認される。
【0040】
第3の特徴は、炭素質粒子が、活物質粒子の表面に均一に付着すると共に、圧縮力により延展されるため、活物質粒子の表面を被覆するように広がることである。特に、黒鉛は延展性に富んでいるために、この効果が大きい。
【0041】
この結果、導電助剤の添加量を大幅に低減することが可能である。即ち、従来の方法において、導電助剤の添加量は、正極材料中に2質量%以上必要であり、5〜10質量%で実用されることが多かった。これに対して、本発明の正極材料においては、正極材料中に0.2質量%以上含むことにより付与効果が発現し、2〜5質量%で十分に実用することができる。
【0042】
以上詳述したように、本発明の正極材料は、導電助剤の添加量を低減できるので、これを用いたリチウム二次電池は、高容量、かつ高負荷特性を備えることができる。
【0043】
また、活物質の一次粒子の表面に直接導電助剤が固着しているので、正極を調製する際に、特殊な混合機を用いることなく、簡単にスラリーを調製することができる。
【0044】
更に、スラリーの調製において、活物質と導電助剤が分離を起こす心配は全くなく、ゲル化する心配もないので、容易に安定したスラリーを調製することができる。
【0045】
本発明の正極材料を製造する方法も、一般的な処理物に大きな圧縮力を与える形式の粉砕機を用いて、容易に処理を行うことができる。
【0046】
【実施例】
本発明について、実施例を挙げて更に詳しく説明する。特に指定しない限り「%」、「部」は質量基準である。
【0047】
[実施例1〜3]
[正極材料の製造]
日本化学工業(株)製のリチウムイオン二次電池正極用LiCoO(平均粒子径8μm)と、鱗片状天然黒鉛(平均粒子径6μm)とを、所定量混合し、FRITSCH社製遊星ミルで30分間処理することにより、本発明の正極材料を得た。黒鉛の混合割合は、2質量%(実施例1)、5質量%(実施例2)及び10質量%(実施例3)の3種とした。
【0048】
処理後の試料をSEMで観察すると、LiCoO粒子表面に黒鉛が付着している状態が観察された。
【0049】
黒鉛の割合が2質量%である場合の写真を、倍率を変えて図1〜3に示す。比較のために、黒鉛を全く含まない場合の写真を、同様に図4〜6に示す。
【0050】
また、得られた3種の試料(実施例1〜3)について、試料を水中で超音波処理したが、何れも処理の前後で粒度分布に大きな変化は見られず、強固に一体化していることが確認された。
【0051】
[電池性能試験]
上記3種の試料(実施例1〜3)を用いて電池性能試験を行った。スラリーの調製は、バインダーとして呉羽化学工業(株)製のポリビニリデンフルオライド(PVDF1100:登録商標)を、溶媒としてNメチルピロリドン(NMP)を使用し、バインダーの量は、試料に対して内割り2質量%とした。
【0052】
得られたスラリーをアルミニウム箔に塗布し、乾燥した後に800kg/cmの圧力でプレスし、電極を作成した。また、対極にはLi金属箔を用いた。電解質にはLiPF6を使用し、溶媒にはエチレンカーボネート(EC)とジメチルカーボネート(DMC)との混合物(EC/DMC=1/2)を使用した。電解質の濃度は1グラムモル/リットルとした。また、測定電圧は4.3〜3.5Vとし、測定温度は25℃とした。以上の試験結果を表1に示す。
【0053】
[比較例1〜3]
活物質として実施例1で用いたLiCoO(平均粒子径8μm)をそのまま上記の遊星ミルで30分間処理したものを、導電助剤としてアセチレンブラック(平均粒子径36nm)を準備し、これらを実施例1〜3と同様の割合で混合することにより、3種の試料(比較例1〜3)を得た。
【0054】
これらの試料(比較例1〜3)を用いて、実施例1と同様にして電極を作成し、実施例と同様の電池性能試験を行った。試験結果を表2に示す。
【0055】
【表1】

Figure 2004179008
【0056】
【表2】
Figure 2004179008
【0057】
表1及び表2に示した実施例1〜3と比較例1〜3の電池性能を比較すると、電池容量及び負荷特性共に実施例1〜3の方が優れていることが分かる。特に、その負荷特性は非常に優れており、導電助剤の添加量が2質量%の場合でも比較例3における10質量%の場合を上回る高い性能を示している。
【0058】
この結果、本発明の正極材料は、導電助剤の添加量が2質量%以下の場合でも、高負荷特性のリチウム二次電池用正極材料とすることができる。
【0059】
【発明の効果】
本発明の正極材料によれば、小型であっても、高いエネルギー密度と優れた充放電サイクル特性とを備え、かつ、急速充電性やサイクル寿命に優れた二次電池を得ることができる。
【0060】
また、本発明の正極材料の製造方法によれば、高負荷特性と高容量とを同時に満たすことができるリチウム二次電池用の正極材料を効率良く安定して製造することができる。
【図面の簡単な説明】
【図1】黒鉛混合割合が2質量%の本発明正極材料粒子を示す、図面代用走査型電子顕微鏡(SEM)写真である。
【図2】黒鉛混合割合が2質量%の本発明正極材料粒子を示す、図面代用拡大走査型電子顕微鏡(SEM)写真である。
【図3】黒鉛混合割合が2質量%の本発明正極材料粒子を示す、図面代用更に拡大走査型電子顕微鏡(SEM)写真である。
【図4】黒鉛を混合しない正極材料粒子を示す、図面代用走査型電子顕微鏡(SEM)写真である。
【図5】黒鉛を混合しない正極材料粒子を示す、図面代用拡大走査型電子顕微鏡(SEM)写真である。
【図6】黒鉛を混合しない正極材料粒子を示す、図面代用更に拡大走査型電子顕微鏡(SEM)写真である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a positive electrode material for a lithium secondary battery and a method for producing the same.
[0002]
[Prior art]
As electronic devices become smaller and lighter, lithium secondary batteries are rapidly being used as secondary batteries having high energy density and excellent charge / discharge cycle characteristics.
[0003]
Lithium secondary batteries include lithium ion secondary batteries, lithium polymer secondary batteries, all-solid lithium secondary batteries, etc., depending on the type of electrolyte.In particular, lithium ion secondary batteries using organic solvents as electrolytes are widely used. ing.
[0004]
Initially, lithium metal was used as the negative electrode of lithium secondary batteries (lithium metal secondary batteries). However, there were problems with quick chargeability and cycle life, and there were also problems with safety. Is widely used for carbon materials. Further, as a carbon material, a material mainly composed of graphite is often used.
[0005]
On the other hand, transition metal chalcogen compounds such as TiS 3 , TiS 2 and TiO 2 and lithiated transition metal chalcogen compounds such as LiCoO 2 , LiNiO 2 and LiMn 2 O 4 are often used as the positive electrode (Patent Documents) 1). In the present invention, these are collectively referred to as “transition metal chalcogen compounds”.
[0006]
Lithium rechargeable batteries are rapidly growing, mainly as power supplies for mobile phones and portable personal computers. However, the amount of information handled and the speed at which these portable devices are handled have been remarkably increased. Power batteries are now required.
[0007]
That is, high capacity and cycle characteristics were mainly regarded as important for lithium secondary batteries at the beginning, but at the same time, high load characteristics have been required at the same time. Here, “high capacity” means that a practical discharge amount per unit mass of a battery or an electrode is large. Further, “high load” means that the discharge amount per unit time is large with respect to the unit mass of the battery or the electrode.
[0008]
The load characteristics of a lithium secondary battery greatly depend on the conductivity of the entire battery system. That is, it is preferable that the positive electrode, the electrolyte (including the polymer electrolyte, the electrolytic solution, the separator, and the like) and the negative electrode have low electric resistance. For example, with respect to the electrodes, the thickness is reduced and the electrode area is increased to reduce the electric resistance. As for the electrolytic solution, in order to increase the electrolyte concentration and to have a low viscosity and a high conductivity, various measures have been taken to combine various electrolytic solutions.
[0009]
Comparing the conductivity of both electrodes from the active material used, the transition metal chalcogen compound of the positive electrode has much lower conductivity than the carbon material of the negative electrode. Therefore, in order to improve the load characteristics of the lithium secondary battery, it is important to improve the conductivity of the positive electrode, and it is essential to add a conductive auxiliary such as carbon black or graphite.
[0010]
Usually, the positive electrode is prepared by the following method. First, a slurry comprising an active material, a conductive additive, a binder and a solvent is prepared. Next, this slurry is applied to a current collector such as an aluminum foil, and is formed by drying, expanding and cutting. However, the preparation of the positive electrode has the following problems.
[0011]
The first problem is that the amount of the conductive additive added is large. Since the amount of the conductive additive necessary for improving the load characteristics is as large as 2 to 10% by mass with respect to the active material, the battery capacity is reduced. In order to increase the load of the battery, it is necessary to increase the amount of the conductive additive. However, in the positive electrode, the conductive additive and the binder are inactive materials, and it is necessary to reduce the amount of these additives in order to increase the capacity of the battery. Therefore, it is difficult to simultaneously satisfy the requirements for high load characteristics and high capacity.
[0012]
The second problem is that the active material particles to be used usually cannot exist as single particles, but many primary particles are aggregated to form secondary particles. Transition metal chalcogen compounds are usually prepared by solid phase synthesis, in which a transition metal oxide is melted together with lithium carbonate to lithiate, or solution synthesis, in which lithium hydroxide is neutralized by dropping lithium hydroxide into an aqueous solution of a transition metal salt. Although it is manufactured by a method, it is inevitable to form secondary particles in any case. By forming the secondary particles, the conductivity of the particles becomes lower than that of the primary particles. In addition, when the conductive additive is added, since the secondary particles are formed, some of the conductive additive particles are not directly in contact with the primary particles, and the effect of adding the conductive additive is sufficiently exhibited. Can not do it. Therefore, in the above-mentioned slurry preparation, a special mixer is used so that the conductive auxiliary agent penetrates into the interior of the secondary particles, or in order to break the secondary particles into primary particles. Has been mixed for a long time.
[0013]
A third problem is that it is very difficult to prepare a stable slurry. The prepared slurry must be stably maintained in a uniform composition without separation even during application to a current collector and subsequent drying. Further, properties suitable for application must be stably maintained for a long time. However, it is very difficult to obtain such a stable slurry because the specific gravity of the active material particles is significantly different from that of the conductive additive particles. That is, the specific gravity of the active material is about 5.1 (bulk specific gravity 1.5), while the specific gravity of the conductive auxiliary agent is about 2.2 (bulk specific gravity 0.1). And easily separated from each other. In addition, since highly conductive carbon black capable of imparting high conductivity has a large surface area and easily gels by adsorbing a solvent, it is very difficult to set conditions for obtaining a slurry suitable for application. is there. For this reason, a high level of knowledge and experience is required to select the conductive auxiliary agent and the binder, or to determine the compounding amount.
[0014]
[Patent Document 1]
JP-A-9-106834 (Claims)
[0015]
[Problems to be solved by the invention]
The present inventors consider that it is difficult to solve the above-mentioned problems as long as the addition of the conductive additive is performed at the preparation stage of the slurry, and have developed a positive electrode material in which the positive electrode active material and the conductive auxiliary are integrated. Considered as an issue.
[0016]
For example, it is considered that if the particle surface of the transition metal chalcogen compound is coated with a carbonaceous substance to form a double-structured particle, the preparation of the slurry is simplified and a stable slurry can be easily obtained.
[0017]
Therefore, first, formation of a carbon coating on the surface of the positive electrode active material particles by the CVD method was studied. However, since the CVD process is performed in a high-temperature and reducing atmosphere, the cathode active material, which is an oxide or sulfide whose valence is precisely controlled in many cases, is easily reduced to lose its activity, and Results could not be obtained.
[0018]
For this reason, intensive studies have been made on a method of obtaining the integration of the active material and the conductive additive by a method other than CVD.
[0019]
[Means for Solving the Problems]
As a result of the research, it has been found that when a mixture of the active material particles and the conductive additive particles is treated with a pulverizer that gives a compressive force, particles obtained by integrating the particles are obtained. That is, it has been discovered that when the active material particles and the carbonaceous particles are treated with a pulverizer, the carbonaceous particles adhere to the surfaces of the active material particles and are integrated. Moreover, the active material particles and the carbonaceous particles show favorable changes, respectively. The secondary-agglomerated active material particles are broken by the crushing force and can be converted into primary particles. In addition, the carbonaceous particles attached to the surface of the active material particles are spread by the compressive force and spread so as to cover the surface of the active material particles. Further, it was confirmed that the integrated particulate cathode material could solve the above-mentioned problems of the lithium secondary battery, and the present invention described below was completed.
[0020]
[1] A particulate cathode material for a lithium secondary battery using a transition metal chalcogen compound as an active material and containing a carbonaceous material as a conductive additive, wherein the cathode material has a carbonaceous material on the surface of the active material particles. A positive electrode material, characterized in that the particles are adhered and integrated.
[0021]
[2] The positive electrode material according to [1], wherein the content of the carbonaceous substance in the positive electrode material is 0.2% by mass or more.
[0022]
[3] The positive electrode material according to [1] or [2], wherein the carbonaceous substance is graphite.
[0023]
[4] The positive electrode material according to any one of [1] to [3], wherein the carbon material has a lattice constant of 0.77 nm or less.
[0024]
[5] A lithium secondary battery using the positive electrode material according to any one of [1] to [4].
[0025]
[6] A method for producing a particulate positive electrode material for a lithium secondary battery using a transition metal chalcogen compound as an active material and containing a carbonaceous material as a conductive additive, the method comprising the steps of: A method for producing a positive electrode material, characterized in that a mixture containing the above is treated with a pulverizer so that a carbonaceous substance is adhered to the particle surface of the active material to form integrated particles.
[0026]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in more detail.
[0027]
The active material used for the positive electrode material of the present invention is a transition metal chalcogen compound that can accept lithium ions, and the above-mentioned known materials can be used. That is, in addition to TiS 3 , TiS 2 , TiO 2 , V 2 O 3 , NbSe 3, etc., LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , Fe (SO 4 ) 2 , LiFeOPO 4, etc. which are currently awarded. is there.
[0028]
Further, a material in which a part of Ni in LiNiO 2 is replaced with Co, Al, Mn, Ga, Nb, or the like, or a part of Mn in spinel LiMn 2 O 4 is replaced with Ni, Cr, Fe, Mg, or the like. A material, spinel LiMn 2 O 4 without oxygen deficiency, or the like is also effective and included in the active material of the present invention.
[0029]
These active materials are preferably single particles having a particle diameter of 1 to 20 μm. However, since the treatment is performed using a pulverizer as described later, particles having a particle size of 20 μm or more or a material converted into secondary particles can be used.
[0030]
As the carbonaceous substance used as the conductive additive in the positive electrode material of the present invention, graphite such as natural graphite, artificial graphite and expanded graphite, and carbon black such as furnace black, acetylene black and Ketjen black can be used.
[0031]
Also, a highly conductive carbon black in which a low crystalline portion existing in the central portion of the carbon black is eliminated by air oxidation and only a high crystalline outer shell portion can be used. However, a particularly preferred material is graphite, and natural graphite is particularly preferred. This is because graphite is superior in conductivity to carbon black, and is superior in crimpability and spreadability. In addition, the reactivity with lithium ions is low, and the cycle deterioration is small. Further, natural graphite is excellent in availability and price.
[0032]
Since the higher the conductivity of these carbonaceous materials, the more preferable the lattice constant is, preferably, 0.77 nm or less, and more preferably, 0.68 nm or less. Further, these particle diameters are preferably about the same as or smaller than that of the active material, and more preferably 0.2 to 20 μm.
[0033]
The positive electrode material of the present invention, the above-mentioned active material particles and carbonaceous particles, for example, by processing with a pulverizer that applies a compressive force to the processed material, to adhere the carbonaceous particles to the surface of the active material particles And integrated particles.
[0034]
As a crusher to be used, a type which gives a large compressive force to a processed material, such as a vibrating rod mill, a vibrating ball mill, a planetary ball mill, a vibrating disk mill, a roller mill, and a medium stirring type mill, is preferable. On the other hand, a high-speed rotary pulverizer having a small compression force, such as a hammer mill, a pin mill, and a turbo mill, is not suitable.
[0035]
The atmosphere for the treatment may be an inert gas atmosphere or the air. The treatment time varies depending on the type of the carbonaceous particles and the like, and is 2 minutes to 2 hours. After the above-mentioned pulverizing treatment, if necessary, a classification treatment for removing excessively pulverized positive electrode material particles and carbonaceous fine particles that have not adhered is performed to obtain the positive electrode material of the present invention. For the classification treatment, a sieve can be used, but air classification is preferable.
[0036]
The first feature of this treatment is that, even if the material particles form secondary particles, they are pulverized into primary particles. That is, the active material particles to be used can be used without any problem even if they are formed into secondary particles, and the obtained particles are particles in which carbonaceous particles adhere to the surface of the primary particles and are integrated. be able to.
[0037]
The second feature is that the adhesion of the carbonaceous particles is strong. That is, unlike the adhesion in the case of a simple mixing treatment, it forms strongly integrated particles. The state of the integrated particles can be observed with a scanning electron microscope (SEM). One example is shown in FIGS.
[0038]
Also, the following measurement of the particle size distribution can confirm that the particles are integrated. For example, active material particles having an average particle diameter of 8 μm are treated for 10 minutes using a planetary ball mill, and the particle size distribution is measured. Next, active material particles having an average particle diameter of 8 μm and carbonaceous particles having an average particle diameter of 6 μm are mixed at a mass ratio of 98: 2, and the mixture is similarly treated for 10 minutes, and the particle size distribution is measured. Although the latter particle size distribution has a slight tail on the small particle diameter side, it almost coincides with the former particle size distribution, so that it is clear that they are integrated.
[0039]
Furthermore, when the integrated particles are subjected to ultrasonic treatment in water and the particle size before and after the treatment is measured, no significant change is observed in the particle size distribution. Therefore, it is confirmed that the attached carbonaceous particles are firmly integrated to such an extent that they do not peel off even by the ultrasonic treatment.
[0040]
A third feature is that the carbonaceous particles uniformly adhere to the surface of the active material particles and are spread by a compressive force, so that the carbonaceous particles spread so as to cover the surface of the active material particles. In particular, graphite is rich in extensibility, so this effect is large.
[0041]
As a result, the amount of the conductive additive can be significantly reduced. That is, in the conventional method, the addition amount of the conductive auxiliary agent is required to be 2% by mass or more in the positive electrode material, and is often used in the range of 5 to 10% by mass. On the other hand, in the positive electrode material of the present invention, when the content is 0.2% by mass or more in the positive electrode material, the imparting effect is exhibited, and the content can be sufficiently used at 2 to 5% by mass.
[0042]
As described above in detail, the positive electrode material of the present invention can reduce the amount of the conductive additive, so that a lithium secondary battery using the same can have high capacity and high load characteristics.
[0043]
Further, since the conductive auxiliary is directly fixed to the surface of the primary particles of the active material, a slurry can be easily prepared without using a special mixer when preparing the positive electrode.
[0044]
Furthermore, in the preparation of the slurry, there is no fear that the active material and the conductive auxiliary agent are separated and there is no fear of gelation, so that a stable slurry can be easily prepared.
[0045]
The method for producing the positive electrode material of the present invention can also be easily performed using a crusher of a type that applies a large compressive force to a general processed material.
[0046]
【Example】
The present invention will be described in more detail with reference to examples. Unless otherwise specified, “%” and “parts” are based on mass.
[0047]
[Examples 1 to 3]
[Manufacture of positive electrode material]
A predetermined amount of LiCoO 2 (average particle size: 8 μm) for lithium ion secondary battery positive electrode manufactured by Nippon Chemical Industry Co., Ltd. and flaky natural graphite (average particle size: 6 μm) are mixed, and mixed with a planetary mill manufactured by FRITSCH. The treatment was carried out for 1 minute to obtain a positive electrode material of the present invention. The mixing ratio of graphite was 3 types: 2% by mass (Example 1), 5% by mass (Example 2), and 10% by mass (Example 3).
[0048]
When the sample after the treatment was observed by SEM, a state in which graphite was adhered to the surface of the LiCoO 2 particles was observed.
[0049]
Photos in which the ratio of graphite is 2% by mass are shown in FIGS. For comparison, photographs without graphite at all are also shown in FIGS.
[0050]
In addition, for the obtained three types of samples (Examples 1 to 3), the samples were subjected to ultrasonic treatment in water, but no significant change was observed in the particle size distribution before and after the treatment, and the samples were firmly integrated. It was confirmed that.
[0051]
[Battery performance test]
A battery performance test was performed using the above three types of samples (Examples 1 to 3). To prepare the slurry, polyvinylidene fluoride (PVDF1100: registered trademark) manufactured by Kureha Chemical Industry Co., Ltd. was used as a binder, and N-methylpyrrolidone (NMP) was used as a solvent. It was 2% by mass.
[0052]
The obtained slurry was applied to an aluminum foil, dried, and pressed at a pressure of 800 kg / cm 2 to form an electrode. A Li metal foil was used for the counter electrode. LiPF6 was used for the electrolyte, and a mixture of ethylene carbonate (EC) and dimethyl carbonate (DMC) (EC / DMC = 1/2) was used for the solvent. The concentration of the electrolyte was 1 gram mole / liter. The measurement voltage was set to 4.3 to 3.5 V, and the measurement temperature was set to 25 ° C. Table 1 shows the test results.
[0053]
[Comparative Examples 1 to 3]
LiCoO 2 (average particle size: 8 μm) used in Example 1 as an active material was directly treated with the above-mentioned planetary mill for 30 minutes, and acetylene black (average particle size: 36 nm) was prepared as a conductive assistant, and these were carried out. Three kinds of samples (Comparative Examples 1 to 3) were obtained by mixing at the same ratio as in Examples 1 to 3.
[0054]
Using these samples (Comparative Examples 1 to 3), electrodes were formed in the same manner as in Example 1, and a battery performance test similar to that of the Examples was performed. Table 2 shows the test results.
[0055]
[Table 1]
Figure 2004179008
[0056]
[Table 2]
Figure 2004179008
[0057]
Comparing the battery performances of Examples 1 to 3 and Comparative Examples 1 to 3 shown in Tables 1 and 2, it is understood that Examples 1 to 3 are more excellent in both battery capacity and load characteristics. In particular, the load characteristics are very excellent, and even when the amount of the conductive additive added is 2% by mass, the performance is higher than that in the case of 10% by mass in Comparative Example 3.
[0058]
As a result, the positive electrode material of the present invention can be used as a positive electrode material for a lithium secondary battery having high load characteristics even when the addition amount of the conductive additive is 2% by mass or less.
[0059]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to the positive electrode material of this invention, even if it is small, a secondary battery provided with high energy density and excellent charge / discharge cycle characteristics, and excellent in quick chargeability and cycle life can be obtained.
[0060]
Further, according to the method for producing a positive electrode material of the present invention, it is possible to efficiently and stably produce a positive electrode material for a lithium secondary battery that can simultaneously satisfy high load characteristics and high capacity.
[Brief description of the drawings]
FIG. 1 is a scanning electron microscope (SEM) photograph as a substitute for a drawing, showing particles of the positive electrode material of the present invention having a graphite mixing ratio of 2% by mass.
FIG. 2 is an enlarged scanning electron microscope (SEM) photograph showing a cathode material particle of the present invention having a graphite mixing ratio of 2% by mass.
FIG. 3 is an enlarged scanning electron microscope (SEM) photograph instead of a drawing, showing the cathode material particles of the present invention having a graphite mixing ratio of 2% by mass.
FIG. 4 is a scanning electron microscope (SEM) photograph as a drawing, showing positive electrode material particles not mixed with graphite.
FIG. 5 is an enlarged scanning electron microscope (SEM) photograph as a substitute for a drawing, showing positive electrode material particles not mixed with graphite.
FIG. 6 is an enlarged scanning electron microscope (SEM) photograph instead of a drawing, showing positive electrode material particles not mixed with graphite.

Claims (6)

遷移金属カルコゲン化合物を活物質とし、かつ導電助剤としての炭素質物質を含むリチウム二次電池用の粒子状正極材料であって、該正極材料が活物質の粒子表面に炭素質物質が付着して一体化した粒子であることを特徴とする正極材料。A transition metal chalcogen compound as an active material, and a particulate positive electrode material for a lithium secondary battery containing a carbonaceous material as a conductive additive, wherein the positive electrode material has a carbonaceous material attached to the particle surface of the active material. A positive electrode material characterized by being integrated particles. 正極材料中の炭素質物質の含有量が、0.2質量%以上である請求項1に記載の正極材料。The cathode material according to claim 1, wherein the content of the carbonaceous substance in the cathode material is 0.2% by mass or more. 炭素質物質が黒鉛である請求項1又は2に記載の正極材料。3. The positive electrode material according to claim 1, wherein the carbonaceous substance is graphite. 炭素質物質の格子定数が0.77nm以下である請求項1乃至3の何れか1項に記載の正極材料。The cathode material according to any one of claims 1 to 3, wherein the carbonaceous substance has a lattice constant of 0.77 nm or less. 請求項1乃至4の何れか1項に記載の正極材料を用いたリチウム二次電池。A lithium secondary battery using the positive electrode material according to claim 1. 遷移金属カルコゲン化合物を活物質とし、かつ導電助剤としての炭素質物質を含むリチウム二次電池用の粒子状正極材料の製造方法において、粒子状の活物質と粒子状の炭素質物質とを含む混合物を、粉砕機を用いて処理することにより、活物質の粒子表面に炭素質物質を付着させ、一体化した粒子とすることを特徴とする正極材料の製造方法。A method for producing a particulate cathode material for a lithium secondary battery comprising a transition metal chalcogen compound as an active material, and containing a carbonaceous material as a conductive additive, comprising a particulate active material and a particulate carbonaceous material A method for producing a positive electrode material, comprising: treating a mixture with a pulverizer so that a carbonaceous substance is attached to the surface of particles of the active material to form integrated particles.
JP2002344584A 2002-11-27 2002-11-27 Positive electrode material for lithium secondary battery and its manufacturing method Pending JP2004179008A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002344584A JP2004179008A (en) 2002-11-27 2002-11-27 Positive electrode material for lithium secondary battery and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002344584A JP2004179008A (en) 2002-11-27 2002-11-27 Positive electrode material for lithium secondary battery and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2004179008A true JP2004179008A (en) 2004-06-24

Family

ID=32706025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002344584A Pending JP2004179008A (en) 2002-11-27 2002-11-27 Positive electrode material for lithium secondary battery and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2004179008A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006164689A (en) * 2004-12-06 2006-06-22 Enerstruct Kk Electrode structure, secondary battery, and capacitor
JP2008235252A (en) * 2007-02-23 2008-10-02 Tdk Corp Active substance particles for electrode, electrode, electrochemical device, and manufacturing method of electrode
KR101001567B1 (en) 2005-04-11 2010-12-17 히다치 막셀 가부시키가이샤 Lithium ion secondary battery
JP2012508429A (en) * 2008-10-14 2012-04-05 アイティーアイ・スコットランド・リミテッド Lithium-containing transition metal sulfide compounds
JP2013520782A (en) * 2010-02-24 2013-06-06 エルジー ケム. エルティーディ. High capacity positive electrode active material and lithium secondary battery including the same
JP2014214037A (en) * 2013-04-24 2014-11-17 独立行政法人産業技術総合研究所 Titanium polysulfide-carbon composite
JP2014239068A (en) * 2014-08-19 2014-12-18 富山県 Positive electrode for lithium battery

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006164689A (en) * 2004-12-06 2006-06-22 Enerstruct Kk Electrode structure, secondary battery, and capacitor
KR101001567B1 (en) 2005-04-11 2010-12-17 히다치 막셀 가부시키가이샤 Lithium ion secondary battery
JP2008235252A (en) * 2007-02-23 2008-10-02 Tdk Corp Active substance particles for electrode, electrode, electrochemical device, and manufacturing method of electrode
JP2012508429A (en) * 2008-10-14 2012-04-05 アイティーアイ・スコットランド・リミテッド Lithium-containing transition metal sulfide compounds
JP2013520782A (en) * 2010-02-24 2013-06-06 エルジー ケム. エルティーディ. High capacity positive electrode active material and lithium secondary battery including the same
US9324994B2 (en) 2010-02-24 2016-04-26 Lg Chem, Ltd. Positive electrode active material with high capacity and lithium secondary battery including the same
JP2014214037A (en) * 2013-04-24 2014-11-17 独立行政法人産業技術総合研究所 Titanium polysulfide-carbon composite
JP2014239068A (en) * 2014-08-19 2014-12-18 富山県 Positive electrode for lithium battery

Similar Documents

Publication Publication Date Title
CN109874306B (en) Cathode material, preparation method thereof, cathode and lithium ion battery
JP5035712B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the positive electrode active material
JP5822708B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the positive electrode active material
CN108028371B (en) Cathode material for rechargeable solid-state lithium ion batteries
JP6978182B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and its manufacturing method, and non-aqueous electrolyte secondary battery using the positive electrode active material
JP4299065B2 (en) Positive electrode material for lithium secondary battery and method for producing the same
KR20110094023A (en) Powder of lithium complex compound particles, method for producing the same, and nonaqueous electrolyte secondary cell
JP2012079464A5 (en)
JP2005310744A (en) Cathode activator for nonaqueous lithium secondary battery, manufacturing method of the same, and nonaqueous lithium secondary battery using the cathode activator
JP2007173134A (en) Material for electrode of lithium ion battery, slurry for forming electrode of lithium ion battery, and lithium ion battery
JP4168402B2 (en) Positive electrode active material for lithium secondary battery, method for producing the same, and non-aqueous lithium secondary battery
JP2003157846A (en) Carbon black slurry and lithium secondary battery
CN114094068B (en) Cobalt-coated positive electrode material, preparation method thereof, positive electrode plate and lithium ion battery
JP2008156163A (en) Spinel type lithium manganese oxide and method for manufacturing the same
JP4798962B2 (en) Lithium manganese composite oxide and method for producing the same
JP2007234350A (en) Nonaqueous secondary battery
JP2023015188A (en) Method for manufacturing positive electrode active material for non-aqueous electrolyte secondary battery
CN111640928A (en) NCMA quaternary system material, preparation method thereof, lithium battery positive electrode material and lithium battery
WO2020022305A1 (en) Positive electrode active material
JPH11283623A (en) Lithium ion battery and its manufacture
JP2023538082A (en) Negative electrode and secondary battery containing the same
JP5239153B2 (en) Electrode material composite method, electrode and lithium ion battery
JP2004179008A (en) Positive electrode material for lithium secondary battery and its manufacturing method
KR102176590B1 (en) Method of preparing anode active material for rechargeable lithium battery and rechargeable lithium battery
JP2001143708A (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080520

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081014