JP2015230290A - Dew condensation testing method, and dew condensation testing apparatus - Google Patents

Dew condensation testing method, and dew condensation testing apparatus Download PDF

Info

Publication number
JP2015230290A
JP2015230290A JP2014117905A JP2014117905A JP2015230290A JP 2015230290 A JP2015230290 A JP 2015230290A JP 2014117905 A JP2014117905 A JP 2014117905A JP 2014117905 A JP2014117905 A JP 2014117905A JP 2015230290 A JP2015230290 A JP 2015230290A
Authority
JP
Japan
Prior art keywords
sample
dew condensation
test
temperature
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014117905A
Other languages
Japanese (ja)
Inventor
麻友子 西原
Mayuko Nishihara
麻友子 西原
一博 林沼
Kazuhiro Hayashinuma
一博 林沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2014117905A priority Critical patent/JP2015230290A/en
Publication of JP2015230290A publication Critical patent/JP2015230290A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a dew condensation testing method of electronic components and a dew condensation testing apparatus used for the same which have high-repeatability dew condensation behavior and are capable of performing high-reliability dew condensation testing.SOLUTION: A sample 5 that is a subject of dew condensation testing is mounted on a sample table 7 disposed in a test tank 2 having cooling means 6, air whose temperature and humidity are adjusted to a predetermined condition is supplied to the test tank 2 while the sample 5 is cooled down to a predetermined temperature via the sample table 7, and after dew condensation is generated on a surface of the sample 5 by a temperature difference between the supplied air and the sample, predetermined property is tested regarding the sample on the surface of which dew condensation is generated. A dew condensation behavior on the surface of the sample is checked at least by one of microscopes 8a, 8b disposed either above or beside the sample.

Description

本発明はセラミック電子部品などの電子部品の結露試験を行う方法およびそれに用いられる結露試験装置に関する。   The present invention relates to a method for performing a dew condensation test on an electronic component such as a ceramic electronic component, and a dew condensation test apparatus used therefor.

例えば、積層セラミックコンデンサなどの電子部品は、使用状況によりその表面に結露が生じ、特性に影響を与える。そのため、電子部品について、結露状態における特性を調べるための結露試験が行われる場合がある。   For example, the surface of an electronic component such as a multilayer ceramic capacitor is subject to dew condensation on its surface, affecting the characteristics. Therefore, a dew condensation test for examining characteristics in the dew condensation state may be performed on the electronic component.

例えば、そのような結露試験を行うために用いられる結露試験装置として、特許文献1には、図7に示すような結露試験装置が開示されているとともに、図7に示すような結露試験装置を用いて電子部品の結露試験を行う方法が開示されている。   For example, as a dew condensation test apparatus used to perform such a dew condensation test, Patent Document 1 discloses a dew condensation test apparatus as shown in FIG. 7 and a dew condensation test apparatus as shown in FIG. A method for performing a dew condensation test on an electronic component using the same is disclosed.

すなわち、特許文献1には、結露試験を行う方法として、調整部内において、温度および湿度に所定の条件に調整した空気を、ダクトを通して調整部から試験槽に導入するとともに、試料を保持し、冷却する機能を有する試料台の側方から、試料台における風上側の端部の真上の位置において所定の角度で下向きに傾斜した方向に空気を導いて試料台上に流し、試料台の載置面に載置され、冷却された試料上に結露を生じさせる方法が開示されている。   That is, in Patent Document 1, as a method for performing a dew condensation test, air adjusted to predetermined conditions for temperature and humidity is introduced from the adjustment unit to the test tank through the duct in the adjustment unit, and the sample is held and cooled. From the side of the sample stage having the function of guiding the air in a direction inclined downward at a predetermined angle at a position directly above the windward end of the sample stage and flowing it over the sample stage. A method of causing condensation on a surface-mounted and cooled sample is disclosed.

また、特許文献1において、上述の結露試験方法を実施するために用いられる結露試験装置は、温度及び湿度が調整された空気を作成する調整槽112と、調整された空気がダクト117を介して導入される、内部に試料Wを載置するための試料台143が配設された試験槽114とを備えている。そして、試料台143は、ペルチェ素子を含み、試料Wを加熱、冷却できるように構成されている。
また、試験槽114内には、結露センサ161が備えられている。結露センサ161は、例えば櫛型状の電極を備えており、電極間の結露量の変化に応じて信号を出力するように構成されている。
そして、結露センサ161の信号をもとに、設定された結露量になるように、試験槽114に供給される空気の量と試料台143の温度を調整することにより、試料Wの結露試験が行われるように構成されている。
Further, in Patent Document 1, a dew condensation test apparatus used for carrying out the above dew condensation test method includes an adjustment tank 112 that creates air with adjusted temperature and humidity, and the adjusted air is supplied via a duct 117. And a test chamber 114 in which a sample stage 143 for placing the sample W is disposed. The sample stage 143 includes a Peltier element and is configured so that the sample W can be heated and cooled.
In addition, a dew condensation sensor 161 is provided in the test tank 114. The condensation sensor 161 includes, for example, comb-shaped electrodes, and is configured to output a signal in accordance with a change in the amount of condensation between the electrodes.
Then, based on the signal from the dew condensation sensor 161, the dew condensation test of the sample W is performed by adjusting the amount of air supplied to the test tank 114 and the temperature of the sample stage 143 so that the set dew amount is obtained. Configured to be done.

しかしながら、特許文献1の方法では、
(1)結露センサ上の結露量をみて、冷却ステージの温度を制御しているが、試料の表面状態の違いによって結露の進み方が異なるため、水滴の点在状態(例えば、電極間に露が付着している状態)になったり、連続状態(電極間をまたぐように、水滴が合一した水が溜まっている状態)になったりと、試料の表面状態にばらつきが生じる、
(2)点在状態と連続状態を繰り返すため、例えば、絶縁抵抗を継続的に測定する場合にも、いつ絶縁抵抗が低下したのかを定量的に比較、判断することが困難である、
(3)同じ試料を使っても、同じ温度変化にならず、例えば、絶縁抵抗を継続的に測定する場合にも、同じ絶縁抵抗値の挙動にならないため、試験再現性がとりにくい、
(4)結露センサ上の結露量が一定になるように制御して試験を行ったとしても、試料を構成する材料やその表面状態によっては、結露しやすいもの、結露しにくいものがあり、結露センサ上の結露量で制御すると、試料の結露量は意図していないものになっているおそれがあり、試料間の比較評価が困難である
というような問題点がある。
However, in the method of Patent Document 1,
(1) Although the temperature of the cooling stage is controlled by looking at the amount of condensation on the condensation sensor, the way condensation proceeds depends on the surface condition of the sample. The surface condition of the sample varies, such as when it is in a state of adhering), or in a continuous state (a state where water in which water droplets are coalesced so as to straddle between electrodes).
(2) Since the dotted state and the continuous state are repeated, for example, even when the insulation resistance is continuously measured, it is difficult to quantitatively compare and determine when the insulation resistance has decreased.
(3) Even if the same sample is used, the same temperature change does not occur. For example, even when the insulation resistance is continuously measured, the behavior of the same insulation resistance value does not occur, so the test reproducibility is difficult to take.
(4) Even if the test is performed with the condensation amount on the condensation sensor controlled to be constant, depending on the material constituting the sample and its surface condition, there is a thing that is likely to condense and that is difficult to condense. If the amount of condensation on the sensor is controlled, there is a risk that the amount of condensation on the sample may be unintended, making it difficult to make comparative evaluations between samples.

WO2010/125748号パンフレットWO2010 / 125748 pamphlet

本発明は、上記課題を解決するものであり、結露挙動の再現性が高く、信頼性の高い結露試験を行うことが可能な電子部品の結露試験方法およびそれに用いられる結露試験装置を提供することを目的とする。   The present invention solves the above-mentioned problems, and provides a dew condensation test method for an electronic component capable of performing a dew condensation test with high reproducibility of dew condensation behavior and high reliability, and a dew condensation test apparatus used therefor. With the goal.

上記課題を解決するために、本発明の電子部品の結露試験方法は、
結露試験の対象である試料を、試験槽内に配設された、冷却手段を有する試料台に載置して、前記試料を前記試料台を介して冷却し、一定の温度を保持しつつ、
温度および湿度を所定の条件に調整した空気を前記試験槽に供給し、
供給された前記空気と前記試料の温度差により、前記試料の表面に結露を生じさせた後、
表面に結露の生じた状態の前記試料について所定の特性を試験すること
を特徴としている。
In order to solve the above-mentioned problem, a dew condensation test method for an electronic component according to the present invention includes:
The sample that is the subject of the dew condensation test is placed on a sample stage having cooling means disposed in the test tank, and the sample is cooled through the sample stage, while maintaining a constant temperature,
Supply the test tank with air whose temperature and humidity are adjusted to predetermined conditions,
After causing condensation on the surface of the sample due to the temperature difference between the supplied air and the sample,
It is characterized in that a predetermined characteristic is tested for the sample in a state where condensation has occurred on the surface.

また、本発明の電子部品の結露試験方法においては、前記試料の表面の結露挙動を、前記試料の上方および側方の少なくとも一方に配設したマイクロスコープにより確認することが好ましい。   In the dew condensation test method for electronic parts according to the present invention, it is preferable that the dew condensation behavior on the surface of the sample is confirmed with a microscope disposed on at least one of the upper side and the side of the sample.

試料の上方および側方の少なくとも一方に配設したマイクロスコープにより、試料表面を観察することにより、試料表面の結露状態(結露挙動)を確実に調べることが可能になり、本発明を実効あらしめることができる。   By observing the sample surface with a microscope disposed above and / or on the side of the sample, it becomes possible to reliably examine the dew condensation state (condensation behavior) on the sample surface, and the present invention is effectively realized. be able to.

また、本発明の結露試験装置は、
結露試験の対象である試料が載置される、冷却手段を有する試料台を内部に備えた、結露試験を行うための試験槽と、
空気の温度および湿度を所定の条件に調整する空気条件調整槽と、
前記空気条件調整槽において温度および湿度を調整した空気を前記試験槽に供給するための供給手段と、
前記試料台に載置された前記試料の上方および側方の少なくとも一方に配設された、前記試料の表面への結露状態を観察するためのマイクロスコープと
を備えていることを特徴としている。
The dew condensation test apparatus of the present invention
A test tank for carrying out a dew condensation test, equipped with a sample stage having a cooling means on which a sample to be subjected to the dew condensation test is placed;
An air condition adjustment tank for adjusting the temperature and humidity of the air to predetermined conditions;
Supply means for supplying air adjusted in temperature and humidity in the air conditioning tank to the test tank;
And a microscope for observing the dew condensation state on the surface of the sample, which is disposed on at least one of the upper side and the side of the sample placed on the sample stage.

前記冷却手段としてペルチェ素子を有する冷却手段が用いられていることが好ましい。   It is preferable that a cooling means having a Peltier element is used as the cooling means.

冷却手段として、ペルチェ素子を有する冷却手段を用いた場合、試料の温度を上昇させるための加熱手段としても用いることが可能になり、結露状態の制御の自由度を向上させることができて有意義である。   When a cooling means having a Peltier element is used as the cooling means, it can be used as a heating means for raising the temperature of the sample, and the degree of freedom in controlling the condensation state can be improved. is there.

また、本発明の結露試験装置においては、表面に結露の生じた状態の前記試料について、所定の特性を測定するための機構をさらに備えていることが好ましい。   In the dew condensation test apparatus according to the present invention, it is preferable that the dew condensation test apparatus further includes a mechanism for measuring predetermined characteristics of the sample in a state where dew condensation has occurred on the surface.

表面に結露の生じた状態の試料について所定の特性を試験するための機構を備えることにより、安定した結露状態において、試料の絶縁抵抗などの特性を効率よく、確実に調べることが可能になり、本発明をより実効あらしめることができる。   By providing a mechanism for testing the specified characteristics of the sample with condensation on the surface, it becomes possible to efficiently and reliably check the characteristics such as the insulation resistance of the sample in a stable condensation condition. The present invention can be made more effective.

本発明の電子部品の結露試験方法は、上述のように、結露試験の対象である試料を、試験槽内に配設された、冷却手段を有する試料台に載置して、試料を一定の温度を保持するように冷却しつつ、温度および湿度を所定の条件に調整した空気を試験槽に供給し、供給された空気と試料の温度差により、試料の表面に結露を生じさせ、結露の生じた状態の試料について所定の特性を試験するようにしているので、結露状態の再現性を高めることができ、例えば、電子部品の絶縁抵抗などの所定の特性を調べるときに、信頼性の高い結露試験を行うことができるようになる。   As described above, the dew condensation test method for an electronic component according to the present invention places a sample, which is a subject of the dew condensation test, on a sample stage having cooling means disposed in a test tank. While cooling to maintain the temperature, air with the temperature and humidity adjusted to the specified conditions is supplied to the test chamber, and the temperature difference between the supplied air and the sample causes condensation on the surface of the sample. Since the predetermined characteristics of the sample in the generated state are tested, the reproducibility of the dew condensation state can be improved. For example, when investigating the predetermined characteristics such as the insulation resistance of an electronic component, the reliability is high. A dew condensation test can be performed.

すなわち、本発明の結露試験方法によれば、試料への結露量(試料表面に付着している水分量)が線形的に増えるため、結露挙動の再現性が高く、毎回同じ状態で試験を行うことができる。   That is, according to the dew condensation test method of the present invention, the amount of dew condensation on the sample (the amount of water adhering to the sample surface) increases linearly, so the dew behavior is highly reproducible and the test is performed in the same state every time. be able to.

また、試料を構成する材料の濡れ性によって、結露の生じ易さが異なる場合、試料の結露量の増加傾向や、結露態様が異なるため、結露環境を同じとした場合の、材料間の結露状態の比較評価が可能になる。   In addition, if the ease of dew condensation varies depending on the wettability of the material that makes up the sample, the dew condensation state between the materials when the dew condensation environment is the same because the tendency of the dew condensation amount of the sample to increase and the dew condensation mode are different. Can be compared.

また、空気条件調整槽にて調製することにより空気の温度(雰囲気温度)を一定にすることが可能になり、また、試験槽内の試料台が備える冷却手段により試料台の温度を一定に保つことが可能になるため、例えば、絶縁抵抗などの測定に対する温度の因子がなくなり、結露試験の再現性も向上する。   In addition, the temperature of the air (atmosphere temperature) can be made constant by preparing in the air condition adjustment tank, and the temperature of the sample stage is kept constant by the cooling means provided for the sample stage in the test tank. Therefore, for example, there is no temperature factor for measurement such as insulation resistance, and the reproducibility of the condensation test is improved.

また、本発明の結露試験装置は、上述のように、空気の温度および湿度を所定の条件に調整する空気条件調整槽と、空気条件調整槽において温度および湿度を調整した空気を試験槽に供給するための供給手段と、冷却手段を有する試料台を内部に備えた試験槽と、試料台に載置された試料の上方および側方の少なくとも一方に配設された、結露状態を観察するためのマイクロスコープとを備えているので、上述の本発明の電子部品の結露試験を効率よく実施して、結露挙動の再現性を向上させることが可能になり、信頼性の高い結露試験を行うことが可能になる。また、例えば、電子部品の絶縁抵抗などの所定の特性を調べるときに、試料の結露状態と照らし合わせながら、試験を行うことができる。   In addition, as described above, the dew condensation test apparatus of the present invention supplies an air condition adjustment tank that adjusts the temperature and humidity of air to predetermined conditions, and air that has been adjusted in temperature and humidity in the air condition adjustment tank. For observing the dew condensation state disposed in at least one of the upper side and the side of the sample tank mounted on the sample stage, and a test chamber equipped with a sample stage having a cooling means Therefore, it is possible to improve the reproducibility of the dew behavior by performing the dew condensation test of the electronic component of the present invention described above efficiently, and to perform a highly reliable dew condensation test. Is possible. Further, for example, when examining predetermined characteristics such as insulation resistance of an electronic component, it is possible to perform a test while checking the dew condensation state of the sample.

本発明の一実施形態(実施形態1)にかかる結露試験装置の構成を模式的に示す図である。It is a figure which shows typically the structure of the dew condensation test apparatus concerning one Embodiment (Embodiment 1) of this invention. 実施形態1にかかる結露試験装置を用いて結露試験を行った場合の結露量の経時的な変化などを示す図である。It is a figure which shows the time-dependent change of the amount of condensation at the time of performing a dew condensation test using the dew condensation test apparatus concerning Embodiment 1. FIG. 従来技術にかかる結露試験装置を用いて結露試験を行った場合の結露量の経時的な変化などを示す図である。It is a figure which shows the time-dependent change of the amount of condensation at the time of performing a condensation test using the condensation test apparatus concerning a prior art. 実施形態1にかかる結露試験装置を用いた場合および従来技術に係る結露試験装置を用いた場合における、試料(積層セラミックコンデンサ)の絶縁抵抗の経時変化を示す図である。It is a figure which shows the time-dependent change of the insulation resistance of the sample (multilayer ceramic capacitor) at the time of using the dew condensation test apparatus concerning Embodiment 1, and the case where the dew condensation test apparatus which concerns on a prior art is used. 実施形態2において結露試験を行って絶縁抵抗の経時変化を調べ、絶縁抵抗が所定の値まで低下するまでの時間を故障時間とした場合に得られる結果をワイブル解析した結果を示す図である。It is a figure which shows the result of having performed the Weibull analysis of the result obtained when a dew condensation test is performed in Embodiment 2 and the time-dependent change of insulation resistance is investigated and time until insulation resistance falls to a predetermined value is made into failure time. 実施形態2の結露試験において、試料の表面に付着した水滴の接触角を説明する図である。In the dew condensation test of Embodiment 2, it is a figure explaining the contact angle of the water droplet adhering to the surface of the sample. 従来の結露試験装置の構成を示す図である。It is a figure which shows the structure of the conventional dew condensation test apparatus.

以下に本発明の実施形態を示して、本発明の特徴とするところをさらに詳しく説明する。   Embodiments of the present invention will be described below to describe the features of the present invention in more detail.

[実施形態1]
図1は、本発明の一実施形態(実施形態1)にかかる結露試験装置の構成を模式的に示す図である。
この結露試験装置は、図1に示すように、空気の温度および湿度を所定の条件に調整するための空気条件調整槽1と、空気条件調整槽1において温度および湿度を調整した空気を、結露試験が行われる試験槽2に供給するための供給手段3とを備えている。
[Embodiment 1]
FIG. 1 is a diagram schematically illustrating a configuration of a dew condensation test apparatus according to an embodiment (Embodiment 1) of the present invention.
As shown in FIG. 1, this dew condensation test apparatus condenses the air condition adjusting tank 1 for adjusting the temperature and humidity of air to predetermined conditions, and the air whose temperature and humidity are adjusted in the air condition adjusting tank 1. Supply means 3 for supplying to the test tank 2 in which a test is performed is provided.

そして、試験槽2内には、結露試験の対象である試料5が載置される、ペルチェ素子を用いた冷却手段6を有する試料台7を備えている。   And in the test tank 2, the sample stand 7 which has the cooling means 6 using the Peltier device in which the sample 5 which is the object of a dew condensation test is mounted is provided.

また、この結露試験装置においては、試料5の結露状態を観察するためのマイクロスコープ8a,8bが、試料5の上方および側方に配設されている。
なお、マイクロスコープ8a,8bは、この実施形態1では試験槽2の外側に配設されているが、試験槽の内部に配設するようにしてもよい。
In this dew condensation test apparatus, microscopes 8 a and 8 b for observing the dew condensation state of the sample 5 are disposed above and to the side of the sample 5.
Although the microscopes 8a and 8b are arranged outside the test tank 2 in the first embodiment, they may be arranged inside the test tank.

また、空気の温度および湿度を所定の条件に調整するための空気条件調整槽1は、温度と湿度を所定の条件に調整するための冷却器9、加熱器10、および加湿器11とを備えており、空気条件調整槽1で温度と湿度が調整された空気が、上述の供給手段(送風機)3により、試験槽2に供給されることになる。   The air condition adjustment tank 1 for adjusting the temperature and humidity of air to predetermined conditions includes a cooler 9, a heater 10, and a humidifier 11 for adjusting temperature and humidity to predetermined conditions. Thus, the air whose temperature and humidity are adjusted in the air condition adjusting tank 1 is supplied to the test tank 2 by the above-described supply means (blower) 3.

空気条件調整槽1と、試験槽2とを仕切る隔壁12には、温度および湿度を調整した空気を空気条件調整槽1から試験槽2に導くための供給口13および試験槽2内の空気(雰囲気)を空気条件調整槽1に戻して、温度および湿度を調整するための循環口14が配設されている。   A partition wall 12 that divides the air condition adjusting tank 1 and the test tank 2 includes a supply port 13 for guiding air adjusted in temperature and humidity from the air condition adjusting tank 1 to the test tank 2 and air in the test tank 2 ( A circulation port 14 is provided for adjusting the temperature and humidity by returning the atmosphere to the air condition adjusting tank 1.

また、結露試験を行う試験室2には、上述のように、ペルチェ素子を用いた冷却手段6を備えた試料台7が配設されており、試料台7上には熱伝導シート15が配設されている。そして、試料5は、熱伝導シート15を介して試料台7に載置されるように構成されている。   Further, in the test chamber 2 where the dew condensation test is performed, as described above, the sample stage 7 provided with the cooling means 6 using the Peltier element is disposed, and the heat conductive sheet 15 is disposed on the sample stage 7. It is installed. And the sample 5 is comprised so that it may be mounted in the sample stand 7 through the heat conductive sheet 15. FIG.

次に、結露試験を行う試料として、長さ:1.0mm、幅:0.5mm、厚み:0.5mmで、銅からなる外部電極を備えた積層セラミックコンデンサ(定格 50V)を準備した。   Next, a multilayer ceramic capacitor (rated at 50 V) having an external electrode made of copper and having a length: 1.0 mm, a width: 0.5 mm, and a thickness: 0.5 mm was prepared as a sample for the dew condensation test.

そして、この実施形態1においては、積層セラミックコンデンサ(試料)5の両端の外部電極に電圧を負荷するための配線を行い、DC電源に接続した状態で、積層セラミックコンデンサ5を、熱伝導シート15を介して試料台7上に設置した。   And in this Embodiment 1, the wiring for applying a voltage to the external electrode of the both ends of the multilayer ceramic capacitor (sample) 5 is performed, and the multilayer ceramic capacitor 5 is connected to the DC power source, and the thermal conductive sheet 15 is connected. Was placed on the sample stage 7.

それから、空気条件調整槽1内で、温度25℃、相対湿度50%RHに調整した空気を、供給手段(送風機)3により、供給口13を通過させて試験槽1内に供給した。   Then, air adjusted to a temperature of 25 ° C. and a relative humidity of 50% RH in the air condition adjustment tank 1 was supplied to the test tank 1 through the supply port 13 by the supply means (blower) 3.

その後、試験槽1内の温度、湿度がほぼ安定したことを確認し、冷却手段6(を構成するペルチェ素子)に通電し、試料台7の温度が0℃の一定温度になるようにした。そして、同時に積層セラミックコンデンサ(試料)5に、DC50Vを印加し、20秒間隔で積層セラミックコンデンサ(試料)5の絶縁抵抗を測定した。また、マイクロスコープ8aを用いて上方から積層セラミックコンデンサ(試料)5の結露状態を観察した。   Thereafter, it was confirmed that the temperature and humidity in the test chamber 1 were almost stable, and the cooling means 6 (the Peltier element constituting it) was energized so that the temperature of the sample stage 7 was a constant temperature of 0 ° C. At the same time, 50 V DC was applied to the multilayer ceramic capacitor (sample) 5 and the insulation resistance of the multilayer ceramic capacitor (sample) 5 was measured at intervals of 20 seconds. Moreover, the dew condensation state of the multilayer ceramic capacitor (sample) 5 was observed from above using the microscope 8a.

また、比較のため、図7に示した特許文献1に記載された結露試験装置(従来技術の結露試験装置)を用意した。そして、この従来技術の結露試験装置を用いて試料に結露を生じさせ、その場合の結露状態を調べた。すなわち、本明細書の背景技術の欄で説明したように、結露センサの信号をもとに、設定された結露量となるように、試験槽に供給される空気の量と試料台の温度を調整して試料の結露試験を行い、結露状態を観察した。   Moreover, the dew condensation test apparatus (conventional dew condensation test apparatus) described in Patent Document 1 shown in FIG. 7 was prepared for comparison. Then, using this conventional dew condensation test apparatus, dew condensation was caused on the sample, and the dew condensation state in that case was examined. That is, as described in the background section of this specification, based on the signal from the dew condensation sensor, the amount of air supplied to the test tank and the temperature of the sample stage are set so that the dew condensation amount is set. The sample was subjected to a dew condensation test, and the dew condensation state was observed.

上記実施形態1の結露試験装置を用いて結露試験を行った場合の結露量の経時的な変化などを図2に示し、上記従来技術の結露試験装置を用いて結露試験を行った場合の結露量の経時的な変化などを図3に示す。   FIG. 2 shows changes over time in the amount of condensation when the condensation test is performed using the condensation test apparatus of the first embodiment, and the condensation when the condensation test is performed using the above-described conventional condensation test apparatus. The change over time of the amount is shown in FIG.

図2に示すように、本発明の実施形態1にかかる結露試験装置を用いた場合、温度を下げると試料表面に露(水滴)が点在した状態(以下、「点在状態」ともいう)の結露量が線形状に増加し(A1〜B1の間)、その後、試料の表面全体が濡れた状態(以下、「連続状態」ともいう)となり(B1〜C1の間)、温度を上昇させると、連続状態から乾燥状態に移行した(C1〜D1の間)。   As shown in FIG. 2, when the dew condensation test apparatus according to Embodiment 1 of the present invention is used, a state where dew (water droplets) is scattered on the sample surface when the temperature is lowered (hereinafter also referred to as “spotted state”). The amount of condensation increases to a linear shape (between A1 and B1), and then the entire surface of the sample becomes wet (hereinafter also referred to as “continuous state”) (between B1 and C1), and the temperature is increased. And it shifted from the continuous state to the dry state (between C1 and D1).

一方、図3に示すように、従来技術にかかる結露試験装置を用いた場合、温度を下げると試料表面の結露量が増加し(A2〜B2の間)、連続状態に移行した。しかし、結露センサの結露量から試験槽に供給される空気の量と試料台の温度をコントロールするようにしているので、連続状態と結露状態を繰り返し、意図するような安定した結露状態を継続して維持することができなかった(B2〜C2の間)。そして、その後、温度を上昇させると、連続状態から乾燥状態に移行した(C2〜D2の間)。   On the other hand, as shown in FIG. 3, when the dew condensation test apparatus according to the prior art was used, when the temperature was lowered, the amount of dew condensation on the sample surface increased (between A2 and B2), and transitioned to a continuous state. However, since the amount of air supplied to the test chamber and the temperature of the sample stage are controlled from the amount of condensation on the condensation sensor, the continuous and dew condensation states are repeated to maintain the intended stable condensation state. Could not be maintained (between B2 and C2). And when temperature was raised after that, it shifted from the continuous state to the dry state (between C2 and D2).

また、この実施形態1では、上述のように結露状態を観察している間における、積層セラミックコンデンサ(試料)の絶縁抵抗を測定し、その経時変化を調べた。
この実施形態1にかかる結露試験装置を用いた場合の積層セラミックコンデンサ(試料)の絶縁抵抗の経時変化と、上記従来技術にかかる結露試験装置を用いた場合の積層セラミックコンデンサ(試料)の絶縁抵抗の経時変化を、図4に併せて示す。
In Embodiment 1, the insulation resistance of the multilayer ceramic capacitor (sample) was measured while observing the dew condensation state as described above, and the change with time was examined.
Changes over time in the insulation resistance of the multilayer ceramic capacitor (sample) when the dew condensation test apparatus according to Embodiment 1 is used, and the insulation resistance of the multilayer ceramic capacitor (sample) when the dew condensation test apparatus according to the prior art is used. The change with time is also shown in FIG.

図4に示すように、従来技術にかかる結露試験装置を用いた場合には、絶縁抵抗は低下、回復を繰り返す結果となった。これは、図3に示すようにB2〜C2の時間帯で試料の温度が変化するため、連続状態と点在状態を繰り返したことによる。
よって、従来技術にかかる結露試験装置を用いた場合には、このような現象を示すため、試料の特性の定量的な評価が困難であり、また、試料の故障時間を特定することが容易ではないということができる。
As shown in FIG. 4, when the dew condensation test apparatus according to the prior art was used, the insulation resistance decreased and recovered repeatedly. This is because, as shown in FIG. 3, the temperature of the sample changes in the time period from B2 to C2, and thus the continuous state and the dotted state are repeated.
Therefore, when the dew condensation test apparatus according to the prior art is used, it is difficult to quantitatively evaluate the characteristics of the sample because it shows such a phenomenon, and it is not easy to specify the failure time of the sample. It can be said that there is no.

一方、実施形態1にかかる結露試験装置を用いた場合には、すなわち、本発明の結露試験方法による場合には、図2に示したように結露量が線形状に増加するため、絶縁抵抗の経時変化(絶縁抵抗の低下)の再現性が高く、試料間の比較も行いやすくなるという利点がある。   On the other hand, when the dew condensation test apparatus according to the first embodiment is used, that is, when the dew condensation test method of the present invention is used, the amount of dew condensation increases to a linear shape as shown in FIG. There is an advantage that reproducibility of change with time (decrease in insulation resistance) is high and comparison between samples becomes easy.

[実施形態2]
実施形態1で試験に供した積層セラミックコンデンサと同じ積層セラミックコンデンサを試料(基準試料)として準備した。
[Embodiment 2]
The same multilayer ceramic capacitor as the multilayer ceramic capacitor subjected to the test in Embodiment 1 was prepared as a sample (reference sample).

さらに、この基準試料(積層セラミックコンデンサ)の表面を撥水処理(シリコーン系樹脂のコーティング)した積層セラミックコンデンサ(撥水処理試料)を準備した。   Furthermore, a multilayer ceramic capacitor (water repellent treated sample) was prepared by subjecting the surface of this reference sample (multilayer ceramic capacitor) to water repellent treatment (coating with a silicone resin).

そして、上記基準試料および撥水処理試料のそれぞれ15個について、上記実施形態1の場合と同様の方法で結露試験を行い、絶縁抵抗の経時変化を調べた。
そして、絶縁抵抗が108Ωにまで低下するまでの時間を故障時間とし、得られた結果をワイブル解析した。その結果を図5に示す。
Then, a dew condensation test was performed on each of the 15 reference samples and the water repellent treated sample in the same manner as in the first embodiment, and the change in insulation resistance with time was examined.
The time until the insulation resistance decreased to 108Ω was taken as the failure time, and the obtained results were subjected to Weibull analysis. The result is shown in FIG.

また、試料5の側方に配設したマイクロスコープ8b(図1参照)を用いて、結露状態の時点における試料5の写真を撮影した。そして、図6に模式的に示すように、試料5の表面に付着した水滴20の接触角θを測定した。なお、接触角θは、試料10個について測定を行い、その平均を求めたものである。   Moreover, the microscope 8b (refer FIG. 1) arrange | positioned to the side of the sample 5 was used, The photograph of the sample 5 in the time of a dew condensation state was image | photographed. And the contact angle (theta) of the water droplet 20 adhering to the surface of the sample 5 was measured as typically shown in FIG. The contact angle θ is obtained by measuring 10 samples and calculating the average.

図5から基準試料と、撥水処理試料の平均故障時間を求めた結果、撥水処理を施していない基準試料は307.6秒、撥水処理を施した撥水処理試料は674.2秒であり、撥水加工を施すことにより、故障に至るまでの時間が約2.2倍になることが確認された。これは試料表面を撥水処理することで、表面への結露の進行が遅れたことによるものと考えられる。   As a result of obtaining the average failure time of the reference sample and the water repellent treated sample from FIG. 5, the reference sample not subjected to the water repellent treated is 307.6 seconds, and the water repellent treated sample subjected to the water repellent treated is 674.2 seconds. It was confirmed that the time until failure by the water repellent treatment was about 2.2 times. This is considered to be because the progress of dew condensation on the surface was delayed by subjecting the sample surface to water repellent treatment.

これはマイクロスコープで測定した接触角θ(図6)が、撥水処理を施していない基準試料では約80°、撥水処理を施した撥水処理試料では約100°であり、撥水処理を施した試料の方が、表面が濡れにくい性状になっていることからも確認することができた。   This is because the contact angle θ (FIG. 6) measured with a microscope is about 80 ° for a reference sample not subjected to water repellent treatment, and about 100 ° for a water repellent treated sample subjected to water repellent treatment. This was also confirmed by the fact that the surface subjected to the treatment had a property that the surface was less likely to get wet.

この実施形態2の場合のように、結露試験の対象となる試料に、結露しやすい試料と、結露しにくい試料とがある場合に、本発明の結露試験装置を用いることにより、試料表面に生じた結露の増加状況を絶縁抵抗(IR)値が低下するまでの時間で定量比較することができるため、結露のしやすさを定量的に比較することが可能になる。   As in the case of the second embodiment, when a sample subject to the condensation test includes a sample that is likely to condense and a sample that is difficult to condense, it is generated on the surface of the sample by using the dew condensation test apparatus of the present invention. It is possible to quantitatively compare the increased state of condensation by the time until the insulation resistance (IR) value decreases, and therefore, it becomes possible to quantitatively compare the ease of condensation.

また、接触角θを測定する場合、試料に水滴を滴下して測定しようとすると、微少な量の水滴を試料に滴下することが必要になるが、微小な電子部品への水滴滴下は困難で、接触角θを測定することが容易でないばかりでなく、水滴の量を微少にすることが必要になるため、少量の水を滴下した場合には、短時間で水分が蒸発してしまうことから、接触角を精度よく測定することは困難である。   In addition, when measuring the contact angle θ, it is necessary to drop a small amount of water droplets on the sample when it is attempted to drop the water droplets on the sample, but it is difficult to drop the water droplets on a minute electronic component. Not only is it easy to measure the contact angle θ, but it is also necessary to make the amount of water droplets small, so when a small amount of water is dropped, the water will evaporate in a short time. It is difficult to accurately measure the contact angle.

これに対し、本発明の結露試験方法の場合には、水滴を滴下する必要がなく、また、安定した結露状態のもとで、水滴との接触角を確実に測定することが可能になる。
なお、接触角の測定においては、結露量が線形的に増加するため、試験開始後、どれくらいの時間が経過した時点で接触角を測定するかなどを、予め決めておくことにより、結露状態を確実に調べることができて好ましい。
In contrast, in the case of the dew condensation test method of the present invention, it is not necessary to drop water droplets, and the contact angle with water droplets can be reliably measured under a stable dew condensation state.
In the measurement of contact angle, the amount of condensation increases linearly, so it is possible to determine the condensation state by deciding in advance how long the contact angle will be measured after the start of the test. It is preferable because it can be surely checked.

なお、上記実施形態では、試料が積層セラミックコンデンサである場合を例にとって説明したが、結露試験の対象となる試料は積層セラミックコンデンサに限らず、サーミスタ商品、コイル商品などのチップ部品、ICなど実装部品および配線基板などの種々の電子部品について結露試験を行う場合に広く適用することができる。   In the above embodiment, the case where the sample is a multilayer ceramic capacitor has been described as an example. However, the sample subjected to the dew condensation test is not limited to the multilayer ceramic capacitor, and is mounted on a chip part such as a thermistor product or a coil product, an IC, or the like. The present invention can be widely applied when performing a dew condensation test on various electronic components such as components and wiring boards.

また、上記実施形態では、結露状態で絶縁抵抗を測定する場合を例にとって説明したが、結露状態で測定される特性は絶縁抵抗に限られるものではなく、例えば、電圧値、電流値などを測定する場合にも本発明を適用することが可能である。   In the above embodiment, the case where the insulation resistance is measured in the dew condensation state has been described as an example. However, the characteristic measured in the dew condensation state is not limited to the insulation resistance, and for example, the voltage value, the current value, etc. are measured. In this case, the present invention can be applied.

本発明は、さらにその他の点においても上記実施形態に限定されるものではなく、試験槽と空気条件調整槽の構造や両者の位置関係、試料台が備える冷却手段の種類、空気条件調整槽の具体的な構成などに関し、発明の範囲内において、種々の応用、変形を加えることが可能である。   The present invention is not limited to the above embodiment in other respects as well, and the structure of the test tank and the air condition adjusting tank and the positional relationship between them, the type of cooling means provided in the sample stage, and the air condition adjusting tank Various applications and modifications can be made within the scope of the invention with respect to a specific configuration and the like.

1 空気条件調整槽
2 試験槽
3 供給手段
5 試料
6 冷却手段
7 試料台
8a,8b マイクロスコープ
9 冷却器
10 加熱器
11 加湿器
12 隔壁
13 供給口
14 循環口
20 水滴
θ 接触角
DESCRIPTION OF SYMBOLS 1 Air condition adjustment tank 2 Test tank 3 Supply means 5 Sample 6 Cooling means 7 Sample stand 8a, 8b Microscope 9 Cooler 10 Heater 11 Humidifier 12 Bulkhead 13 Supply port 14 Circulation port 20 Water drop θ Contact angle

Claims (5)

結露試験の対象である試料を、試験槽内に配設された、冷却手段を有する試料台に載置して、前記試料を前記試料台を介して冷却し、一定の温度を保持しつつ、
温度および湿度を所定の条件に調整した空気を前記試験槽に供給し、
供給された前記空気と前記試料の温度差により、前記試料の表面に結露を生じさせた後、
表面に結露の生じた状態の前記試料について所定の特性を試験すること
を特徴とする電子部品の結露試験方法。
The sample that is the subject of the dew condensation test is placed on a sample stage having cooling means disposed in the test tank, and the sample is cooled through the sample stage, while maintaining a constant temperature,
Supply the test tank with air whose temperature and humidity are adjusted to predetermined conditions,
After causing condensation on the surface of the sample due to the temperature difference between the supplied air and the sample,
A dew condensation test method for electronic parts, characterized by testing predetermined characteristics of the sample in a state where dew condensation has occurred on the surface.
前記試料の表面の結露挙動を、前記試料の上方および側方の少なくとも一方に配設したマイクロスコープにより確認することを特徴とする請求項1記載の結露試験方法。   The dew condensation test method according to claim 1, wherein the dew condensation behavior on the surface of the sample is confirmed by a microscope disposed on at least one of the upper side and the side of the sample. 結露試験の対象である試料が載置される、冷却手段を有する試料台を内部に備えた、結露試験を行うための試験槽と、
空気の温度および湿度を所定の条件に調整する空気条件調整槽と、
前記空気条件調整槽において温度および湿度を調整した空気を前記試験槽に供給するための供給手段と、
前記試料台に載置された前記試料の上方および側方の少なくとも一方に配設された、前記試料の表面への結露状態を観察するためのマイクロスコープと
を備えていることを特徴とする結露試験装置。
A test tank for carrying out a dew condensation test, equipped with a sample stage having a cooling means on which a sample to be subjected to the dew condensation test is placed;
An air condition adjustment tank for adjusting the temperature and humidity of the air to predetermined conditions;
Supply means for supplying air adjusted in temperature and humidity in the air conditioning tank to the test tank;
A microscope for observing the dew condensation state on the surface of the sample disposed on at least one of the upper side and the side of the sample placed on the sample stage. Test equipment.
前記冷却手段としてペルチェ素子を有する冷却手段が用いられていることを特徴とする請求項3記載の結露試験装置。   The dew condensation test apparatus according to claim 3, wherein a cooling means having a Peltier element is used as the cooling means. 表面に結露の生じた状態の前記試料について、所定の特性を測定するための機構をさらに備えていることを特徴とする請求項3または4記載の結露試験装置。   The dew condensation test apparatus according to claim 3 or 4, further comprising a mechanism for measuring predetermined characteristics of the sample in a state where dew condensation has occurred on the surface.
JP2014117905A 2014-06-06 2014-06-06 Dew condensation testing method, and dew condensation testing apparatus Pending JP2015230290A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014117905A JP2015230290A (en) 2014-06-06 2014-06-06 Dew condensation testing method, and dew condensation testing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014117905A JP2015230290A (en) 2014-06-06 2014-06-06 Dew condensation testing method, and dew condensation testing apparatus

Publications (1)

Publication Number Publication Date
JP2015230290A true JP2015230290A (en) 2015-12-21

Family

ID=54887118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014117905A Pending JP2015230290A (en) 2014-06-06 2014-06-06 Dew condensation testing method, and dew condensation testing apparatus

Country Status (1)

Country Link
JP (1) JP2015230290A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106774489A (en) * 2016-12-14 2017-05-31 国网北京市电力公司 Ring main unit secondary small chamber condensation experimental provision and experimental technique
CN108204943A (en) * 2018-01-15 2018-06-26 朱兆明 The UV experimental provisions and its method of work of the simulation plating diaphragm positive and negative temperature difference
JP2018128338A (en) * 2017-02-08 2018-08-16 スガ試験機株式会社 Weather meter and weathering test method
CN113092743A (en) * 2021-04-02 2021-07-09 中国建材检验认证集团北京天誉有限公司 Cement product whiskering test equipment and whiskering degree detection method
JP2022166668A (en) * 2021-04-21 2022-11-02 株式会社村田製作所 Method for testing dew condensation on electronic component
WO2023218641A1 (en) * 2022-05-13 2023-11-16 日本電信電話株式会社 Adhering liquid quantity measurement system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106774489A (en) * 2016-12-14 2017-05-31 国网北京市电力公司 Ring main unit secondary small chamber condensation experimental provision and experimental technique
JP2018128338A (en) * 2017-02-08 2018-08-16 スガ試験機株式会社 Weather meter and weathering test method
CN108204943A (en) * 2018-01-15 2018-06-26 朱兆明 The UV experimental provisions and its method of work of the simulation plating diaphragm positive and negative temperature difference
CN113092743A (en) * 2021-04-02 2021-07-09 中国建材检验认证集团北京天誉有限公司 Cement product whiskering test equipment and whiskering degree detection method
CN113092743B (en) * 2021-04-02 2023-10-20 中国建材检验认证集团北京天誉有限公司 Cement product whiskering test equipment and whiskering degree detection method
JP2022166668A (en) * 2021-04-21 2022-11-02 株式会社村田製作所 Method for testing dew condensation on electronic component
JP7452487B2 (en) 2021-04-21 2024-03-19 株式会社村田製作所 Condensation test method for electronic components
WO2023218641A1 (en) * 2022-05-13 2023-11-16 日本電信電話株式会社 Adhering liquid quantity measurement system

Similar Documents

Publication Publication Date Title
JP2015230290A (en) Dew condensation testing method, and dew condensation testing apparatus
DE102013212485B4 (en) Method for operating a sensor arrangement
WO2010010774A1 (en) Environment testing apparatus capable of controlling condensation amount, and control method therefor
JP6418118B2 (en) Semiconductor device evaluation apparatus and evaluation method
JP2011002372A (en) Device and method for testing conduction deterioration
TWI780874B (en) Inspection jig, inspection jig set, and substrate inspecting apparatus
JP2016095196A (en) Thermal expansion coefficient measurement method and thermomechanical analysis apparatus
JP2007019094A (en) Semiconductor testing device
CN109916960A (en) A kind of dual temperature control measurement method of micro Nano material thermoelectricity capability
JP4082314B2 (en) Electronic component test method and test apparatus
KR102069624B1 (en) Method for measuring coefficient of thermal expansion and Thermal Mechanical Analyzer
JP2017092409A (en) Evaluation device and evaluation method for semiconductor device
US20070139155A1 (en) Humidity sensor and method for making the same
WO2010101006A1 (en) Method and device for determining specific heat capacity and semispherical total emissivity of conductive sample
RU2761863C1 (en) Method for non-destructive diagnostics of defects of a plated hole of a printed-circuit board
JP2012042393A (en) Nondestructive deterioration diagnosis method for solder joint part
US5646540A (en) Apparatus and method for measuring electromagnetic ageing parameter of a circuit element and predicting its values
JP6313131B2 (en) Humidity sensor inspection device
Janda et al. In-situ monitoring method for curing of pastes used in printed electronics
RU2313082C1 (en) Metallic product inspection method
JP2010085346A (en) Environmental testing device having dew condensation control mechanism for test object surface
JPH03506076A (en) Method and apparatus for making accelerated decisions about aging of one or more devices having electromagnetic aging parameters
RU2703720C1 (en) Method of determining the temperature coefficient of resistance of thin conducting films using a four-probe measurement method
KR20140083847A (en) Evaporation apparatus
RU2738976C2 (en) Air humidity sensor and method of its regeneration