JP2003217490A - Rotary positive electrode type x-ray tube - Google Patents

Rotary positive electrode type x-ray tube

Info

Publication number
JP2003217490A
JP2003217490A JP2002018592A JP2002018592A JP2003217490A JP 2003217490 A JP2003217490 A JP 2003217490A JP 2002018592 A JP2002018592 A JP 2002018592A JP 2002018592 A JP2002018592 A JP 2002018592A JP 2003217490 A JP2003217490 A JP 2003217490A
Authority
JP
Japan
Prior art keywords
anode
rotating
ray tube
rotary
rotating body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002018592A
Other languages
Japanese (ja)
Other versions
JP4040313B2 (en
Inventor
Hideo Abu
秀郎 阿武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2002018592A priority Critical patent/JP4040313B2/en
Priority to US10/487,882 priority patent/US7127035B2/en
Priority to PCT/JP2002/008699 priority patent/WO2003019610A1/en
Priority to EP02762900A priority patent/EP1432005A4/en
Publication of JP2003217490A publication Critical patent/JP2003217490A/en
Application granted granted Critical
Publication of JP4040313B2 publication Critical patent/JP4040313B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Mounting Of Bearings Or Others (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rotary positive electrode type X-ray tube having an improved heat radiation characteristic. <P>SOLUTION: This rotary positive electrode type X-ray tube is provided with: a positive electrode target 11 disposed in a vacuum vessel 10; and a rotation support mechanism 13 having an inner rotary body 14 provided with dynamic pressure type sliding bearings Ra, Rb, Sa and Sb using a liquid metal antifriction, and a fixed body 19 for rotatably supporting the target 11. Heat transfer accelerators 16a and 17 having thermal conductivity higher than that of the rotary body is jointed to the outside surface of the rotary body 14, and the inside surface of the rotary body comes into contact with the liquid metal antifriction. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は放熱特性を向上さ
せた回転陽極型X線管に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rotary anode type X-ray tube having improved heat dissipation characteristics.

【0002】[0002]

【従来の技術】回転陽極型X線管は、真空容器内に配置
した陽極ターゲットを回転支持機構によって回転可能に
支持し、高速で回転する陽極ターゲットに対して電子ビ
ームを照射し、陽極ターゲットからX線を放出させる構
造になっている。回転支持機構は互いに嵌合する回転体
および固定体を有し、両者の嵌合部分に軸受が設けられ
ている。
2. Description of the Related Art A rotary anode type X-ray tube rotatably supports an anode target arranged in a vacuum container by a rotary support mechanism, and irradiates an electron beam on the anode target rotating at a high speed, thereby irradiating the target with the electron beam. It has a structure that emits X-rays. The rotation support mechanism has a rotating body and a fixed body which are fitted to each other, and a bearing is provided at a fitting portion of both.

【0003】軸受には、ボールベアリングのようなころ
がり軸受、あるいは、軸受面にらせん溝を形成し、ガリ
ウム(Ga)や、ガリウム(Ga)−インジウム(I
n)−錫(Sn)合金のような液体金属潤滑材を用いる
動圧式すべり軸受が用いられている。後者の動圧式すべ
り軸受を用いた場合、液体金属潤滑材を介して回転体お
よび固定体が対向する広い面積の軸受面が両者の嵌合部
分に形成される。
The bearing is a rolling bearing such as a ball bearing, or a spiral groove is formed on the bearing surface to form gallium (Ga) or gallium (Ga) -indium (I).
2. Description of the Related Art A hydrodynamic slide bearing using a liquid metal lubricant such as an n) -tin (Sn) alloy is used. When the latter dynamic pressure type slide bearing is used, a bearing surface of a large area where the rotating body and the fixed body face each other through the liquid metal lubricant is formed in the fitting portion of both.

【0004】そのため、陽極ターゲットの熱を回転体か
ら軸受面を通して固定体に伝達し、固定体を経て管外に
逃がす方法が提案されている(特許第2960085号
および特開平7−226177号、特開平9−1717
89号の各公報参照)。
Therefore, a method has been proposed in which the heat of the anode target is transferred from the rotating body to the fixed body through the bearing surface and is then released to the outside of the tube through the fixed body (Japanese Patent No. 2960085 and Japanese Patent Laid-Open No. 7-226177). Kaihei 9-1717
No. 89).

【0005】[0005]

【発明が解決しようとする課題】従来の回転陽極型X線
管は、陽極ターゲットの熱を回転体から動圧式すべり軸
受の軸受面を介して固定体に伝達する場合、最終的には
固定体内部に形成された冷却機構たとえば冷却用通路を
流れる冷却媒体に熱が伝えられる。
In the conventional rotary anode type X-ray tube, when the heat of the anode target is transferred from the rotating body to the fixed body through the bearing surface of the dynamic pressure type slide bearing, the fixed body is finally obtained. Heat is transmitted to a cooling mechanism formed inside, for example, a cooling medium flowing through a cooling passage.

【0006】冷却媒体に伝達する熱量は、固定体と冷却
媒体との有効接触面積が広いほど大きくなる。この有効
接触面積は、冷却用通路の内側表面積のうち、熱が有効
に伝わる部分たとえば冷却用通路の内側表面の温度が高
い部分である。
The amount of heat transferred to the cooling medium increases as the effective contact area between the fixed body and the cooling medium increases. This effective contact area is a portion of the inner surface area of the cooling passage where heat is effectively transmitted, for example, a portion where the temperature of the inner surface of the cooling passage is high.

【0007】たとえば、回転体および固定体を構成する
部材と液体金属潤滑材との伝熱面における相互反応によ
って生じる寸法変化で、安定な軸受動作が維持できなく
ならない範囲で、かつ、液体金属潤滑材の伝熱面の温度
T1と冷却媒体の温度T0との差ΔT=T1−T0があ
る基準範囲(冷却媒体が油であれば上限値の約200℃
から下限値の約150℃までの範囲)で、上記の有効接
触面積を広くすることが冷却性能を高めるための目安と
なる。
For example, liquid metal lubrication is used within a range in which stable bearing operation cannot be maintained due to a dimensional change caused by a mutual reaction on a heat transfer surface between a member forming a rotating body and a fixed body and a liquid metal lubricant. The difference ΔT = T1−T0 between the temperature T1 of the heat transfer surface of the material and the temperature T0 of the cooling medium is within a certain reference range (if the cooling medium is oil, the upper limit is about 200 ° C.
To a lower limit of about 150 ° C.), widening the above-mentioned effective contact area is a standard for improving the cooling performance.

【0008】しかし、陽極ターゲットの熱が伝達するた
とえば継手部と回転体との結合部から固定体内部の冷却
用通路までの距離が短いと、ほとんどの熱が距離の短い
狭い領域を通して伝わり有効接触面積が小さくなる。こ
の場合、継手部と回転体との結合部から冷却用通路まで
の距離を大きくする方法が考えられる。しかし、この距
離を大きくすると、回転体の外径が大きくなり、X線管
を小形軽量化する上での障害になる。
However, if the distance from the joint between the joint and the rotating body to which the heat of the anode target is transferred to the cooling passage inside the fixed body is short, most of the heat is transmitted through a narrow area having a short distance and effective contact is made. The area becomes smaller. In this case, a method of increasing the distance from the joint between the joint and the rotating body to the cooling passage can be considered. However, if this distance is increased, the outer diameter of the rotating body is increased, which is an obstacle to reducing the size and weight of the X-ray tube.

【0009】本発明は、上記した欠点を解決し、放熱特
性を向上させた回転陽極型X線管を提供することを目的
とする。
An object of the present invention is to solve the above-mentioned drawbacks and to provide a rotary anode type X-ray tube having improved heat dissipation characteristics.

【0010】[0010]

【課題を解決するための手段】この発明は、真空容器内
に配置した陽極ターゲットと、液体金属潤滑材を用いた
動圧式すべり軸受が嵌合部分に設けられた回転体および
固定体を有し、前記陽極ターゲットを回転可能に支持す
る回転支持機構とを具備した回転陽極型X線管におい
て、前記回転体の外側の面に前記回転体よりも熱伝導率
の高い伝熱促進体を接合し、前記回転体の内側の面が前
記液体金属潤滑材に接触することを特徴とする。
The present invention has an anode target arranged in a vacuum container, a rotating body and a fixed body in which a dynamic pressure type sliding bearing using a liquid metal lubricant is provided in a fitting portion. A rotary anode type X-ray tube comprising a rotary support mechanism for rotatably supporting the anode target, wherein a heat transfer promoter having a higher thermal conductivity than the rotary body is bonded to an outer surface of the rotary body. The inner surface of the rotating body is in contact with the liquid metal lubricant.

【0011】[0011]

【発明の実施の形態】本発明の実施形態について図1を
参照して説明する。符号10は真空容器で、真空容器1
0内に陽極ターゲット11が配置されている。陽極ター
ゲット11は継手部12に連結されている。継手部12
はたとえば全体が円筒状に形成され、陽極ターゲット1
1の熱が伝達する面積を小さくした断熱構造になってい
る。
DETAILED DESCRIPTION OF THE INVENTION An embodiment of the present invention will be described with reference to FIG. Reference numeral 10 is a vacuum container, which is a vacuum container 1.
The anode target 11 is arranged in the zero. The anode target 11 is connected to the joint portion 12. Joint part 12
Is, for example, entirely formed in a cylindrical shape, and the anode target 1
It has a heat insulating structure in which the area where the heat of 1 is transmitted is reduced.

【0012】継手部12は、たとえば陽極ターゲット1
1側に位置する第1筒状部121およびこの第1筒状部
121よりも内径および外径がともに大きい第2筒状部
122から構成されている。第1筒状部121の陽極タ
ーゲット11側の端部に鍔部121aが形成され、この
鍔部121aの上面に陽極ターゲット11が摩擦圧接法
などによって接合されている。また、第2筒状部122
が陽極ターゲット11を回転可能に支持する回転支持機
構13に連結されている。
The joint portion 12 is, for example, the anode target 1.
It is composed of a first tubular portion 121 located on the first side and a second tubular portion 122 whose inner diameter and outer diameter are both larger than that of the first tubular portion 121. A flange portion 121a is formed at an end portion of the first tubular portion 121 on the anode target 11 side, and the anode target 11 is joined to the upper surface of the flange portion 121a by a friction welding method or the like. In addition, the second tubular portion 122
Is connected to a rotation support mechanism 13 that rotatably supports the anode target 11.

【0013】回転支持機構13は回転部分および固定部
分から構成され、継手部12はその回転部分を構成する
たとえば有底円筒状の内側回転体14に連結している。
たとえば内側回転体14の外周部に環状の突出部14a
が形成され、その突出部14aの図示上面たとえば陽極
ターゲット11側の面に継手部12の第2筒状部122
の端面が拡散接合などによって接合されている。両者
は、同時にねじ15で固定されている。
The rotation support mechanism 13 is composed of a rotating portion and a fixed portion, and the joint portion 12 is connected to an inner rotating body 14 having a bottomed cylindrical shape which constitutes the rotating portion.
For example, an annular protrusion 14a is provided on the outer peripheral portion of the inner rotating body 14.
Is formed, and the second tubular portion 122 of the joint portion 12 is formed on the upper surface of the protruding portion 14a in the drawing, for example, the surface on the anode target 11 side.
The end faces of are bonded by diffusion bonding or the like. Both are fixed with screws 15 at the same time.

【0014】内側回転体14の突出部14a下方の外周
面に銅製の外側回転体16が接合されている。外側回転
体16は、たとえば陽極ターゲット11側に位置する伝
熱促進体16a部分と、陽極ターゲット11から遠い側
に位置するロータ16b部分とが一体化した構造になっ
ている。内側回転体14および外側回転体16は陽極タ
ーゲット11側の領域L1で接合し、その下方の領域L
2は、内側回転体14と外側回転体16との間に隙間が
設けられている。外側回転体16の上端部すなわち伝熱
促進体16a部分の上端部は突出部14aの下面に接触
している。
An outer rotor 16 made of copper is joined to the outer peripheral surface of the inner rotor 14 below the protruding portion 14a. The outer rotating body 16 has a structure in which, for example, a heat transfer promoting body 16a portion located on the anode target 11 side and a rotor 16b portion located on the side far from the anode target 11 are integrated. The inner rotating body 14 and the outer rotating body 16 are joined at a region L1 on the anode target 11 side, and a region L below the region L1 is joined.
In No. 2, a gap is provided between the inner rotating body 14 and the outer rotating body 16. The upper end portion of the outer rotating body 16, that is, the upper end portion of the heat transfer promoting body 16a portion is in contact with the lower surface of the protruding portion 14a.

【0015】また、突出部14aよりも上方に位置する
内側回転体14の外周面および内側回転体14底部の外
端面のたとえば全体に、それぞれ銅製の伝熱促進体17
a、17bが接合されている。伝熱促進体17の図示下
端の環状部分は突出部14aの図示上面に接触してい
る。
Further, the outer peripheral surface of the inner rotating body 14 and the outer end surface of the bottom portion of the inner rotating body 14 located above the projecting portion 14a, for example, are entirely made of copper.
a and 17b are joined. The annular portion at the lower end of the heat transfer promoting body 17 in the figure is in contact with the upper surface of the projecting portion 14a in the figure.

【0016】内側回転体14の図示下方の開口はスラス
トリング18によって封止されている。スラストリング
18は内側回転体14に固定され、内側回転体14およ
び外側回転体16などとともに回転支持機構13の回転
部分を形成している。また、内側回転体14およびスラ
ストリング18で囲まれた空間に固定体19が嵌合され
ている。
The lower opening of the inner rotating body 14 is sealed by a thrust ring 18. The thrust ring 18 is fixed to the inner rotating body 14 and forms a rotating portion of the rotation support mechanism 13 together with the inner rotating body 14 and the outer rotating body 16. Further, the fixed body 19 is fitted in the space surrounded by the inner rotary body 14 and the thrust ring 18.

【0017】固定体19は回転支持機構13の固定部分
を形成し、内側回転体14やスラストリング18の内側
に嵌合する径大部191およびこれよりも外径が小さい
径小部192を有し、この径小部192はスラストリン
グ18を貫通し、その下端部19aは真空容器11の外
まで伸びている。固定体19の下端部19aは保持部材
20を介して真空容器11に固定されている。
The fixed body 19 forms a fixed portion of the rotation support mechanism 13, and has a large diameter portion 191 fitted inside the inner rotating body 14 and the thrust ring 18 and a small diameter portion 192 having an outer diameter smaller than this. The small diameter portion 192 penetrates the thrust ring 18, and the lower end portion 19 a thereof extends to the outside of the vacuum container 11. The lower end portion 19 a of the fixed body 19 is fixed to the vacuum container 11 via a holding member 20.

【0018】固定体19内部には管軸mに沿って穴21
が明けられ、穴21の中にパイプ22が配置されてい
る。このとき、矢印Yで示すように、真空容器11の外
からパイプ22外側の穴21を通り、その上端からパイ
プ22の内側を通り、さらに真空容器11の外へと冷却
媒体が流れる冷却用通路が形成される。
A hole 21 is formed in the fixed body 19 along the tube axis m.
The pipe 22 is arranged in the hole 21. At this time, as indicated by an arrow Y, a cooling passage through which the cooling medium flows from the outside of the vacuum container 11 through the hole 21 on the outside of the pipe 22, the upper end thereof through the inside of the pipe 22, and further to the outside of the vacuum container 11. Is formed.

【0019】また、回転支持機構13の回転部分たとえ
ば内側回転体14やスラストリング18と固定体19と
の嵌合部分に動圧式すべり軸受が設けられている。たと
えば内側回転体14の内周面と固定体19の外周面との
嵌合部分に、管軸m方向に離れた2つの領域にらせん溝
23a、23bが形成され、このらせん溝23a、23
bの部分に液体金属潤滑材が供給され、ラジアル方向の
動圧式すべり軸受Ra、Rbが形成されている。また、
内側回転体14の内底面と対向する固定体19の上端面
および固定体19の段差面にらせん溝24a、24bが
形成され、このらせん溝24a、24bの部分に液体金
属潤滑材が供給され、スラスト方向の動圧式すべり軸受
Sa、Sbが形成されている。
Further, a dynamic pressure type slide bearing is provided at a rotating portion of the rotation support mechanism 13, for example, an inner rotating body 14 or a fitting portion between the thrust ring 18 and the fixed body 19. For example, spiral grooves 23a and 23b are formed in two areas separated from each other in the pipe axis m direction at the fitting portion between the inner peripheral surface of the inner rotating body 14 and the outer peripheral surface of the fixed body 19, and the spiral grooves 23a and 23b are formed.
A liquid metal lubricant is supplied to the portion b, and dynamic pressure type sliding bearings Ra and Rb in the radial direction are formed. Also,
Spiral grooves 24a and 24b are formed on the upper end surface of the fixed body 19 and the step surface of the fixed body 19 facing the inner bottom surface of the inner rotary body 14, and the liquid metal lubricant is supplied to the spiral groove portions 24a and 24b. Dynamic pressure type slide bearings Sa and Sb in the thrust direction are formed.

【0020】ここで、領域L1内の線分a−aおよび領
域L2内の線分b−bの断面を図2(a)(b)に示
す。図2(a)に示すように、領域L1の外側回転体1
6すなわち伝熱促進体16aは管軸m方向に伸びるスリ
ットSLによってたとえば4分割されている。また、図
2(b)に示すように、領域L2の外側回転体16すな
わちロータ16bは筒状に形成されている。スリットS
Lの管軸m方向の長さは、内側回転体14との接合部分
よりも長くし、製造時などにおいて内側回転体14との
接合部に生じるストレスを小さくしている。
2A and 2B are cross sections of the line segment aa in the region L1 and the line segment bb in the region L2. As shown in FIG. 2A, the outer rotating body 1 in the region L1
6, that is, the heat transfer promoting body 16a is divided into, for example, four by slits SL extending in the tube axis m direction. Further, as shown in FIG. 2B, the outer rotating body 16 in the region L2, that is, the rotor 16b is formed in a tubular shape. Slit S
The length of L in the direction of the tube axis m is made longer than the joint portion with the inner rotary body 14 to reduce the stress generated at the joint portion with the inner rotary body 14 during manufacturing or the like.

【0021】上記した構成において、真空容器11外に
配置したステータコイル(図示せず)が発生する回転磁
界によって外側回転体16のロータ16b部分に回転力
が生じる。この回転力は継手部12を経て陽極ターゲッ
ト11に伝達され、陽極ターゲット11が回転する。こ
の状態で、陽極ターゲット11に電子ビームを照射し、
陽極ターゲット11からX線が放出される。
In the above structure, the rotating magnetic field generated by the stator coil (not shown) arranged outside the vacuum container 11 produces a rotating force on the rotor 16b portion of the outer rotating body 16. This rotational force is transmitted to the anode target 11 via the joint portion 12, and the anode target 11 rotates. In this state, the anode target 11 is irradiated with an electron beam,
X-rays are emitted from the anode target 11.

【0022】回転陽極型X線管は動作状態に入ると、電
子ビームの照射で陽極ターゲット11の温度が上昇す
る。陽極ターゲット11の熱の多くは輻射で放散され
る。一部は、熱的および機械的に連結する継手部12か
ら突出部14aを経て内側回転体14に伝達する。内側
回転体14に伝達した熱は、突出部14aの裏側に位置
する内側回転体14と固定体19との隙間たとえば軸受
領域を経て固定体19に伝達する。
When the rotating anode type X-ray tube enters the operating state, the temperature of the anode target 11 rises due to the irradiation of the electron beam. Most of the heat of the anode target 11 is dissipated by radiation. A part is transmitted from the joint portion 12 that is thermally and mechanically connected to the inner rotating body 14 via the protrusion 14a. The heat transferred to the inner rotating body 14 is transferred to the fixed body 19 through a gap between the inner rotating body 14 and the fixed body 19 located on the back side of the protrusion 14a, for example, a bearing region.

【0023】このとき、突出部14aに伝達した熱の一
部は伝熱促進体17a、17bを経て内側回転体14の
突出部14aの上方部分に伝達し、その底面部分などか
ら内側回転体14と固定体19の隙間を経て固定体19
に伝達する。また、熱の一部は、外側回転体16の伝熱
促進体16aを経て突出部14aの下方部分に伝達し、
内側回転体14から固定体19に伝達する。そして、固
定体18から直接、または、冷却用通路を流れる冷却媒
体によって外部に放散される。
At this time, a part of the heat transferred to the protruding portion 14a is transferred to the upper portion of the protruding portion 14a of the inner rotating body 14 via the heat transfer promoting bodies 17a and 17b, and the inner rotating body 14 is transferred from the bottom portion thereof. Through the gap between the fixed body 19 and the fixed body 19
Communicate to. In addition, a part of the heat is transmitted to the lower portion of the protruding portion 14a via the heat transfer promoting body 16a of the outer rotating body 16,
It is transmitted from the inner rotating body 14 to the fixed body 19. Then, it is diffused to the outside directly from the fixed body 18 or by the cooling medium flowing through the cooling passage.

【0024】内側回転体14と固定体19の嵌合部分に
は、軸受領域および軸受領域でない非軸受領域とも、液
体金属潤滑材が満たされている。そのため、内側回転体
14から液体金属潤滑材を通して固定体19に熱が良好
に伝達する。
The fitting portion between the inner rotating body 14 and the fixed body 19 is filled with the liquid metal lubricant in both the bearing region and the non-bearing region other than the bearing region. Therefore, heat is satisfactorily transferred from the inner rotary body 14 to the fixed body 19 through the liquid metal lubricant.

【0025】上記した構成によれば、伝熱促進体16
a、17a、17bによって、陽極ターゲット11の熱
が突出部14aから管軸方向における図示の上下両側に
伝達し、内側回転体14の広い範囲から固定体19に伝
達する。したがって、冷却媒体との有効接触面積が増加
し冷却効率が向上する。また、内側回転体14に伝達す
る熱が伝熱促進体によって広い範囲に分散するため、内
側回転体14の肉厚を大きくする必要もなく、構造の大
型化が回避される。
According to the above structure, the heat transfer promoting body 16
The heat of the anode target 11 is transferred from the protruding portion 14a to both upper and lower sides in the drawing in the tube axis direction by a, 17a, and 17b, and is transferred from the wide range of the inner rotating body 14 to the fixed body 19. Therefore, the effective contact area with the cooling medium is increased and the cooling efficiency is improved. Further, since the heat transmitted to the inner rotating body 14 is dispersed in a wide range by the heat transfer promoting body, it is not necessary to increase the thickness of the inner rotating body 14 and the enlargement of the structure is avoided.

【0026】上記した構成の場合、管軸m方向における
突出部14aの両側に伝熱促進体16a、17a、17
bを設け、内側回転体14の広い範囲から固定体19に
熱を伝達させている。しかし、突出部14aの一方の側
だけに伝熱促進体を設ける構成にすることもできる。ま
た、伝熱促進体は内側回転体14の外表面全体に設ける
必要はなく、陽極ターゲット11の熱が伝達してくる領
域たとえば突出部14aの近傍などに選択的に設けるこ
ともできる。
In the case of the above structure, the heat transfer promoting members 16a, 17a, 17 are provided on both sides of the projecting portion 14a in the tube axis m direction.
b is provided to transfer heat from the wide range of the inner rotating body 14 to the fixed body 19. However, the heat transfer promoting body may be provided only on one side of the protrusion 14a. Further, the heat transfer promoting body does not have to be provided on the entire outer surface of the inner rotating body 14, and may be selectively provided in a region of the anode target 11 where heat is transferred, for example, in the vicinity of the protruding portion 14a.

【0027】また、陽極ターゲット11と継手部12は
摩擦圧接法などの金属接合で結合され、継手部12と内
側回転体14は拡散接合で連結している。この場合、陽
極ターゲット11から内側回転体14までの熱伝達経路
がすべて金属組織学的に結合される。したがって、熱伝
達経路中に金属どうしが単に機械的に接触するだけの部
分がなくなり、熱伝達経路における熱抵抗値のばらつき
が防止されるという効果がある。
Further, the anode target 11 and the joint portion 12 are joined by metal joining such as friction welding, and the joint portion 12 and the inner rotating body 14 are joined by diffusion joining. In this case, all the heat transfer paths from the anode target 11 to the inner rotating body 14 are metallographically coupled. Therefore, there is no portion in the heat transfer path where the metals merely mechanically contact each other, and there is an effect that variations in the thermal resistance value in the heat transfer path are prevented.

【0028】また、伝熱促進体16a、17aは内側回
転体14の外表面に、管軸m方向に所定の幅たとえば一
定幅の環状に形成されている。このように伝熱促進体1
6a、17aを一定幅にした場合も、熱伝達経路の熱抵
抗値のばらつきがなくなる。
The heat transfer promoting bodies 16a and 17a are formed on the outer surface of the inner rotating body 14 in an annular shape having a predetermined width in the pipe axis m direction, for example, a constant width. In this way, the heat transfer accelerator 1
Even when 6a and 17a have a constant width, there is no variation in the thermal resistance value of the heat transfer path.

【0029】次に、本発明の他の実施形態について図3
を参照して説明する。図3は、図1に対応する部分に同
じ符号を付し重複する説明は一部省略する。
Next, another embodiment of the present invention will be described with reference to FIG.
Will be described with reference to. In FIG. 3, parts corresponding to those in FIG. 1 are designated by the same reference numerals, and overlapping description will be partially omitted.

【0030】この実施形態は、陽極ターゲット11中央
の貫通穴の周辺に厚さが薄い肉薄部11aが設けられて
いる。また、筒状をした継手部12の外周部にその外側
に突出する環状段付部12aが設けられ、継手部12の
図示下端にはその内側に突出する環状突出部12bが設
けられている。そして、陽極ターゲット11の肉薄部1
1aが固定ねじ31および段付部12a間に締め付け固
定されている。同時に、肉薄部11aと段付部12aは
チタン箔32を使用した拡散接合によって接合されてい
る。また、継手部12の環状突出部12bと内側回転体
14の突出部14aは、たとえばろう付けで接合されて
いる。
In this embodiment, a thin portion 11a having a small thickness is provided around the through hole at the center of the anode target 11. Further, an annular stepped portion 12a protruding outward is provided on the outer peripheral portion of the tubular joint portion 12, and an annular protruding portion 12b protruding inward is provided at the lower end of the joint portion 12 in the drawing. Then, the thin portion 1 of the anode target 11
1a is clamped and fixed between the fixing screw 31 and the stepped portion 12a. At the same time, the thin portion 11a and the stepped portion 12a are joined by diffusion joining using the titanium foil 32. The annular protrusion 12b of the joint portion 12 and the protrusion 14a of the inner rotary body 14 are joined by brazing, for example.

【0031】内側回転体14は、内径が小さい有底円筒
状の径小部141およびこれよりも内径が大きいく径大
部142から構成されている。径小部141と径大部1
42はたとえば一体構造に形成されている。また、内側
回転体14の図示下方の外周面に環状の凹部が形成さ
れ、その凹部に外側回転体16が嵌め込まれ接合されて
いる。この場合、外側回転体16は外部から加えられる
磁界で回転力を発生するロータとして機能する。
The inner rotating body 14 is composed of a bottomed cylindrical small diameter portion 141 having a small inner diameter and a large diameter portion 142 having a larger inner diameter than this. Small diameter part 141 and large diameter part 1
42 is formed as an integral structure, for example. In addition, an annular recess is formed on the outer peripheral surface of the inner rotary body 14 below in the drawing, and the outer rotary body 16 is fitted and joined to the recess. In this case, the outer rotating body 16 functions as a rotor that generates a rotating force by a magnetic field applied from the outside.

【0032】固定体19は、径大部191の陽極ターゲ
ット11側に径大部191よりも外径が小さい径小部1
92aがたとえば一体構造に形成されている。径小部1
92aは内側回転体14の径小部141の内側に嵌合
し、径大部191は内側回転体14の径大部142の内
側に嵌合している。
The fixed body 19 has a small-diameter portion 1 having an outer diameter smaller than that of the large-diameter portion 191 on the side of the large-diameter portion 191 facing the anode target 11.
92a is formed in, for example, an integral structure. Small diameter part 1
92a is fitted inside the small diameter portion 141 of the inner rotating body 14, and the large diameter portion 191 is fitted inside the large diameter portion 142 of the inner rotating body 14.

【0033】また、陽極ターゲット11側に位置する固
定体19の段差面にらせん溝が形成され、この部分に陽
極ターゲット11側に位置するスラスト方向の動圧式す
べり軸受Saが設けられている。
Further, a spiral groove is formed on the step surface of the fixed body 19 located on the anode target 11 side, and a thrust direction dynamic pressure type sliding bearing Sa located on the anode target 11 side is provided in this portion.

【0034】そして、内側回転体14の突出部14aよ
りも下方に位置する径小部141の外周面、および、突
出部14aよりも上方に位置する径小部141の外周面
に、伝熱促進体33、34が環状に形成され、径小部1
41底面の外端面全体に伝熱促進体35が接合されてい
る。伝熱促進体33の環状上端および伝熱促進体34の
環状下端はそれぞれ突出部14aに接触している。
Heat transfer is promoted to the outer peripheral surface of the small diameter portion 141 located below the protruding portion 14a of the inner rotating body 14 and the outer peripheral surface of the small diameter portion 141 located above the protruding portion 14a. The bodies 33 and 34 are formed in an annular shape, and the small diameter portion 1
The heat transfer enhancer 35 is joined to the entire outer end surface of the bottom surface 41. The annular upper end of the heat transfer promoting member 33 and the annular lower end of the heat transfer promoting member 34 are in contact with the protruding portion 14a.

【0035】この場合、内側回転体14の径小部141
と固定体19の径小部192aとが対向する嵌合部分の
間隙はたとえば30μmから500μmの範囲に設定さ
れ、らせん溝が形成された軸受領域の間隙よりも大きい
非軸受領域に形成されている。この非軸受領域には、軸
受領域と同様、液体金属潤滑剤が充填されている。非軸
受領域は軸受領域よりも間隙が大きく軸受としてほとん
ど機能しない。この非軸受領域を拡大した構造を円R内
に示す。円Rに示されるように、内側回転体14の径小
部141と固定体19の径小部192aとの隙間に液体
金属潤滑材LMが充填されている。
In this case, the small diameter portion 141 of the inner rotating body 14
The gap between the fitting portion where the small diameter portion 192a of the fixed body 19 and the small diameter portion 192a of the fixed body 19 face each other is set in the range of, for example, 30 μm to 500 μm, and is formed in the non-bearing region larger than the gap of the bearing region where the spiral groove is formed. . This non-bearing region is filled with a liquid metal lubricant, like the bearing region. The non-bearing region has a larger gap than the bearing region, and thus it hardly functions as a bearing. An enlarged structure of this non-bearing region is shown in a circle R. As indicated by the circle R, the gap between the small diameter portion 141 of the inner rotary body 14 and the small diameter portion 192a of the fixed body 19 is filled with the liquid metal lubricant LM.

【0036】また、冷却用通路が、継手部12と内側回
転体14との結合部分たとえば突出部14aの部分を越
えて、さらにその上方まで形成されている。
Further, the cooling passage is formed beyond the connecting portion of the joint portion 12 and the inner rotating body 14, for example, the portion of the protruding portion 14a, and further up thereabove.

【0037】上記した構成の場合も、陽極ターゲット1
1の熱は、陽極ターゲット11と熱的および機械的に順
に連結している継手部12から内側回転体14の突出部
14aに伝達する。そして、伝熱促進体33〜35を経
て内側回転体14の広い範囲に伝達し、内側回転体14
の広い範囲から固定体19に伝達する。そして、固定体
18から直接または冷却用通路を流れる冷却媒体を介し
て外部に放散される。したがって、冷却媒体との有効接
触面積が増加し冷却効率が向上する。
Also in the case of the above configuration, the anode target 1
The heat of No. 1 is transferred from the joint portion 12 that is thermally and mechanically sequentially connected to the anode target 11 to the protruding portion 14 a of the inner rotating body 14. Then, the heat is transferred to a wide range of the inner rotating body 14 via the heat transfer promoting bodies 33 to 35, and the inner rotating body 14
To the fixed body 19 from a wide range. Then, it is diffused to the outside directly from the fixed body 18 or via the cooling medium flowing through the cooling passage. Therefore, the effective contact area with the cooling medium is increased and the cooling efficiency is improved.

【0038】次に、本発明の他の実施形態について図4
を参照して説明する。図4は、図3に対応する部分には
同じ符号を付し重複する説明は一部省略する。
Next, another embodiment of the present invention will be described with reference to FIG.
Will be described with reference to. In FIG. 4, parts corresponding to those in FIG. 3 are denoted by the same reference numerals, and overlapping description will be partially omitted.

【0039】この実施形態の場合、回転支持機構13を
構成する回転部分は、円筒部41およびこの円筒部41
の上下の開口を封止する第1スラストリング42、第2
スラストリング43、この第2スラストリング43の下
方に位置する筒状ロータ44などから構成されている。
筒状ロータ44は真空容器10の外に位置するステータ
コイル(図示せず)が発生する回転磁界によって回転力
を発生する。この回転力が陽極ターゲット11に伝えら
れ、陽極ターゲット11が回転する。
In the case of this embodiment, the rotating portion constituting the rotation supporting mechanism 13 is the cylindrical portion 41 and the cylindrical portion 41.
The first thrust ring 42 for sealing the upper and lower openings of the second
The thrust ring 43 is composed of a cylindrical rotor 44 located below the second thrust ring 43.
The cylindrical rotor 44 generates a rotating force by a rotating magnetic field generated by a stator coil (not shown) located outside the vacuum container 10. This rotational force is transmitted to the anode target 11, and the anode target 11 rotates.

【0040】また、円筒部41の外周面に環状の突出部
41aが形成され、この突出部41aに継手部12が固
定されている。また、陽極ターゲット11の中央透孔の
縁に環状の段部45が設けられ、この段部45に、継手
部12の上端に位置する外側突出部46が接合されてい
る。また、継手部12の下端に位置する内側突出部47
と円筒部41の環状突出部41aが拡散接合され、同時
にねじ48で固定されている。そして、管軸m方向にお
ける環状突出部41aの上方および下方に位置する円筒
部41の外周面に伝熱促進体49、50が接合されてい
る。この場合、いずれの伝熱促進体49、50も端部が
環状突出部41aに接触している。
An annular protrusion 41a is formed on the outer peripheral surface of the cylindrical portion 41, and the joint portion 12 is fixed to the protrusion 41a. Further, an annular step portion 45 is provided on the edge of the central through hole of the anode target 11, and an outer protruding portion 46 located at the upper end of the joint portion 12 is joined to the step portion 45. In addition, the inner protruding portion 47 located at the lower end of the joint portion 12
And the annular protrusion 41a of the cylindrical portion 41 are diffusion-bonded, and at the same time, fixed by the screw 48. The heat transfer enhancers 49 and 50 are joined to the outer peripheral surfaces of the cylindrical portion 41 located above and below the annular protruding portion 41a in the tube axis m direction. In this case, the ends of both heat transfer accelerators 49 and 50 are in contact with the annular protrusion 41a.

【0041】固定体19は、円筒部41に嵌合する径大
部51およびこの径大部の上下にそれぞれ連続する第1
径小部52、第2径小部53から構成され、第1径小部
52の図示上端が真空容器10の一部に固定されてい
る。
The fixed body 19 has a large-diameter portion 51 fitted into the cylindrical portion 41 and a first continuous portion above and below the large-diameter portion.
It is composed of a small diameter portion 52 and a second small diameter portion 53, and the upper end of the first small diameter portion 52 in the figure is fixed to a part of the vacuum container 10.

【0042】たとえば真空容器10の一部に円筒状の第
1固定部材54が気密接合されている。第1固定部材5
4上端の内側に折り曲げられた折曲部54aに筒状の第
2固定部材55が気密接合され、第2固定部材55の内
側に筒状の第3固定部材56が気密接合されている。そ
して、固定体19の図示上端が第3固定部材56の内側
に気密に固定されている。
For example, a cylindrical first fixing member 54 is airtightly joined to a part of the vacuum container 10. First fixing member 5
4. The tubular second fixing member 55 is airtightly joined to the bent portion 54a that is bent inward at the upper end, and the tubular third fixing member 56 is airtightly joined to the inside of the second fixing member 55. The upper end of the fixed body 19 in the figure is airtightly fixed inside the third fixing member 56.

【0043】固定体19の第2径小部53は第2スラス
トリング43を貫通し、真空容器10の外側まで伸び、
保持部材57によって真空容器10に固定されている。
固定体19にはその上端面から下端面まで管軸方向に貫
通する穴58が設けられ冷却用通路を形成している。穴
58の上下両端は真空容器10外に開口し、矢印Yで示
すように、冷却媒体はたとえば下端の開口58aから入
り、上端の開口58bから出る構造になっている。
The second small diameter portion 53 of the fixed body 19 penetrates the second thrust ring 43 and extends to the outside of the vacuum vessel 10,
It is fixed to the vacuum container 10 by a holding member 57.
The fixed body 19 is provided with a hole 58 penetrating in the pipe axial direction from the upper end surface to the lower end surface thereof to form a cooling passage. Both the upper and lower ends of the hole 58 are opened to the outside of the vacuum container 10, and as shown by an arrow Y, the cooling medium enters through the opening 58a at the lower end and exits through the opening 58b at the upper end, for example.

【0044】また、円筒部41や第1スラストリング4
2、第2スラストリング43と固定体19の径大部51
との嵌合部分にラジアル方向の動圧式すべり軸受Ra、
Rbおよびスラストの動圧式すべり軸受Sa、Sbが形
成されている。この場合、たとえば伝熱促進体49、5
0が形成された領域の円筒部41の裏側と固定体19の
嵌合部分は、動圧式すべり軸受Ra、Rb、Sa、Sb
部分の間隙よりも大きな間隙の非軸受部になっている。
In addition, the cylindrical portion 41 and the first thrust ring 4
2, the large diameter portion 51 of the second thrust ring 43 and the fixed body 19
Radial direction dynamic pressure type sliding bearing Ra,
Rb and thrust dynamic pressure type slide bearings Sa and Sb are formed. In this case, for example, the heat transfer accelerators 49, 5
The back side of the cylindrical portion 41 in the region where 0 is formed and the fitting portion of the fixed body 19 are dynamic pressure type slide bearings Ra, Rb, Sa, Sb.
The non-bearing portion has a gap larger than that of the portion.

【0045】図4の実施形態は、固定体19の両端が真
空容器10に固定されている。したがって、陽極ターゲ
ット11や回転支持機構13が安定に支持される。ま
た、動圧式すべり軸受Ra、Rb、Sa、Sbが陽極タ
ーゲット11の両側に配置されるため、上下の軸受に加
わる負荷荷重のバランスが良好で、安定な軸受機能が実
現される。
In the embodiment shown in FIG. 4, both ends of the fixed body 19 are fixed to the vacuum container 10. Therefore, the anode target 11 and the rotation support mechanism 13 are stably supported. Further, since the dynamic pressure type sliding bearings Ra, Rb, Sa and Sb are arranged on both sides of the anode target 11, the load balance applied to the upper and lower bearings is well balanced and a stable bearing function is realized.

【0046】上記の実施形態の場合、伝熱促進体を銅で
形成している。しかし、銅合金や銅を主体とした複合強
化金属材料、モリブデンなどの高熱伝導性の金属を使用
することもできる。
In the case of the above embodiment, the heat transfer promoter is made of copper. However, it is also possible to use a copper alloy, a composite reinforced metal material mainly composed of copper, or a metal having high thermal conductivity such as molybdenum.

【0047】また、モリブデンやモリブデン合金、タン
タル、タンタル合金、タングステン、タングステン合
金、タングステンカーバイトの中の少なくとも1つを含
む焼結材料の空孔部に、銅および銀の少なくとも1つを
含む金属材料を含浸させた複合材料を使用することもで
きる。
A metal containing at least one of copper and silver in the pores of the sintered material containing at least one of molybdenum, molybdenum alloy, tantalum, tantalum alloy, tungsten, tungsten alloy, and tungsten carbide. It is also possible to use composites impregnated with material.

【0048】また、銅および銀の少なくとも1つを含む
金属材料と、この金属材料と固溶体を形成せずにその金
属中に分散したセラミクス材料とから構成した複合材料
を使用することもできる。さらに、銅および銀の少なく
とも1つを含む金属材料とグラファイトとの複合材料を
使用することもできる。
It is also possible to use a composite material composed of a metal material containing at least one of copper and silver and a ceramic material dispersed in the metal material without forming a solid solution with the metal material. Further, it is also possible to use a composite material of graphite and a metallic material containing at least one of copper and silver.

【0049】また、伝熱促進体は、通常、内側回転体や
円筒部の外周面の形状に合わせて、たとえば筒状に形成
される。しかし、内側回転体や円筒部との熱膨張差など
により、接合時に変形するような場合は、接合部分にた
とえば管軸方向にスリットを設けることもできる。ま
た、筒状でなく所定の幅および長さをもった複数の伝熱
促進体片を内側回転体や円筒部の外周面に接合する構成
でもよい。
Further, the heat transfer promoting body is usually formed, for example, in a tubular shape in accordance with the shape of the outer peripheral surface of the inner rotating body or the cylindrical portion. However, if the inner rotating body or the cylindrical portion is deformed at the time of joining due to a difference in thermal expansion or the like, a slit can be provided at the joining portion, for example, in the tube axis direction. Further, it may be configured such that a plurality of heat transfer promoting pieces having a predetermined width and length, which are not cylindrical, are joined to the outer peripheral surface of the inner rotating body or the cylindrical portion.

【0050】なお、上記の伝熱促進体には、常温で10
0W/m・K以上の熱伝導率であることが望ましい。ま
た、内側回転体や円筒部と伝熱促進体との接合はたとえ
ばろう接や拡散接合が望ましい。
It should be noted that the above heat transfer accelerator has a temperature of 10 at room temperature.
It is desirable that the thermal conductivity is 0 W / m · K or more. Further, the inner rotary body or the cylindrical portion and the heat transfer promoting body are preferably joined by brazing or diffusion joining.

【0051】また、陽極ターゲットを継手部に連結する
場合は、陽極ターゲットの熱が直接伝達するため、継手
部にはモリブデンやモリブデン合金などが使用され、回
転体の継手部との結合部には、たとえばモリブデンやモ
リブデン合金、鉄、鉄合金などが使用される。また、継
手部を用いずに、陽極ターゲットを内側回転体あるいは
円筒部などの回転体に直接連結する構造にすることもで
きる。
When the anode target is connected to the joint, molybdenum or molybdenum alloy is used for the joint because the heat of the anode target is directly transferred, and the joint of the rotating body with the joint is used. For example, molybdenum, molybdenum alloys, iron, iron alloys, etc. are used. Alternatively, the anode target may be directly connected to an inner rotating body or a rotating body such as a cylindrical portion without using the joint portion.

【0052】また、固定体内部の冷却機構として、冷却
用通路を設けてその冷却用通路に冷却媒体を流す構造に
なっている。しかし、冷却機構にはヒートパイプなどを
用いることもできる。
As a cooling mechanism inside the fixed body, a cooling passage is provided and a cooling medium is caused to flow through the cooling passage. However, a heat pipe or the like can be used as the cooling mechanism.

【0053】[0053]

【発明の効果】本発明によれば、放熱特性を向上させた
回転陽極型X線管を実現できる。
According to the present invention, a rotary anode type X-ray tube having improved heat dissipation characteristics can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施形態を説明するための要部縦断
面図である。
FIG. 1 is a longitudinal sectional view of an essential part for explaining an embodiment of the present invention.

【図2】図1の線a−a、および線b−bにおける横断
面図である。
FIG. 2 is a cross-sectional view taken along line aa and line bb in FIG.

【図3】この発明の他の実施形態を説明するための要部
縦断面図である。
FIG. 3 is a longitudinal sectional view of an essential part for explaining another embodiment of the present invention.

【図4】この発明の他の実施形態を説明するための要部
縦断面図である。
FIG. 4 is a longitudinal sectional view of an essential part for explaining another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

10…真空容器 11…陽極ターゲット 12…継手部 13…回転支持機構 14…内側回転体 15…ねじ 16…外側回転体 16a…伝熱促進体 16b…ロータ 17a、17b…伝熱促進体 18…スラストリング 19…固定体 20…保持部材 21…穴 22…パイプ 23a、23b…らせん溝 24a、24b…らせん溝 Ra、Rb…ラジアル方向の動圧式すべり軸受 Sa、Sb…スラスト方向の動圧式すべり軸受 10 ... Vacuum container 11 ... Anode target 12 ... Joint 13 ... Rotation support mechanism 14 ... Inner rotating body 15 ... Screw 16 ... Outer rotating body 16a ... Heat transfer accelerator 16b ... rotor 17a, 17b ... Heat transfer promoter 18 ... Thrust ring 19 ... Fixed body 20 ... Holding member 21 ... hole 22 ... pipe 23a, 23b ... spiral groove 24a, 24b ... spiral groove Ra, Rb ... radial dynamic bearings Sa, Sb ... Dynamic pressure type sliding bearing in thrust direction

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 真空容器内に配置した陽極ターゲット
と、液体金属潤滑材を用いた動圧式すべり軸受が嵌合部
分に設けられた回転体および固定体を有し、前記陽極タ
ーゲットを回転可能に支持する回転支持機構とを具備し
た回転陽極型X線管において、前記回転体の外側の面に
前記回転体よりも熱伝導率の高い伝熱促進体を接合し、
前記回転体の内側の面が前記液体金属潤滑材に接触する
ことを特徴とする回転陽極型X線管。
1. An anode target arranged in a vacuum container, and a rotary body and a fixed body in which a dynamic pressure type slide bearing using a liquid metal lubricant is provided in a fitting portion, and the anode target is rotatable. In a rotary anode type X-ray tube provided with a rotation supporting mechanism for supporting, a heat transfer promoting body having a higher thermal conductivity than that of the rotating body is joined to an outer surface of the rotating body,
A rotating anode type X-ray tube, wherein an inner surface of the rotating body contacts the liquid metal lubricant.
【請求項2】 真空容器内に配置した陽極ターゲット
と、液体金属潤滑材を用いた動圧式すべり軸受が嵌合部
分に設けられた回転体および固定体を有し、前記陽極タ
ーゲットを回転可能に支持する回転支持機構とを具備し
た回転陽極型X線管において、前記陽極ターゲットの熱
が前記回転体に伝達する領域を挟んでその両側に位置す
る前記回転体の外表面のうち、少なくとも一方の側の少
なくとも一部に、前記回転体よりも熱伝導率の高い伝熱
促進体を接合したことを特徴とする回転陽極型X線管。
2. An anode target arranged in a vacuum container, and a rotary body and a fixed body in which a dynamic pressure type slide bearing using a liquid metal lubricant is provided in a fitting portion, and the anode target is rotatable. In a rotary anode type X-ray tube provided with a rotary support mechanism for supporting, at least one of outer surfaces of the rotary body located on both sides of a region where heat of the anode target is transferred to the rotary body is sandwiched. A rotating anode type X-ray tube, wherein a heat transfer promoting body having a higher thermal conductivity than the rotating body is joined to at least a part of the side.
【請求項3】 真空容器内に配置した陽極ターゲット
と、液体金属潤滑材を用いた動圧式すべり軸受が嵌合部
分に設けられた回転体および固定体を有し、前記陽極タ
ーゲットを回転可能に支持する回転支持機構とを具備し
た回転陽極型X線管において、前記回転体に前記陽極タ
ーゲットの熱が伝達する突出部を設け、この突出部を挟
んでその両側に位置する前記回転体の外表面のうち、少
なくとも一方の側の少なくとも一部に、前記回転体より
も熱伝導率の高い伝熱促進体を接合したことを特徴とす
る回転陽極型X線管。
3. An anode target arranged in a vacuum container, and a rotary body and a fixed body in which a dynamic pressure type slide bearing using a liquid metal lubricant is provided in a fitting portion, and the anode target is rotatable. In a rotary anode type X-ray tube provided with a rotary support mechanism for supporting, a rotary body is provided with a protrusion to which heat of the anode target is transferred, and the protrusion is sandwiched between the rotor and the outside of the rotary body. A rotating anode type X-ray tube, wherein a heat transfer promoting body having a higher thermal conductivity than the rotating body is bonded to at least a part of at least one side of the surface.
【請求項4】 真空容器内に配置した陽極ターゲット
と、少なくとも一部に筒状部分を有し前記陽極ターゲッ
トに回転力を伝達する継手部と、液体金属潤滑材を用い
た動圧式すべり軸受が嵌合部分に設けられた回転体およ
び固定体を有し、前記陽極ターゲットを回転可能に支持
する回転支持機構とを具備した回転陽極型X線管におい
て、前記回転体が前記継手部と結合する領域を挟んでそ
の両側に位置する前記回転体の外表面のうち、少なくと
も一方の側の少なくとも一部に、前記回転体よりも熱伝
導率の高い伝熱促進体を接合したことを特徴とする回転
陽極型X線管。
4. An anode target arranged in a vacuum container, a joint portion having a tubular portion at least in part to transmit a rotational force to the anode target, and a dynamic pressure type slide bearing using a liquid metal lubricant. In a rotating anode type X-ray tube having a rotating body and a fixed body provided in a fitting portion, and a rotating support mechanism for rotatably supporting the anode target, the rotating body is coupled with the joint portion. Of the outer surface of the rotating body located on both sides of the region, a heat transfer promoter having a higher thermal conductivity than that of the rotating body is joined to at least a part of at least one side of the outer surface. Rotating anode X-ray tube.
【請求項5】 真空容器内に配置した陽極ターゲット
と、少なくとも一部に筒状部分を有し前記陽極ターゲッ
トに回転力を伝達する継手部と、液体金属潤滑材を用い
た動圧式すべり軸受が嵌合部分に設けられた回転体およ
び固定体を有し、前記陽極ターゲットを回転可能に支持
する回転支持機構とを具備した回転陽極型X線管におい
て、前記回転体に前記継手部と結合する突出部を設け、
この突出部を挟んでその両側に位置する前記回転体の外
表面のうち、少なくとも一方の側の少なくとも一部に、
前記回転体よりも熱伝導率の高い伝熱促進体を接合した
ことを特徴とする回転陽極型X線管。
5. An anode target arranged in a vacuum container, a joint portion having a tubular portion at least in part to transmit a rotational force to the anode target, and a dynamic pressure type slide bearing using a liquid metal lubricant. In a rotary anode type X-ray tube having a rotating body and a fixed body provided in a fitting portion, and a rotating support mechanism for rotatably supporting the anode target, the rotating body is coupled with the joint portion. Providing a protrusion,
At least a part of at least one side of the outer surface of the rotating body located on both sides of the protruding portion,
A rotating anode type X-ray tube, wherein a heat transfer promoting body having a higher thermal conductivity than that of the rotating body is joined.
【請求項6】 伝熱促進体が突出部と接触している請求
項3または請求項5記載の回転陽極型X線管。
6. The rotating anode type X-ray tube according to claim 3, wherein the heat transfer promoting member is in contact with the protruding portion.
【請求項7】 固定体に冷却機構が設けられている請求
項1ないし請求項6のいずれか1つに記載の回転陽極型
X線管。
7. The rotating anode type X-ray tube according to claim 1, wherein the fixed body is provided with a cooling mechanism.
【請求項8】 冷却機構は冷却媒体が流れる冷却用通路
を有している請求項7記載の回転陽極型X線管。
8. The rotating anode type X-ray tube according to claim 7, wherein the cooling mechanism has a cooling passage through which a cooling medium flows.
JP2002018592A 2001-08-29 2002-01-28 Rotating anode X-ray tube Expired - Fee Related JP4040313B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2002018592A JP4040313B2 (en) 2002-01-28 2002-01-28 Rotating anode X-ray tube
US10/487,882 US7127035B2 (en) 2001-08-29 2002-08-29 Rotary anode type X-ray tube
PCT/JP2002/008699 WO2003019610A1 (en) 2001-08-29 2002-08-29 Rotary positive pole type x-ray tube
EP02762900A EP1432005A4 (en) 2001-08-29 2002-08-29 Rotary positive pole type x-ray tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002018592A JP4040313B2 (en) 2002-01-28 2002-01-28 Rotating anode X-ray tube

Publications (2)

Publication Number Publication Date
JP2003217490A true JP2003217490A (en) 2003-07-31
JP4040313B2 JP4040313B2 (en) 2008-01-30

Family

ID=27653883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002018592A Expired - Fee Related JP4040313B2 (en) 2001-08-29 2002-01-28 Rotating anode X-ray tube

Country Status (1)

Country Link
JP (1) JP4040313B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1624688A1 (en) 2004-07-30 2006-02-08 Sony Corporation Content providing system, content providing server, information processing apparatus, and computer program
JP2011249244A (en) * 2010-05-28 2011-12-08 Toshiba Corp Rotary anode type x-ray tube
KR101140993B1 (en) 2011-11-07 2012-05-02 주식회사엑스엘 Structure of rotating anode type x-ray tube having improved thermal emitting efficiency
JP2012104391A (en) * 2010-11-10 2012-05-31 Toshiba Corp Rotating anode x-ray tube

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1624688A1 (en) 2004-07-30 2006-02-08 Sony Corporation Content providing system, content providing server, information processing apparatus, and computer program
JP2011249244A (en) * 2010-05-28 2011-12-08 Toshiba Corp Rotary anode type x-ray tube
JP2012104391A (en) * 2010-11-10 2012-05-31 Toshiba Corp Rotating anode x-ray tube
KR101140993B1 (en) 2011-11-07 2012-05-02 주식회사엑스엘 Structure of rotating anode type x-ray tube having improved thermal emitting efficiency
WO2013069826A1 (en) * 2011-11-07 2013-05-16 주식회사 엑스엘 Rotating anode x-ray tube structure having improved heat radiation efficiency

Also Published As

Publication number Publication date
JP4040313B2 (en) 2008-01-30

Similar Documents

Publication Publication Date Title
US7127035B2 (en) Rotary anode type X-ray tube
US6477236B1 (en) X-ray tube of rotary anode type
US4097759A (en) X-ray tube
JP2960085B2 (en) Rotating anode X-ray tube
JP6091930B2 (en) Rotating anode X-ray tube
JP2003217490A (en) Rotary positive electrode type x-ray tube
US20010055365A1 (en) Rotary anode type x-ray tube and x-ray tube apparatus provided with the same
EP1124250B1 (en) X-Ray tube bearing
JP4112829B2 (en) Rotating anode X-ray tube
JP3139873B2 (en) Rotating anode X-ray tube
JP2003272548A (en) Rotating anode type x-ray tube
JP5531224B2 (en) Rotating anode X-ray tube
JP3045906B2 (en) Rotating anode X-ray tube
JP4421126B2 (en) Rotating anode X-ray tube
JP3880897B2 (en) Rotating anode X-ray tube
JP4467740B2 (en) Rotating anode X-ray tube
JP2003077412A (en) Rotating anode type x-ray tube
JP2007273102A (en) Rotating anode x-ray tube
JP2003303563A (en) Rotary anode-type x-ray tube
JP2004349158A (en) Rotating anode x-ray tube
JP2689561B2 (en) X-ray tube rotating anode
JP2002231166A (en) Rotating anode type x-ray tube
JPH07296752A (en) Rotating anode type x-ray tube
JP3124023B2 (en) Method for producing rotary anode type X-ray tube
JP4153829B2 (en) Rotating anode X-ray tube

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050121

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070417

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071107

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111116

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111116

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121116

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131116

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

Free format text: JAPANESE INTERMEDIATE CODE: R313114

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees