JP2003213407A - High purity nickel or nickel alloy sputtering target and production method therefor - Google Patents

High purity nickel or nickel alloy sputtering target and production method therefor

Info

Publication number
JP2003213407A
JP2003213407A JP2002015347A JP2002015347A JP2003213407A JP 2003213407 A JP2003213407 A JP 2003213407A JP 2002015347 A JP2002015347 A JP 2002015347A JP 2002015347 A JP2002015347 A JP 2002015347A JP 2003213407 A JP2003213407 A JP 2003213407A
Authority
JP
Japan
Prior art keywords
nickel
sputtering target
purity
content
nickel alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002015347A
Other languages
Japanese (ja)
Inventor
Yasuhiro Yamakoshi
康廣 山越
Satoru Suzuki
了 鈴木
Hirohito Miyashita
博仁 宮下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mining Holdings Inc
Original Assignee
Nikko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikko Materials Co Ltd filed Critical Nikko Materials Co Ltd
Priority to JP2002015347A priority Critical patent/JP2003213407A/en
Priority to PCT/JP2002/012698 priority patent/WO2003062488A1/en
Priority to TW91135521A priority patent/TW200302288A/en
Publication of JP2003213407A publication Critical patent/JP2003213407A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high purity nickel or nickel alloy sputtering target in which the advantages of nickel silicide (NiSi) by a salicide process are made the most of, and simultaneously, the cause of its phase transition into an NiSi<SB>2</SB>phase is investigated, and the phase transition can effectively be suppressed, and which is particularly useful as a gate electrode material, and to provide a production method therefor. <P>SOLUTION: In the high purity nickel or nickel alloy sputtering target, each content of oxygen and carbon is ≤20 wtppm. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、スパッタリングタ
ーゲット、特にゲート電極材料用のサリサイドプロセス
によるシリサイド膜を形成するのに好適な高純度ニッケ
ル又はニッケル合金スパッタリングターゲット及びその
製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sputtering target, and more particularly to a high-purity nickel or nickel alloy sputtering target suitable for forming a silicide film for a gate electrode material by a salicide process and a method for manufacturing the same.

【0002】[0002]

【従来の技術】従来、ゲート電極材料としてサリサイド
プロセスによるWSi、TiSiが用いられている
が、WSiは抵抗率が著しく高く、利用上の興味が失
われている。TiSiは抵抗率がWSiよりも低
く、特性上優れているが、高温でのアニールを必要とす
るため絶縁膜上へのシリサイドのオーバーグロースが起
こりやすく、細線抵抗が上昇するという欠点がある。ま
た、このTiSiは熱処理のやり方によっては凝集が
生じ、抵抗の上昇や接合リーク、ゲート耐圧の劣化の原
因となる問題がある。これらに替わるものとして、Co
Siがある。このCoSiはシリサイド反応時の拡
散種がCoであるためにオーバーグロースが起こりにく
く、また細線抵抗の上昇も少ないという利点がある。し
かし、熱処理の条件によっては凝集が生じ易いと言う問
題があり、さらに材料が高価であり、コスト的に不利で
あるという欠点がある。
2. Description of the Related Art Conventionally, WSi 2 and TiSi 2 obtained by a salicide process have been used as a gate electrode material, but WSi 2 has a remarkably high resistivity and loses interest in use. TiSi 2 has a lower resistivity than WSi 2 and is superior in characteristics, but since it requires annealing at a high temperature, silicide overgrowth easily occurs on the insulating film, and there is a drawback that the fine wire resistance increases. . Further, this TiSi 2 causes agglomeration depending on the method of heat treatment, which causes problems such as increase in resistance, junction leakage, and deterioration of gate breakdown voltage. As an alternative to these, Co
There is Si 2 . Since CoSi 2 is Co as the diffusion species during the silicide reaction, overgrowth is less likely to occur, and the resistance of the thin wire is less likely to increase. However, there is a problem that aggregation is likely to occur depending on the condition of heat treatment, and there is a drawback that the material is expensive and it is disadvantageous in cost.

【0003】以上から、ゲート電極材料としてサリサイ
ドプロセスによるニッケルシリサイド(NiSi)が注
目されている。このNiSiは、上記CoSiと同様
に抵抗率が低く、シリサイド反応時の拡散種がNiであ
るためにオーバーグロースが起こりにくく、また細線抵
抗の上昇も少ないという利点がある。さらに、シリサイ
ド化反応におけるSiの消費量が少ないという特徴もあ
る。しかし、このニッケルシリサイドは、準安定相であ
るNiSiと安定相であるNiSi相があり、700
°Cを超える熱処理温度ではこの安定相であるNiSi
相に相転移してしまう。このNiSi相は抵抗率が
高く、シリサイド化反応におけるSiの消費量も増大す
るので、従来のゲート電極材料に比べて何らメリットが
ないと言える。
From the above, attention has been paid to nickel silicide (NiSi) by a salicide process as a gate electrode material. Similar to CoSi 2 , NiSi has a low resistivity, and since Ni is the diffusing species during the silicide reaction, overgrowth is unlikely to occur, and the resistance of the fine wire is small. Further, there is a feature that the amount of Si consumed in the silicidation reaction is small. However, this nickel silicide has NiSi which is a metastable phase and NiSi 2 phase which is a stable phase.
NiSi, which is in this stable phase at heat treatment temperatures above ° C
The phase transitions to two phases. Since this NiSi 2 phase has a high resistivity and increases the amount of Si consumed in the silicidation reaction, it can be said that it has no merit in comparison with the conventional gate electrode material.

【0004】[0004]

【発明が解決しょうとする課題】以上から、本発明はゲ
ート電極材料としてサリサイドプロセスによるニッケル
シリサイド(NiSi)の利点を生かすと同時に、Ni
Si相に相転移させる原因を究明し、これを効果的に
抑制できる、特にゲート電極材料として有用な高純度ニ
ッケル又はニッケル合金スパッタリングターゲット及び
その製造方法を提供するものである。
From the above, the present invention takes advantage of nickel silicide (NiSi) by a salicide process as a gate electrode material, and at the same time, Ni
It is intended to provide a high-purity nickel or nickel alloy sputtering target which is particularly useful as a gate electrode material, and a method for producing the same, which is capable of investigating the cause of phase transition to the Si 2 phase and effectively suppressing it.

【0005】[0005]

【課題を解決するための手段】本発明は、 1.酸素、炭素の含有量がそれぞれ20wtppm以下
であることを特徴とする高純度ニッケル又はニッケル合
金スパッタリングターゲット 2.酸素、炭素の含有量がそれぞれ10wtppm以下
であることを特徴とする高純度ニッケル又はニッケル合
金スパッタリングターゲット 3.酸素、炭素の含有量がそれぞれ1wtppm以下で
あることを特徴とする高純度ニッケル又はニッケル合金
スパッタリングターゲット 4.水素の含有量が10wtppm以下であることを特
徴とする上記1〜3のそれぞれに記載の高純度ニッケル
又はニッケル合金スパッタリングターゲット 5.水素の含有量が1wtppm以下であることを特徴
とする上記1〜3のそれぞれに記載の高純度ニッケル又
はニッケル合金スパッタリングターゲット 6.合金元素及び酸素、水素、窒素、炭素等のガス成分
を除く不純物元素の含有量が10wtppm未満である
ことを特徴とする上記1〜5のそれぞれに記載の高純度
ニッケル又はニッケル合金スパッタリングターゲット 7.鉄の含有量が5ppm以下であることを特徴とする
上記6に記載の高純度ニッケル又はニッケル合金スパッ
タリングターゲット 8.鉄の含有量が2ppm以下であることを特徴とする
上記6に記載の高純度ニッケル又はニッケル合金スパッ
タリングターゲット 9.合金元素として、チタン、ジルコニウム、ハフニウ
ム、バナジウム、ニオブ、タンタル、クロム、マンガ
ン、ルテニウム、パラジウム、白金、モリブデン、レニ
ウム、タングステンから選択した少なくとも1種類以上
の元素を含有することを特徴とする上記1〜8のそれぞ
れに記載の高純度ニッケル合金スパッタリングターゲッ
ト 10.合金元素として、鉄又はコバルトから選択した少
なくとも1種類以上の元素を含有することを特徴とする
上記1〜6及び9のそれぞれに記載の高純度ニッケル合
金スパッタリングターゲット 11.合金元素の含有量が0.5〜10at%であるこ
とを特徴とする上記1〜10のそれぞれに記載の高純度
ニッケル合金スパッタリングターゲット 12.合金元素の含有量が1〜5at%であることを特
徴とする上記1〜10のそれぞれに記載の高純度ニッケ
ル合金スパッタリングターゲット 13.ランタノイド系元素を0.2〜40ppm含有す
ることを特徴とする上記1〜12のそれぞれに記載の高
純度ニッケル又は高純度ニッケル合金スパッタリングタ
ーゲット 14.シリコンと反応させてシリサイド膜を形成させる
サリサイド工程で使用することを特徴とする上記1〜1
3のそれぞれに記載の高純度ニッケル又はニッケル合金
スパッタリングターゲット を提供する。
The present invention includes: 1. A high-purity nickel or nickel alloy sputtering target characterized in that oxygen and carbon contents are 20 wtppm or less, respectively. 2. A high-purity nickel or nickel alloy sputtering target characterized by containing oxygen and carbon in an amount of 10 wtppm or less, respectively. 3. High-purity nickel or nickel alloy sputtering target characterized by containing oxygen and carbon in an amount of 1 wtppm or less, respectively. 4. The high-purity nickel or nickel alloy sputtering target according to each of the above 1 to 3, wherein the hydrogen content is 10 wtppm or less. 5. The high-purity nickel or nickel alloy sputtering target according to each of the above 1 to 3, wherein the hydrogen content is 1 wtppm or less. 7. The high-purity nickel or nickel alloy sputtering target according to each of 1 to 5 above, wherein the content of the alloy element and the impurity element excluding gas components such as oxygen, hydrogen, nitrogen, and carbon is less than 10 wtppm. 7. The high-purity nickel or nickel alloy sputtering target according to the above 6, wherein the iron content is 5 ppm or less. 8. The high-purity nickel or nickel alloy sputtering target according to 6 above, wherein the iron content is 2 ppm or less. The alloy element contains at least one element selected from titanium, zirconium, hafnium, vanadium, niobium, tantalum, chromium, manganese, ruthenium, palladium, platinum, molybdenum, rhenium, and tungsten as the alloy element 1 10. A high-purity nickel alloy sputtering target according to each of 8 to 10. 11. The high-purity nickel alloy sputtering target according to each of 1 to 6 and 9, which contains at least one element selected from iron or cobalt as an alloy element. 11. The high-purity nickel alloy sputtering target according to each of 1 to 10 above, wherein the content of the alloy element is 0.5 to 10 at%. 13. The high purity nickel alloy sputtering target according to each of 1 to 10 above, wherein the content of the alloy element is 1 to 5 at%. 13. The high-purity nickel or high-purity nickel alloy sputtering target according to each of the above 1 to 12, which contains 0.2 to 40 ppm of a lanthanoid element. 1 to 1 used in a salicide process of reacting with silicon to form a silicide film
3. A high-purity nickel or nickel alloy sputtering target according to each of item 3 is provided.

【0006】また、本発明は 15.粗ニッケルを電解精製法により金属不純物を除去
した後、電子ビーム溶解等の方法で溶解して高純度ニッ
ケルインゴットを作製し、これを鍛造、圧延等の塑性加
工により厚さを7〜10mmとした後水素雰囲気中で加
熱して脱酸素、脱炭素を行い、さらにこれを真空雰囲気
中で加熱して脱水素処理を行うことを特徴とする上記1
〜8、13、14のそれぞれに記載の高純度ニッケルス
パッタリングターゲットの製造方法 16.粗ニッケルを電解精製法により金属不純物を除去
した後、高純度合金元素と共に電子ビーム溶解等の方法
で溶解して高純度ニッケル合金インゴットを作製し、こ
れを鍛造、圧延等の塑性加工により厚さを7〜10mm
とした後、水素雰囲気中で加熱して脱酸素、脱炭素を行
い、さらにこれを真空雰囲気中で加熱して脱水素処理を
行うことを特徴とする上記1〜12に記載の高純度ニッ
ケル合金スパッタリングターゲットの製造方法 17.電子ビーム溶解等の方法で溶解して高純度ニッケ
ル合金インゴットを作製する際に、脱酸効果を高めるた
めに合金元素としてランタノイド系元素を0.2ppm
〜40ppm添加することを特徴とする上記13、16
に記載の高純度ニッケル合金スパッタリングターゲット
の製造方法 を提供する。
The present invention also relates to 15. After removing metallic impurities from the crude nickel by electrolytic refining method, it was melted by a method such as electron beam melting to prepare a high-purity nickel ingot, which was made to have a thickness of 7 to 10 mm by plastic working such as forging and rolling. After that, it is heated in a hydrogen atmosphere for deoxygenation and decarbonization, and further heated in a vacuum atmosphere for dehydrogenation treatment.
15. Manufacturing method of high-purity nickel sputtering target according to each of After removing metallic impurities by electrolytic refining from crude nickel, it is melted together with high-purity alloy elements by a method such as electron beam melting to produce a high-purity nickel alloy ingot, which is then forged and rolled by plastic working to obtain a thickness. 7 to 10 mm
And then heating in a hydrogen atmosphere for deoxygenation and decarbonization, and further for heating in a vacuum atmosphere for dehydrogenation treatment. Manufacturing method of sputtering target 17. When producing a high-purity nickel alloy ingot by melting it with a method such as electron beam melting, 0.2 ppm of lanthanoid-based element as an alloying element in order to enhance the deoxidizing effect.
The above 13, 16 characterized by adding ˜40 ppm
A method for manufacturing the high-purity nickel alloy sputtering target according to 1.

【0007】[0007]

【発明の実施の形態】本発明は、酸素、炭素の含有量が
それぞれ20wtppm以下である高純度ニッケル又は
ニッケル合金スパッタリングターゲット、好ましくは酸
素、炭素の含有量がそれぞれ10wtppm以下、さら
に好ましくは酸素、炭素の含有量がそれぞれ1wtpp
m以下である高純度ニッケル又はニッケル合金スパッタ
リングターゲットに関する。従来の高純度ニッケルター
ゲットは、ガス成分を除いて4N5(99.995wt
%)程度のものであり、酸素あるいは炭素含有量がそれ
ぞれ50〜80wtppmで、窒素含有量も50wtp
pmと高いものであった。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention is a high-purity nickel or nickel alloy sputtering target having oxygen and carbon contents of 20 wtppm or less, preferably oxygen and carbon contents of 10 wtppm or less, and more preferably oxygen, respectively. Each carbon content is 1wtpp
It relates to a high-purity nickel or nickel alloy sputtering target of m or less. The conventional high-purity nickel target is 4N5 (99.995 wt.
%), The oxygen or carbon content is 50 to 80 wtppm, and the nitrogen content is 50 wtp.
It was as high as pm.

【0008】このようなガス成分、特に酸素含有量が高
いターゲットを使用してゲート電極Ni膜をスパッタリ
ング成膜し、さらに熱処理(アニール)によりニッケル
シリサイド膜の形成を行う、すなわちサリサイドプロセ
スによりシリサイド処理した場合、ニッケルが酸素と反
応して酸化膜を形成し、この酸化膜がシリサイド反応を
阻害するばかりでなく、シリサイド膜とシリコン基板と
の界面領域に、これによる凹凸のある絶縁膜を形成し、
さらにはシリサイド膜の凝集の原因となるなど、界面の
ラフネスによって、N/Pの接合特性が劣化し、抵抗
が増加するという問題があった。特に、ニッケルシリサ
イドは他のシリサイド材料に比べても非常に酸化され易
く、一層その傾向が強い。炭素含有量に関しては、還元
剤として作用することも考えられるために、悪影響を及
ぼさないように思われるが、炭素含有量がバラツキつい
た場合は、界面ラフネスの変動要因になってしまうので
低く抑えることが必要である。
A gate electrode Ni film is formed by sputtering using a target having such a high gas content, particularly a high oxygen content, and a nickel silicide film is formed by heat treatment (annealing), that is, a silicide treatment by a salicide process. In this case, nickel reacts with oxygen to form an oxide film, and this oxide film not only hinders the silicide reaction, but also forms an uneven insulating film in the interface region between the silicide film and the silicon substrate. ,
Further, there is a problem that the N + / P junction characteristics are deteriorated due to the roughness of the interface, which causes the aggregation of the silicide film, and the resistance increases. In particular, nickel silicide is much more easily oxidized than other silicide materials, and this tendency is even stronger. Regarding the carbon content, since it may also act as a reducing agent, it does not seem to have an adverse effect, but if the carbon content varies, it will be a factor for varying the interfacial roughness, so keep it low. It is necessary.

【0009】従来は、このような接合特性の低下を成膜
プロセスで改善しようという試みがあったが、この界面
ラフネスを十分に制御できるものではなかった。本発明
は、スパッタリングターゲット中のガス成分である酸
素、炭素を著しく低減することにより、この問題を一挙
に解決することが可能となった。また、高純度ニッケル
又はニッケル合金スパッタリングターゲット中の水素が
10wtppmより好ましくは1wtppm以下である
ことが望ましい。このようなガス成分を除去した高純度
ニッケル又はニッケル合金スパッタリングターゲット
は、上記のようにシリサイド膜の特性を改善するだけで
なく、酸素、炭素、窒素、水素、フッ素、硫黄等のガス
成分に起因するスパッタリング中のスプラッシュ、異常
放電、パーティクル等の発生が減少するという特徴も有
する。また、合金元素及び酸素、水素、窒素、炭素等の
ガス成分を除く不純物元素の含有量が10wtppm未
満、すなわち5Nの純度を持つ高純度ニッケル又はニッ
ケル合金スパッタリングターゲットとすることにより、
不純物により引き起こされる界面ラフネスの悪化を抑制
できるという優れた効果を有する。
Conventionally, there has been an attempt to improve such deterioration of the bonding characteristics by a film forming process, but this interface roughness cannot be sufficiently controlled. The present invention has made it possible to solve this problem all at once by significantly reducing oxygen and carbon which are gas components in the sputtering target. Further, it is desirable that hydrogen in the high-purity nickel or nickel alloy sputtering target is 10 wtppm or more, preferably 1 wtppm or less. The high-purity nickel or nickel alloy sputtering target from which such a gas component is removed not only improves the characteristics of the silicide film as described above, but also is caused by a gas component such as oxygen, carbon, nitrogen, hydrogen, fluorine, and sulfur. It also has a feature that the generation of splash, abnormal discharge, particles, etc. during sputtering is reduced. Further, the content of the impurity element excluding the gas components such as oxygen, hydrogen, nitrogen, and carbon is less than 10 wtppm, that is, by using a high-purity nickel or nickel alloy sputtering target having a purity of 5N,
It has an excellent effect that the deterioration of the interfacial roughness caused by impurities can be suppressed.

【0010】さらに本発明は、高純度ニッケル合金スパ
ッタリングターゲット中の合金元素として、チタン、ジ
ルコニウム、ハフニウム、バナジウム、ニオブ、タンタ
ル、クロム、モリブデン、レニウムから選択した少なく
とも1種類以上の元素を含有させる。合金元素の含有量
としては0.5〜10at%である。上記の通り、ニッ
ケルシリサイドは、準安定相であるNiSiと安定相で
あるNiSi相があり、700°Cを超える熱処理温
度ではこの安定相であるNiSi相に相転移してしま
うという問題を指摘したが、これらの合金元素を添加す
ることにより、安定相であるNiSi相への転移を遅
らせ、かつ抑制するのに極めて有効である。0.5at
%未満では効果がなく、また10at%を超えると抵抗
率が高くなるので10at%以下とする必要があり、好
ましくは1〜5at%である。これによって、抵抗率が
高いNiSi相の形成及びシリサイド化反応における
Siの消費量を抑制できる大きな効果が得られる。さら
に合金元素としては、ランタノイド系元素を0.2pp
m〜40ppm添加することで、合金作製を溶解する工
程で脱酸効果を向上させることもできる。これらは少量
で効果的にNiSi相への相転移を抑制できる。下記
実施例及び比較例においては、上記合金元素のうち、チ
タンとニオブの添加の例を示すが、その他の元素を添加
した合金においても同様の結果が得られた。
Further, according to the present invention, at least one element selected from titanium, zirconium, hafnium, vanadium, niobium, tantalum, chromium, molybdenum and rhenium is contained as an alloying element in the high purity nickel alloy sputtering target. The content of alloying elements is 0.5 to 10 at%. As described above, nickel silicide has a metastable phase of NiSi and a stable phase of NiSi 2 phase, and at a heat treatment temperature exceeding 700 ° C., a phase transition to the stable NiSi 2 phase occurs. As pointed out, the addition of these alloying elements is extremely effective in delaying and suppressing the transition to the stable phase NiSi 2 phase. 0.5 at
If it is less than 10% by weight, no effect is obtained, and if it exceeds 10 at%, the resistivity increases. Therefore, it is necessary to set it to 10 at% or less, preferably 1 to 5 at%. As a result, a large effect that the consumption of Si in the formation of the NiSi 2 phase having a high resistivity and the silicidation reaction can be suppressed can be obtained. Furthermore, as an alloying element, a lanthanoid element is 0.2 pp
By adding m to 40 ppm, the deoxidizing effect can be improved in the step of melting the alloy preparation. A small amount of these can effectively suppress the phase transition to the NiSi 2 phase. In the following examples and comparative examples, examples of addition of titanium and niobium among the above alloy elements are shown, but similar results were obtained for alloys to which other elements were added.

【0011】本発明の高純度ニッケルスパッタリングタ
ーゲットを製造するに際しては、粗ニッケル(4Nレベ
ル)を電解精製法により金属不純物を除去した後、電子
ビーム溶解により精製して高純度ニッケルインゴットを
作製する。次に、このインゴットを鍛造、圧延等の塑性
加工により厚さを7〜10mm程度に薄くした後、この
ニッケル板を水素雰囲気中で加熱し脱酸素、脱炭素を行
い、さらにこれを連続して真空雰囲気中で加熱し、脱水
素処理を行う。これによって得たニッケル板を、最終冷
間圧延及び再結晶焼鈍して高純度ニッケルスパッタリン
グターゲットを製造する。この最終冷間圧延、再結晶焼
鈍は、圧延率30%以上の圧延と再結晶焼鈍を少なくと
も2回繰返し、結晶粒を調整することが望ましい。
In producing the high-purity nickel sputtering target of the present invention, crude nickel (4N level) is electrolytically refined to remove metal impurities and then purified by electron beam melting to produce a high-purity nickel ingot. Next, this ingot is thinned to a thickness of about 7 to 10 mm by plastic working such as forging and rolling, and then this nickel plate is heated in a hydrogen atmosphere for deoxidation and decarbonization, and this is continuously performed. Dehydrogenation is performed by heating in a vacuum atmosphere. The nickel plate thus obtained is subjected to final cold rolling and recrystallization annealing to manufacture a high-purity nickel sputtering target. In this final cold rolling and recrystallization annealing, it is desirable to repeat rolling at a rolling rate of 30% or more and recrystallization annealing at least twice to adjust the crystal grains.

【0012】高純度ニッケル合金スパッタリングターゲ
ットを製造する場合は、基本的には上記と同様である
が、電子ビーム溶解や、コールドウォールタイプの溶解
炉で溶解する際に高純度ニッケルと共に高純度の合金元
素を添加し、同時に溶解して高純度ニッケル合金インゴ
ットを作製する。その後同様の工程を経て、高純度ニッ
ケル合金スパッタリングターゲットを製造する。以上に
より、酸素等のガス成分及びその他の不純物元素を極め
て低減させた高純度ニッケルスパッタリングターゲット
及び高純度ニッケル合金スパッタリングターゲットを製
造することができる。
When a high-purity nickel alloy sputtering target is manufactured, it is basically the same as the above, but when it is melted in an electron beam melting or a cold wall type melting furnace, it is a high-purity alloy together with high-purity nickel. An element is added and simultaneously melted to produce a high-purity nickel alloy ingot. After that, a high-purity nickel alloy sputtering target is manufactured through similar steps. As described above, a high-purity nickel sputtering target and a high-purity nickel alloy sputtering target in which gas components such as oxygen and other impurity elements are extremely reduced can be manufactured.

【0013】[0013]

【実施例】次に、実施例に基づいて説明する。なお、こ
れらは本発明の理解を容易にするためのものであり、本
発明はこれらに制限されるものではない。
EXAMPLES Next, examples will be described. These are for facilitating the understanding of the present invention, and the present invention is not limited to these.

【0014】厚さ10mmのニッケル板を、モリブデン
製ヒーター炉にて1000°C、1050°C、110
0°C、1150°C、1200°C、1250°Cで
水素処理5時間後、急速アルゴンガス置換後連続して真
空処理3時間(到達真空度5×10−5torr)行
い、水素、真空処理による脱酸素、脱炭素、脱水素効果
を調べた。その結果をグラフとして、図1に示す。図1
のグラフに示すように、熱処理温度の上昇と共に、ガス
成分の含有量は低下する。下記実施例においては、これ
らの条件を使用して適宜ガス成分を調節する。なお、厚
さ3mmのニッケルターゲットを作製するには、脱酸素
後の厚さが7mm以上必要である。しかし、約10mm
を超えると脱酸素時間が長くなり適当でない。
A nickel plate having a thickness of 10 mm was heated at 1000 ° C., 1050 ° C., 110 at a heater furnace made of molybdenum.
After hydrogen treatment at 0 ° C, 1150 ° C, 1200 ° C, and 1250 ° C for 5 hours, rapid argon gas replacement was performed and vacuum treatment was continuously performed for 3 hours (attainment vacuum degree of 5 × 10 −5 torr), hydrogen, vacuum. The effects of deoxidation, decarbonization and dehydrogenation by the treatment were investigated. The result is shown as a graph in FIG. Figure 1
As shown in the graph, the content of the gas component decreases as the heat treatment temperature rises. In the examples below, these conditions are used to adjust the gas composition accordingly. In addition, in order to produce a nickel target having a thickness of 3 mm, the thickness after deoxidation needs to be 7 mm or more. However, about 10 mm
If it exceeds, deoxidation time becomes long and it is not suitable.

【0015】(実施例1)粗ニッケル(純度4N(ガス
成分除く)、ナトリウム30wtppm、鉄8wtpp
m、コバルト5wtppm)を電解精製にて高純度化し
た。 これを電子ビーム溶解法にて5×10−4〜5×
10−5torr程度の真空雰囲気で溶解してインゴッ
ト(φ150×60mm)を作製した。これを900°
Cで熱間鍛造して溶解凝固組織を破壊して、さらに厚さ
を10mm板にした。このニッケル板を塩酸で表面酸化
膜を除去したのち、30%の圧延率で冷間圧延し、塩酸
で表面清浄してから325°Cで真空熱処理(到達真空
度5×10 torr以下)した。その後さらに30
%の圧延率で冷間圧延し、塩酸で表面清浄してから32
5°Cで真空熱処理(真空度5×10−5torr以
下)した。これから機械加工にて厚さ3mm、φ300
mmの高純度ニッケルターゲットを作製した。酸素、炭
素、水素及びガス成分と合金元素以外の不純物含有量を
表1に示す(ガス成分以外は、GDMS(グロー放電質
量分析法)による分析結果であり、以下同様である)。
表1に示すように、酸素含有量18wtppm、炭素含
有量16wtppm、水素含有量12wtppm、ガス
成分及び合金成分以外の不純物含有量9wtppmであ
った。
(Example 1) Crude nickel (purity 4N (excluding gas components), sodium 30 wtppm, iron 8 wtpp
m, cobalt 5 wtppm) was highly purified by electrolytic refining. This is 5 × 10 −4 to 5 × by an electron beam melting method.
It was melted in a vacuum atmosphere of about 10 −5 torr to prepare an ingot (φ150 × 60 mm). This is 900 °
The molten solidified structure was destroyed by hot forging with C to obtain a plate having a thickness of 10 mm. Thereafter the nickel plate was to remove surface oxide film with hydrochloric acid, then cold-rolled at a rolling reduction of 30%, the vacuum heat treatment after surface cleaning with 325 ° C with hydrochloric acid (ultimate vacuum 5 × 10 - 5 torr or less) did. 30 more after that
32% after cold rolling at a rolling rate of% and cleaning the surface with hydrochloric acid
Vacuum heat treatment (vacuum degree 5 × 10 −5 torr or less) was performed at 5 ° C. It will be machined to a thickness of 3 mm and a diameter of 300 mm.
A mm high-purity nickel target was prepared. The content of impurities other than oxygen, carbon, hydrogen, and gas components and alloying elements is shown in Table 1 (other than gas components, analysis results by GDMS (glow discharge mass spectrometry), and the same applies hereinafter).
As shown in Table 1, the oxygen content was 18 wtppm, the carbon content was 16 wtppm, the hydrogen content was 12 wtppm, and the impurity content other than the gas component and the alloy component was 9 wtppm.

【0016】(実施例2)粗ニッケル(純度4N(ガス
成分除く)、ナトリウム30wtppm、鉄8wtpp
m、コバルト5wtppm)を電解精製にて高純度化し
た。 これを電子ビーム溶解法にて5×10−4〜5×
10−5torr程度の真空雰囲気で溶解してインゴッ
ト(φ150×60mm)を作製した。これを900°
Cで熱間鍛造して溶解凝固組織を破壊して、さらに厚さ
を10mm板にした。このニッケル板を塩酸で表面酸化
膜を除去したのち、モリブデン製ヒーターの熱処理炉に
て、水素雰囲気中1050°Cで5時間熱処理して、脱
酸素、脱炭素処理を行った。その後急速アルゴンガス置
換後、連続して1050°Cで3時間真空熱処理(到達
真空度5×10−5torr)した。このニッケル板を
30%の圧延率で冷間圧延し、塩酸で表面清浄してから
325°Cで真空熱処理(到達真空度5×10−5to
rr)した。その後さらに30%の圧延率で冷間圧延
し、塩酸で表面清浄してから325°Cで真空熱処理
(到達真空度5×10−5torr以下)した。これか
ら厚さ3mm、φ300mmの高純度ニッケルターゲッ
トを作製した。酸素、炭素、水素及びガス成分と合金元
素以外の不純物含有量を同様に表1に示す。表1に示す
ように、酸素含有量8wtppm、炭素含有量7wtp
pm、水素含有量5wtppm、ガス成分及び合金成分
以外の不純物含有量7wtppmであった。
(Example 2) Crude nickel (purity 4N (excluding gas components), sodium 30 wtppm, iron 8 wtpp
m, cobalt 5 wtppm) was highly purified by electrolytic refining. This is 5 × 10 −4 to 5 × by an electron beam melting method.
It was melted in a vacuum atmosphere of about 10 −5 torr to prepare an ingot (φ150 × 60 mm). This is 900 °
The molten solidified structure was destroyed by hot forging with C to obtain a plate having a thickness of 10 mm. After removing the surface oxide film from this nickel plate with hydrochloric acid, it was heat-treated at 1050 ° C. for 5 hours in a hydrogen atmosphere in a heat treatment furnace made of a molybdenum heater for deoxidation and decarbonization. Then, after rapid argon gas replacement, vacuum heat treatment (ultimate vacuum degree 5 × 10 −5 torr) was continuously performed at 1050 ° C. for 3 hours. This nickel plate was cold-rolled at a rolling rate of 30%, surface-cleaned with hydrochloric acid, and then vacuum heat-treated at 325 ° C. (achieved vacuum degree 5 × 10 −5 to
rr). Then, it was further cold-rolled at a rolling ratio of 30%, the surface was cleaned with hydrochloric acid, and then vacuum heat treatment was performed at 325 ° C. (the ultimate vacuum degree was 5 × 10 −5 torr or less). From this, a high-purity nickel target having a thickness of 3 mm and a diameter of 300 mm was produced. The oxygen, carbon, hydrogen and gas components and the content of impurities other than alloying elements are also shown in Table 1. As shown in Table 1, oxygen content 8wtppm, carbon content 7wtp
pm, the hydrogen content was 5 wtppm, and the impurity content other than the gas component and the alloy component was 7 wtppm.

【0017】(実施例3)粗ニッケル(純度4N(ガス
成分除く)、ナトリウム30wtppm、鉄8wtpp
m、コバルト5wtppm)を電解精製にて高純度化し
た。 これを電子ビーム溶解法にて5×10−4〜5×
10−5torr程度の真空雰囲気で溶解してインゴッ
ト(φ150×60mm)を作製した。これを900°
Cで熱間鍛造して溶解凝固組織を破壊して、さらに厚さ
を10mm板にした。このニッケル板を塩酸で表面酸化
膜を除去したのち、モリブデン製ヒーターの熱処理炉に
て、水素雰囲気中1250°Cで5時間熱処理して、脱
酸素、脱炭素処理を行った。その後急速アルゴンガス置
換後、連続して1250°Cで3時間真空熱処理(到達
真空度5×10−5torr以下)した。このニッケル
板を30%の圧延率で冷間圧延し、塩酸で表面清浄して
から325°Cで真空熱処理(到達真空度5×10−5
torr以下)した。その後、さらに30%の圧延率で
冷間圧延し、塩酸で表面清浄してから325°Cで真空
熱処理(到達真空度5×10−5torr以下)した。
これから厚さ3mm、φ300mmの高純度ニッケルタ
ーゲットを作製した。酸素、炭素、水素及びガス成分と
合金元素以外の不純物含有量を同様に表1に示す。表1
に示すように、酸素含有量1wtppm、炭素含有量1
wtppm、水素含有量1wtppm、ガス成分及び合
金成分以外の不純物含有量1wtppm未満であった。
(Example 3) Crude nickel (purity 4N (excluding gas components), sodium 30 wtppm, iron 8 wtpp
m, cobalt 5 wtppm) was highly purified by electrolytic refining. This is 5 × 10 −4 to 5 × by an electron beam melting method.
It was melted in a vacuum atmosphere of about 10 −5 torr to prepare an ingot (φ150 × 60 mm). This is 900 °
The molten solidified structure was destroyed by hot forging with C to obtain a plate having a thickness of 10 mm. After removing the surface oxide film from this nickel plate with hydrochloric acid, it was heat-treated at 1250 ° C. for 5 hours in a hydrogen atmosphere in a heat treatment furnace of a molybdenum heater to perform deoxidation and decarbonization treatments. Then, after rapid argon gas replacement, vacuum heat treatment (ultimate vacuum degree of 5 × 10 −5 torr or less) was continuously performed at 1250 ° C. for 3 hours. This nickel plate was cold-rolled at a rolling rate of 30%, surface-cleaned with hydrochloric acid, and then vacuum heat-treated at 325 ° C. (achieved vacuum degree 5 × 10 −5
less than torr). Then, it was further cold-rolled at a rolling rate of 30%, the surface was cleaned with hydrochloric acid, and then vacuum heat treatment was performed at 325 ° C. (the ultimate vacuum degree was 5 × 10 −5 torr or less).
From this, a high-purity nickel target having a thickness of 3 mm and a diameter of 300 mm was produced. The oxygen, carbon, hydrogen and gas components and the content of impurities other than alloying elements are also shown in Table 1. Table 1
As shown in, oxygen content 1wtppm, carbon content 1
The content was less than 1 wtppm, and the content of impurities other than gas components and alloy components was less than 1 wtppm.

【0018】[0018]

【表1】 [Table 1]

【0019】上記実施例1〜3の高純度ニッケルターゲ
ットを用いて、シリコン膜上にニッケル膜をスパッタリ
ング成膜し、窒素雰囲気中500°CでRTA(Rap
idThermal Anneal)法にて熱処理し
て、ニッケルシリサイド膜を作製した。この膜の断面を
TEM観察して界面ラフネスの様子を観察した。さらに
これらの膜を窒素雰囲気で加熱して、XRD回折法にて
ニッケルシリサイド(NiSi)のNiSiへの結晶
構造変化の温度を調べた。この結果を、上記表1に示
す。表1に示すように、実施例1〜3については、いず
れも界面ラフネスは良好である(なお、界面ラフネスは
30〜40nmを良好とし、50nm以上を不良とし
た。以下同様である。)。
Using the high-purity nickel targets of Examples 1 to 3 above, a nickel film was formed by sputtering on a silicon film, and RTA (Rap) was performed at 500 ° C. in a nitrogen atmosphere.
A nickel silicide film was formed by heat treatment by the id Thermal Anneal method. The state of the interface roughness was observed by TEM observation of the cross section of this film. Further, these films were heated in a nitrogen atmosphere, and the temperature of the crystal structure change of nickel silicide (NiSi) into NiSi 2 was examined by XRD diffraction method. The results are shown in Table 1 above. As shown in Table 1, in each of Examples 1 to 3, the interface roughness was good (note that the interface roughness of 30 to 40 nm was good and 50 nm or more was bad. The same applies hereinafter).

【0020】(比較例1)純度99.995wt%の高
純度ニッケルターゲット板を30%の圧延率で冷間圧延
し、塩酸で表面清浄してから325°Cで真空熱処理
(真空度5×10 torr以下)した。その後さら
に30%の圧延率で冷間圧延し、塩酸で表面清浄してか
ら325°Cで真空熱処理(真空度5×10−5tor
r以下)した。これから厚さ3mm、φ300mmの高
純度ニッケルターゲットを作製した。この場合のガス成
分は、酸素含有量53wtppm、炭素含有量36wt
ppm、水素含有量22wtppmと高く、またガス成
分及び合金成分以外の不純物含有量42wtppmと高
かった。
Comparative Example 1 A high-purity nickel target plate having a purity of 99.995 wt% was cold-rolled at a rolling rate of 30%, the surface was cleaned with hydrochloric acid, and then vacuum heat treatment was performed at 325 ° C. (vacuum degree 5 × 10 5). - 5 torr or less) was. After that, it is further cold rolled at a rolling rate of 30%, the surface is cleaned with hydrochloric acid, and then vacuum heat treatment is performed at 325 ° C. (vacuum degree 5 × 10 −5 torr).
r or less). From this, a high-purity nickel target having a thickness of 3 mm and a diameter of 300 mm was produced. In this case, the gas component is oxygen content 53 wtppm, carbon content 36 wt
ppm and hydrogen content were as high as 22 wtppm, and the content of impurities other than gas components and alloy components was as high as 42 wtppm.

【0021】(比較例2)純度99.995wt%の高
純度ニッケルターゲット板を30%の圧延率で冷間圧延
し、塩酸で表面清浄してから325°Cで真空熱処理
(真空度5×10 torr以下)した。その後さら
に30%の圧延率で冷間圧延し、塩酸で表面清浄してか
ら325°Cで真空熱処理(真空度5×10−5tor
r以下)した。これから厚さ3mm、φ300mmの高
純度ニッケルターゲットを作製した。この場合のガス成
分は、酸素含有量40wtppm、炭素含有量28wt
ppm、水素含有量30wtppmと高く、またガス成
分及び合金成分以外の不純物含有量28wtppmと高
かった。
Comparative Example 2 A high-purity nickel target plate having a purity of 99.995 wt% was cold-rolled at a rolling rate of 30%, the surface was cleaned with hydrochloric acid, and then vacuum heat treatment was performed at 325 ° C. (vacuum degree 5 × 10 5). - 5 torr or less) was. After that, it is further cold rolled at a rolling rate of 30%, the surface is cleaned with hydrochloric acid, and then vacuum heat treatment is performed at 325 ° C. (vacuum degree 5 × 10 −5 torr).
r or less). From this, a high-purity nickel target having a thickness of 3 mm and a diameter of 300 mm was produced. The gas component in this case is 40 wtppm oxygen content, 28 wt% carbon content.
ppm and hydrogen content were as high as 30 wtppm, and impurities content other than gas components and alloy components were as high as 28 wtppm.

【0022】(比較例3)純度99.995wt%の高
純度ニッケルターゲット板を30%の圧延率で冷間圧延
し、塩酸で表面清浄してから325°Cで真空熱処理
(真空度5×10 torr以下)した。その後さら
に30%の圧延率で冷間圧延し、塩酸で表面清浄してか
ら325°Cで真空熱処理(真空度5×10−5tor
r以下)した。これから厚さ3mm、φ300mmの高
純度ニッケルターゲットを作製した。この場合のガス成
分は、酸素含有量35wtppm、炭素含有量26wt
ppm、水素含有量35wtppmと高く、またガス成
分及び合金成分以外の不純物含有量8wtppmと高か
った。
(Comparative Example 3) A high-purity nickel target plate having a purity of 99.995 wt% was cold-rolled at a rolling rate of 30%, the surface was cleaned with hydrochloric acid, and then vacuum heat treatment was performed at 325 ° C (vacuum degree 5 x 10). - 5 torr or less) was. After that, it is further cold rolled at a rolling rate of 30%, the surface is cleaned with hydrochloric acid, and then vacuum heat treatment is performed at 325 ° C. (vacuum degree 5 × 10 −5 torr).
r or less). From this, a high-purity nickel target having a thickness of 3 mm and a diameter of 300 mm was produced. In this case, the gas components are oxygen content 35 wtppm, carbon content 26 wt
ppm and hydrogen content were as high as 35 wtppm, and impurities content other than gas components and alloy components were as high as 8 wtppm.

【0023】比較例1〜3のニッケルターゲットを用い
て、実施例と同様に、シリコン膜上にニッケル膜をスパ
ッタリング成膜し、さらに窒素雰囲気中500°CでR
TA法にて熱処理してニッケルシリサイド膜を作製し
た。この膜の断面をTEM観察して界面ラフネスの様子
を観察した。さらに、この膜を窒素雰囲気中RTA法で
加熱して、XRD回折法にてニッケルシリサイドのNi
Siへの結晶構造変化を観察した。この結果を、同様
に上記表1に示す。表1に示すように、界面ラフネスは
いずれも不良であった。
Using the nickel targets of Comparative Examples 1 to 3, a nickel film was formed on the silicon film by sputtering in the same manner as in the example, and further, R at 500 ° C. in a nitrogen atmosphere.
A nickel silicide film was produced by heat treatment by the TA method. The state of the interface roughness was observed by TEM observation of the cross section of this film. Further, this film is heated by a RTA method in a nitrogen atmosphere, and nickel of nickel silicide is measured by an XRD diffraction method.
The crystal structure change to Si 2 was observed. The results are also shown in Table 1 above. As shown in Table 1, the interface roughness was poor.

【0024】(実施例4)Ti5at%をEB溶解時に
添加したことを除き、実施例1の材料及び製造条件で、
高純度ニッケル合金ターゲットを作製した。酸素、炭
素、水素及びガス成分と合金元素以外の不純物含有量
を、同様に表1に示す。表1に示すように、酸素含有量
12wtppm、炭素含有量11wtppm、水素含有
量13wtppm、ガス成分及び合金成分以外の不純物
含有量8wtppmであった。
(Example 4) The material and manufacturing conditions of Example 1 were changed except that 5 at% of Ti was added during EB dissolution.
A high-purity nickel alloy target was produced. The contents of impurities other than oxygen, carbon, hydrogen and gas components and alloying elements are also shown in Table 1. As shown in Table 1, the oxygen content was 12 wtppm, the carbon content was 11 wtppm, the hydrogen content was 13 wtppm, and the impurity content other than the gas component and the alloy component was 8 wtppm.

【0025】(実施例5)Ti5at%をEB溶解時に
添加したことを除き、実施例2の材料及び製造条件で、
高純度ニッケル合金ターゲットを作製した。酸素、炭
素、水素及びガス成分と合金元素以外の不純物含有量
を、同様に表1に示す。表1に示すように、酸素含有量
6wtppm、炭素含有量9wtppm、水素含有量6
wtppm、ガス成分及び合金成分以外の不純物含有量
9wtppmであった。
(Example 5) Using the materials and manufacturing conditions of Example 2, except that 5 at% of Ti was added during EB dissolution.
A high-purity nickel alloy target was produced. The contents of impurities other than oxygen, carbon, hydrogen and gas components and alloying elements are also shown in Table 1. As shown in Table 1, oxygen content 6 wtppm, carbon content 9 wtppm, hydrogen content 6
The content of impurities other than wtppm and gas components and alloy components was 9 wtppm.

【0026】(実施例6)Ti5at%をEB溶解時に
添加したことを除き、実施例3の材料及び製造条件で、
高純度ニッケル合金ターゲットを作製した。酸素、炭
素、水素及びガス成分と合金元素以外の不純物含有量
を、同様に表1に示す。表1に示すように、酸素含有量
1wtppm、炭素含有量1wtppm、水素含有量1
wtppm、ガス成分及び合金成分以外の不純物含有量
1wtppm未満であった。
(Example 6) Using the materials and manufacturing conditions of Example 3, except that 5 at% of Ti was added during EB dissolution.
A high-purity nickel alloy target was produced. The contents of impurities other than oxygen, carbon, hydrogen and gas components and alloying elements are also shown in Table 1. As shown in Table 1, oxygen content 1 wtppm, carbon content 1 wtppm, hydrogen content 1
The content of impurities other than wtppm, gas components and alloy components was less than 1 wtppm.

【0027】上記実施例4〜6の高純度ニッケルターゲ
ットを用いて、シリコン膜上にニッケル膜をスパッタリ
ング成膜し、窒素雰囲気中500°CでRTA(Rap
idThermal Anneal)法にて熱処理し
て、ニッケルシリサイド膜を作製した。この膜の断面を
TEM観察して界面ラフネスの様子を観察した。さらに
これらの膜を窒素雰囲気中RTA法で加熱して、XRD
回折法にてニッケルシリサイド(NiSi)のNiSi
への結晶構造変化の温度を調べた。この結果を、同様
に上記表1に示す。表1に示すように、実施例4〜6に
ついては、いずれも界面ラフネスは良好である。また、
ニッケルシリサイド相変化温度は750°C以上とな
り、高温での熱処理でも相変化が抑制できるという効果
が得られた。この温度は、ニッケル合金としたことによ
り、より高温側にシフトしたものであり、純ニッケルに
比べてさらに良好な特性を有する。
Using the high-purity nickel targets of Examples 4 to 6, a nickel film was formed by sputtering on a silicon film, and RTA (Rap) was performed at 500 ° C. in a nitrogen atmosphere.
A nickel silicide film was formed by heat treatment by the id Thermal Anneal method. The state of the interface roughness was observed by TEM observation of the cross section of this film. Further, these films are heated by the RTA method in a nitrogen atmosphere to perform XRD.
NiSi of nickel silicide (NiSi) by diffraction method
The temperature at which the crystal structure changed to 2 was investigated. The results are also shown in Table 1 above. As shown in Table 1, in each of Examples 4 to 6, the interface roughness is good. Also,
The nickel silicide phase change temperature was 750 ° C. or higher, and the effect that the phase change could be suppressed even by heat treatment at high temperature was obtained. This temperature is shifted to a higher temperature side by using the nickel alloy, and has better characteristics than pure nickel.

【0028】(比較例4)Ti5at%をEB溶解時に
添加したことを除き、比較例1の材料及び製造条件で、
ニッケル合金ターゲットを作製した。酸素、炭素、水素
及びガス成分と合金元素以外の不純物含有量を、同様に
表1に示す。表1に示すように、酸素含有量60wtp
pm、炭素含有量45wtppm、水素含有量15wt
ppm、ガス成分及び合金成分以外の不純物含有量43
wtppmであった。
(Comparative Example 4) Except that 5 at% of Ti was added during EB dissolution, the material and manufacturing conditions of Comparative Example 1 were changed to
A nickel alloy target was produced. The contents of impurities other than oxygen, carbon, hydrogen and gas components and alloying elements are also shown in Table 1. As shown in Table 1, the oxygen content is 60 wtp
pm, carbon content 45wtppm, hydrogen content 15wt
Impurity content other than ppm, gas components and alloy components 43
It was wtppm.

【0029】(比較例5)Ti5at%をEB溶解時に
添加したことを除き、比較例2の材料及び製造条件で、
ニッケル合金ターゲットを作製した。酸素、炭素、水素
及びガス成分と合金元素以外の不純物含有量を、同様に
表1に示す。表1に示すように、酸素含有量35wtp
pm、炭素含有量32wtppm、水素含有量25wt
ppm、ガス成分及び合金成分以外の不純物含有量25
wtppmであった。
(Comparative Example 5) With the material and manufacturing conditions of Comparative Example 2, except that 5 at% of Ti was added during EB dissolution.
A nickel alloy target was produced. The contents of impurities other than oxygen, carbon, hydrogen and gas components and alloying elements are also shown in Table 1. As shown in Table 1, the oxygen content is 35 wtp
pm, carbon content 32wtppm, hydrogen content 25wt
Impurity content other than ppm, gas components and alloy components 25
It was wtppm.

【0030】(比較例6)Ti5at%をEB溶解時に
添加したことを除き、比較例3の材料及び製造条件で、
ニッケル合金ターゲットを作製した。酸素、炭素、水素
及びガス成分と合金元素以外の不純物含有量を、同様に
表1に示す。表1に示すように、酸素含有量32wtp
pm、炭素含有量23wtppm、水素含有量25wt
ppm、ガス成分及び合金成分以外の不純物含有量9w
tppm未満であった。
(Comparative Example 6) With the material and manufacturing conditions of Comparative Example 3, except that 5 at% of Ti was added during EB dissolution.
A nickel alloy target was produced. The contents of impurities other than oxygen, carbon, hydrogen and gas components and alloying elements are also shown in Table 1. As shown in Table 1, the oxygen content is 32 wtp
pm, carbon content 23wtppm, hydrogen content 25wt
Impurity content other than ppm, gas components and alloy components 9w
It was less than tppm.

【0031】上記比較例4〜6の高純度ニッケルターゲ
ットを用いて、シリコン膜上にニッケル膜をスパッタリ
ング成膜し、窒素雰囲気中500°CでRTA(Rap
idThermal Anneal)法にて熱処理し
て、ニッケルシリサイド膜を作製した。この膜の断面を
TEM観察して界面ラフネスの様子を観察した。さらに
これらの膜を窒素雰囲気中、RTA法で加熱して、XR
D回折法にてニッケルシリサイド(NiSi)のNiS
への結晶構造変化の温度を調べた。この結果を、同
様に上記表1に示す。表1に示すように、比較例4〜6
については、いずれも界面ラフネスは不良であった。
Using the high-purity nickel targets of Comparative Examples 4 to 6, a nickel film was formed by sputtering on a silicon film, and RTA (Rap) was performed at 500 ° C. in a nitrogen atmosphere.
A nickel silicide film was formed by heat treatment by the id Thermal Anneal method. The state of the interface roughness was observed by TEM observation of the cross section of this film. Further, these films are heated by the RTA method in a nitrogen atmosphere to perform XR
NiS of nickel silicide (NiSi) by D diffraction method
The temperature of the crystal structure change to i 2 was investigated. The results are also shown in Table 1 above. As shown in Table 1, Comparative Examples 4-6
For all of the above, the interface roughness was poor.

【0032】(実施例7)Nb3at%をEB溶解時に
添加したことを除き、実施例1の材料及び製造条件で、
高純度ニッケル合金ターゲットを作製した。酸素、炭
素、水素及びガス成分と合金元素以外の不純物含有量
を、同様に表1に示す。表1に示すように、酸素含有量
15wtppm、炭素含有量12wtppm、水素含有
量8wtppm、ガス成分及び合金成分以外の不純物含
有量7wtppmであった。
(Example 7) With the material and manufacturing conditions of Example 1, except that Nb3at% was added during EB dissolution.
A high-purity nickel alloy target was produced. The contents of impurities other than oxygen, carbon, hydrogen and gas components and alloying elements are also shown in Table 1. As shown in Table 1, the oxygen content was 15 wtppm, the carbon content was 12 wtppm, the hydrogen content was 8 wtppm, and the impurity content other than the gas component and the alloy component was 7 wtppm.

【0033】(実施例8)Nb3at%をEB溶解時に
添加したことを除き、実施例2の材料及び製造条件で、
高純度ニッケル合金ターゲットを作製した。酸素、炭
素、水素及びガス成分と合金元素以外の不純物含有量
を、同様に表1に示す。表1に示すように、酸素含有量
7wtppm、炭素含有量6wtppm、水素含有量4
wtppm、ガス成分及び合金成分以外の不純物含有量
5wtppmであった。
(Example 8) With the materials and manufacturing conditions of Example 2, except that Nb3at% was added during EB dissolution.
A high-purity nickel alloy target was produced. The contents of impurities other than oxygen, carbon, hydrogen and gas components and alloying elements are also shown in Table 1. As shown in Table 1, oxygen content 7 wtppm, carbon content 6 wtppm, hydrogen content 4
The content of impurities other than wtppm and gas components and alloy components was 5 wtppm.

【0034】(実施例9)Nb3at%をEB溶解時に
添加したことを除き、実施例3の材料及び製造条件で、
高純度ニッケル合金ターゲットを作製した。酸素、炭
素、水素及びガス成分と合金元素以外の不純物含有量
を、同様に表1に示す。表1に示すように、酸素含有量
1wtppm、炭素含有量1wtppm、水素含有量1
wtppm、ガス成分及び合金成分以外の不純物含有量
1wtppm未満であった。
(Example 9) With the materials and manufacturing conditions of Example 3, except that Nb3at% was added during EB dissolution.
A high-purity nickel alloy target was produced. The contents of impurities other than oxygen, carbon, hydrogen and gas components and alloying elements are also shown in Table 1. As shown in Table 1, oxygen content 1 wtppm, carbon content 1 wtppm, hydrogen content 1
The content of impurities other than wtppm, gas components and alloy components was less than 1 wtppm.

【0035】上記実施例7〜9の高純度ニッケルターゲ
ットを用いて、シリコン膜上にニッケル膜をスパッタリ
ング成膜し、窒素雰囲気中500°CでRTA(Rap
idThermal Anneal)法にて熱処理し
て、ニッケルシリサイド膜を作製した。この膜の断面を
TEM観察して界面ラフネスの様子を観察した。さらに
これらの膜を窒素雰囲気中RTA法で加熱して、XRD
回折法にてニッケルシリサイド(NiSi)のNiSi
への結晶構造変化の温度を調べた。この結果を、同様
に上記表1に示す。表1に示すように、実施例7〜9に
ついては、いずれも界面ラフネスは良好であった。ま
た、ニッケルシリサイド相変化温度は740°C以上と
なり、高温での熱処理でも相変化が抑制できるという効
果が得られた。この温度は、ニッケル合金としたことに
より、より高温側にシフトしたものであり、純ニッケル
に比べてさらに良好な特性を有する。
Using the high-purity nickel targets of Examples 7 to 9 above, a nickel film was formed by sputtering on a silicon film, and RTA (Rap) was performed at 500 ° C. in a nitrogen atmosphere.
A nickel silicide film was formed by heat treatment by the id Thermal Anneal method. The state of the interface roughness was observed by TEM observation of the cross section of this film. Further, these films are heated by the RTA method in a nitrogen atmosphere to perform XRD.
NiSi of nickel silicide (NiSi) by diffraction method
The temperature at which the crystal structure changed to 2 was investigated. The results are also shown in Table 1 above. As shown in Table 1, in each of Examples 7 to 9, the interface roughness was good. Further, the nickel silicide phase change temperature was 740 ° C. or higher, and the effect that the phase change could be suppressed even by heat treatment at high temperature was obtained. This temperature is shifted to a higher temperature side by using the nickel alloy, and has better characteristics than pure nickel.

【0036】(比較例7)Nb3at%をEB溶解時に
添加したことを除き、比較例1の材料及び製造条件で、
ニッケル合金ターゲットを作製した。酸素、炭素、水素
及びガス成分と合金元素以外の不純物含有量を、同様に
表1に示す。表1に示すように、酸素含有量75wtp
pm、炭素含有量62wtppm、水素含有量12wt
ppm、ガス成分及び合金成分以外の不純物含有量38
wtppmであった。
(Comparative Example 7) With the material and manufacturing conditions of Comparative Example 1 except that Nb3at% was added during EB dissolution.
A nickel alloy target was produced. The contents of impurities other than oxygen, carbon, hydrogen and gas components and alloying elements are also shown in Table 1. As shown in Table 1, the oxygen content is 75 wtp
pm, carbon content 62wtppm, hydrogen content 12wt
Impurity content other than ppm, gas components and alloy components 38
It was wtppm.

【0037】(比較例8)Nb3at%をEB溶解時に
添加したことを除き、比較例2の材料及び製造条件で、
ニッケル合金ターゲットを作製した。酸素、炭素、水素
及びガス成分と合金元素以外の不純物含有量を、同様に
表1に示す。表1に示すように、酸素含有量45wtp
pm、炭素含有量36wtppm、水素含有量21wt
ppm、ガス成分及び合金成分以外の不純物含有量31
wtppmであった。
(Comparative Example 8) With the material and manufacturing conditions of Comparative Example 2 except that 3 at% of Nb was added during EB dissolution.
A nickel alloy target was produced. The contents of impurities other than oxygen, carbon, hydrogen and gas components and alloying elements are also shown in Table 1. As shown in Table 1, the oxygen content is 45 wtp
pm, carbon content 36wtppm, hydrogen content 21wt
Impurity content other than ppm, gas components and alloy components 31
It was wtppm.

【0038】(比較例9)Nb3at%をEB溶解時に
添加したことを除き、比較例3の材料及び製造条件で、
ニッケル合金ターゲットを作製した。酸素、炭素、水素
及びガス成分と合金元素以外の不純物含有量を、同様に
表1に示す。表1に示すように、酸素含有量33wtp
pm、炭素含有量26wtppm、水素含有量18wt
ppm、ガス成分及び合金成分以外の不純物含有量10
wtppm未満であった。
(Comparative Example 9) With the material and manufacturing conditions of Comparative Example 3, except that Nb3at% was added during EB dissolution.
A nickel alloy target was produced. The contents of impurities other than oxygen, carbon, hydrogen and gas components and alloying elements are also shown in Table 1. As shown in Table 1, the oxygen content is 33 wtp
pm, carbon content 26wtppm, hydrogen content 18wt
Impurity content other than ppm, gas components and alloy components 10
It was less than wtppm.

【0039】上記比較例7〜9の高純度ニッケルターゲ
ットを用いて、シリコン膜上にニッケル膜をスパッタリ
ング成膜し、窒素雰囲気中500°CでRTA(Rap
idThermal Anneal)法にて熱処理し
て、ニッケルシリサイド膜を作製した。この膜の断面を
TEM観察して界面ラフネスの様子を観察した。さらに
これらの膜を窒素雰囲気中RTA法で加熱して、XRD
回折法にてニッケルシリサイド(NiSi)のNiSi
への結晶構造変化の温度を調べた。この結果を、同様
に上記表1に示す。表1に示すように、比較例7〜9に
ついては、いずれも界面ラフネスは不良であった。
Using the high-purity nickel targets of Comparative Examples 7 to 9 above, a nickel film was formed by sputtering on a silicon film, and RTA (Rap) was performed at 500 ° C. in a nitrogen atmosphere.
A nickel silicide film was formed by heat treatment by the id Thermal Anneal method. The state of the interface roughness was observed by TEM observation of the cross section of this film. Further, these films are heated by the RTA method in a nitrogen atmosphere to perform XRD.
NiSi of nickel silicide (NiSi) by diffraction method
The temperature at which the crystal structure changed to 2 was investigated. The results are also shown in Table 1 above. As shown in Table 1, in Comparative Examples 7 to 9, the interface roughness was poor.

【0040】[0040]

【発明の効果】高純度ニッケル又はニッケル合金スパッ
タリングターゲット中の酸素、炭素等のガス成分及びそ
の他の不純物元素を極力低減させることにより、サリサ
イドプロセスによりニッケルシリサイドのゲート電極膜
の形成に際して、ニッケルが酸素と反応して酸化膜を形
成すること、この酸化膜がシリサイド反応を阻害するこ
と、シリサイド膜とシリコン基板との界面領域に凹凸の
ある絶縁膜を形成すること、さらにはこの酸化物がシリ
サイド膜の凝集の原因となること等、界面のラフネスに
よって、N/Pの接合特性が劣化し抵抗が増加すると
いうニッケルシリサイド固有の問題点を解決することが
できる著しい効果を有する。また、高純度ニッケルに合
金元素を添加することにより、準安定相であるNiSi
から、抵抗率が高くシリサイド化反応におけるSiの消
費量も増大させる原因となっていた安定相であるNiS
相への転移を遅らせかつ抑制することができるとい
う優れた効果を有する。
EFFECTS OF THE INVENTION By reducing the gas components such as oxygen and carbon and other impurity elements in the high-purity nickel or nickel alloy sputtering target as much as possible, nickel is not oxygen when forming the gate electrode film of nickel silicide by the salicide process. To form an oxide film, to inhibit the silicide reaction, to form an uneven insulating film in the interface region between the silicide film and the silicon substrate, and further, this oxide forms a silicide film. It has a remarkable effect of solving the problem peculiar to nickel silicide that the N + / P junction characteristic is deteriorated and the resistance is increased due to the roughness of the interface, such as the cause of the agglomeration of nickel. In addition, by adding an alloying element to high-purity nickel, the metastable phase NiSi
Therefore, NiS, which is a stable phase, has a high resistivity and causes an increase in Si consumption in the silicidation reaction.
It has an excellent effect that the transition to the i 2 phase can be delayed and suppressed.

【図面の簡単な説明】[Brief description of drawings]

【図1】水素及び真空処理温度と脱酸素、炭素、水素と
の関係を示すグラフ(図)である。
FIG. 1 is a graph (diagram) showing the relationship between hydrogen and vacuum processing temperatures and deoxidization, carbon, and hydrogen.

フロントページの続き (72)発明者 宮下 博仁 茨城県北茨城市華川町臼場187番地4 株 式会社日鉱マテリアルズ磯原工場内 Fターム(参考) 4K029 BA52 BD02 DC03 DC04 DC07 DC08 4M104 AA01 BB05 BB21 BB38 BB39 CC05 DD40 DD84 Continued front page    (72) Inventor Hirohito Miyashita             4 shares, 187 Usba, Hwagawa-cho, Kitaibaraki, Ibaraki             Ceremony Company Nikko Materials Isohara Factory F-term (reference) 4K029 BA52 BD02 DC03 DC04 DC07                       DC08                 4M104 AA01 BB05 BB21 BB38 BB39                       CC05 DD40 DD84

Claims (17)

【特許請求の範囲】[Claims] 【請求項1】 酸素、炭素の含有量がそれぞれ20wt
ppm以下であることを特徴とする高純度ニッケル又は
ニッケル合金スパッタリングターゲット。
1. The contents of oxygen and carbon are each 20 wt.
A high-purity nickel or nickel alloy sputtering target characterized by having a content of ppm or less.
【請求項2】 酸素、炭素の含有量がそれぞれ10wt
ppm以下であることを特徴とする高純度ニッケル又は
ニッケル合金スパッタリングターゲット。
2. The contents of oxygen and carbon are each 10 wt.
A high-purity nickel or nickel alloy sputtering target characterized by having a content of ppm or less.
【請求項3】 酸素、炭素の含有量がそれぞれ1wtp
pm以下であることを特徴とする高純度ニッケル又はニ
ッケル合金スパッタリングターゲット。
3. The oxygen and carbon contents are 1 wtp each.
A high-purity nickel or nickel alloy sputtering target having a pm or less.
【請求項4】 水素の含有量が10wtppm以下であ
ることを特徴とする請求項1〜3のそれぞれに記載の高
純度ニッケル又はニッケル合金スパッタリングターゲッ
ト。
4. The high-purity nickel or nickel alloy sputtering target according to each of claims 1 to 3, wherein the hydrogen content is 10 wtppm or less.
【請求項5】水素の含有量が1wtppm以下であるこ
とを特徴とする請求項1〜3のそれぞれに記載の高純度
ニッケル又はニッケル合金スパッタリングターゲット。
5. The high-purity nickel or nickel alloy sputtering target according to each of claims 1 to 3, wherein the hydrogen content is 1 wtppm or less.
【請求項6】 合金元素及び酸素、水素、窒素、炭素等
のガス成分を除く不純物元素の含有量が10wtppm
未満であることを特徴とする請求項1〜5のそれぞれに
記載の高純度ニッケル又はニッケル合金スパッタリング
ターゲット。
6. The content of alloy elements and impurity elements excluding gas components such as oxygen, hydrogen, nitrogen and carbon is 10 wtppm.
The high-purity nickel or nickel alloy sputtering target according to each of claims 1 to 5, wherein
【請求項7】 不純物である鉄及びコバルトの含有量が
それぞれ5ppm以下であることを特徴とする請求項6
に記載の高純度ニッケル又はニッケル合金スパッタリン
グターゲット。
7. The content of each of iron and cobalt as impurities is 5 ppm or less.
The high-purity nickel or nickel alloy sputtering target according to 1.
【請求項8】 不純物である鉄、コバルトの含有量がそ
れぞれ2ppm以下であることを特徴とする請求項6に
記載の高純度ニッケル又はニッケル合金スパッタリング
ターゲット。
8. The high-purity nickel or nickel alloy sputtering target according to claim 6, wherein the contents of impurities iron and cobalt are each 2 ppm or less.
【請求項9】 合金元素として、チタン、ジルコニウ
ム、ハフニウム、バナジウム、ニオブ、タンタル、クロ
ム、マンガン、ルテニウム、パラジウム、白金、モリブ
デン、レニウム、タングステンから選択した少なくとも
1種類以上の元素を含有することを特徴とする請求項1
〜8のそれぞれに記載の高純度ニッケル合金スパッタリ
ングターゲット。
9. An alloying element containing at least one element selected from titanium, zirconium, hafnium, vanadium, niobium, tantalum, chromium, manganese, ruthenium, palladium, platinum, molybdenum, rhenium, and tungsten. Claim 1 characterized by
~ The high-purity nickel alloy sputtering target according to each of 8).
【請求項10】 合金元素として、鉄又はコバルトから
選択した少なくとも1種類以上の元素を含有することを
特徴とする請求項1〜6及び9のそれぞれに記載の高純
度ニッケル合金スパッタリングターゲット。
10. The high-purity nickel alloy sputtering target according to each of claims 1 to 6 and 9, wherein the alloy element contains at least one element selected from iron and cobalt.
【請求項11】 合金元素の含有量が0.5〜10at
%であることを特徴とする請求項1〜10のそれぞれに
記載の高純度ニッケル合金スパッタリングターゲット。
11. The alloying element content is from 0.5 to 10 at.
%, The high-purity nickel alloy sputtering target according to each of claims 1 to 10, wherein
【請求項12】 合金元素の含有量が1〜5at%であ
ることを特徴とする請求項1〜10のそれぞれに記載の
高純度ニッケル合金スパッタリングターゲット。
12. The high-purity nickel alloy sputtering target according to each of claims 1 to 10, wherein the content of the alloy element is 1 to 5 at%.
【請求項13】 ランタノイド系元素を0.2〜40p
pm含有することを特徴とする請求項1〜12のそれぞ
れに記載の高純度ニッケル又は高純度ニッケル合金スパ
ッタリングターゲット。
13. A lanthanoid element is used in an amount of 0.2 to 40 p.
The high-purity nickel or high-purity nickel alloy sputtering target according to each of claims 1 to 12, characterized by containing pm.
【請求項14】 シリコンと反応させてシリサイド膜を
形成させるサリサイド工程で使用することを特徴とする
請求項1〜13のそれぞれに記載の高純度ニッケル又は
ニッケル合金スパッタリングターゲット。
14. The high-purity nickel or nickel alloy sputtering target according to each of claims 1 to 13, which is used in a salicide process of reacting with silicon to form a silicide film.
【請求項15】 粗ニッケルを電解精製法により金属不
純物を除去した後、電子ビーム溶解等の方法で溶解して
高純度ニッケルインゴットを作製し、これを鍛造、圧延
等の塑性加工により厚さを7〜10mmとした後水素雰
囲気中で加熱して脱酸素、脱炭素を行い、さらにこれを
真空雰囲気中で加熱して脱水素処理を行うことを特徴と
する請求項1〜8、13、14のそれぞれに記載の高純
度ニッケルスパッタリングターゲットの製造方法。
15. After removing metallic impurities from the crude nickel by electrolytic refining, the crude nickel is melted by a method such as electron beam melting to prepare a high-purity nickel ingot, which is subjected to plastic working such as forging and rolling to reduce its thickness. The dehydrogenating treatment is performed by heating in a hydrogen atmosphere after the thickness is adjusted to 7 to 10 mm, and the dehydrogenation treatment is performed by further heating this in a vacuum atmosphere. 1. A method for producing a high-purity nickel sputtering target according to each of 1.
【請求項16】 粗ニッケルを電解精製法により金属不
純物を除去した後、高純度合金元素と共に電子ビーム溶
解等の方法で溶解して高純度ニッケル合金インゴットを
作製し、これを鍛造、圧延等の塑性加工により厚さを7
〜10mmとした後、水素雰囲気中で加熱して脱酸素、
脱炭素を行い、さらにこれを真空雰囲気中で加熱して脱
水素処理を行うことを特徴とする請求項1〜12に記載
の高純度ニッケル合金スパッタリングターゲットの製造
方法。
16. A method for producing a high-purity nickel alloy ingot by removing metal impurities from crude nickel by an electrolytic refining method and then melting the nickel with a high-purity alloy element by a method such as electron beam melting, which is subjected to forging, rolling, etc. Thickness is increased to 7 by plastic working
After setting to 10 mm, deoxidize by heating in a hydrogen atmosphere,
The method for producing a high-purity nickel alloy sputtering target according to any one of claims 1 to 12, wherein decarbonization is performed, and the dehydrogenation treatment is performed by heating the carbon in a vacuum atmosphere.
【請求項17】 電子ビーム溶解等の方法で溶解して高
純度ニッケル合金インゴットを作製する際に、脱酸効果
を高めるために合金元素としてランタノイド系元素を
0.2ppm〜40ppm添加することを特徴とする請
求項13、16に記載の高純度ニッケル合金スパッタリ
ングターゲットの製造方法。
17. When producing a high-purity nickel alloy ingot by melting by a method such as electron beam melting, 0.2 ppm to 40 ppm of a lanthanoid element is added as an alloying element to enhance the deoxidizing effect. The method for producing a high-purity nickel alloy sputtering target according to claim 13 or 16.
JP2002015347A 2002-01-24 2002-01-24 High purity nickel or nickel alloy sputtering target and production method therefor Withdrawn JP2003213407A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2002015347A JP2003213407A (en) 2002-01-24 2002-01-24 High purity nickel or nickel alloy sputtering target and production method therefor
PCT/JP2002/012698 WO2003062488A1 (en) 2002-01-24 2002-12-04 High-purity nickel or nickel alloy sputtering target, and its manufacturing method
TW91135521A TW200302288A (en) 2002-01-24 2002-12-09 High-purity nickel or nickel alloy sputtering target, and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002015347A JP2003213407A (en) 2002-01-24 2002-01-24 High purity nickel or nickel alloy sputtering target and production method therefor

Publications (1)

Publication Number Publication Date
JP2003213407A true JP2003213407A (en) 2003-07-30

Family

ID=27606109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002015347A Withdrawn JP2003213407A (en) 2002-01-24 2002-01-24 High purity nickel or nickel alloy sputtering target and production method therefor

Country Status (3)

Country Link
JP (1) JP2003213407A (en)
TW (1) TW200302288A (en)
WO (1) WO2003062488A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005057233A (en) * 2003-08-02 2005-03-03 Samsung Electronics Co Ltd Method of manufacturing semiconductor device and semiconductor device manufactured using same
WO2005083138A1 (en) * 2004-03-01 2005-09-09 Nippon Mining & Metals Co., Ltd. Ni-Pt ALLOY AND TARGET COMPRISING THE ALLOY
WO2005086567A2 (en) * 2004-03-15 2005-09-22 Agency For Science, Technology And Research Silicide formed from ternary metal alloy films
JP2010132974A (en) * 2008-12-04 2010-06-17 Nippon Steel Materials Co Ltd Ni-Mo BASED ALLOY SPUTTERING TARGET PLATE
JP2011012330A (en) * 2009-07-06 2011-01-20 Sumitomo Metal Ind Ltd Nickel material and method for producing nickel material
WO2011058867A1 (en) * 2009-11-13 2011-05-19 Semiconductor Energy Laboratory Co., Ltd. Sputtering target and method for manufacturing the same, and transistor
WO2011115259A1 (en) 2010-03-19 2011-09-22 Jx日鉱日石金属株式会社 NICKEL ALLOY SPUTTERING TARGET, THIN Ni ALLOY FILM, AND NICKEL SILICIDE FILM
US8492862B2 (en) 2009-11-13 2013-07-23 Semiconductor Energy Laboratory Co., Ltd. Sputtering target and manufacturing method thereof, and transistor
WO2016186070A1 (en) * 2015-05-21 2016-11-24 Jx金属株式会社 Copper alloy sputtering target and method for manufacturing same
JP2017050409A (en) * 2015-09-02 2017-03-09 Tdk株式会社 Thin film capacitor

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6126648B2 (en) * 2015-06-26 2017-05-10 田中貴金属工業株式会社 Platinum alloy target
CN115287500B (en) * 2022-08-01 2023-04-28 宁波江丰电子材料股份有限公司 Smelting method of nickel-vanadium alloy ingot
CN115449767A (en) * 2022-09-28 2022-12-09 昆明理工大学 Preparation method of fine-grain high-purity nickel target material

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3455721B2 (en) * 1993-07-27 2003-10-14 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
JP3532063B2 (en) * 1997-03-17 2004-05-31 株式会社日鉱マテリアルズ Sputtering target and film forming method
JPH11152592A (en) * 1997-11-18 1999-06-08 Japan Energy Corp Production of high purity nickel and high purity nickel material for forming thin film

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005057233A (en) * 2003-08-02 2005-03-03 Samsung Electronics Co Ltd Method of manufacturing semiconductor device and semiconductor device manufactured using same
JP4722390B2 (en) * 2003-08-02 2011-07-13 三星電子株式会社 Manufacturing method of semiconductor device
KR100925691B1 (en) * 2004-03-01 2009-11-10 닛코킨조쿠 가부시키가이샤 Ni-Pt ALLOY AND TARGET COMPRISING THE ALLOY
JP2010047843A (en) * 2004-03-01 2010-03-04 Nippon Mining & Metals Co Ltd METHOD FOR MANUFACTURING Ni-Pt ALLOY, AND METHOD FOR MANUFACTURING TARGET MADE FROM THE SAME ALLOY
WO2005083138A1 (en) * 2004-03-01 2005-09-09 Nippon Mining & Metals Co., Ltd. Ni-Pt ALLOY AND TARGET COMPRISING THE ALLOY
US7335606B2 (en) 2004-03-15 2008-02-26 Agency For Science, Technology And Research Silicide formed from ternary metal alloy films
WO2005086567A2 (en) * 2004-03-15 2005-09-22 Agency For Science, Technology And Research Silicide formed from ternary metal alloy films
WO2005086567A3 (en) * 2004-03-15 2006-06-29 Agency Science Tech & Res Silicide formed from ternary metal alloy films
JP2010132974A (en) * 2008-12-04 2010-06-17 Nippon Steel Materials Co Ltd Ni-Mo BASED ALLOY SPUTTERING TARGET PLATE
JP2011012330A (en) * 2009-07-06 2011-01-20 Sumitomo Metal Ind Ltd Nickel material and method for producing nickel material
US10083823B2 (en) 2009-11-13 2018-09-25 Semiconductor Energy Laboratory Co., Ltd. Sputtering target and manufacturing method thereof, and transistor
WO2011058867A1 (en) * 2009-11-13 2011-05-19 Semiconductor Energy Laboratory Co., Ltd. Sputtering target and method for manufacturing the same, and transistor
US8492862B2 (en) 2009-11-13 2013-07-23 Semiconductor Energy Laboratory Co., Ltd. Sputtering target and manufacturing method thereof, and transistor
US8937020B2 (en) 2009-11-13 2015-01-20 Semiconductor Energy Laboratory Co., Ltd. Sputtering target and manufacturing method thereof, and transistor
WO2011115259A1 (en) 2010-03-19 2011-09-22 Jx日鉱日石金属株式会社 NICKEL ALLOY SPUTTERING TARGET, THIN Ni ALLOY FILM, AND NICKEL SILICIDE FILM
US9249497B2 (en) 2010-03-19 2016-02-02 Jx Nippon Mining & Metals Corporation Ni alloy sputtering target, Ni alloy thin film and Ni silicide film
WO2016186070A1 (en) * 2015-05-21 2016-11-24 Jx金属株式会社 Copper alloy sputtering target and method for manufacturing same
CN107109633A (en) * 2015-05-21 2017-08-29 捷客斯金属株式会社 Copper alloy sputtering target and its manufacture method
EP3211117A4 (en) * 2015-05-21 2018-04-04 JX Nippon Mining & Metals Corporation Copper alloy sputtering target and method for manufacturing same
US10494712B2 (en) 2015-05-21 2019-12-03 Jx Nippon Mining & Metals Corporation Copper alloy sputtering target and method for manufacturing same
JP2017050409A (en) * 2015-09-02 2017-03-09 Tdk株式会社 Thin film capacitor

Also Published As

Publication number Publication date
TW200302288A (en) 2003-08-01
WO2003062488A1 (en) 2003-07-31

Similar Documents

Publication Publication Date Title
JP5209115B2 (en) Nickel alloy sputtering target, Ni alloy thin film and nickel silicide film
JP4118814B2 (en) Copper alloy sputtering target and method of manufacturing the same
US7017382B2 (en) Methods of forming aluminum-comprising physical vapor deposition targets; sputtered films; and target constructions
TWI458836B (en) Nickel alloy sputtering target and silicified nickel film
JP4432015B2 (en) Sputtering target for thin film wiring formation
JP4466902B2 (en) Nickel alloy sputtering target
JP2003213407A (en) High purity nickel or nickel alloy sputtering target and production method therefor
JP4415303B2 (en) Sputtering target for thin film formation
EP2634287B1 (en) Titanium target for sputtering
JP3634208B2 (en) Electrode / wiring material for liquid crystal display and sputtering target
JP4405008B2 (en) Electrode / wiring material for liquid crystal display and manufacturing method thereof
KR101032011B1 (en) Nickel Alloy Sputtering Targets and Nickel Silicide Films
JP2004027254A (en) Titanium alloy having excellent corrosion resistance and method of producing the same
JP2000256841A (en) Sputtering target, wiring film, and electronic parts

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050405