JP4421126B2 - Rotating anode X-ray tube - Google Patents

Rotating anode X-ray tube Download PDF

Info

Publication number
JP4421126B2
JP4421126B2 JP2001048640A JP2001048640A JP4421126B2 JP 4421126 B2 JP4421126 B2 JP 4421126B2 JP 2001048640 A JP2001048640 A JP 2001048640A JP 2001048640 A JP2001048640 A JP 2001048640A JP 4421126 B2 JP4421126 B2 JP 4421126B2
Authority
JP
Japan
Prior art keywords
ray tube
anode
fixed body
rotating body
bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001048640A
Other languages
Japanese (ja)
Other versions
JP2002251969A (en
Inventor
秀郎 阿武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2001048640A priority Critical patent/JP4421126B2/en
Publication of JP2002251969A publication Critical patent/JP2002251969A/en
Application granted granted Critical
Publication of JP4421126B2 publication Critical patent/JP4421126B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Sliding-Contact Bearings (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、動圧式すべり軸受に用いられる液体金属潤滑剤の逃げ部における発熱を小さくした回転陽極型X線管に関する。
【0002】
【従来の技術】
回転陽極型X線管は、真空外囲器内に配置された陽極ターゲットを回転機構で回転可能に支持し、また、陽極ターゲットに対向して陰極を配置した構造になっている。そして、高速で回転する陽極ターゲットに対して陰極から電子ビームを照射し、陽極ターゲットからX線を放出させている。陽極ターゲットを支持する回転機構は回転体および固定体から構成され、回転体と固定体との間に軸受が設けられている。
【0003】
回転陽極型X線管の軸受には、ボールベアリングのようなころがり軸受、あるいは、軸受面にらせん溝を形成し、ガリウム(Ga)やガリウム−インジウム−錫(Ga−In−Sn)合金などの動作中に液状となる液体金属潤滑剤をらせん溝などの部分に供給する動圧式すべり軸受が用いられている。
【0004】
動圧式すべり軸受を用いた例は、特開昭60−117531号、特開平2−227948号、特開平5−13028号あるいは特開平7−192666号の各公報に開示されている。
【0005】
ところで、X線撮影装置を利用して循環器診断などを行う場合、さまざまな方向から被撮影体の撮影が行われる。そのため、循環器診断用のX線撮影装置に組み込まれる回転陽極型X線管は、撮影方向の素早い転換などによって、重量のある陽極ターゲットに大きな加速度が作用し、いろいろな方向から不規則な荷重が軸受に加わる。このため、動圧式すべり軸受を構成する固定体の径を一部で大きくした構造のものが用いられている。
【0006】
ここで、従来の回転陽極型X線管について、循環器診断用などに使用される回転陽極型X線管を例にとり図2を参照して説明する。
【0007】
符号21はX線を発生する陽極ターゲットで、陽極ターゲット21は真空外囲器(図示せず)内に配置されている。陽極ターゲット21は第1回転体22に連結されている。第1回転体22は全体が有底円筒状に形成され、上方部分の径の小さい径小部22aおよび下方部分の径の大きい径大部22bなどから構成されている。径大部22bの外周面に、熱および電気の伝導度の高い銅で形成された円筒状の第2回転体23が連結されている。第1回転体22の内部空間に円柱状の固定体24が嵌合され、固定体24は円筒状の陽極支持部25に連結されている。
【0008】
固定体24は、図示上方から順に、たとえば外径の小さい径小部24aおよび外径の大きい径大部24b、外径の小さい連結部24cから構成され、連結部24cが第1回転体22の図示下端の開口部分を封止するスラストリング26を貫通して陽極支持部25に連結されている。
【0009】
固定体24の径小部24aは、たとえば環状の凹部27を挟んで2つの領域に分けられ、2つの領域にそれぞれヘリンボーンパターンのらせん溝が形成され、ラジアル方向の動圧式すべり軸受A、Bが形成されている。径大部34bには、図示上下の両面にそれぞれサークル状のヘリンボーンパターンのらせん溝が形成され、スラスト方向の動圧式すべり軸受C、Dが形成されている。
【0010】
上記のラジアル方向の動圧式すべり軸受A、Bおよびスラスト方向の動圧式すべり軸受C、Dの軸受面の間隙にはGa合金などの液体金属潤滑剤が満たされている。
【0011】
【発明が解決しようとする課題】
回転陽極型X線管は、動作状態に入ると電子ビームの照射で陽極ターゲットに熱が発生する。また、動圧式すべり軸受などにも熱が発生する。陽極ターゲットの熱の一部および動圧式すべり軸受が発生する自己発熱は、固定体24の端部24cに伝導し、陽極支持部25などを経て管外に放散される。
【0012】
しかし、液体金属潤滑剤は活性があり、高温になると固定体および回転体の軸受面を構成する材料と反応し、軸受面上に金属間化合物層を堆積させる。その結果、軸受隙間が徐々に減少して回転特性を劣化させる。
【0013】
ところで、動圧式すべり軸受を用いた回転陽極型X線管は、軸受部分に限らず、それ以外の固定体と回転体の隙間にも液体金属潤滑剤が溜まっている。たとえば、図2の回転陽極型X線管の場合、固定体24の陽極ターゲット側の端面と第1回転体22の内側底面との隙間の軸方向における寸法は、動圧式すべり軸受A〜Dの各部分の隙間よりも大きくなっている。また、動圧式すべり軸受のない、いわゆる逃げ部Sとなっており、この逃げ部Sの部分にも液体金属潤滑剤が溜まっている。
【0014】
上記した動圧式すべり軸受A〜Dの各部分や逃げ部Sなど、第1回転体22およびスラストリング26などの回転体と固定体との嵌合隙間に満たされた液体金属潤滑剤は、回転体の回転に伴いその粘性に起因して熱を発生する。
【0015】
回転体の回転が低速の場合は、嵌合隙間の大きい逃げ部などの発熱は小さくほとんど問題にならない。回転体の回転が高速になると、逃げ部の液体金属潤滑剤の発熱が大きくなり無視できなくなる。
【0016】
たとえば、回転体が低速で回転する場合、回転に伴う液体金属潤滑剤の流れはほぼ層流状態で、粘性による発熱は嵌合隙間の逆数にほぼ比例し、回転数のほぼ2乗に比例する。回転体が高速で回転する場合は、回転に伴う液体金属潤滑剤の流れはほとんどが乱流状態で、発熱は層流状態に比べて大きくなり、回転数の3〜3.5乗に比例する。なお、層流状態から乱流状態に遷移する回転数は嵌合隙間Gの逆数にほぼ比例する。
【0017】
したがって、回転体部分の回転数を徐々に上げていくと、回転数が低い間は、軸受部分および逃げ部の部分はいずれも層流状態で、嵌合隙間が大きい逃げ部における発熱は小さく無視できる。回転体部分の回転数が高くなると、嵌合隙間が大きい逃げ部の方が、回転数の低い状態から乱流に遷移し、逃げ部の部分における発熱が相対的に大きくなる。
【0018】
ここで、軸受部の嵌合隙間がほぼ20μm、逃げ部の嵌合隙間がほぼ400μm、軸受部や逃げ部の嵌合隙間に液体金属潤滑剤で満たされているという条件の場合に、本発明者の実験結果について説明する。
【0019】
たとえば、回転体部分の回転数が50rpsと低速の場合、軸受部Jの発熱Pjと逃げ部Kの発熱Pkとの関係Pj/Pkの値は約1/10で、逃げ部Kの発熱Pkはほとんど問題にならなかった。回転体部分の回転数が100rpsと高速の場合、Pj/Pkの値は約1となり、逃げ部Kの発熱Pkが相対的に大きくなり、無視できない値になることが確かめられた。
【0020】
本発明は、上記した欠点を解決するもので、スラスト方向の逃げ部における発熱を少なくし、高速回転時などにおける動圧式すべり軸受の温度上昇を抑え、長期にわたり安定な回転特性を維持できる回転陽極型X線管を提供することを目的とする。
【0021】
【課題を解決するための手段】
この発明は、真空外囲器内に設けられた陽極ターゲットと、この陽極ターゲットが固定された回転体と、液体金属潤滑剤を貯蔵するリザーバが設けられ、かつ、前記回転体との嵌合部分の複数領域に動圧式すべり軸受が設けられた固定体とを具備した回転陽極型X線管において、前記固定体の前記陽極ターゲット側の端面と前記回転体の内側底面とで挟まれて前記動圧式すべり軸受部分の軸受隙間よりも隙間が大きい逃げ部に一端が開口し、他端が前記リザーバに開口するダクトを設けたことを特徴としている。
【0022】
【発明の実施の形態】
本発明の実施形態について、循環器診断用などに使用される回転陽極型X線管を例にとり図1を参照して説明する。
【0023】
符号10は回転陽極型X線管を構成する真空外囲器で、図ではその一部が示されている。真空外囲器10内にX線を発生する陽極ターゲット11および陰極構体Fが配置されている。陽極ターゲット11は第1回転体12に連結されている。第1回転体12は有底円筒状をしており、上方部分は径の小さい径小部12aに形成され、下方部分は径の大きい径大部12bに形成されている。径大部12bの外周面に、熱および電気の伝導度の高い銅で形成された円筒状の第2回転体13が連結されている。また、第1回転体12の内部空間に円柱状の固定体14が嵌合され、固定体14は円筒状の陽極支持部15に連結されている。
【0024】
固定体14は、図示上方の陽極ターゲット11側から順に、たとえば外径の小さい径小部14aおよび外径の大きい径大部14b、外径の小さい連結部14cとなっている。連結部14cが第1回転体12の図示下端の開口部分を封止するスラストリング16を貫通して陽極支持部15に連結されている。スラストリング16は第1回転体12と接合され、第1回転体12などとともに回転体の一部を形成している。
【0025】
固定体14を構成する径小部14aの外周部は、たとえば環状の凹部17を挟んで2つの領域に分けられ、2つの領域にそれぞれらせん溝が形成され、ラジアル方向の動圧式すべり軸受A、Bが形成されている。径大部14bには、図示上下の両面すなわち管軸に直交する面にそれぞれサークル状のらせん溝が形成され、スラスト方向の動圧式すべり軸受C、Dが形成されている。
【0026】
上記した構成の場合、固定体14の陽極ターゲット側の端面と第1回転体12の内側底面とで挟まれた隙間は、動圧式すべり軸受A〜Dの各部分における軸受隙間よりも軸方向の長さが大きくなっている。また、動圧式すべり軸受が設けられない、いわゆるスラスト方向の逃げ部Sとなっている。
【0027】
また、固定体14の中心部分に、液体金属潤滑剤を貯蔵するリザーバ18がたとえば管軸方向に形成されている。また、リザーバ18と逃げ部Sとの間に、管軸に対して傾斜する向きで、かつ半径方向にダクト19が形成されている。ダクト19の一方の開口部分19aはリザーバ18の一部に開口し、他方の開口部分19bは逃げ部Sに開口している。逃げ部S側の開口部分19bは固定体14端面の中心よりも外周の方に近くなっている。
【0028】
上記した回転陽極型X線管は、第1回転体12およびスラストリング16と固定体14との隙間たとえば動圧式すべり軸受A〜Dや逃げ部Sなどの部分、さらにリザーバ18やダクト19の各部分に液体金属潤滑剤が供給されている。
【0029】
この場合、液体金属潤滑剤を充填する量は、真空外囲器10内の空間に最も近くに位置する動圧式すべり軸受Dのその真空外囲器10内の空間側の端部Deから真空外囲器10内の空間から遠い側で液体金属潤滑剤が流動できる空間、たとえば第1回転体12やスラストリング16などの回転部分と固定体14との隙間の部分およびリザーバ18やダクト19の各部分などの全空間の容積の70%を上限とする範囲の体積に設定されている。
【0030】
また、ダクトが複数設けられているなどの場合、液体金属潤滑剤を充填する量は、管軸を垂直にした場合に、回転部分と固定体の隙間側に位置する少なくとも1つのダクトの開口部分を液体金属潤滑剤が塞がない体積、あるいは、管軸を水平にした場合に、回転体部分と固定体部分の隙間側に位置する少なくとも1つのダクトの開口部分を液体金属潤滑剤が塞がない体積に設定されている。
【0031】
上記した構成において、回転陽極型X線管が動作状態に入ると、液体金属潤滑剤が流動できる空間内に液体金属潤滑剤が完全に満たされていないため、たとえば逃げ部Sでは、液体金属潤滑剤に作用する遠心力で外側に移動する。このとき、遠心力が働いている液体金属潤滑剤とダクト19内の圧力差によって、液体金属潤滑剤がダクト19に流れ込む。また、逃げ部Sに残る液体金属潤滑剤は外側に移動し、逃げ部S内の液体金属潤滑剤には実質的に回転速度差がなくなる。その結果、回転速度差がある場合にその粘性に起因して発生する液体金属潤滑剤の発熱が抑えられる。
【0032】
上記の実施形態では、固定体部分に1個のリザーバと1個のダクトを設ける場合で説明している。しかし、リザーバは管軸方向に複数設けることもできる。また、リザーバから分岐するダクトも複数設けることもできる。この場合、ダクトは、リザーバの管軸方向における同じ位置から半径方向に複数設けてもよく、また、リザーバの管軸方向に離れた複数の位置からそれぞれ半径方向に伸びるダクトを1個ずつ設けてもよく、また、それぞれの位置に複数のダクトを設けることもできる。
【0033】
上記した構成によれば、陽極ターゲットを支持する回転体が高速で回転する場合に、回転体および固定体間の隙間の大きいたとえば逃げ部などにおける液体金属潤滑剤の発熱を小さくなり、軸受部分などの自己発熱が低減する。その結果、軸受部分の温度上昇が抑えられ、液体金属潤滑剤の反応が少なくなり、らせん溝や軸受隙間の寸法変化が防止され、長期に亙り安定な回転特性が維持される。
【0034】
【発明の効果】
この発明によれば、長期にわたり安定した回転特性が維持される回転陽極型X線管装置を実現できる。
【図面の簡単な説明】
【図1】本発明の実施形態を説明するための断面図である。
【図2】従来例を説明するための断面図である。
【符号の説明】
10…真空外囲器
11…陽極ターゲット
12…第1回転体
13…第2回転体
14…固定体
15…陽極支持部15
16…スラストリング
17…環状の凹部
18…リザーバ
19…ダクト
A〜D…動圧式すべり軸受
S…逃げ部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a rotary anode X-ray tube in which heat generation at a relief portion of a liquid metal lubricant used in a dynamic pressure type slide bearing is reduced.
[0002]
[Prior art]
The rotary anode type X-ray tube has a structure in which an anode target disposed in a vacuum envelope is rotatably supported by a rotation mechanism, and a cathode is disposed opposite to the anode target. The anode target rotating at high speed is irradiated with an electron beam from the cathode, and X-rays are emitted from the anode target. The rotating mechanism that supports the anode target includes a rotating body and a fixed body, and a bearing is provided between the rotating body and the fixed body.
[0003]
The bearing of the rotary anode type X-ray tube is a rolling bearing such as a ball bearing, or a spiral groove formed on the bearing surface, such as gallium (Ga) or gallium-indium-tin (Ga-In-Sn) alloy. There is used a dynamic pressure type plain bearing that supplies a liquid metal lubricant that becomes liquid during operation to a portion such as a spiral groove.
[0004]
Examples using dynamic pressure type plain bearings are disclosed in JP-A-60-117531, JP-A-2-227948, JP-A-5-13028, or JP-A-7-192666.
[0005]
By the way, when performing circulatory organ diagnosis using an X-ray imaging apparatus, imaging of a subject is performed from various directions. For this reason, a rotating anode X-ray tube incorporated in an X-ray imaging apparatus for cardiovascular diagnosis has a large acceleration acting on a heavy anode target due to a quick change of the imaging direction, and irregular loads from various directions. Is added to the bearing. For this reason, a structure in which the diameter of the fixed body constituting the hydrodynamic slide bearing is partially increased is used.
[0006]
Here, a conventional rotating anode X-ray tube will be described with reference to FIG. 2 taking a rotating anode X-ray tube used for cardiovascular diagnosis as an example.
[0007]
Reference numeral 21 denotes an anode target that generates X-rays. The anode target 21 is disposed in a vacuum envelope (not shown). The anode target 21 is connected to the first rotating body 22. The entire first rotating body 22 is formed in a bottomed cylindrical shape, and includes a small diameter portion 22a having a small diameter in the upper portion and a large diameter portion 22b having a large diameter in the lower portion. A cylindrical second rotating body 23 made of copper having high thermal and electrical conductivity is connected to the outer peripheral surface of the large diameter portion 22b. A columnar fixed body 24 is fitted in the internal space of the first rotating body 22, and the fixed body 24 is connected to a cylindrical anode support portion 25.
[0008]
The fixed body 24 includes, for example, a small-diameter portion 24a having a small outer diameter, a large-diameter large portion 24b having a large outer diameter, and a connecting portion 24c having a small outer diameter. A thrust ring 26 that seals the opening at the lower end of the figure is passed through and connected to the anode support portion 25.
[0009]
The small-diameter portion 24a of the fixed body 24 is divided into, for example, two regions with an annular recess 27 interposed therebetween, and a helical groove having a herringbone pattern is formed in each of the two regions, so that the hydrodynamic slide bearings A and B in the radial direction are formed. Is formed. In the large-diameter portion 34b, spiral grooves having a circular herringbone pattern are formed on both upper and lower sides in the figure, and dynamic pressure type plain bearings C and D in the thrust direction are formed.
[0010]
A gap between the bearing surfaces of the radial dynamic pressure bearings A and B and the thrust dynamic bearings C and D in the radial direction is filled with a liquid metal lubricant such as a Ga alloy.
[0011]
[Problems to be solved by the invention]
When the rotating anode X-ray tube enters an operating state, heat is generated in the anode target by irradiation with an electron beam. Also, heat is generated in the hydrodynamic slide bearing. Part of the heat of the anode target and self-heating generated by the hydrodynamic slide bearing are conducted to the end 24c of the fixed body 24, and are dissipated outside the tube through the anode support 25 and the like.
[0012]
However, the liquid metal lubricant is active, and reacts with the material constituting the bearing surfaces of the fixed body and the rotating body at high temperatures to deposit an intermetallic compound layer on the bearing surfaces. As a result, the bearing gap is gradually reduced to deteriorate the rotational characteristics.
[0013]
By the way, the rotary anode type X-ray tube using the hydrodynamic slide bearing is not limited to the bearing portion, and the liquid metal lubricant is accumulated in the gap between the other fixed body and the rotating body. For example, in the case of the rotary anode X-ray tube shown in FIG. 2, the dimension in the axial direction of the gap between the end surface on the anode target side of the fixed body 24 and the inner bottom surface of the first rotary body 22 is that of the hydrodynamic slide bearings A to D. It is larger than the gap between each part. Further, there is a so-called relief portion S without a dynamic pressure type sliding bearing, and the liquid metal lubricant is also accumulated in the portion of the relief portion S.
[0014]
The liquid metal lubricant filled in the fitting clearance between the rotating body such as the first rotating body 22 and the thrust ring 26 and the fixed body, such as the portions of the above-described dynamic pressure type sliding bearings A to D and the relief portion S, rotates. As the body rotates, it generates heat due to its viscosity.
[0015]
When the rotating body rotates at a low speed, the heat generated in the escape portion with a large fitting gap is small and hardly causes a problem. When the rotating body rotates at a high speed, the heat generated by the liquid metal lubricant in the escape portion increases and cannot be ignored.
[0016]
For example, when the rotating body rotates at a low speed, the flow of the liquid metal lubricant accompanying the rotation is almost laminar, and the heat generated by the viscosity is substantially proportional to the reciprocal of the fitting gap and proportional to the square of the rotational speed. . When the rotating body rotates at a high speed, the flow of the liquid metal lubricant accompanying the rotation is mostly in a turbulent state, and the heat generation is larger than that in a laminar flow state, and is proportional to the third to the third power of the rotational speed . Note that the rotational speed at which the laminar flow state changes to the turbulent state is substantially proportional to the reciprocal of the fitting gap G.
[0017]
Therefore, when the rotational speed of the rotor part is gradually increased, the bearing part and the relief part are both in a laminar flow state and the heat generation in the relief part with a large fitting gap is negligible while the rotational speed is low. it can. When the rotational speed of the rotating body portion increases, the escape portion having a larger fitting gap transitions from a low rotational speed state to turbulent flow, and heat generation at the escape portion becomes relatively large.
[0018]
Here, in the case where the fitting gap of the bearing portion is approximately 20 μm, the fitting gap of the relief portion is approximately 400 μm, and the fitting gap of the bearing portion and the relief portion is filled with the liquid metal lubricant, the present invention The results of the experiment will be described.
[0019]
For example, when the rotational speed of the rotating body portion is as low as 50 rps, the relationship Pj / Pk between the heat generation Pj of the bearing portion J and the heat generation Pk of the escape portion K is about 1/10, and the heat generation Pk of the escape portion K is Almost no problem. When the rotational speed of the rotating body portion was as high as 100 rps, the value of Pj / Pk was about 1, and it was confirmed that the heat generation Pk of the escape portion K becomes relatively large and cannot be ignored.
[0020]
The present invention solves the above-mentioned drawbacks. A rotating anode that reduces heat generation at the relief portion in the thrust direction, suppresses the temperature rise of the hydrodynamic slide bearing during high-speed rotation, etc., and maintains stable rotation characteristics over a long period of time. An object is to provide a type X-ray tube.
[0021]
[Means for Solving the Problems]
The present invention provides an anode target provided in a vacuum envelope, a rotating body to which the anode target is fixed, a reservoir for storing a liquid metal lubricant, and a fitting portion with the rotating body A rotary anode type X-ray tube having a fixed body provided with hydrodynamic slide bearings in a plurality of regions of the fixed body, and sandwiched between an end surface of the fixed body on the anode target side and an inner bottom surface of the rotary body. The duct is characterized in that a duct having one end opened at a clearance portion having a clearance larger than the bearing clearance of the pressure type sliding bearing portion and the other end opened at the reservoir is provided.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention will be described with reference to FIG. 1, taking as an example a rotating anode X-ray tube used for cardiovascular diagnosis and the like.
[0023]
Reference numeral 10 denotes a vacuum envelope constituting a rotary anode type X-ray tube, a part of which is shown in the figure. An anode target 11 and a cathode assembly F that generate X-rays are disposed in the vacuum envelope 10. The anode target 11 is connected to the first rotating body 12. The first rotating body 12 has a bottomed cylindrical shape, and an upper portion is formed in a small diameter portion 12a having a small diameter, and a lower portion is formed in a large diameter portion 12b having a large diameter. A cylindrical second rotating body 13 made of copper having high heat and electrical conductivity is connected to the outer peripheral surface of the large diameter portion 12b. In addition, a columnar fixed body 14 is fitted into the internal space of the first rotating body 12, and the fixed body 14 is connected to a cylindrical anode support portion 15.
[0024]
The fixed body 14 is, for example, a small diameter portion 14a having a small outer diameter, a large diameter large portion 14b having a large outer diameter, and a connecting portion 14c having a small outer diameter, in order from the anode target 11 side in the figure. The connecting portion 14 c passes through the thrust ring 16 that seals the opening at the lower end of the first rotating body 12 and is connected to the anode support portion 15. The thrust ring 16 is joined to the first rotating body 12 and forms a part of the rotating body together with the first rotating body 12 and the like.
[0025]
The outer peripheral portion of the small-diameter portion 14a constituting the fixed body 14 is divided into, for example, two regions with the annular recess 17 interposed therebetween, and spiral grooves are formed in the two regions, respectively, and the radial dynamic pressure type sliding bearing A, B is formed. In the large-diameter portion 14b, circular spiral grooves are respectively formed on the upper and lower surfaces in the drawing, that is, the surface orthogonal to the tube axis, and dynamic pressure type plain bearings C and D in the thrust direction are formed.
[0026]
In the case of the configuration described above, the gap sandwiched between the end face on the anode target side of the fixed body 14 and the inner bottom face of the first rotating body 12 is more axial than the bearing gap in each part of the hydrodynamic slide bearings A to D. The length is getting bigger. In addition, a relief portion S in the so-called thrust direction is provided in which no dynamic pressure type plain bearing is provided.
[0027]
Further, a reservoir 18 for storing the liquid metal lubricant is formed in the central portion of the fixed body 14 in the tube axis direction, for example. Further, a duct 19 is formed between the reservoir 18 and the escape portion S in a direction inclined with respect to the tube axis and in the radial direction. One opening portion 19 a of the duct 19 opens to a part of the reservoir 18, and the other opening portion 19 b opens to the escape portion S. The opening portion 19b on the escape portion S side is closer to the outer periphery than the center of the end face of the fixed body 14.
[0028]
The rotary anode type X-ray tube described above includes gaps between the first rotating body 12 and the thrust ring 16 and the fixed body 14, such as the dynamic pressure type slide bearings A to D and the relief portion S, and the reservoir 18 and the duct 19 respectively. Liquid metal lubricant is supplied to the part.
[0029]
In this case, the amount of the liquid metal lubricant to be filled is from the end De on the space side in the vacuum envelope 10 of the hydrodynamic slide bearing D located closest to the space in the vacuum envelope 10 outside the vacuum. A space in which the liquid metal lubricant can flow on the side far from the space in the envelope 10 , for example, a gap between the rotating portion such as the first rotating body 12 and the thrust ring 16 and the fixed body 14, and each of the reservoir 18 and the duct 19. The volume is set in a range where the upper limit is 70% of the volume of the entire space such as the portion.
[0030]
In addition, in the case where a plurality of ducts are provided, the amount of liquid metal lubricant to be filled is the opening portion of at least one duct located on the gap side between the rotating portion and the fixed body when the tube axis is vertical. When the pipe axis is horizontal, the liquid metal lubricant covers the opening of at least one duct located on the gap side between the rotating body portion and the fixed body portion. There is no volume set.
[0031]
In the above configuration, when the rotary anode X-ray tube enters the operating state, the liquid metal lubricant is not completely filled in the space in which the liquid metal lubricant can flow. It moves outward by centrifugal force acting on the agent. At this time, the liquid metal lubricant flows into the duct 19 due to the pressure difference in the duct 19 and the liquid metal lubricant in which the centrifugal force is working. Further, the liquid metal lubricant remaining in the escape portion S moves outward, and the liquid metal lubricant in the escape portion S has substantially no rotational speed difference. As a result, the heat generation of the liquid metal lubricant generated due to the viscosity when there is a difference in rotational speed is suppressed.
[0032]
In the above embodiment, the case where one reservoir and one duct are provided in the fixed body portion has been described. However, a plurality of reservoirs can be provided in the tube axis direction. A plurality of ducts branching from the reservoir can also be provided. In this case, a plurality of ducts may be provided in the radial direction from the same position in the tube axis direction of the reservoir, and one duct extending in the radial direction from each of a plurality of positions separated in the tube axis direction of the reservoir may be provided. It is also possible to provide a plurality of ducts at each position.
[0033]
According to the configuration described above, when the rotating body that supports the anode target rotates at a high speed, the heat generated by the liquid metal lubricant in the clearance portion having a large gap between the rotating body and the fixed body is reduced, such as a bearing portion. Reduces self-heating. As a result, the temperature rise of the bearing part is suppressed, the reaction of the liquid metal lubricant is reduced, the dimensional change of the spiral groove and the bearing gap is prevented, and stable rotation characteristics are maintained over a long period.
[0034]
【The invention's effect】
According to the present invention, it is possible to realize a rotary anode type X-ray tube apparatus that maintains stable rotation characteristics over a long period of time.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view for explaining an embodiment of the present invention.
FIG. 2 is a cross-sectional view for explaining a conventional example.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 ... Vacuum envelope 11 ... Anode target 12 ... 1st rotary body 13 ... 2nd rotary body 14 ... Fixed body 15 ... Anode support part 15
16 ... Thrust ring 17 ... Annular recess 18 ... Reservoir 19 ... Ducts A to D ... Dynamic pressure type plain bearing S ... Escape portion

Claims (3)

真空外囲器内に設けられた陽極ターゲットと、この陽極ターゲットが固定された回転体と、液体金属潤滑剤を貯蔵するリザーバが設けられ、かつ、前記回転体との嵌合部分の複数領域に動圧式すべり軸受が設けられた固定体とを具備した回転陽極型X線管において、前記固定体の前記陽極ターゲット側の端面と前記回転体の内側底面とで挟まれて前記動圧式すべり軸受部分の軸受隙間よりも隙間が大きい逃げ部に一端が開口し、他端が前記リザーバに開口するダクトを設けたことを特徴とする回転陽極型X線管。  An anode target provided in the vacuum envelope, a rotating body to which the anode target is fixed, a reservoir for storing a liquid metal lubricant is provided, and a plurality of regions in a fitting portion with the rotating body are provided. A rotary anode X-ray tube having a fixed body provided with a hydrodynamic slide bearing, wherein the hydrodynamic slide bearing portion is sandwiched between an end surface of the fixed body on the anode target side and an inner bottom surface of the rotary body A rotary anode X-ray tube characterized in that a duct having one end opened at a clearance portion where the clearance is larger than the bearing clearance is provided and the other end is opened at the reservoir. ダクトが逃げ部に開口する一端は、固定体端面の中心よりも前記固定体端面の周辺部分の方に近い請求項1記載の回転陽極型X線管。  The rotary anode type X-ray tube according to claim 1, wherein one end of the duct opening at the escape portion is closer to a peripheral portion of the fixed body end face than a center of the fixed body end face. 固定体の中間に外径の大きい径大部が設けられ、前記径大部の管軸に直交する上下2つの面とこの2つの面に対向する回転体の面との間にスラスト方向の動圧式すべり軸受が設けられた請求項1記載の回転陽極型X線管。  A large-diameter portion having a large outer diameter is provided in the middle of the fixed body, and a thrust-direction motion is provided between two upper and lower surfaces perpendicular to the tube axis of the large-diameter portion and the surface of the rotating body facing the two surfaces. The rotary anode type X-ray tube according to claim 1, further comprising a pressure slide bearing.
JP2001048640A 2001-02-23 2001-02-23 Rotating anode X-ray tube Expired - Fee Related JP4421126B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001048640A JP4421126B2 (en) 2001-02-23 2001-02-23 Rotating anode X-ray tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001048640A JP4421126B2 (en) 2001-02-23 2001-02-23 Rotating anode X-ray tube

Publications (2)

Publication Number Publication Date
JP2002251969A JP2002251969A (en) 2002-09-06
JP4421126B2 true JP4421126B2 (en) 2010-02-24

Family

ID=18909874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001048640A Expired - Fee Related JP4421126B2 (en) 2001-02-23 2001-02-23 Rotating anode X-ray tube

Country Status (1)

Country Link
JP (1) JP4421126B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11020067B1 (en) * 2020-02-12 2021-06-01 GE Precision Healthcare LLC Hydrodynamic bearing system and method for manufacturing the hydrodynamic bearing system

Also Published As

Publication number Publication date
JP2002251969A (en) 2002-09-06

Similar Documents

Publication Publication Date Title
JP2009081069A (en) Rotating anode x-ray tube
JP2011060517A (en) Rotating anode x-ray tube and rotating anode x-ray tube assembly
JP6091930B2 (en) Rotating anode X-ray tube
JP7134848B2 (en) Thrust flange for X-ray tubes with internal cooling channels
JP2002251970A (en) Rotating anode x-ray tube
JP4421126B2 (en) Rotating anode X-ray tube
US6456693B1 (en) Multiple row spiral groove bearing for X-ray tube
JP3754512B2 (en) Rotating anode X-ray tube
US10460901B2 (en) Cooling spiral groove bearing assembly
JP3974011B2 (en) Rotating anode X-ray tube
JP2009283421A (en) Rotating anode x-ray tube
JP4467740B2 (en) Rotating anode X-ray tube
JP4040313B2 (en) Rotating anode X-ray tube
JP4098193B2 (en) Slide bearing and rotating anode type X-ray tube
JP2006024563A (en) System and method for installing sealing device on x-ray tube
JP7286824B2 (en) X-ray tube liquid metal bearing structure to reduce entrapped gas
JP3720955B2 (en) Rotating anode X-ray tube
JP3724926B2 (en) Rotating anode X-ray tube
JP2002245958A (en) Rotating anode type x-ray tube and manufacturing method thereof
JP3824921B2 (en) Rotating anode type X-ray tube apparatus and control method thereof
JP4342113B2 (en) Rotating anode X-ray tube
JP3045906B2 (en) Rotating anode X-ray tube
JP2003272548A (en) Rotating anode type x-ray tube
JP2005108511A (en) Rotary anode type x-ray tube apparatus
JP2937573B2 (en) Rotating anode X-ray tube

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070124

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091202

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees