JP2015141152A - Evaluation method of resin film - Google Patents

Evaluation method of resin film Download PDF

Info

Publication number
JP2015141152A
JP2015141152A JP2014015343A JP2014015343A JP2015141152A JP 2015141152 A JP2015141152 A JP 2015141152A JP 2014015343 A JP2014015343 A JP 2014015343A JP 2014015343 A JP2014015343 A JP 2014015343A JP 2015141152 A JP2015141152 A JP 2015141152A
Authority
JP
Japan
Prior art keywords
temperature
resin film
dimensional change
change rate
test piece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014015343A
Other languages
Japanese (ja)
Other versions
JP6201184B2 (en
Inventor
恭子 宮内
Kyoko Miyauchi
恭子 宮内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2014015343A priority Critical patent/JP6201184B2/en
Publication of JP2015141152A publication Critical patent/JP2015141152A/en
Application granted granted Critical
Publication of JP6201184B2 publication Critical patent/JP6201184B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of evaluating an influence, on the dimensional change rate, of the dehydration caused when a resin film used as a base film for a copper-plated laminated sheet is heated.SOLUTION: Two specimens are cut from a resin film such as a polyimide film to be evaluated, moisture absorption is applied to one specimen and drying for increasing the temperature to 100°C or more and 150°C or less is applied to the other specimen as pretreatment, then variation in the dimensional change rate of each specimen due to the temperature is measured by increasing the temperature from room temperature to, preferably, 150°C or more and 200°C or less using a thermomechanical analysis apparatus, and the dimensional change rate due to dehydration is calculated by subtracting the dimensional change rate of the specimen having undergone the drying from the dimensional change rate of the specimen having undergone the moisture absorption at each temperature.

Description

本発明は、銅張積層板のベースフィルムとして使用される樹脂フィルムの評価方法に関し、特にポリイミドフィルムに代表される樹脂フィルムの脱水による寸法変化率を熱機械分析の測定結果に基づいて評価する方法に関する。   The present invention relates to a method for evaluating a resin film used as a base film of a copper-clad laminate, and in particular, a method for evaluating a dimensional change rate due to dehydration of a resin film represented by a polyimide film based on a measurement result of thermomechanical analysis. About.

ポリイミドフィルムは優れた耐熱性を有している上、機械的、電気的、および化学的特性において他のプラスチック材料に比べて遜色ないことから、例えばプリント配線板(PWB)、フレキシブルプリント配線板(FPC)、テープ自動ボンディング用テープ(TAB)、チップオンフィルム(COF)等の電子部品用の絶縁基板材料として多用されている。これらPWB、FPC、TAB、及びCOFは、一般にベースフィルムとしてのポリイミドフィルムの少なくとも片面に金属導体層として銅をめっき等で被覆し、得られた銅被覆ポリイミド基板の金属導体層に配線をパターニング加工することによって作製することができる。   The polyimide film has excellent heat resistance and is not inferior to other plastic materials in mechanical, electrical, and chemical characteristics. For example, a printed wiring board (PWB), a flexible printed wiring board ( It is widely used as an insulating substrate material for electronic components such as FPC), tape automatic bonding tape (TAB), and chip on film (COF). These PWB, FPC, TAB, and COF are generally coated with copper as a metal conductor layer on at least one side of a polyimide film as a base film, and wiring is patterned on the metal conductor layer of the obtained copper-coated polyimide substrate. It can produce by doing.

このような銅被覆ポリイミド基板に代表される銅張積層板の品質の評価方法としては、例えば非特許文献1に、TMA(Thermo Mechanical Analysis)装置を用いて銅張積層板のベースフィルムの寸法変化率を測定し、これにより銅張積層板の品質を評価する手法が記載されている。この手法は、銅張積層板の全面銅はくをエッチングにより除去し、得られたプラスチックフィルムに複数の穴を開けてTMA装置で加熱処理を行い、この加熱処理の前後での穴間隔の変化を測定して寸法変化率を算出するものである。また、非特許文献2には、包装用延伸ポリプレンフィルムを加熱処理した時の寸法変化率を測定する手法が記載されている。   As a method for evaluating the quality of a copper-clad laminate typified by such a copper-coated polyimide substrate, for example, Non-Patent Document 1 describes a dimensional change of a base film of a copper-clad laminate using a TMA (Thermo Mechanical Analysis) apparatus. A technique for measuring the rate and thereby evaluating the quality of the copper clad laminate is described. In this method, the copper foil on the copper clad laminate is removed by etching, a plurality of holes are made in the obtained plastic film, and heat treatment is performed with a TMA apparatus, and the change in the hole interval before and after the heat treatment is performed. Is used to calculate the dimensional change rate. Non-Patent Document 2 describes a method of measuring a dimensional change rate when a stretched stretched polypropylene film for heat treatment is heat-treated.

JIS C 6481 プリント配線板用銅張積層板試験方法JIS C 6481 Test method for copper-clad laminates for printed wiring boards JIS Z 1712 包装用延伸ポリプロピレンフィルムJIS Z 1712 oriented polypropylene film for packaging

上記した非特許文献1、2の樹脂フィルムの評価方法は、いずれも常温の樹脂フィルムに対して特定の温度及び時間で加熱処理した時に生ずる寸法変化率を測定して評価するものであるが、樹脂フィルムには一般的に水分が含まれており、これが加熱によって脱水した時にどの程度寸法変化に影響を及ぼすかについては把握することができなかった。   The above-mentioned evaluation methods for the resin films of Non-Patent Documents 1 and 2 are to measure and evaluate the rate of dimensional change that occurs when heat treatment is performed at a specific temperature and time for a normal temperature resin film, The resin film generally contains moisture, and it has not been possible to grasp how much this affects the dimensional change when dehydrated by heating.

例えば、分子鎖に親水基であるカルボニル基を持つ樹脂フィルムは高い吸水性を有しているため、上記した寸法変化率の測定の際の昇温により樹脂フィルムに吸水されていた水分が脱水し、この脱水による収縮挙動が樹脂フィルムの寸法変化率の測定結果に影響を及ぼすことがあった。本発明は上記した従来の問題に鑑みてなされたものであり、樹脂フィルムを加熱した時に生じる脱水による寸法変化率への影響を評価する方法を提供することを目的としている。   For example, since a resin film having a carbonyl group that is a hydrophilic group in the molecular chain has high water absorption, the water absorbed in the resin film is dehydrated due to the temperature rise during the measurement of the dimensional change rate described above. The shrinkage behavior due to dehydration sometimes affects the measurement result of the dimensional change rate of the resin film. The present invention has been made in view of the above-described conventional problems, and an object of the present invention is to provide a method for evaluating the influence on the dimensional change rate due to dehydration that occurs when a resin film is heated.

上記目的を達成するため、本発明に係る樹脂フィルムの寸法安定性の評価方法は、評価対象となる樹脂フィルムから2枚の試験片を切り出し、前処理として一方には吸湿処理を他方には100℃以上150℃以下まで昇温させる乾燥処理を施した後、各々熱機械分析装置を用いて室温から所定の温度まで昇温させることで寸法変化率の温度による変化を測定し、前記吸湿処理した試験片の寸法変化率から前記乾燥処理した試験片の寸法変化率を温度毎に差し引くことで脱水による寸法変化率を算出することを特徴としている。   In order to achieve the above object, the method for evaluating the dimensional stability of a resin film according to the present invention cuts out two test pieces from a resin film to be evaluated, and performs a moisture absorption treatment on one side and a moisture absorption treatment on the other side as a pretreatment. After performing a drying process of raising the temperature from 150 ° C. to 150 ° C., the temperature change was measured from room temperature to a predetermined temperature using a thermomechanical analyzer, and the moisture absorption treatment was performed. The dimensional change rate due to dehydration is calculated by subtracting the dimensional change rate of the dried test piece for each temperature from the dimensional change rate of the test piece.

本発明によれば、樹脂フィルムを加熱した時に生じる脱水による寸法変化率をTMA装置を用いて簡易に評価することができ、これによりフレキシブルプリント配線板等に用いる銅張積層板のベースフィルムの寸法安定性に関して脱水による影響が考慮されたより詳細な知見を得ることができる。   According to the present invention, the rate of dimensional change due to dehydration that occurs when a resin film is heated can be easily evaluated using a TMA apparatus, whereby the dimensions of the base film of a copper-clad laminate used for flexible printed wiring boards and the like. More detailed knowledge regarding the effect of dehydration in consideration of stability can be obtained.

実施例1の樹脂フィルムの昇温パターン及びそれに伴って生じた寸法変化率を示すグラフであり、(a)は乾燥させた樹脂フィルムを用いた場合、(b)は吸湿させた樹脂フィルムを用いた場合、(c)は(b)の寸法変化率から(a)の寸法変化率を温度毎に差し引いた結果を示す。It is a graph which shows the temperature rising pattern of the resin film of Example 1, and the dimensional change rate which accompanied it, (a) when using the dried resin film, (b) is using the moisture-absorbed resin film. (C) shows the result of subtracting the dimensional change rate of (a) for each temperature from the dimensional change rate of (b). 実施例2の樹脂フィルムの昇温パターン及びそれに伴って生じた寸法変化率を示すグラフであり、(a)は吸湿させた樹脂フィルムを用いた場合、(b)はこの(a)の寸法変化率から図1の(a)の寸法変化率を温度毎に差し引いた結果を示す。It is a graph which shows the temperature rising pattern of the resin film of Example 2, and the dimensional change rate which accompanied it, (a) is the case where the moisture-absorbed resin film is used, (b) is this dimensional change of (a). 1 shows the result of subtracting the dimensional change rate of FIG. 実施例3の樹脂フィルムの昇温パターン及びそれに伴って生じた寸法変化率を示すグラフであり、(a)は乾燥させた樹脂フィルムを用いた場合、(b)は吸湿させた樹脂フィルムを用いた場合、(c)は(b)の寸法変化率から(a)の寸法変化率を温度毎に差し引いた結果を示す。It is a graph which shows the temperature rising pattern of the resin film of Example 3, and the dimensional change rate produced in connection with it, (a) when using the dried resin film, (b) is using the moisture-absorbed resin film. (C) shows the result of subtracting the dimensional change rate of (a) for each temperature from the dimensional change rate of (b). 実施例4の樹脂フィルムの昇温パターン及びそれに伴って生じた寸法変化率を示すグラフであり、(a)は吸湿させた樹脂フィルムを用いた場合、(b)はこの(a)の寸法変化率から図3の(a)の寸法変化率を温度毎に差し引いた結果を示す。It is a graph which shows the temperature rising pattern of the resin film of Example 4, and the dimensional change rate which accompanied it, (a) is the case where the moisture-absorbed resin film is used, (b) is this dimensional change of (a). 3 shows the result of subtracting the dimensional change rate in FIG. 3A for each temperature from the rate.

以下、本発明の樹脂フィルムの評価方法の一具体例について説明する。この本発明の一具体例の樹脂フィルムの評価方法は、一般に厚み0.2〜1mmの長尺状樹脂フィルムを評価対象としており、特にフレキシブルプリント配線板等に用いる銅張積層板用のベースフィルムとして使用される長尺状のポリイミドフィルムの評価に適している。評価に際して先ず長尺状樹脂フィルムから幅2〜6mm×長さ15〜50mm程度の2枚の同サイズの矩形のフィルム片を切り出して試験片とする。   Hereinafter, a specific example of the resin film evaluation method of the present invention will be described. This method for evaluating a resin film according to one specific example of the present invention is generally intended to evaluate a long resin film having a thickness of 0.2 to 1 mm, and particularly a base film for a copper-clad laminate used for a flexible printed wiring board or the like. It is suitable for evaluation of long polyimide films used as At the time of evaluation, first, two rectangular film pieces of the same size having a width of 2 to 6 mm and a length of 15 to 50 mm are cut out from the long resin film to obtain test pieces.

これら2枚の試験片を切り出す際は、それらの長手方向が両方とも長尺状プラスチックフィルムの平面上において同じ向きを向いているように切り出すのが好ましい。例えば、2枚の矩形の試験片の長手方向が両方とも長尺状プラスチックフィルムのTD(Transverse Direction)方向を向くように切り出すのが好ましい。   When cutting out these two test pieces, it is preferable to cut them out so that their longitudinal directions are both in the same direction on the plane of the long plastic film. For example, it is preferable to cut out the two rectangular test pieces so that both of the longitudinal directions thereof are directed to the TD (Transverse Direction) direction of the long plastic film.

このようにして切り出した2枚の試験片のうちの一方は、所定の温度及び湿度条件の雰囲気下に所定の時間曝すことにより吸湿処理を施す。この吸湿処理は、限定するものではないが、恒温恒湿槽内で行うのが望ましい。2枚の試験片のうちの他方は、水の沸点である100℃以上で好ましくは150℃以下の温度まで昇温させる乾燥処理を施す。これにより樹脂フィルムに残留している水分を除去する。その後、高温の試験片に対しては必要に応じて冷却を行って室温に戻す。このようにして前処理された両試験片に対して、各々熱機械分析装置(TMA:Thermo−Mechanical Analysis)装置を用いて所定の引っ張り荷重をかけながら室温から好ましくは150℃以上200℃以下の温度、より好ましくは約180℃まで昇温させる。   One of the two test pieces cut out in this way is subjected to moisture absorption treatment by exposure to an atmosphere of a predetermined temperature and humidity condition for a predetermined time. Although this moisture absorption process is not limited, it is desirable to perform in a constant temperature and humidity tank. The other of the two test pieces is subjected to a drying process in which the temperature is raised to a temperature of 100 ° C. or higher, preferably 150 ° C. or lower, which is the boiling point of water. As a result, moisture remaining on the resin film is removed. Then, it cools as needed with respect to a hot test piece, and returns to room temperature. The two specimens pretreated in this way are each subjected to a predetermined tensile load using a thermo-mechanical analyzer (TMA: Thermo-Mechanical Analysis) apparatus, and preferably from 150 ° C. to 200 ° C. from room temperature. The temperature is raised, more preferably to about 180 ° C.

これにより、吸湿処理された試験片及び乾燥処理された試験片の寸法変化率の温度による変化プロフィールがそれぞれ得られる。そして、これら吸湿処理された試験片の寸法変化率から乾燥処理された試験片の寸法変化率を温度毎に差し引くことで脱水による寸法変化率を算出することができる   Thereby, the change profile with the temperature of the dimensional change rate of the test piece which carried out the moisture absorption process and the test piece which carried out the dry process is each obtained. The dimensional change rate due to dehydration can be calculated by subtracting the dimensional change rate of the dried test piece from the dimensional change rate of the moisture-absorbed test piece for each temperature.

なお、上記した熱機械分析は、不活性ガス雰囲気下にて実施するのが好ましい。酸素を含むガス雰囲気ではおおよそ100℃以上の温度でプラスチックフィルムが酸化されて変質するおそれがあるからである。また、吸湿処理や乾燥処理を施した試験片はすばやくTMA装置で試験を行うのが好ましい。吸湿処理された試験片の乾燥が進んだり、乾燥処理された試験片に再度水分が吸着したりするのを抑えることができ、寸法変化率をより正確に測定することが可能になるからである。   The thermomechanical analysis described above is preferably performed in an inert gas atmosphere. This is because in a gas atmosphere containing oxygen, the plastic film may be oxidized and deteriorated at a temperature of about 100 ° C. or higher. Moreover, it is preferable that the test piece which performed the moisture absorption process and the drying process test quickly with a TMA apparatus. This is because it is possible to suppress drying of the moisture-absorbed test piece and to prevent moisture from adsorbing again to the dried test piece, and to measure the dimensional change rate more accurately. .

試験片の引っ張り荷重は3g以上7g未満が好ましく、5gがより好ましい。この荷重が3g未満では試験片の保持が不十分になりやすく、振動によるノイズが加わって測定精度が低下するおそれがある。一方、荷重が7gを超えると試験片が過剰に引っ張られるため、精度の高い測定ができなくなるおそれがある。更に、上記昇温の際は毎分20℃以上で昇温させるのが望ましい。この昇温速度が毎分20℃未満では各温度での保持時間が長くなりすぎるため、脱水による寸法変化率を正しく算出できなくなるおそれがある。   The tensile load of the test piece is preferably 3 g or more and less than 7 g, more preferably 5 g. If the load is less than 3 g, the test piece is likely to be insufficiently held, and noise due to vibration may be added to reduce measurement accuracy. On the other hand, if the load exceeds 7 g, the test piece is pulled excessively, so that there is a possibility that measurement with high accuracy cannot be performed. Furthermore, it is desirable to raise the temperature at 20 ° C. or more per minute when the temperature is raised. If this rate of temperature rise is less than 20 ° C. per minute, the holding time at each temperature will be too long, and the dimensional change rate due to dehydration may not be calculated correctly.

[実施例1]
東レ・デュポン株式会社製の長尺状のポリイミドフィルム(商品名:カプトン150EN)から2枚の同サイズの矩形の試験片をそれらの長手方向が長尺状のポリイミドフィルムのTD方向を向くように切り出し、それらのうちの一方の試験片に対して恒温恒湿槽にて23℃、相対湿度85%の雰囲気に96時間曝露させる吸湿処理を行った。また、もう一方の試験片に対しては、試験片の温度を100℃まで昇温させて残留水分を除去した後、25℃まで温度を下げる乾燥処理を行った。
[Example 1]
Two rectangular test pieces of the same size from a long polyimide film (trade name: Kapton 150EN) manufactured by Toray DuPont Co., Ltd. so that the longitudinal direction thereof faces the TD direction of the long polyimide film The sample was cut out and subjected to a moisture absorption treatment in which one of the test pieces was exposed to an atmosphere of 23 ° C. and 85% relative humidity for 96 hours in a constant temperature and humidity chamber. Further, the other test piece was subjected to a drying treatment in which the temperature of the test piece was raised to 100 ° C. to remove residual moisture, and then the temperature was lowered to 25 ° C.

これら吸湿処理及び乾燥処理がそれぞれ施された両試験片を各々ブルカー・エイエックス(株)製のTMA装置4030SAに取り付けた。各試験片をTMA装置の測定チャックに取り付ける際は、TD方向に5gの引っ張り荷重がかかるようにした。そして、雰囲気温度を毎分20℃の昇温速度で30℃から180℃まで昇温させて180℃で30分間保持する加熱処理を行いながら寸法変化率を測定した。なお、寸法変化率の測定の際はTMA装置内を窒素雰囲気にした。また、雰囲気温度は試験片から約5mm離れた場所に設置した熱電対で測定した。   Both test pieces subjected to the moisture absorption treatment and the drying treatment were respectively attached to a TMA apparatus 4030SA manufactured by Bruker Ax Co., Ltd. When attaching each test piece to the measurement chuck of the TMA apparatus, a tensile load of 5 g was applied in the TD direction. And the dimensional change rate was measured, performing the heat processing which heated up atmospheric temperature from 30 degreeC to 180 degreeC with the temperature increase rate of 20 degreeC / min, and hold | maintained at 180 degreeC for 30 minutes. In the measurement of the dimensional change rate, the inside of the TMA apparatus was made a nitrogen atmosphere. The ambient temperature was measured with a thermocouple installed at a location about 5 mm away from the test piece.

このようにして行った加熱処理の際の昇温パターン及びそれに伴って生じた寸法変化率の測定結果を、乾燥処理が施された試験片については図1(a)に、吸湿処理が施された試験片については図1(b)にそれぞれ示す。これら図1(a)及び(b)の横軸には加熱により雰囲気温度が30℃に達してからの経過時間が示されている。なお、寸法変化率は、((l−l)/l)×100で求めることができる。ここで、lは変形前の試験片の長さ、はl変形後の試験片の長さを示す。 The temperature rise pattern during the heat treatment performed in this way and the measurement result of the dimensional change rate that accompanies it are shown in FIG. The test specimens are shown in FIG. 1A and 1B show the elapsed time after the atmospheric temperature reaches 30 ° C. by heating. The dimensional change rate can be obtained by ((l 1 −l 0 ) / l 0 ) × 100. Here, l 0 indicates the length of the test piece before deformation, and l 1 indicates the length of the test piece after deformation.

そして、脱水による寸法変化率を求めるべく、図1(b)に示す吸湿処理が施された試験片の寸法変化率から図1(a)に示す乾燥処理が施された試験片の寸法変化率を温度毎に差し引いた。その結果を加熱処理の際の昇温パターンと共に図1(c)に示す。この図1(c)のグラフから、実施例1の条件で吸湿させたポリイミドフィルムは、30℃から180℃までの昇温時の脱水により約0.05%収縮することが分かる。   Then, in order to obtain the dimensional change rate due to dehydration, the dimensional change rate of the test piece subjected to the drying process shown in FIG. 1A from the dimensional change rate of the test piece subjected to the moisture absorption process shown in FIG. Was subtracted for each temperature. The result is shown in FIG.1 (c) with the temperature rising pattern in the case of heat processing. From the graph of FIG. 1C, it can be seen that the polyimide film absorbed under the conditions of Example 1 contracts by about 0.05% due to dehydration when the temperature is raised from 30 ° C. to 180 ° C.

[実施例2]
恒温恒湿槽の相対湿度を85%に代えて55%にした以外は実施例1と同様にして試験片を吸湿させた。そして、この吸湿させた試験片に対して実施例1と同様にしてTMA装置で加熱処理を行った。この加熱処理の際の昇温パターン及びそれに伴って生じた寸法変化率の測定結果を図2(a)に示す。また、脱水による寸法変化率を求めるべく、図2(a)に示す吸湿処理が施された試験片の寸法変化率から上記実施例1の図1(a)に示す乾燥処理が施された試験片の寸法変化率を温度毎に差し引いた。その結果を加熱処理の際の昇温パターンと共に図2(b)に示す。この図2(b)のグラフから、実施例2の条件で吸湿させたポリイミドフィルムは、30℃から180℃までの昇温時の脱水により約0.035%収縮することが分かる。
[Example 2]
The test piece was absorbed in the same manner as in Example 1 except that the relative humidity of the constant temperature and humidity chamber was changed to 55% instead of 85%. And it heat-processed with the TMA apparatus like Example 1 with respect to this moisture-absorbed test piece. FIG. 2 (a) shows the temperature rise pattern during the heat treatment and the measurement result of the rate of dimensional change caused thereby. Moreover, in order to obtain | require the dimensional change rate by spin-drying | dehydration, the test which performed the drying process shown in FIG. 1 (a) of the said Example 1 from the dimensional change rate of the test piece which performed the moisture absorption process shown in FIG. 2 (a). The dimensional change rate of the piece was subtracted for each temperature. The result is shown in FIG. 2 (b) together with the temperature rising pattern during the heat treatment. From the graph of FIG. 2 (b), it can be seen that the polyimide film absorbed under the conditions of Example 2 contracts by about 0.035% by dehydration when the temperature is raised from 30 ° C. to 180 ° C.

[実施例3]
カプトン150ENに代えて宇部興産株式会社製のポリイミドフィルム(商品名:ユーピレックス25S)を用いた以外は実施例1と同様にして、吸湿処理及び乾燥処理がそれぞれ施された2枚の試験片に対して各々TMA装置で加熱処理を行った。この加熱処理の際の昇温パターン及びそれに伴って生じた寸法変化率の測定結果を、乾燥処理が施された試験片については図3(a)に、吸湿処理が施された試験片については図3(b)にそれぞれ示す。
[Example 3]
In the same manner as in Example 1 except that a polyimide film (trade name: Upilex 25S) manufactured by Ube Industries, Ltd. was used instead of Kapton 150EN, two specimens subjected to moisture absorption treatment and drying treatment were used. Each was heat-treated with a TMA apparatus. FIG. 3 (a) shows the temperature rise pattern during the heat treatment and the measurement result of the dimensional change rate that accompanies it. FIG. 3 (a) shows the test piece subjected to the drying treatment, and FIG. Each is shown in FIG.

また、脱水による寸法変化率を求めるべく、図3(b)に示す吸湿処理が施された試験片の寸法変化率から図3(a)に示す乾燥処理が施された試験片の寸法変化率を温度毎に差し引いた。その結果を加熱処理の際の昇温パターンと共に図3(c)に示す。この図3(c)のグラフから、実施例3の条件で吸湿させたポリイミドフィルムは、30℃から180℃までの昇温時の脱水により約0.04%収縮することが分かる。   Further, in order to obtain the dimensional change rate due to dehydration, the dimensional change rate of the test piece subjected to the drying treatment shown in FIG. 3A from the dimensional change rate of the test piece subjected to the moisture absorption treatment shown in FIG. Was subtracted for each temperature. The result is shown in FIG.3 (c) with the temperature rising pattern in the case of heat processing. From the graph of FIG. 3 (c), it can be seen that the polyimide film absorbed under the conditions of Example 3 contracts by about 0.04% due to dehydration when the temperature is raised from 30 ° C. to 180 ° C.

[実施例4]
恒温恒湿槽の相対湿度を85%に代えて55%にした以外は実施例3と同様にして試験片を吸湿させた。そして、この吸湿させた試験片に対して実施例1と同様にしてTMA装置で加熱処理を行った。この加熱処理の際の昇温パターン及びそれに伴って生じた寸法変化率の測定結果を図4(a)に示す。また、脱水による寸法変化率を求めるべく、この図4(a)に示す吸湿処理が施された試験片の寸法変化率から上記実施例3の図3(a)に示す乾燥処理が施された試験片の寸法変化率を温度毎に差し引いた。その結果を加熱処理の際の昇温パターンと共に図4(b)に示す。この図4(b)のグラフから、実施例4の条件で吸湿させたポリイミドフィルムは、30℃から180℃までの昇温時の脱水により約0.025%収縮することが分かる。
[Example 4]
The test piece was absorbed in the same manner as in Example 3 except that the relative humidity of the constant temperature and humidity chamber was changed to 55% instead of 85%. And it heat-processed with the TMA apparatus like Example 1 with respect to this moisture-absorbed test piece. FIG. 4 (a) shows the temperature rise pattern during the heat treatment and the measurement result of the rate of dimensional change caused thereby. Further, in order to obtain the dimensional change rate due to dehydration, the drying process shown in FIG. 3A of Example 3 was performed from the dimensional change rate of the test piece subjected to the moisture absorption process shown in FIG. 4A. The dimensional change rate of the test piece was subtracted for each temperature. The result is shown in FIG.4 (b) with the temperature rising pattern in the case of heat processing. From the graph of FIG. 4 (b), it can be seen that the polyimide film absorbed under the conditions of Example 4 shrinks by about 0.025% by dehydration when the temperature is raised from 30 ° C. to 180 ° C.

Claims (4)

樹脂フィルムの寸法安定性の評価方法であって、評価対象となる樹脂フィルムから2枚の試験片を切り出し、前処理として一方には吸湿処理を他方には100℃以上150℃以下まで昇温させる乾燥処理を施した後、各々熱機械分析装置を用いて室温から所定の温度まで昇温させることで寸法変化率の温度による変化を測定し、前記吸湿処理した試験片の寸法変化率から前記乾燥処理した試験片の寸法変化率を温度毎に差し引くことで脱水による寸法変化率を算出することを特徴とする樹脂フィルムの寸法安定性の評価方法。   A method for evaluating the dimensional stability of a resin film, in which two test pieces are cut out from a resin film to be evaluated, and as one of the pretreatments, moisture absorption treatment is performed on one side and the temperature is raised to 100 ° C. or more and 150 ° C. or less on the other After the drying treatment, the temperature change from the room temperature to a predetermined temperature is measured by using a thermomechanical analyzer, and the change in the dimensional change rate is measured. A method for evaluating the dimensional stability of a resin film, wherein the dimensional change rate due to dehydration is calculated by subtracting the dimensional change rate of the treated test piece for each temperature. 前記樹脂フィルムがポリイミドフィルムであることを特徴とする、請求項1に記載の樹脂フィルムの評価方法。   The method for evaluating a resin film according to claim 1, wherein the resin film is a polyimide film. 前記樹脂フィルムがフレキシブルプリント配線板に用いる銅めっき積層板のベースフィルムであることを特徴とする、請求項1又は2に記載の樹脂フィルムの評価方法。   The said resin film is a base film of the copper plating laminated board used for a flexible printed wiring board, The evaluation method of the resin film of Claim 1 or 2 characterized by the above-mentioned. 前記所定の温度が150℃以上200℃以下であることを特徴とする、請求項1又は2に記載の樹脂フィルムの評価方法。   The said predetermined temperature is 150 degreeC or more and 200 degrees C or less, The evaluation method of the resin film of Claim 1 or 2 characterized by the above-mentioned.
JP2014015343A 2014-01-30 2014-01-30 Evaluation method of resin film Active JP6201184B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014015343A JP6201184B2 (en) 2014-01-30 2014-01-30 Evaluation method of resin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014015343A JP6201184B2 (en) 2014-01-30 2014-01-30 Evaluation method of resin film

Publications (2)

Publication Number Publication Date
JP2015141152A true JP2015141152A (en) 2015-08-03
JP6201184B2 JP6201184B2 (en) 2017-09-27

Family

ID=53771587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014015343A Active JP6201184B2 (en) 2014-01-30 2014-01-30 Evaluation method of resin film

Country Status (1)

Country Link
JP (1) JP6201184B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105444705A (en) * 2015-11-24 2016-03-30 苏州生益科技有限公司 Laminated board size stability test method
JP2018069578A (en) * 2016-10-28 2018-05-10 住友金属鉱山株式会社 Both side plated laminate, and method for producing both side plated laminate
JP7136400B1 (en) * 2021-12-23 2022-09-13 昭和電工マテリアルズ株式会社 Physical property measuring method, member evaluation method, electronic component device manufacturing method, electronic component device material manufacturing method, and physical property measuring system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60125930A (en) * 1983-12-13 1985-07-05 Teijin Memorex Kk Measurement method for temperature and humidity characteristics of sheet-shaped sample
JPH05149899A (en) * 1991-03-18 1993-06-15 Fuji Photo Film Co Ltd Dimension change measurement device
JP2003254921A (en) * 2002-02-28 2003-09-10 Shimadzu Corp Apparatus for thermomechanical analysis
US20050119838A1 (en) * 2003-11-28 2005-06-02 Fujitsu Limited Analysis method of organic material properties and apparatus therefor
JP2009109510A (en) * 2008-12-24 2009-05-21 Shimadzu Corp Thermal mechanical analysis device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60125930A (en) * 1983-12-13 1985-07-05 Teijin Memorex Kk Measurement method for temperature and humidity characteristics of sheet-shaped sample
JPH05149899A (en) * 1991-03-18 1993-06-15 Fuji Photo Film Co Ltd Dimension change measurement device
JP2003254921A (en) * 2002-02-28 2003-09-10 Shimadzu Corp Apparatus for thermomechanical analysis
US20050119838A1 (en) * 2003-11-28 2005-06-02 Fujitsu Limited Analysis method of organic material properties and apparatus therefor
JP2009109510A (en) * 2008-12-24 2009-05-21 Shimadzu Corp Thermal mechanical analysis device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105444705A (en) * 2015-11-24 2016-03-30 苏州生益科技有限公司 Laminated board size stability test method
JP2018069578A (en) * 2016-10-28 2018-05-10 住友金属鉱山株式会社 Both side plated laminate, and method for producing both side plated laminate
JP7136400B1 (en) * 2021-12-23 2022-09-13 昭和電工マテリアルズ株式会社 Physical property measuring method, member evaluation method, electronic component device manufacturing method, electronic component device material manufacturing method, and physical property measuring system
US20230204530A1 (en) * 2021-12-23 2023-06-29 Showa Denko Materials Co., Ltd. Method of measuring physical properties, method of evaluating member, method of manufacturing electronic component device, method of manufacturing material for electronic component device, and physical property measurement system
WO2023119594A1 (en) * 2021-12-23 2023-06-29 株式会社レゾナック Method for measuring physical properties, method for evaluating member, method for manufacturing electronic component device, method for manufacturing material for electronic component device, and system for measuring physical properties

Also Published As

Publication number Publication date
JP6201184B2 (en) 2017-09-27

Similar Documents

Publication Publication Date Title
JP6201184B2 (en) Evaluation method of resin film
JP2015114114A (en) Method for evaluating mechanical characteristic of thin-plate material, method for selecting thin-plate material using the same, and selected thin-plate material
Ma et al. Effect of moisture on thermal properties of halogen-free and halogenated printed-circuit-board laminates
JP7173221B2 (en) Double-sided plated laminate
JP2015121483A (en) Evaluation method of plastic film
Murray et al. Environmental aging and deadhesion of polyimide dielectric films
CN106576428B (en) The manufacturing method of flexible copper wiring plate and its flexible copper-clad laminate used with support membrane
JP6201187B2 (en) Evaluation method of plastic film
JP2008135759A (en) Base substrate for printed wiring board and multilayer printed wiring board that use polyimide benzoxazole film as insulating layer
Pippola et al. Protective coatings of electronics under harsh thermal shock
JP2007234734A (en) Flexible printed circuit and its production process
JP2018105670A (en) Evaluation method of prepreg for print circuit board
Lahokallio et al. Effect of high-humidity testing on material parameters of flexible printed circuit board materials
ATE547927T1 (en) SOLDERING APPARATUS HAVING A CRAFT HAVING A SURFACE MADE OF NEUTRAL MATERIAL TOWARDS THE SOLDERING APPLICATION METAL
JP3761030B2 (en) TAB carrier tape
JP2015141094A (en) Polyimide film dimension stability evaluation method
JP6650587B2 (en) Method and system for monitoring state of thermosetting resin
CN108181342B (en) Flexible plate detection method
Yang Reliabilities and failure analysis of printed circuit boards interconnect stress test
JP4605454B2 (en) Method for manufacturing flexible substrate
JP2015068679A (en) Evaluation method of maximum warpage in two-layer plated substrate
Géczy et al. Vapour phase soldering on flexible printed circuit boards
JP2004235412A (en) Test method of conductor adhesion strength for printed wiring board material and printed wiring board
JP5788225B2 (en) Rolled copper foil, copper-clad laminate, flexible printed wiring board, and electronic equipment
Pietrikova et al. Moisture Absorption of Glass-Epoxy Sandwich Structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160708

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170725

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170807

R150 Certificate of patent or registration of utility model

Ref document number: 6201184

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150