JP2003215084A - Test method for evaluating hydrophilic property or hygroscopic property in substance - Google Patents

Test method for evaluating hydrophilic property or hygroscopic property in substance

Info

Publication number
JP2003215084A
JP2003215084A JP2002013846A JP2002013846A JP2003215084A JP 2003215084 A JP2003215084 A JP 2003215084A JP 2002013846 A JP2002013846 A JP 2002013846A JP 2002013846 A JP2002013846 A JP 2002013846A JP 2003215084 A JP2003215084 A JP 2003215084A
Authority
JP
Japan
Prior art keywords
substance
tan
water absorption
water
property
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002013846A
Other languages
Japanese (ja)
Inventor
Katsuyuki Ichikawa
克之 市川
Toshiyuki Shimizu
俊幸 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP2002013846A priority Critical patent/JP2003215084A/en
Publication of JP2003215084A publication Critical patent/JP2003215084A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain an accurate numerical value for enabling accurate evaluation even if moisture is absorbed under high-temperature, high-pressure, and humid environment to evaluate hydrophilic property or hygroscopic property in a substance. <P>SOLUTION: A first dielectric tangent of a substance is measured before hydrophilic or hygroscopic treatment is made to the substance, a second dielectric tangent of the substance is measured after the hydrophilic or hygroscopic treatment is made to the substance, and hydrophilic property or hygroscopic property in the substance is evaluated based on the amount of change in the values of the first and second tangents. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、物質の吸水性や吸
湿性を評価する試験法に関する。
TECHNICAL FIELD The present invention relates to a test method for evaluating the water absorption and hygroscopicity of a substance.

【0002】[0002]

【従来の技術】電子機器に使用されるプリント配線基板
には、主として銅張積層板が使用される。銅張積層板
は、フェノール樹脂やエポキシ樹脂などの樹脂材料を紙
やガラス布などに含浸させて基材とし、この基材を数枚
重ねて形成した絶縁層の片面または両面に銅箔をのせ、
一定時間加圧、加熱して積層させることにより作製され
ている。この場合、絶縁層を構成する樹脂の種類によっ
て、その吸水性や熱膨張係数などの特性が異なるもので
あり、吸水率の大きい物質ほど絶縁層の耐絶縁性が悪く
なっている。従って、絶縁層の吸水性または吸湿性を評
価する必要がある。
2. Description of the Related Art Copper-clad laminates are mainly used for printed wiring boards used in electronic equipment. A copper clad laminate is used as a base material by impregnating a paper or glass cloth with a resin material such as phenol resin or epoxy resin, and then placing copper foil on one or both sides of an insulating layer formed by stacking several base materials. ,
It is manufactured by pressurizing and heating for a certain period of time and stacking. In this case, properties such as water absorption and thermal expansion coefficient differ depending on the type of resin that constitutes the insulating layer, and the insulation resistance of the insulating layer becomes worse as the substance having a higher water absorption rate. Therefore, it is necessary to evaluate the water absorption or hygroscopicity of the insulating layer.

【0003】銅張積層板の絶縁層の吸水性を評価する方
法としては、JIS、MILおよびIPCなどに規格さ
れる吸水率試験法が定められている。これらの試験法
は、乾燥した試験片を常温の水中(23℃)に24時間
浸漬させて、浸漬前及び浸漬後における試験片の重量を
測定し、その吸水率を算出することによって吸水性を判
定する方法である。
As a method for evaluating the water absorption of an insulating layer of a copper clad laminate, a water absorption test method specified by JIS, MIL, IPC, etc. is defined. In these test methods, a dried test piece is immersed in water at room temperature (23 ° C.) for 24 hours, the weight of the test piece before and after the immersion is measured, and the water absorption rate is calculated to calculate the water absorption. This is the method of judgment.

【0004】表1にそれぞれの規格による吸水率試験条
件を示す。ここで、処理欄の記号D,Eはそれぞれ恒温
水中浸漬処理、恒温気中放置処理を示し、後に続くスラ
ッシュ記号の前の数値が処理時間、スラッシュ記号の後
の数値が処理温度を示す。
Table 1 shows the water absorption test conditions according to the respective standards. Here, the symbols D and E in the treatment column indicate dipping treatment in constant temperature water and leaving treatment in constant temperature air, respectively. The numerical value before the subsequent slash symbol indicates the processing time, and the numerical value after the slash symbol indicates the processing temperature.

【0005】[0005]

【表1】 [Table 1]

【0006】しかしながら、ガラスエポキシ基板やBT
レジン基板などの吸水率の低い絶縁物質が使用された銅
張積層板の場合には、吸水率が低いために浸漬前と浸漬
後との重量差が生じにくく、表1に示すような規格試験
を適用しても所望の測定結果が得られないことがある。
そこで、これに代わる試験として、圧力容器を利用した
HAST(Highly Accelerated Temperature & Hum
idity Stress Test)試験などが行われることがあ
る。
However, glass epoxy substrates and BT
In the case of a copper-clad laminate using an insulating material having a low water absorption rate such as a resin substrate, the water absorption rate is low, so that a weight difference before and after dipping does not easily occur, and the standard test as shown in Table 1 is performed. Even if is applied, the desired measurement result may not be obtained.
Therefore, as an alternative test, HAST (Highly Accelerated Temperature & Hum) using a pressure vessel is used.
An idity Stress Test) test may be conducted.

【0007】HAST試験は、高い圧力環境下(例え
ば、121℃/100%RH(2.09気圧[絶対
圧])や130℃/85%RH(2.34気圧[絶対
圧])など)に物質を一定時間放置することによって、
物質に水分を強制的に押し込んで吸湿状態にさせる試験
である。したがって、HAST試験によって物質を吸湿
状態にする前後の重量を測定し、この重量変化から算出
された吸湿率を基に物質の吸湿性の判定を行うことがで
きる。
The HAST test is conducted under a high pressure environment (for example, 121 ° C./100% RH (2.09 atm [absolute pressure]) or 130 ° C./85% RH (2.34 atm [absolute pressure]). By leaving the substance for a certain time,
This is a test in which moisture is forced into a substance to make it absorb moisture. Therefore, it is possible to determine the hygroscopicity of a substance based on the moisture absorption rate calculated from this weight change by measuring the weight before and after putting the substance into a hygroscopic state by the HAST test.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、HAS
T試験を用いて物質の重量変化を捉えることにより物質
の吸湿性を判定する方法には、次のような問題点を有し
ている。
[Problems to be Solved by the Invention] However, HAS
The method of determining the hygroscopicity of a substance by capturing the weight change of the substance using the T test has the following problems.

【0009】HAST試験で使用する圧力容器は、その
内部を高い温度かつ高い相対湿度に設定することによっ
て高い圧力環境を作り出している。このような環境下に
物質が放置されると物質の種類によっては、高い温度の
影響によってその成分の一部が溶解し、さらに高い圧力
の影響によって溶解した成分の全部もしくは一部が物質
外部へ溶出することがある。
The pressure vessel used in the HAST test creates a high pressure environment by setting its inside to a high temperature and a high relative humidity. When a substance is left in such an environment, depending on the type of substance, part of the component is dissolved by the effect of high temperature, and all or part of the dissolved component is exposed to the outside of the substance by the effect of higher pressure. May elute.

【0010】このように物質の成分の一部が外部へ溶出
した場合には、図1に示すように、高い圧力領域で物質
の重量が減少することがある。そのため、物質の重量を
測定しても測定した重量からは正確な吸湿重量を把握す
ることができず、その結果、物質の吸湿性を判定するこ
とができなくなったり、誤った判定をするおそれがあ
る。
When some of the components of the substance are eluted to the outside in this way, the weight of the substance may decrease in the high pressure region as shown in FIG. Therefore, even if the weight of the substance is measured, it is not possible to accurately grasp the hygroscopic weight from the measured weight, and as a result, it becomes impossible to determine the hygroscopicity of the substance, or there is a risk of making an incorrect determination. is there.

【0011】本発明はこのような事情を考慮してなされ
たものであり、例え、高い温度と高い圧力の影響によっ
て物質中の成分の一部が溶出しても、正確に物質の吸水
性や吸湿性を判定することが可能な試験法を提供するこ
とを目的とする。
The present invention has been made in consideration of such circumstances, and even if a part of the components in the substance is eluted due to the influence of high temperature and high pressure, the water absorption of the substance and the It is an object to provide a test method capable of determining hygroscopicity.

【0012】[0012]

【課題を解決するための手段】本発明は、物質の誘電正
接(以下、tanδという)を測定し、得られたtan
δの変化量や大きさから物質の吸水性や吸湿性を判定す
るものである。
The present invention measures the dielectric loss tangent (hereinafter referred to as tan δ) of a substance and obtains the tan.
The water absorption and hygroscopicity of a substance are determined from the amount of change and the size of δ.

【0013】このため、請求項1の発明は、物質に対し
て吸水処理または吸湿処理する前に物質の第1のtan
δを測定し、物質に対して吸水処理または吸湿処理した
後に物質の第2のtanδを測定し、第1のtanδの
値と第2のtanδの値の変化量に基づいて物質の吸水
性または吸湿性を評価することを特徴とする。
Therefore, according to the first aspect of the invention, the first tan of the substance is performed before the water absorption treatment or the moisture absorption treatment of the substance.
δ is measured, the second tan δ of the substance is measured after the substance is subjected to water absorption treatment or moisture absorption treatment, and the water absorption of the substance is determined based on the change amount between the first tan δ value and the second tan δ value. It is characterized by evaluating hygroscopicity.

【0014】請求項1の発明では、物質に対して吸水処
理または吸湿処理を施す前に、第1のtanδを測定す
る。このとき、tanδの値は物質に交流電界を加える
ことによって得ることができる。特に、物質に水分が含
まれた状態で交流電界を加えると、可聴周波数領域(2
0Hz〜20KHz)で誘電損失が起こり、tanδの
増加が認められるようになる。これは、水の双極子モー
メントの影響で生じる物理現象で、この際、著しいエネ
ルギー損失が発生する。このエネルギー損失はtanδ
の増加として電気的に測定でき、水分子の量が多いほ
ど、tanδの値は大きくなる。
In the first aspect of the invention, the first tan δ is measured before the substance is subjected to the water absorption treatment or the moisture absorption treatment. At this time, the value of tan δ can be obtained by applying an alternating electric field to the substance. In particular, when an AC electric field is applied to a substance containing water, the audible frequency range (2
Dielectric loss occurs at 0 Hz to 20 KHz), and tan δ increases. This is a physical phenomenon caused by the influence of the dipole moment of water, and at this time, significant energy loss occurs. This energy loss is tan δ
Can be electrically measured as an increase in tan δ, and the larger the amount of water molecules, the larger the value of tan δ.

【0015】第1回目のtanδの測定時点では、物質
に対して吸水処理や吸湿処理が施されていないため、物
質中に含まれる水分量は少ない。したがって、tanδ
の値も小さくなる。第1のtanδ測定後、物質に対し
て吸水処理または吸湿処理を施すと、物質内部に水分が
入り込む。吸水処理または吸湿処理が完了した物質に対
して、再び交流電界を加えて第2回目のtanδの測定
を行うと、物質中には吸水処理または吸湿処理を施す前
よりも多くの水分が含まれているため、水の双極子モー
メントによるエネルギー損失が大きくなり、第2のta
nδは第1のtanδの値よりも大きくなる。そして、
第1のtanδと第2のtahδの変化量から物質の吸
水性または吸湿性を判定することがきる。
At the time of the first measurement of tan δ, the substance is not subjected to the water absorption treatment or the moisture absorption treatment, so that the water content in the substance is small. Therefore, tan δ
Also becomes smaller. After the first tan δ measurement, when the substance is subjected to a water absorption treatment or a moisture absorption treatment, water enters inside the substance. When a second tan δ measurement is performed again by applying an alternating electric field to a substance that has undergone water absorption treatment or moisture absorption treatment, the substance contains more water than before the water absorption treatment or moisture absorption treatment. Therefore, the energy loss due to the dipole moment of water increases and the second ta
nδ becomes larger than the value of the first tanδ. And
The water absorption or hygroscopicity of a substance can be determined from the amount of change between the first tan δ and the second tah δ.

【0016】ここで、吸水処理とは、物質を液体の水ま
たは湯に一定時間浸漬放置することによって物質に水分
を吸収させる処理であり、吸湿処理とは、物質を気体の
水(水蒸気)の雰囲気に一定時間放置することによって
物質に水分を吸収させる処理である。
Here, the water absorption treatment is a treatment in which the substance is allowed to absorb water by leaving it immersed in liquid water or hot water for a certain period of time, and the moisture absorption treatment means that the substance is converted into gaseous water (steam). This is a process in which a substance absorbs water by leaving it in an atmosphere for a certain period of time.

【0017】請求項2の発明は、物質に対して吸水処理
または吸湿処理した後に物質のtanδを測定し、ta
nδの値の大きさに基づいて物質の吸水性または吸湿性
を評価することを特徴とする。
According to the second aspect of the invention, after the substance is subjected to water absorption treatment or moisture absorption treatment, tan δ of the substance is measured, and ta
The water absorption or hygroscopicity of the substance is evaluated based on the magnitude of the value of nδ.

【0018】請求項2の発明では、物質に対して吸水処
理または吸湿処理を施した後に、物質のtanδを測定
する。吸水処理または吸湿処理を施したことによって物
質には水分が含まれているので、交流電界が加えられた
物質では、水の双極子モーメントによるエネルギー損失
が大きくなり、tanδの値が大きくなる。そして、こ
のtanδの値の大きさから物質の吸水性または吸湿性
を判定することができる。
According to the second aspect of the present invention, tan δ of the substance is measured after the substance is subjected to water absorption treatment or moisture absorption treatment. Since the substance contains water due to the water absorption treatment or the moisture absorption treatment, the energy loss due to the dipole moment of water increases and the value of tan δ increases in the substance to which the AC electric field is applied. Then, the water absorption or hygroscopicity of the substance can be determined from the magnitude of the value of tan δ.

【0019】[0019]

【発明の実施の形態】本発明の一実施の形態では、絶縁
層がガラスエポキシ樹脂からなる0.3mmピッチの櫛
形電極基板を準備した。図2(a)は、櫛形電極基板を
表面21aから見た状態、同図(b)は裏面21bから
見た状態を示す。表面21aには幅0.15mmの電極
22が57本相互に平行な状態で並んでおり、裏面21
bに表面21aの電極22にほぼ対向する位置に電極2
3が形成されている。
BEST MODE FOR CARRYING OUT THE INVENTION In one embodiment of the present invention, a comb-shaped electrode substrate having an insulating layer made of glass epoxy resin and having a pitch of 0.3 mm was prepared. 2A shows the comb-shaped electrode substrate as viewed from the front surface 21a, and FIG. 2B shows the comb-shaped electrode substrate as viewed from the back surface 21b. 57 electrodes 22 having a width of 0.15 mm are arranged on the front surface 21a in parallel with each other.
The electrode 2 is provided at a position substantially opposite to the electrode 22 on the surface 21a.
3 is formed.

【0020】櫛形電極基板を125℃に設定された乾操
炉の中に24時間放置することにより櫛形電極基板中に
含まれる水分を除去した。次に、櫛形電極基板を温度が
25℃、相対湿度が60%RHの雰囲気に1時間放置し
てから、櫛形電極基板の表面21aの電極22と裏面2
1bの電極23とを対向電極として、電極22と電極2
3の電極間にLCRメータを用いて交流電界を加えて第
1のtanδを測定した。また、比較のためにtanδ
測定後、櫛形電極基板の重量(W1)を測定した。ここ
で、tanδの測定は1kHz〜1MHzの周波数帯域
で行い、効果の確認は120Hzの周波数で検討した。
Moisture contained in the comb-shaped electrode substrate was removed by leaving the comb-shaped electrode substrate in a dry oven set at 125 ° C. for 24 hours. Next, after the comb-shaped electrode substrate is left in an atmosphere having a temperature of 25 ° C. and a relative humidity of 60% RH for 1 hour, the electrodes 22 on the front surface 21a and the back surface 2 of the comb-shaped electrode substrate are left.
The electrode 23 and the electrode 2 of 1b are used as the counter electrode.
An alternating electric field was applied between the electrodes of No. 3 using an LCR meter to measure the first tan δ. Also, for comparison, tan δ
After the measurement, the weight (W1) of the comb-shaped electrode substrate was measured. Here, the measurement of tan δ was performed in the frequency band of 1 kHz to 1 MHz, and the confirmation of the effect was examined at the frequency of 120 Hz.

【0021】なお、吸水処理を施す前の第1のtanδ
の測定は、吸水処理前に櫛形電極基板を十分に乾燥する
などしてtanδの値が十分に小さな値であることが予
め判明している場合には、省略しても構わない。
The first tan δ before water absorption treatment
The measurement may be omitted if it is known in advance that the value of tan δ is a sufficiently small value by, for example, sufficiently drying the comb-shaped electrode substrate before the water absorption treatment.

【0022】櫛形電極基板のtanδを測定した後、櫛
形電極基板を第一種圧力容器(HAST SYSTEM
TPC−422M(タバイエスペック株式会社製))に
入れて吸湿処理を施した。吸湿処理は表2に示す5つの
条件の中から1基板について1条件とし、1条件につい
て4枚の基板を吸湿処理した。また、各吸湿条件での試
験時間は24時間とした。
After the tan δ of the comb-shaped electrode substrate was measured, the comb-shaped electrode substrate was mounted on the first type pressure vessel (HAST SYSTEM).
It was put into TPC-422M (manufactured by Tabai Espec Co., Ltd.) and subjected to a moisture absorption treatment. Regarding the moisture absorption treatment, one of the five conditions shown in Table 2 was set for one substrate, and four substrates were subjected to the moisture absorption treatment for each condition. The test time under each moisture absorption condition was 24 hours.

【0023】なお、櫛形電極基板を吸湿させる手段とし
て、この実施の形態では、相対湿度が100%の飽和状
態でHAST試験を行っているが、相対湿度が100%
RHに達していない不飽和のHAST試験でもよく、さ
らには、櫛形電極基板に水分を含ませることができれ
ば、HAST試験以外の方法でも構わない。
As a means for absorbing moisture in the comb-shaped electrode substrate, in this embodiment, the HAST test is conducted in a saturated state where the relative humidity is 100%, but the relative humidity is 100%.
An unsaturated HAST test that does not reach RH may be used, and a method other than the HAST test may be used as long as the comb-shaped electrode substrate can be made to contain water.

【0024】[0024]

【表2】 [Table 2]

【0025】上記吸湿条件に櫛形電極基板を曝した後、
櫛形電極基板を温度25℃、相対湿度60%の雰囲気中
に1時間放置してから、櫛形電極基板の第2のtanδ
を測定した。また、tanδ測定後、櫛形電極基板の重
量(W2)を測定した。以上のようにして測定したta
nδおよび重量の測定の結果から、櫛形電極基板のta
nδの変化量および重量の変化率を算出した。
After exposing the comb-shaped electrode substrate to the above moisture absorption condition,
After the comb-shaped electrode substrate was left in an atmosphere having a temperature of 25 ° C. and a relative humidity of 60% for 1 hour, the second tanδ of the comb-shaped electrode substrate was
Was measured. After the tan δ measurement, the weight (W2) of the comb-shaped electrode substrate was measured. Ta measured as described above
From the measurement results of nδ and the weight, ta of the comb-shaped electrode substrate was measured.
The amount of change in nδ and the rate of change in weight were calculated.

【0026】図3はtanδの変化量を、図4は重量の
変化率を示す。図3は、縦軸がtanδの常用対数であ
るlog(tanδ)、横軸が絶対圧力である。図3中
における「○」は、表2の各吸湿条件での周波数1kH
zにおけるtanδの値をプロットしたものである。こ
の図から、圧力が大きくなるに伴い、log(tan
δ)の値も大きくなっていることが解る。
FIG. 3 shows the amount of change in tan δ, and FIG. 4 shows the rate of change in weight. In FIG. 3, the vertical axis is log (tan δ) which is the common logarithm of tan δ, and the horizontal axis is the absolute pressure. “◯” in FIG. 3 indicates a frequency of 1 kHz under each moisture absorption condition in Table 2.
It is a plot of the value of tan δ in z. From this figure, as pressure increases, log (tan
It can be seen that the value of δ) is also large.

【0027】これらのプロット点に対して、回帰分析を
行うと、図3に示すような右上がりの直線が得られる。
このことは、圧力の増加に比例してtanδの値が増し
ていることを意味していることから、tanδの値は、
圧力の値が大きくなっても水分の吸湿状態を正確に捉え
ていることが推測できる。
When regression analysis is performed on these plotted points, a straight line rising to the right as shown in FIG. 3 is obtained.
This means that the value of tan δ increases in proportion to the increase in pressure, so the value of tan δ is
It can be inferred that the moisture absorption state is accurately captured even when the pressure value increases.

【0028】図4において、縦軸は重量変化率、横軸は
絶対圧力である。図4中における「○」は、表2の各吸
湿条件での重量変化率の値をプロットしたものである。
この図から、圧力が大きくなるに伴い、重量変化率の値
も大きくなっている傾向が伺える。
In FIG. 4, the vertical axis represents the weight change rate and the horizontal axis represents the absolute pressure. "O" in FIG. 4 is a plot of the weight change rate values under each moisture absorption condition in Table 2.
From this figure, it can be seen that as the pressure increases, the value of the rate of weight change also increases.

【0029】これらプロット点に対して回帰分析を行う
と、図4に示すような曲線が得られる。これは、圧力が
大きくなるにつれて、重量変化率の割合が後々に小さく
なっていることを意味している。このように、圧力が大
きい試験条件で重量変化率の増加率が小さくなる原因と
しては、高い温度の影響によつて櫛形電極基板の樹脂成
分などの一部が溶解し、高い圧力の影響によって、溶解
した物質の全部もしくは一部が櫛形電極基板の外部へ溶
出し、このため、櫛形電極基板の重量が減少したことが
考えられる。
When regression analysis is performed on these plot points, a curve as shown in FIG. 4 is obtained. This means that the rate of change in weight becomes smaller later as the pressure increases. As described above, the reason why the increase rate of the weight change rate becomes small under the test condition where the pressure is large is that a part of the resin component of the comb-shaped electrode substrate is dissolved by the influence of the high temperature, and the influence of the high pressure causes It is conceivable that all or part of the dissolved substance was eluted to the outside of the comb-shaped electrode substrate, which reduced the weight of the comb-shaped electrode substrate.

【0030】以上のことから、tanδの測定によって
櫛形電極基板の吸水性や吸湿性を評価する試験方法は、
高い圧力においても正確に水分の吸湿性を捉えることが
できる。このため、重量によって評価する試験方法より
も、広い圧力範囲に対して本発明の試験方法を適用する
ことが可能となる。また、この試験方法では吸収した水
分の量に応じてtanδの値が変化するため、銅張積層
板を構成する樹脂材料にかかわらず、正しい測定を行う
ことができる。
From the above, the test method for evaluating the water absorption and hygroscopicity of the comb-shaped electrode substrate by measuring tan δ is as follows:
It is possible to accurately detect the hygroscopicity of water even at a high pressure. Therefore, the test method of the present invention can be applied to a wider pressure range than the test method evaluated by weight. Further, in this test method, the value of tan δ changes depending on the amount of absorbed water, so that correct measurement can be performed regardless of the resin material forming the copper clad laminate.

【0031】なお、この実施の形態では、被測定物とし
て、電極が銅張積層板の両面に形成された櫛形電極基板
を使用しているが、被測定物に対向電極を密着して挟み
込むことができる構造であれば、銅が全てエッチングさ
れた絶縁層だけの銅張積層板や樹脂材料などについても
同様に評価を行うことができる。
In this embodiment, a comb-shaped electrode substrate having electrodes formed on both sides of a copper clad laminate is used as the object to be measured, but the counter electrode should be closely attached to the object to be measured. With such a structure, the copper-clad laminate having only an insulating layer in which copper is completely etched, a resin material, and the like can be similarly evaluated.

【0032】[0032]

【発明の効果】請求項1の発明によれば、物質に対して
吸水処理または吸湿処理する前後にtanδを測定し
て、これらのtanδの変化量から物質の吸水性または
吸湿性を判定するため、物質中の成分の一部が物質外に
溶出しても、物質の吸水性または吸湿性の判定を誤るこ
となく評価することができる。
According to the first aspect of the present invention, the tan δ is measured before and after the water absorption treatment or the moisture absorption treatment of the substance, and the water absorption or hygroscopicity of the substance is determined from the change amount of these tan δ. Even if a part of the components in the substance is eluted out of the substance, the water absorption or hygroscopicity of the substance can be evaluated without error.

【0033】請求項2の発明によれば、物質を吸水処理
または吸湿処理した後に限り、物質のtanδを測定
し、tanδの大きさから物質の吸水性または吸湿性を
判定するため、請求項1の発明よりもtanδの測定回
数を少なくすることができ、効率的な評価を行うことが
できる。
According to the invention of claim 2, the tan δ of the substance is measured only after the substance is subjected to the water absorption treatment or the moisture absorption treatment, and the water absorption or hygroscopicity of the substance is judged from the magnitude of tan δ. It is possible to reduce the number of times of tan δ measurement as compared with the invention of 1, and it is possible to perform efficient evaluation.

【図面の簡単な説明】[Brief description of drawings]

【図1】圧力と物質の重量との関係を示す特性図であ
る。
FIG. 1 is a characteristic diagram showing a relationship between pressure and weight of a substance.

【図2】(a)及び(b)は、一実施の形態における櫛
形電極基板の表面図及び裏面図である。
2A and 2B are a front view and a back view of a comb-shaped electrode substrate according to an embodiment.

【図3】一実施の形態のtanδの測定結果を示す特性
図である。
FIG. 3 is a characteristic diagram showing a measurement result of tan δ according to one embodiment.

【図4】一実施の形態の重量変化を示す特性図である。FIG. 4 is a characteristic diagram showing a change in weight according to the embodiment.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2G028 AA01 BC01 CG10 DH14 2G060 AA09 AA11 AE40 AF11 AG10 BA09 JA07 KA09    ─────────────────────────────────────────────────── ─── Continued front page    F term (reference) 2G028 AA01 BC01 CG10 DH14                 2G060 AA09 AA11 AE40 AF11 AG10                       BA09 JA07 KA09

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 物質に対して吸水処理または吸湿処理す
る前に物質の第1の誘電正接を測定し、物質に対して吸
水処理または吸湿処理した後に物質の第2の誘電正接を
測定し、第1の誘電正接の値と第2の誘電正接の値の変
化量に基づいて物質の吸水性または吸湿性を評価するこ
とを特徴とする物質の吸水性または吸湿性を評価する試
験法。
1. A first dielectric loss tangent of a substance is measured before a water absorption treatment or a moisture absorption treatment of a substance, and a second dielectric loss tangent of the substance is measured after a water absorption treatment or a moisture absorption treatment of a substance, A test method for evaluating the water absorption or hygroscopicity of a substance, which comprises evaluating the water absorption or hygroscopicity of a substance based on the amount of change in the value of the first dielectric loss tangent and the value of the second dielectric loss tangent.
【請求項2】 物質に対して吸水処理または吸湿処理し
た後に物質の誘電正接を測定し、誘電正接の値の大きさ
に基づいて物質の吸水性または吸湿性を評価することを
特徴とする物質の吸水性または吸湿性を評価する試験
法。
2. A substance characterized by measuring the dielectric loss tangent of the substance after water absorption treatment or moisture absorption treatment to the substance and evaluating the water absorption or hygroscopicity of the substance based on the magnitude of the value of the dielectric loss tangent. Test method to evaluate the water absorption or hygroscopicity of.
JP2002013846A 2002-01-23 2002-01-23 Test method for evaluating hydrophilic property or hygroscopic property in substance Withdrawn JP2003215084A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002013846A JP2003215084A (en) 2002-01-23 2002-01-23 Test method for evaluating hydrophilic property or hygroscopic property in substance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002013846A JP2003215084A (en) 2002-01-23 2002-01-23 Test method for evaluating hydrophilic property or hygroscopic property in substance

Publications (1)

Publication Number Publication Date
JP2003215084A true JP2003215084A (en) 2003-07-30

Family

ID=27650699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002013846A Withdrawn JP2003215084A (en) 2002-01-23 2002-01-23 Test method for evaluating hydrophilic property or hygroscopic property in substance

Country Status (1)

Country Link
JP (1) JP2003215084A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102072904A (en) * 2010-11-11 2011-05-25 广东生益科技股份有限公司 Water permeability resistance verifying method for flexible single-sided copper clad plates
JP2013195329A (en) * 2012-03-22 2013-09-30 Hitachi Chemical Co Ltd Method for evaluating moisture resistance reliability of semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102072904A (en) * 2010-11-11 2011-05-25 广东生益科技股份有限公司 Water permeability resistance verifying method for flexible single-sided copper clad plates
JP2013195329A (en) * 2012-03-22 2013-09-30 Hitachi Chemical Co Ltd Method for evaluating moisture resistance reliability of semiconductor device

Similar Documents

Publication Publication Date Title
Koch et al. Analysis of dielectric response measurements for condition assessment of oil-paper transformer insulation
US20090009193A1 (en) Moisture-Sensitive Element with an Interdigital Capacitor and Fabrication thereof
JPH0275948A (en) Non-destructive method for evaluating printed wiring board
Levikari et al. Acoustic phenomena in damaged ceramic capacitors
JP2015230290A (en) Dew condensation testing method, and dew condensation testing apparatus
Ma et al. Effect of moisture on thermal properties of halogen-free and halogenated printed-circuit-board laminates
JP2003215084A (en) Test method for evaluating hydrophilic property or hygroscopic property in substance
CN108072343B (en) The appraisal procedure of PCB new material harmomegathus penalty coefficient
Mishra et al. A novel method to predict severity of thermal aging and degree of polymerization for reliable diagnosis of dry-type insulation
US8525535B2 (en) Test body, test arrangement, method for manufacturing of a test body, and method for determining a moisture content of the insulation of a power transformer during drying thereof
Henning et al. Usability of Bio-based Polymers for PCB
JP2003215080A (en) Test method for evaluating water or moisture absorbing property of material and method of detecting water or moisture absorption distribution of material
Murray et al. Environmental aging and deadhesion of polyimide dielectric films
JP3400362B2 (en) Method and apparatus for diagnosing life of electronic device
Lahokallio et al. Effect of high-humidity testing on material parameters of flexible printed circuit board materials
Park Dielectric cure determination of a thermosetting epoxy composite prepreg
JP3242883B2 (en) Inspection method of flexible wiring board
CN108181342B (en) Flexible plate detection method
Schneider et al. Complementary EIS/FTIR study of the degradation of adhesives in electronic packaging
JP2015141152A (en) Evaluation method of resin film
JP2000136995A (en) Method for evaluating reliability of resin circuit board
CN105784536A (en) Method for detecting residual quantity of cross-linking reaction by-products in cross-linked cable
CN114646723A (en) Laminated board internal structure and performance integrity analysis method and application thereof
Pham et al. Assessment methods for the characterization of flux material systems toward water absorption
JPH06337B2 (en) Method for measuring dryness of prepreg for laminated board

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050405