JP2003213140A - Antistatic resin molded article - Google Patents

Antistatic resin molded article

Info

Publication number
JP2003213140A
JP2003213140A JP2002013144A JP2002013144A JP2003213140A JP 2003213140 A JP2003213140 A JP 2003213140A JP 2002013144 A JP2002013144 A JP 2002013144A JP 2002013144 A JP2002013144 A JP 2002013144A JP 2003213140 A JP2003213140 A JP 2003213140A
Authority
JP
Japan
Prior art keywords
fiber
fibers
conductive
carbon
carbon fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002013144A
Other languages
Japanese (ja)
Other versions
JP3722065B2 (en
Inventor
Tomohiko Tanaka
智彦 田中
Koichi Sagisaka
功一 鷺坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuka Denshi Co Ltd
Original Assignee
Yuka Denshi Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuka Denshi Co Ltd filed Critical Yuka Denshi Co Ltd
Priority to JP2002013144A priority Critical patent/JP3722065B2/en
Publication of JP2003213140A publication Critical patent/JP2003213140A/en
Application granted granted Critical
Publication of JP3722065B2 publication Critical patent/JP3722065B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an antistatic resin molded article highly rigid, suffering from no dusting and excellent in antistaticity. <P>SOLUTION: The antistatic resin molded article is obtained by molding an electroconductive thermoplastic resin composition which comprises 100 pts.wt. of an electroconductive resin component, comprising (A) a thermoplastic resin and (B) 0.1-20 wt.% of a fine carbon fiber (2) having an average fiber diameter of at most 200 nm, and, added thereto, 1-200 pts.wt. of (C) a non- electroconductive fiber (1). <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、情報電子分野の電
子デバイス取り扱い用帯電防止部品、電子デバイスの組
立、搬送等に用いられる帯電防止部品、例えば、IC、
ウェハ、ハードディスク、磁気ヘッド、液晶デバイスな
どの電子デバイスを取り扱う際の、トレイやカセット、
ケース、組み立て用治工具、或いはこれらの電子デバイ
スを搭載した機器の構成部品などに好適な帯電防止性樹
脂成形品に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an antistatic part for handling electronic devices in the field of information and electronics, an antistatic part used for assembling and transporting electronic devices, such as an IC,
Tray or cassette for handling electronic devices such as wafers, hard disks, magnetic heads, liquid crystal devices,
The present invention relates to an antistatic resin molded product suitable for a case, a jig for assembling, or a component part of a device equipped with these electronic devices.

【0002】本発明は特に、液晶ディスプレイ、プラズ
マディスプレイ、エレクトロルミネッセンスディスプレ
イなどの平面ディスプレイを製造、運搬する際に、ガラ
ス、セラミックなどのパネルを搬送するためのトレイに
好適な、低発塵性かつ高剛性の帯電防止性樹脂成形品に
関する。
The present invention is particularly suitable for a tray for carrying a panel of glass, ceramics, etc. when manufacturing and carrying a flat display such as a liquid crystal display, a plasma display, an electroluminescence display, etc. The present invention relates to a highly rigid antistatic resin molded product.

【0003】[0003]

【従来の技術】高密度電子デバイス、例えば液晶ディス
プレイは、一般にガラス等の電気絶縁性のパネル基板上
に薄膜半導体微細回路を形成し、液晶材料等を積層して
製造される。かかる製造プロセスにおいて使用される搬
送トレイには、以下の性能が要求される。 トレイからの発塵が少ないこと。 帯電によるゴミや埃の付着を防止したり、回路の静
電気破壊を防止するための帯電防止性に優れること。特
に、ディスプレイのパネルは電気絶縁性であるため、デ
バイス自体が帯電し易く、トレイと接触した際に大きな
電流が発生し、その結果、回路が破損することが問題と
なっている。従って、トレイには、帯電しないだけでな
く、接触電流を流さないことも要求される。 平面状の表示パネルを搭載して搬送する際、トレイ
の撓みによるパネルの損傷を防ぐための高い剛性(すな
わち弾性率)を有すること。特に、最近のデバイスの高
密度化に伴い、パネルの薄型化、回路の高密度化が進
み、僅かな外部応力でも損傷しやすくなっている。その
結果、パネル搭載時の運搬の際の、トレイの撓みによる
破損を防止し得る高い剛性が要求される。特に、パネル
を搭載した状態のトレイを複数枚重ねて運搬する様な場
合は、荷重が大きくなって、トレイの撓みが大きくな
り、パネルへの接触と損傷の原因になりやすいため、高
い剛性が要求される。
2. Description of the Related Art A high density electronic device such as a liquid crystal display is generally manufactured by forming a thin film semiconductor fine circuit on an electrically insulating panel substrate such as glass and laminating liquid crystal materials and the like. The following performance is required for the carrier tray used in such a manufacturing process. Less dust is generated from the tray. Excellent in antistatic property to prevent dust and dirt from adhering due to electrification and to prevent electrostatic breakdown of the circuit. In particular, since the panel of the display is electrically insulating, the device itself is easily charged with electricity, and a large current is generated when the device comes into contact with the tray, resulting in damage to the circuit. Therefore, the tray is required not only not to be charged but also to pass no contact current. When a flat display panel is mounted and conveyed, it has high rigidity (that is, elastic modulus) to prevent the panel from being damaged due to the bending of the tray. In particular, with the recent increase in device densities, thinning of panels and densification of circuits have progressed, and even a slight external stress is likely to be damaged. As a result, high rigidity is required to prevent damage due to bending of the tray during transportation when the panel is mounted. In particular, when transporting multiple trays with panels mounted on top of each other, the load increases and the deflection of the trays increases. Required.

【0004】従来、帯電防止材料としては、樹脂にカー
ボンブラックや、カーボンファイバーなどの導電性フィ
ラーを添加したものが使用されてきた。
Heretofore, as an antistatic material, a material obtained by adding a conductive filler such as carbon black or carbon fiber to a resin has been used.

【0005】しかしながら、カーボンブラック添加樹脂
では、成形品からの発塵が多い;導電性を得るために比
較的多量の添加が必要であるため、成形性を損ないやす
い;強化効果が無いため、成形品の剛性が不足しがちと
なる;などの問題がある。
However, with the carbon black-added resin, a large amount of dust is generated from the molded product; since it is necessary to add a relatively large amount to obtain conductivity, the moldability is likely to be impaired; There is a problem that the rigidity of the product tends to be insufficient.

【0006】また、カーボンファイバー添加樹脂では、
発塵性、剛性が比較的優れるものの、帯電防止効果が十
分でない;含有される炭素繊維が、繊維直径7〜15μ
m、繊維長さ100〜500μm程度と、比較的大きい
ため、炭素繊維の脱落物が薄膜回路をショートさせ、破
損に到る危険性がある;などの問題がある。
Further, in the carbon fiber-added resin,
The dust generation property and the rigidity are relatively excellent, but the antistatic effect is not sufficient; the contained carbon fiber has a fiber diameter of 7 to 15 μm.
m, and the fiber length is about 100 to 500 μm, which is relatively large, and therefore, there is a risk that a carbon fiber dropout may short-circuit the thin film circuit, resulting in damage.

【0007】[0007]

【発明が解決しようとする課題】本発明は上記従来の問
題点を解決し、高剛性で発塵の問題がなく、帯電防止性
に優れた帯電防止性樹脂成形品を提供することを目的と
する。
SUMMARY OF THE INVENTION It is an object of the present invention to solve the above-mentioned problems of the prior art and to provide an antistatic resin molded product having high rigidity, no problem of dust generation, and excellent antistatic property. To do.

【0008】[0008]

【課題を解決するための手段】本発明の帯電防止性樹脂
成形品は、(A)熱可塑性樹脂と、(B)平均繊維径2
00nm以下の炭素微細繊維0.1〜20重量%とから
なる導電性樹脂成分100重量部に、(C)非導電性繊
維を1〜200重量部添加してなる導電性熱可塑性樹脂
組成物を成形してなることを特徴とする。
The antistatic resin molded article of the present invention comprises (A) a thermoplastic resin and (B) an average fiber diameter of 2
A conductive thermoplastic resin composition obtained by adding 1 to 200 parts by weight of (C) a non-conductive fiber to 100 parts by weight of a conductive resin component composed of 0.1 to 20% by weight of carbon fine fibers of 00 nm or less. It is characterized by being formed.

【0009】本発明の帯電防止性樹脂成形品では、炭素
微細繊維による導電性で優れた帯電防止性が得られると
共に、非導電性繊維による補強効果で、高い剛性を得る
ことができる。しかも、炭素微細繊維による次のような
効果で、発塵の原因となる非導電性繊維の脱落も防止さ
れるため、発塵の問題のない帯電防止性樹脂成形品が提
供される。
In the antistatic resin molded product of the present invention, excellent conductivity can be obtained by the fine carbon fibers, and high rigidity can be obtained by the reinforcing effect of the nonconductive fibers. Moreover, since the non-conductive fibers that cause dust generation are prevented from falling off due to the following effects of the carbon fine fibers, an antistatic resin molded product having no dust generation problem is provided.

【0010】本発明の帯電防止性樹脂成形品では、概念
的に図1に示すように、相対的に繊維径の太い非導電性
繊維1の周囲が、繊維径が細く、それ自体が屈曲して互
いに絡み合っている炭素微細繊維2で包囲され、この状
態で基材樹脂中に埋設されているため、太い非導電性繊
維1の脱落が防止される。
In the antistatic resin molded product of the present invention, as shown conceptually in FIG. 1, the circumference of the non-conductive fiber 1 having a relatively large fiber diameter has a small fiber diameter and bends itself. It is surrounded by the carbon fine fibers 2 which are intertwined with each other and embedded in the base resin in this state, so that the thick non-conductive fibers 1 are prevented from falling off.

【0011】即ち、非導電性繊維の代表例としてガラス
繊維が挙げられるが、ガラス繊維は成形品の表面から突
出し易く、また、ガラス繊維等は表面が比較的平滑で基
材樹脂から脱落し易く、非導電性繊維が成形品からの発
塵の原因となる。本発明では、ガラス繊維等の非導電性
繊維1よりも非常に繊維径の細い炭素微細繊維2がガラ
ス繊維等の非導電性繊維1表面の細かな凹凸に引っ掛か
り、この炭素微細繊維2による基材樹脂に対する投錨効
果で非導電性繊維1の脱落が防止される。
That is, glass fibers are mentioned as a typical example of the non-conductive fibers, but the glass fibers easily project from the surface of the molded product, and the glass fibers have a relatively smooth surface and easily fall off from the base resin. The non-conductive fibers cause dust to be emitted from the molded product. In the present invention, the carbon fine fibers 2 having a fiber diameter much smaller than that of the non-conductive fibers 1 such as glass fibers are caught on the fine irregularities on the surface of the non-conductive fibers 1 such as glass fibers, and the carbon fine fibers 2 form the base. The anchoring effect on the material resin prevents the non-conductive fiber 1 from falling off.

【0012】本発明では、このように、互いに絡み合っ
た炭素微細繊維2がガラス繊維等の非導電性繊維1の表
面に絡まって、非導電性繊維1の脱落を物理的に防止す
る上に、次のような化学的な脱落防止効果も得られる。
According to the present invention, the carbon fine fibers 2 intertwined with each other are physically entangled with the surface of the non-conductive fiber 1 such as glass fiber to prevent the non-conductive fiber 1 from falling off. The following chemical dropout prevention effects are also obtained.

【0013】即ち、炭素微細繊維の表面には、カルボン
酸などの極性基が存在すると考えられており、この極性
基が、ガラス繊維等の非導電性繊維の表面処理剤の極性
基及びポリカーボネート等の熱可塑性樹脂の極性基と相
互作用することにより、非導電性繊維を熱可塑性樹脂に
対して固定し、非導電性繊維の脱落を防止する。
That is, it is considered that a polar group such as carboxylic acid exists on the surface of the carbon fine fiber, and the polar group is a polar group of a surface treating agent for non-conductive fiber such as glass fiber and polycarbonate. By interacting with the polar group of the thermoplastic resin, the non-conductive fiber is fixed to the thermoplastic resin and the non-conductive fiber is prevented from falling off.

【0014】[0014]

【発明の実施の形態】以下に本発明の帯電防止性樹脂成
形品の実施の形態を詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the antistatic resin molded article of the present invention will be described in detail below.

【0015】まず、本発明に係る(A)熱可塑性樹脂、
(B)炭素微細繊維、(C)非導電性繊維及び(D)そ
の他の添加成分について説明する。
First, (A) a thermoplastic resin according to the present invention,
The (B) carbon fine fiber, (C) non-conductive fiber, and (D) other additive components will be described.

【0016】(A)熱可塑性樹脂 本発明で使用する(A)熱可塑性樹脂としては、例えば
ポリカーボネート、ポリブチレンテレフタレート、ポリ
エチレンテレフタレート、各種ポリアミド(6、66、
46、12、半芳香族など)、ABS樹脂、AS樹脂、
ポリエチレン、ポリプロピレン、ポリアセタール、ポリ
アミドイミド、ポリエーテルスルホン、ポリイミド、ポ
リフェニレンオキシド、ポリフェニレンスルフィド、ポ
リフェニルスルホン、ポリエーテルエーテルケトン、ポ
リスチレン、液晶性ポリエステル、熱可塑性ポリウレタ
ン、ポリ塩化ビニル、フッ素樹脂等の熱可塑性樹脂ある
いはこれらの混合物が挙げられる。これらは1種を単独
で用いても良く、2種以上を混合して用いても良く、使
用目的に応じて必要とされる耐熱性、耐薬品性、成形性
等の特性から適宜選択して用いることができる。
(A) Thermoplastic resin As the thermoplastic resin (A) used in the present invention, for example, polycarbonate, polybutylene terephthalate, polyethylene terephthalate, various polyamides (6, 66,
46, 12, semi-aromatic, etc.), ABS resin, AS resin,
Thermoplastics such as polyethylene, polypropylene, polyacetal, polyamideimide, polyether sulfone, polyimide, polyphenylene oxide, polyphenylene sulfide, polyphenyl sulfone, polyether ether ketone, polystyrene, liquid crystalline polyester, thermoplastic polyurethane, polyvinyl chloride, fluororesin Resins or mixtures thereof may be mentioned. These may be used alone or in combination of two or more, and may be appropriately selected from the properties such as heat resistance, chemical resistance and moldability required according to the purpose of use. Can be used.

【0017】中でも、ポリカーボネートが、寸法精度に
優れ、そり等が少なく、かつ安価な点で望ましい。
Among them, polycarbonate is desirable because it has excellent dimensional accuracy, less warpage, and is inexpensive.

【0018】(B)炭素微細繊維 本発明で使用される(B)炭素微細繊維は、平均繊維径
が200nm以下のものであり、例えば特表平8−50
8534号公報に記載されている炭素フィブリルが使用
される。
(B) Carbon fine fiber The carbon fine fiber (B) used in the present invention has an average fiber diameter of 200 nm or less.
The carbon fibrils described in Japanese Patent 8534 are used.

【0019】即ち、炭素フィブリルは、当該フィブリル
の円柱状軸に実質的に同心的に沿って沈着されているグ
ラファイト外層を有し、その繊維中心軸は直線状でな
く、うねうねと曲がりくねった管状の形態を有する。
That is, the carbon fibrils have a graphite outer layer deposited substantially concentrically along the columnar axis of the fibrils, the fiber center axis of which is not straight but undulating and tubular. Has a morphology.

【0020】炭素フィブリルの平均繊維径は200nm
以下、望ましくは100nm以下、さらに望ましくは5
0nm以下である。炭素フィブリルの繊維径は炭素フィ
ブリルの製法に依存し、若干の分布があるが、ここで言
う平均繊維径とは顕微鏡観察して5点測定した平均値で
ある。
The average fiber diameter of carbon fibrils is 200 nm.
Or less, preferably 100 nm or less, more preferably 5 nm or less.
It is 0 nm or less. The fiber diameter of carbon fibrils depends on the production method of carbon fibrils and has a slight distribution, but the average fiber diameter referred to here is an average value measured at five points under microscope observation.

【0021】炭素フィブリルの平均繊維径が200nm
より大きいと、樹脂中でのフィブリル同士の接触が不十
分となり、導電性を発現させるために多量の添加が必要
となったり、安定した導電性が得られにくい。
The average fiber diameter of carbon fibrils is 200 nm
When it is larger than the above range, the contact between fibrils in the resin becomes insufficient, a large amount of addition is required to develop conductivity, and stable conductivity is hardly obtained.

【0022】炭素フィブリルの平均繊維径は0.1n
m、特に0.5nm以上が望ましい。平均繊維径がこれ
より小さいと、製造が著しく困難である。
The average fiber diameter of carbon fibrils is 0.1 n
m, especially 0.5 nm or more is desirable. If the average fiber diameter is smaller than this, the production is extremely difficult.

【0023】炭素フィブリルは、長さと径の比(長さ/
径比、即ちアスペクト比)が5以上のものが好ましく、
特に100以上の長さ/径比を有するものは、導電性ネ
ットワークを形成しやすいため、少量の添加で優れた導
電性が得られる点で望ましい。より好ましい炭素フィブ
リルの長さ/径比は1000以上である。なお、この炭
素フィブリルの繊維径、繊維長(及びアスペクト比)
は、透過型電子顕微鏡での観察において、5点の実測値
の平均値である。
Carbon fibrils have a ratio of length to diameter (length / length).
A diameter ratio, that is, an aspect ratio) of 5 or more is preferable,
In particular, those having a length / diameter ratio of 100 or more are preferable because a conductive network can be easily formed, and excellent conductivity can be obtained with a small amount of addition. A more preferable carbon fibril length / diameter ratio is 1000 or more. The fiber diameter and fiber length (and aspect ratio) of this carbon fibril
Is an average value of the measured values of 5 points in observation with a transmission electron microscope.

【0024】微細な管状の形態を有する炭素フィブリル
の壁の厚み(管状体の壁厚)は、通常3.5〜75nm
程度である。これは、通常フィブリルの外径の約0.1
から0.4倍に相当する。
The wall thickness of carbon fibrils having a fine tubular form (wall thickness of tubular body) is usually 3.5 to 75 nm.
It is a degree. This is usually about 0.1 of the outer diameter of the fibril.
Corresponds to 0.4 times.

【0025】炭素フィブリルはその少なくとも一部分が
凝集体の形態である場合、原料となる樹脂組成物中に、
面積ベースで測定して約50μm、特に10μmよりも
大きい径を有するフィブリル凝集体を含有していないこ
とが、所定の導電性を得るための添加量が少なくてす
み、得られる成形品の機械物性を低下させない点で望ま
しい。
When at least a part of the carbon fibrils is in the form of aggregates, carbon fibrils are added to the resin composition as a raw material,
The fact that it does not contain fibril aggregates having a diameter of greater than about 50 μm, especially 10 μm, measured on the basis of area, makes it possible to add a small amount to obtain a predetermined conductivity, and to obtain mechanical properties of the obtained molded product. Is desirable in that it does not decrease

【0026】このような炭素フィブリル等の炭素微細繊
維は、望ましくは、成形品中に分散した状態において、
直線状ではなく、曲がりくねった状態で分散しているこ
とが、発塵が少ない点で望ましく、さらに繊維同士の絡
み合いが保持された状態で分散している事が望ましい。
The fine carbon fibers such as carbon fibrils are desirably dispersed in a molded article in
It is desirable that the particles are dispersed in a meandering state, not in a linear shape, because dust generation is small, and further, it is desirable that the fibers are dispersed while being entangled with each other.

【0027】このような絡み合いを確保するために、本
発明で用いる炭素微細繊維は、屈曲度が5゜以上である
ことが好ましい。
In order to secure such entanglement, the carbon fine fiber used in the present invention preferably has a bending degree of 5 ° or more.

【0028】炭素微細繊維の屈曲度は炭素微細繊維同士
の絡み易さの目安となる値であり、これにより、炭素微
細繊維同士が絡み合いネットワークを形成して、ガラス
繊維等の非導電性繊維の基材樹脂からの脱落防止効果を
良く発揮すると共に、少量の添加量で得られる成形品に
対して十分な帯電防止効果を与えることが可能となる。
The degree of bending of the carbon fine fibers is a value that is a measure of the easiness of entanglement of the carbon fine fibers, whereby the carbon fine fibers are entangled with each other to form a network, and non-conductive fibers such as glass fibers are formed. It becomes possible to exert a good antistatic effect from the base resin and to give a sufficient antistatic effect to a molded product obtained with a small addition amount.

【0029】炭素微細繊維の屈曲度は、例えば、本発明
の帯電防止性樹脂成形品の樹脂成分を溶媒やイオンスパ
ッタリング等で除去して、炭素微細繊維を露出させる
か、又は成形品より切り出した超薄切片を電子顕微鏡観
察することによって測定することができる。この場合、
成形品の表面から5μm以内の表面層における炭素微細
繊維について測定することとする。
The degree of bending of the carbon fine fibers is obtained by, for example, removing the resin component of the antistatic resin molded product of the present invention by a solvent or ion sputtering to expose the carbon fine fibers or cut out from the molded product. It can be measured by observing an ultrathin section with an electron microscope. in this case,
The carbon fine fibers in the surface layer within 5 μm from the surface of the molded product will be measured.

【0030】屈曲度は図2に示すように炭素フィブリル
等の炭素微細繊維2を顕微鏡で観察し、同一繊維上にお
いて、繊維径の5倍(繊維径(図2のdの部分)を測定
し、デバイダ等で繊維に沿って5回計る等の方法によ
る)離れた任意の2点A,Bを選び、それぞれの点に接
線L,Lを引いて、接線L,Lの交差する点Q
の外角(図2においてαで示す角)を測定する。10点
の平均値をとり、これを屈曲度とする。
As shown in FIG. 2, the degree of bending is determined by observing the carbon fine fibers 2 such as carbon fibrils with a microscope, and measuring 5 times the fiber diameter (fiber diameter (portion d in FIG. 2) on the same fiber. , any two points a to the process according to) apart such measure 5 times along the fiber at divider or the like, to select the B, tangent L a to each point, pulling the L B, the tangent L a, the intersection of L B Point Q
The outer angle (angle indicated by α in FIG. 2) of is measured. The average value of 10 points is taken and this is taken as the degree of bending.

【0031】繊維が直線的であればこの角度は0゜とな
り、半円であれば180゜、円を描くものであれば36
0゜となる。
This angle is 0 ° if the fiber is straight, 180 ° if it is a semicircle, and 36 if it is a circle.
It becomes 0 °.

【0032】このような測定を行って求めた屈曲度α
が、5゜以上、望ましくは20゜以上、さらに望ましく
は40゜以上の炭素微細繊維であれば、炭素微細繊維同
士の絡み合いによるネットワークを形成し易く、非導電
性繊維の脱落防止、帯電防止性付与の面で好ましい。
The bending degree α obtained by performing such measurement
However, if it is 5 ° or more, preferably 20 ° or more, more preferably 40 ° or more, it is easy to form a network due to the entanglement of the carbon fine fibers, and to prevent the non-conductive fibers from falling off and the antistatic property. It is preferable in terms of application.

【0033】なお、通常の炭素繊維(ピッチ系、PAN
系)は、繊維直径が7〜13μm程度の、剛直かつ直線
的な繊維であり、屈曲度は5°未満となる。かかる直線
的な繊維では、お互いの絡み合いが生じることはなく、
ネットワーク構造を形成し難い。
Normal carbon fibers (pitch type, PAN
The system) is a rigid and linear fiber having a fiber diameter of about 7 to 13 μm, and the bending degree is less than 5 °. Such straight fibers do not entangle with each other,
It is difficult to form a network structure.

【0034】また、炭素微細繊維の表面の極性基による
非導電性繊維と熱可塑性樹脂との相互作用で、非導電性
繊維の脱落を効果的に防止するために、炭素微細繊維の
表面活性度が0.1%以上であることが好ましい。炭素
微細繊維の表面活性度は、炭素微細繊維の表面に存在す
るカルボン酸基、水酸等の極性基の量を示し、これらの
極性基の作用により基材樹脂や非導電性繊維との親和
性、接着性を向上させる効果が得られ、非導電性繊維の
脱落防止の面で好ましい。
Further, in order to effectively prevent the non-conductive fibers from falling off due to the interaction between the non-conductive fibers and the thermoplastic resin due to the polar groups on the surface of the carbon fine fibers, the surface activity of the carbon fine fibers is Is preferably 0.1% or more. The surface activity of the carbon fine fiber indicates the amount of polar groups such as carboxylic acid groups and hydroxy groups present on the surface of the carbon fine fiber, and the action of these polar groups makes it compatible with the base resin and the non-conductive fiber. And the adhesiveness are improved, which is preferable in terms of preventing the non-conductive fibers from falling off.

【0035】炭素微細繊維の表面活性度は、炭素微細繊
維の表面に存在するカルボン酸基、水酸基等の極性基の
量を次のようにして測定することにより求めることがで
きる。
The surface activity of the carbon fine fibers can be determined by measuring the amount of polar groups such as carboxylic acid groups and hydroxyl groups present on the surface of the carbon fine fibers as follows.

【0036】即ち、まず、乾燥した炭素微細繊維サンプ
ル1gを石英製のサンプル管に入れて真空に引いた後、
サンプル管を950℃に加熱された炉の中で30分間加
熱する。その後、サンプル管内に発生したガスを、ピス
トンにて圧力計付きのタンクへ導入し、タンク容量と圧
力から計算して、発生ガス量を測定し、極性基量とす
る。表面活性度は、炭素微細繊維重量に対する発生ガス
量(極性基の目安量)の割合の百分率で間接的に表して
いる。
That is, first, 1 g of the dried carbon fine fiber sample was put into a sample tube made of quartz and evacuated, and then
The sample tube is heated in a furnace heated to 950 ° C for 30 minutes. After that, the gas generated in the sample tube is introduced into a tank equipped with a pressure gauge by a piston, calculated from the tank capacity and pressure, and the generated gas amount is measured and used as the polar group amount. The surface activity is indirectly expressed as a percentage of the ratio of the amount of generated gas (a standard amount of polar groups) to the weight of carbon fine fibers.

【0037】本発明において、炭素微細繊維としては、
市販品、例えば、ハイペリオンカタリシスインターナシ
ョナル社の、「BN」等を用いることができる。
In the present invention, as the carbon fine fiber,
Commercially available products such as "BN" manufactured by Hyperion Catalysis International, Inc. can be used.

【0038】本発明において、炭素微細繊維の含有量
は、(A)成分の熱可塑性樹脂と炭素微細繊維との合計
の導電性樹脂成分中に0.1〜20重量%、望ましくは
0.5〜8重量%である。炭素微細繊維の含有量がこの
範囲よりも少ないと得られる成形品に十分な帯電防止性
能を得ることができず、また、炭素微細繊維による非導
電性繊維の脱落防止効果が十分に得られない場合があ
る。炭素微細繊維の含有量がこの範囲よりも多いと、成
形性の低下、得られる成形品の強度等の物性の低下を引
き起こす恐れがある。
In the present invention, the content of the carbon fine fibers is 0.1 to 20% by weight, preferably 0.5 to 20% by weight in the total amount of the conductive resin component of the thermoplastic resin (A) and the carbon fine fibers. ~ 8% by weight. If the content of the carbon fine fibers is less than this range, it is not possible to obtain sufficient antistatic performance in the obtained molded product, and the effect of preventing the non-conductive fibers from falling off by the carbon fine fibers cannot be obtained sufficiently. There are cases. If the content of the carbon fine fibers is more than this range, the moldability may be lowered and the physical properties such as strength of the obtained molded product may be lowered.

【0039】(C)非導電性繊維 本発明で用いる(C)非導電性繊維としては、ガラス繊
維、シリカ繊維、アルミナ繊維、チタン酸カリウム繊
維、アラミド繊維、ポリイミド繊維等の非導電性の強化
繊維が挙げられ、これらは1種を単独で用いても良く、
2種以上を組み合わせて用いても良い。
(C) Non-Conductive Fiber As the non-conductive fiber (C) used in the present invention, non-conductive reinforcement such as glass fiber, silica fiber, alumina fiber, potassium titanate fiber, aramid fiber, polyimide fiber, etc. Fibers, which may be used alone,
You may use it in combination of 2 or more type.

【0040】非導電性繊維としては、特に、ガラス繊維
が安価かつ強化効果が大きい上に、繊維表面のシランカ
ップリング剤による処理効果が大きいことにより、樹脂
との界面接着力が大きく、その結果、成形品からの繊維
の脱落に由来する発塵が少なくなるなどの理由から望ま
しい。
As the non-conductive fiber, in particular, glass fiber is inexpensive and has a large strengthening effect, and the fiber surface has a large effect of treating with a silane coupling agent, so that the interfacial adhesive force with the resin is large and, as a result, It is desirable for the reason that the amount of dust generated due to the dropping of fibers from the molded product is reduced.

【0041】ガラス繊維としては、一般に樹脂の強化目
的に用いられるものであれば良く、特に限定されない。
例えば、長繊維タイプ(ガラスロービング)や短繊維状
のチョップドストランド、ミルドファイバーなどから選
択して用いることができる。このガラス繊維の平均繊維
径は、6〜13μmの範囲にあるものが、集束性等の取
り扱い性や樹脂の補強効果等に優れる点において好まし
い。なお、ガラス繊維は一般に収束剤(例えばポリ酢酸
ビニル、ポリエステル収束剤等)、カップリング剤(例
えばシラン化合物、ボロン化合物、チタン化合物等)、
その他の表面処理剤で処理されている。
The glass fiber is not particularly limited as long as it is generally used for the purpose of strengthening the resin.
For example, long fiber type (glass roving), short fiber chopped strand, milled fiber or the like can be selected and used. It is preferable that the average fiber diameter of the glass fibers is in the range of 6 to 13 μm in terms of handling properties such as bundling property and resin reinforcing effect. The glass fiber is generally a sizing agent (eg, polyvinyl acetate, polyester sizing agent, etc.), a coupling agent (eg, silane compound, boron compound, titanium compound, etc.),
It is treated with other surface treatment agents.

【0042】通常、長繊維タイプのガラス繊維は樹脂へ
の添加前又は後に所望の長さに切断されて用いられる
が、この使用態様も本発明には好ましい。
Usually, long fiber type glass fibers are cut into a desired length before or after addition to a resin, and this mode of use is also preferable in the present invention.

【0043】ガラス繊維の表面処理剤は、基材樹脂との
界面接着強度を強化し、その結果、発塵性を改善するこ
とができるものであることが好ましい。従って、表面処
理剤としては、基材樹脂に応じて適正なものを選定する
ことが望ましい。表面処理剤としては、例えば、基材樹
脂がポリカーボネート樹脂であれば、エポキシ系処理
剤、又はウレタン系処理剤が望ましく、基材樹脂がポリ
フェニレンサルファイド樹脂であれば、エポキシ系処理
剤が望ましい。
The glass fiber surface treatment agent is preferably one which can enhance the interfacial adhesion strength with the base resin and, as a result, improve the dusting property. Therefore, it is desirable to select an appropriate surface treatment agent according to the base resin. As the surface treatment agent, for example, if the base resin is a polycarbonate resin, an epoxy treatment agent or a urethane treatment agent is desirable, and if the base resin is a polyphenylene sulfide resin, an epoxy treatment agent is desirable.

【0044】なお、前述の如く、非導電性繊維の絡み合
いによるネットワークにより、ガラス繊維等の非導電性
繊維を絡めとって、基材樹脂からの脱落を防止する作用
効果を十分に得るためには、炭素微細繊維の絡み合いの
ネットワークに比べて、非導電性繊維が十分に大きいこ
とが好ましい。即ち、炭素微細繊維の絡み合いのネット
ワークに対して、非導電性繊維が十分に大きくないと、
このネットワークから非導電性繊維がすり抜けてしま
い、十分な脱落防止効果が得られない。このため、非導
電性繊維の平均繊維径(T)は炭素微細繊維の平均繊維
径(t)に対して50倍、即ちT/t=50以上である
ことが好ましい。このT/t比は過度に大きいと、非導
電性繊維の平均繊維径が大き過ぎて成形性や得られる成
形品の物性を損ねる恐れがあるため、T/tは50〜5
000、特に500〜2000であることが好ましい。
As described above, in order to sufficiently obtain the effect of preventing non-falling from the base resin by entwining the non-conductive fibers such as glass fibers with the network formed by the entanglement of the non-conductive fibers. It is preferable that the non-conductive fibers are sufficiently larger than the entangled network of carbon fine fibers. That is, with respect to the network of entanglement of carbon fine fibers, if the non-conductive fiber is not sufficiently large,
The non-conductive fiber slips through this network, and a sufficient fall prevention effect cannot be obtained. Therefore, the average fiber diameter (T) of the non-conductive fibers is preferably 50 times the average fiber diameter (t) of the carbon fine fibers, that is, T / t = 50 or more. If this T / t ratio is excessively large, the average fiber diameter of the non-conductive fibers may be too large and the formability and the physical properties of the obtained molded product may be impaired.
It is preferably 000, particularly 500 to 2000.

【0045】なお、補強効果の面から非導電性繊維の長
さ/径比(アスペクト比)は5以上であることが好まし
く、特に10〜200であることが好ましい。
From the standpoint of reinforcing effect, the length / diameter ratio (aspect ratio) of the non-conductive fiber is preferably 5 or more, and particularly preferably 10 to 200.

【0046】このような非導電性繊維の配合割合は、
(A)熱可塑性樹脂及び(B)炭素微細繊維よりなる導
電性樹脂成分100重量部に対して1〜200重量部、
好ましくは10〜100重量部、より好ましくは20〜
100重量部である。非導電性繊維の配合割合がこの範
囲よりも少ないと得られる成形品の剛性が不足し、多い
と成形性が損なわれる。
The blending ratio of such a non-conductive fiber is
1 to 200 parts by weight with respect to 100 parts by weight of a conductive resin component composed of (A) thermoplastic resin and (B) carbon fine fiber,
Preferably 10 to 100 parts by weight, more preferably 20 to
It is 100 parts by weight. If the compounding ratio of the non-conductive fiber is less than this range, the rigidity of the obtained molded product will be insufficient, and if it is too large, the moldability will be impaired.

【0047】(D)その他の添加成分 本発明に係る導電性熱可塑性樹脂組成物には、必要に応
じて、本発明の目的を損なわない範囲で上記(A)〜
(C)成分以外の成分を配合することができる。この添
加成分としては、各種のゴム、熱可塑性エラストマー
(オレフィン系、スチレン系、エステル系、ウレタン
系、アミド系など)や、フッ素樹脂パウダー、二硫化モ
リブデン等の固体潤滑剤、パラフィンオイル等の可塑
剤、酸化防止剤、熱安定剤、光安定剤、紫外線吸収剤、
中和剤、滑剤、相溶化剤、防曇剤、アンチブロッキング
剤、スリップ剤、分散剤、着色剤、防菌剤、蛍光増白剤
等といった各種添加剤を挙げることができる。
(D) Other Additive Components The conductive thermoplastic resin composition according to the present invention may be added to the above-mentioned (A) to (A) to the extent not impairing the object of the present invention, if necessary.
Components other than the component (C) can be added. This additive component includes various rubbers, thermoplastic elastomers (olefin-based, styrene-based, ester-based, urethane-based, amide-based, etc.), fluororesin powder, solid lubricants such as molybdenum disulfide, and plastics such as paraffin oil. Agent, antioxidant, heat stabilizer, light stabilizer, UV absorber,
Examples include various additives such as a neutralizing agent, a lubricant, a compatibilizer, an antifogging agent, an antiblocking agent, a slip agent, a dispersant, a coloring agent, an antibacterial agent, and an optical brightening agent.

【0048】特に、硬度が70D(ASTM2240
D)以下の熱可塑性エラストマーを、(A)熱可塑性樹
脂及び(B)炭素微細繊維の合計100重量部に対し
て、0.1〜50重量部配合したものは、成形品の抵抗
値が安定して得られる点で望ましい。このような熱可塑
性エラストマーとしては、例えばオレフィン系、スチレ
ン系、エステル系、アミド系、ウレタン系などの各種エ
ラストマーが挙げられる。
Particularly, the hardness is 70D (ASTM2240
D) The following thermoplastic elastomer is blended in an amount of 0.1 to 50 parts by weight based on 100 parts by weight of the total of (A) thermoplastic resin and (B) carbon fine fiber, and the resistance value of the molded product is stable. It is desirable because it can be obtained. Examples of such a thermoplastic elastomer include various elastomers such as olefin series, styrene series, ester series, amide series and urethane series.

【0049】本発明に係る導電性熱可塑性樹脂組成物
は、上記(A)〜(C)成分と、必要に応じて上記
(D)成分を用いて、通常の熱可塑性樹脂の加工方法で
製造することができる。
The conductive thermoplastic resin composition according to the present invention is produced by a usual thermoplastic resin processing method using the above-mentioned components (A) to (C) and, if necessary, the above-mentioned component (D). can do.

【0050】例えば(A)〜(C)成分或いは更に
(D)成分を予め混合した後、バンバリーミキサー、ロ
ール、ブラベンダー、単軸混練押し出し機、二軸混練押
し出し機、ニーダーなどで溶融混練することによって導
電性樹脂組成物を製造することができる。
For example, the components (A) to (C) or further the component (D) are premixed, and then melt-kneaded by a Banbury mixer, roll, Brabender, single-screw kneading extruder, twin-screw kneading extruder, kneader or the like. Thereby, a conductive resin composition can be manufactured.

【0051】本発明の帯電防止性樹脂成形品は、この導
電性熱可塑性樹脂組成物を各種の溶融成形法を用いて成
形することにより得ることができる。成形法としては具
体的には、プレス成形、押し出し成形、真空成形、ブロ
ー成形、射出成形などを挙げることができる。特に、射
出成形法は、生産性の点で望ましい。
The antistatic resin molded article of the present invention can be obtained by molding this conductive thermoplastic resin composition using various melt molding methods. Specific examples of the molding method include press molding, extrusion molding, vacuum molding, blow molding, and injection molding. In particular, the injection molding method is desirable in terms of productivity.

【0052】なお、射出成形によって成形された成形品
においては、樹脂の注入口であるゲート部に樹脂の突起
が残る。この突起部からは非導電性繊維等の脱落が起こ
り易く、脱落物がデバイスの損傷を引き起こす危険性が
ある。従って、ゲート跡の突起部に、かしめ処理、エン
ドミルによる除去、超音波加熱等により処理を施して、
この脱落を防止することが望ましい。
In the molded product molded by injection molding, resin protrusions remain at the gate portion which is the resin injection port. Non-conductive fibers and the like are likely to fall off from the protrusions, and there is a risk that the fallen objects may damage the device. Therefore, the protrusions of the gate traces should be caulked, removed by an end mill, and treated by ultrasonic heating,
It is desirable to prevent this dropout.

【0053】このようにして得られる本発明の帯電防止
性樹脂成形品は、炭素微細繊維の配合により通常、表面
抵抗値1×10〜1×1012Ωに調整される。ま
た、非導電性繊維の配合により、好ましくは曲げ弾性率
(ASTM790)4000MPa以上、望ましくは6
000MPa以上の高剛性が得られる。
The antistatic resin molded article of the present invention thus obtained is usually adjusted to have a surface resistance value of 1 × 10 3 to 1 × 10 12 Ω by blending carbon fine fibers. In addition, the flexural modulus (ASTM 790) of 4000 MPa or more, preferably 6 depending on the composition of the non-conductive fiber.
High rigidity of 000 MPa or more can be obtained.

【0054】[0054]

【実施例】以下に実施例及び比較例を挙げて本発明をよ
り具体的に説明する。
EXAMPLES The present invention will be described more specifically with reference to Examples and Comparative Examples below.

【0055】なお、成形に用いた材料は次の通りであ
る。
The materials used for molding are as follows.

【0056】ポリカーボネート:三菱エンジニアリング
プラスチック社製「ユーピロン3000」 炭素微細繊維:炭素フィブリル(平均繊維径=10n
m,平均繊維長=0.5μm以上,長さ/径比=50以
上) カーボンブラック:電気化学(株)製「デンカブラッ
ク」 ガラス繊維:日本電気硝子社製「チョップドストランド
ECS03T−129」(平均繊維径=12μm,平均
繊維長=6mm,エポキシ系表面処理品) 炭素繊維:東邦レーヨン社製「ベスファイト HTA−
C6−SRS」(平均繊維径=7μm,平均繊維長=6
mm,エポキシ系表面処理品)
Polycarbonate: "Upilon 3000" manufactured by Mitsubishi Engineering Plastics Co., Ltd. Carbon fine fiber: carbon fibril (average fiber diameter = 10n)
m, average fiber length = 0.5 μm or more, length / diameter ratio = 50 or more) Carbon black: “Denka Black” manufactured by Denki Kagaku KK Glass fiber: “Chopped Strand ECS03T-129” manufactured by Nippon Electric Glass Co., Ltd. (average Fiber diameter = 12 μm, average fiber length = 6 mm, epoxy surface treated product) Carbon fiber: “Vesfight HTA-” manufactured by Toho Rayon Co., Ltd.
C6-SRS "(average fiber diameter = 7 μm, average fiber length = 6
mm, Epoxy surface treated product)

【0057】なお、上記炭素微細繊維について、前述の
方法で測定した屈曲度は73゜であり、表面活性度は
0.15%であった。また、この炭素微細繊維の平均繊
維径(t)は10nmで、非導電性繊維としてのガラス
繊維の平均繊維径(T)は12μmであるため、T/t
=1200である。
With respect to the above carbon fine fibers, the degree of bending measured by the above-mentioned method was 73 ° and the surface activity was 0.15%. Further, since the average fiber diameter (t) of this carbon fine fiber is 10 nm and the average fiber diameter (T) of the glass fiber as the non-conductive fiber is 12 μm, T / t
= 1200.

【0058】実施例1、比較例1〜4 各成分を表1に示す配合で混合し、2軸押出機(池貝鉄
鋼社製「PCM45」、L/D=32(L;スクリュー
長、D;スクリュー径))を用いて、バレル温度300
℃、スクリュー回転数160rpmにて溶融混練して、
ポリカーボネート組成物ペレットを得、下記評価を行っ
て結果を表1に示した。
Example 1, Comparative Examples 1 to 4 Each component was mixed in the composition shown in Table 1, and a twin-screw extruder (“PCM45” manufactured by Ikegai Iron & Steel Co., L / D = 32 (L; screw length, D; Barrel diameter 300)
℃, melt kneading at 160 rpm screw speed,
Polycarbonate composition pellets were obtained, the following evaluations were carried out, and the results are shown in Table 1.

【0059】なお、炭素フィブリルの配合混練は、予め
ポリカーボネート樹脂に炭素フィブリルを15重量%添
加したマスターバッチを製造し、これを希釈して所定の
炭素フィブリル添加量とした。
The blending and kneading of carbon fibrils was performed by preparing a masterbatch in which 15% by weight of carbon fibril was added to a polycarbonate resin in advance, and diluting the masterbatch to obtain a predetermined amount of carbon fibril added.

【0060】[曲げ弾性率]ADTM790に準拠して
測定した。
[Flexural Modulus] It was measured according to ADTM790.

【0061】[表面抵抗値]得られた各組成物ペレット
を、75ton射出成形機にて100×100×2mm
(厚み)のシートに成形し、このシートサンプルについ
て、ダイヤインスツルメント社製「ハイレスタUP」に
て表面抵抗値を測定した。印加電圧は、1×10Ω未
満の抵抗値のものは10V、1×10Ω以上の抵抗値
のものは100Vとして測定した。
[Surface Resistance Value] The obtained composition pellets were 100 × 100 × 2 mm in a 75 ton injection molding machine.
It was formed into a sheet of (thickness), and the surface resistance value of this sheet sample was measured by "HIRESTA UP" manufactured by Dia Instruments. Applied voltage, was measured as 100V those of the resistance value of less than 1 × 10 6 Ω 10V, 1 × 10 of 6 Omega more resistance ones.

【0062】[帯電電位]チャージプレートモニター
(ヒューグエレクトロニクス社製)上に、上記シートサ
ンプルを置いて、サンプル及びプレートが帯電ゼロで、
かつ接地から絶縁された状態で、サンプルの上方よりコ
ロナチャージによって、プレートモニターが1000V
になるまで帯電させた。サンプルを載せているプレート
を接地して、接地後3秒後のサンプルの表面電位を表面
電位計(モンローエレクトロニクス社製「244A」)
で測定した。
[Charging potential] The above-mentioned sheet sample was placed on a charge plate monitor (manufactured by Huge Electronics Co., Ltd.), and the sample and the plate were zero charged,
And the plate monitor is 1000V by corona charge from above the sample while being insulated from the ground.
It was charged until. The plate on which the sample is placed is grounded, and the surface potential of the sample 3 seconds after grounding is measured by a surface potential meter ("244A" manufactured by Monroe Electronics Co., Ltd.).
It was measured at.

【0063】[接触電流値]帯電したトレイに、接地さ
れたデバイスが接触した場合に生じる接触電流につい
て、電子部品を接地プローブで代用して以下のように測
定を行った。チャージプレートモニター(ヒューグエレ
クトロニクス社製)上に、上記シートサンプルを置い
て、チャージプレートモニターを使用して、プレート及
びサンプルに1000Vを3秒間充電させた後、接地か
ら切り離して絶縁した。3秒後に接地プローブ(テクト
ロニクス社製「CT1」)をサンプルに接触させて、プ
ローブを流れる接触電流を測定した。この場合、接触電
流はナノ秒オーダーの交流電流が流れるので、最も高い
電流値を接触電流とした。
[Contact Current Value] The contact current generated when a grounded device contacts the charged tray was measured as follows by substituting a grounding probe for an electronic component. The above-mentioned sheet sample was placed on a charge plate monitor (manufactured by Huge Electronics Co., Ltd.), and the plate and the sample were charged at 1000 V for 3 seconds using the charge plate monitor, and then separated from ground and insulated. After 3 seconds, a grounding probe (“CT1” manufactured by Tektronix) was brought into contact with the sample, and the contact current flowing through the probe was measured. In this case, since the contact current is an alternating current of the order of nanoseconds, the highest current value was used as the contact current.

【0064】[パーティクル]発塵性の指標として、以
下の方法で評価した。純水500mL中に、上記シート
サンプルを浸漬し、超音波を60秒間印加した。その
後、抽出した純水中のパーティクルを、パーティクルカ
ウンター(セイシン企業社製「PAC150」)にて1
μm以上のパーティクルについて測定し、シートサンプ
ルの面積当たりのパーティクル数で示した。なお、測定
の前処理として、予めシートサンプルに純水500mL
中で超音波を60秒間印加したサンプルを使用した。
[Particle] As an index of dusting property, the following method was evaluated. The above sheet sample was immersed in 500 mL of pure water, and ultrasonic waves were applied for 60 seconds. After that, the particles in the extracted pure water are set to 1 by a particle counter (“PAC150” manufactured by Seishin Enterprise Co., Ltd.).
Particles having a size of μm or more were measured and the number of particles per area of the sheet sample was shown. As a pretreatment for the measurement, 500 mL of pure water was previously added to the sheet sample
A sample to which ultrasonic waves were applied for 60 seconds was used.

【0065】[0065]

【表1】 [Table 1]

【0066】表1より次のことが明らかである。The following is clear from Table 1.

【0067】炭素微細繊維(炭素フィブリル)のみを添
加した比較例1では、帯電特性、発塵性は良いが、補強
効果がない。
In Comparative Example 1 in which only carbon fine fibers (carbon fibrils) were added, the charging characteristics and dust generation were good, but there was no reinforcing effect.

【0068】カーボンブラック及びガラス繊維のみを添
加した比較例2では、発塵性が著しく悪化する。
In Comparative Example 2 in which only carbon black and glass fiber were added, the dusting property was remarkably deteriorated.

【0069】ガラス繊維のみを添加した比較例3では、
帯電防止効果が得られない。
In Comparative Example 3 in which only glass fiber was added,
Antistatic effect cannot be obtained.

【0070】また、炭素繊維のみを添加した比較例4で
は、曲げ弾性率は良いが、帯電防止効果が十分でない。
これは、導電性フィラーである炭素繊維のサイズが比較
的大きいため、導電性ネットワークのサイズが大きくな
り、炭素繊維の存在しない部分の帯電電荷が散逸されに
くいことによるものと考えられる。一方、炭素繊維の周
囲の電荷は極めて速く流れるので、接触電流が大きい。
また、比較例3のガラス繊維添加量に比べて炭素繊維の
添加量が少ないにも関わらず、発塵性が高いのは、繊維
とマトリックス樹脂との接着強度が、ガラス繊維に比べ
て低いためと考えられる。
Further, in Comparative Example 4 in which only carbon fiber was added, the flexural modulus was good, but the antistatic effect was not sufficient.
It is considered that this is because the size of the carbon fiber as the conductive filler is relatively large, so that the size of the conductive network becomes large, and the electrostatic charge in the portion where the carbon fiber does not exist is not easily dissipated. On the other hand, the electric charge around the carbon fiber flows extremely quickly, so that the contact current is large.
Further, although the amount of carbon fibers added is smaller than the amount of glass fibers added in Comparative Example 3, the dust generation is high because the adhesive strength between the fibers and the matrix resin is lower than that of glass fibers. it is conceivable that.

【0071】これに対して、炭素微細繊維とガラス繊維
を配合した実施例1では、帯電防止性、接触電流、発塵
性及び曲げ弾性率のバランスに優れている。特に、比較
例3のガラス繊維のみの添加に比べて、炭素微細繊維を
含有しているにも関わらず、発塵性が優れていることの
理由の詳細は明らかではないが、前述の如く、互いに絡
み合った炭素微細繊維が、樹脂とガラス繊維の双方に強
固に接着し、その結果、炭素微細繊維の脱落のみなら
ず、ガラス繊維の脱落をも抑制する結果となっているも
のと考えられる。
On the other hand, in Example 1 in which the carbon fine fiber and the glass fiber are mixed, the antistatic property, the contact current, the dust generation property and the flexural modulus are excellent in balance. In particular, as compared with the addition of only the glass fiber of Comparative Example 3, the details of the reason why the dust generation property is excellent despite containing the carbon fine fiber are not clear, but as described above, It is considered that the carbon fine fibers intertwined with each other firmly adhere to both the resin and the glass fiber, and as a result, not only the carbon fine fiber is removed but also the glass fiber is prevented from being removed.

【0072】[0072]

【発明の効果】以上詳述した通り、本発明の帯電防止性
樹脂成形品によれば、高剛性で発塵の問題がなく、帯電
防止性に優れた帯電防止性樹脂成形品が提供される。
As described in detail above, according to the antistatic resin molded product of the present invention, there is provided an antistatic resin molded product having high rigidity, no dust generation problem, and excellent antistatic property. .

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の帯電防止性樹脂成形品における炭素微
細繊維と非導電性繊維との絡み合いを説明する概念図で
ある。
FIG. 1 is a conceptual diagram illustrating entanglement of carbon fine fibers and non-conductive fibers in an antistatic resin molded article of the present invention.

【図2】本発明に係る炭素微細繊維の屈曲度の測定方法
の説明図である。
FIG. 2 is an explanatory diagram of a method for measuring the degree of bending of carbon fine fibers according to the present invention.

【符号の説明】[Explanation of symbols]

1 非導電性繊維 2 炭素微細繊維 1 Non-conductive fiber 2 carbon fine fiber

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C08L 69/00 C08L 69/00 Fターム(参考) 4F071 AA50 AB03 AB28 AD01 AE15 AF14 AF37 AF37Y AF38 AH05 BA01 BB05 BC04 4J002 AA011 BB021 BB111 BC021 BC061 BD031 BD121 BN151 CB001 CF001 CF061 CF071 CG001 CH071 CH091 CK021 CL011 CL031 CL062 CM041 CM042 CN011 CN031 DA016 DE147 DE187 DJ017 DL007 FA042 FA046 FA047 FD012 FD017 FD116 GG01 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) C08L 69/00 C08L 69/00 F term (reference) 4F071 AA50 AB03 AB28 AD01 AE15 AF14 AF37 AF37Y AF38 AH05 BA01 BB05 BC04 4J002 AA011 BB021 BB111 BC021 BC061 BD031 BD121 BN151 CB001 CF001 CF061 CF071 CG001 CH071 CH091 CK021 CL011 CL031 CL062 CM041 CM042 CN011 CN031 DA016 DE147 DE187 DJ017 DL007 FA042 FA046 FA047 FD012

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 (A)熱可塑性樹脂と、(B)平均繊維
径200nm以下の炭素微細繊維0.1〜20重量%と
からなる導電性樹脂成分100重量部に、(C)非導電
性繊維を1〜200重量部添加してなる導電性熱可塑性
樹脂組成物を成形してなることを特徴とする帯電防止性
樹脂成形品。
1. 100 parts by weight of a conductive resin component comprising (A) a thermoplastic resin and (B) 0.1 to 20% by weight of carbon fine fibers having an average fiber diameter of 200 nm or less, and (C) a non-conductive resin component. An antistatic resin molded article obtained by molding a conductive thermoplastic resin composition containing 1 to 200 parts by weight of fibers.
【請求項2】 請求項1において、該非導電性繊維がガ
ラス繊維であることを特徴とする帯電防止性樹脂成形
品。
2. The antistatic resin molded article according to claim 1, wherein the non-conductive fiber is glass fiber.
【請求項3】 請求項1又は2において、該熱可塑性樹
脂がポリカーボネートであることを特徴とする帯電防止
性樹脂成形品。
3. The antistatic resin molded article according to claim 1, wherein the thermoplastic resin is polycarbonate.
【請求項4】 請求項1ないし3のいずれか1項におい
て、該非導電性繊維の平均繊維径(T)と該炭素微細繊
維の平均繊維径(t)との比T/tが50〜5000で
あることを特徴とする帯電防止性樹脂成形品。
4. The ratio T / t between the average fiber diameter (T) of the non-conductive fibers and the average fiber diameter (t) of the carbon fine fibers according to claim 1, wherein the ratio T / t is 50 to 5,000. An antistatic resin molded product characterized in that
【請求項5】 請求項1ないし4のいずれか1項におい
て、該炭素微細繊維の屈曲度が5゜以上であることを特
徴とする帯電防止性樹脂成形品。
5. The antistatic resin molded article according to claim 1, wherein the carbon fine fibers have a bending degree of 5 ° or more.
【請求項6】 請求項1ないし5のいずれか1項におい
て、該炭素微細繊維は表面活性度が0.1%以上である
ことを特徴とする帯電防止性樹脂成形品。
6. The antistatic resin molded article according to claim 1, wherein the carbon fine fibers have a surface activity of 0.1% or more.
【請求項7】 請求項1ないし6のいずれか1項におい
て、表面抵抗値が1×10Ω以上1×1012Ω以下
であることを特徴とする帯電防止性樹脂成形品。
7. The antistatic resin molded article according to claim 1, which has a surface resistance value of 1 × 10 3 Ω or more and 1 × 10 12 Ω or less.
JP2002013144A 2002-01-22 2002-01-22 Antistatic resin molded product Expired - Fee Related JP3722065B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002013144A JP3722065B2 (en) 2002-01-22 2002-01-22 Antistatic resin molded product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002013144A JP3722065B2 (en) 2002-01-22 2002-01-22 Antistatic resin molded product

Publications (2)

Publication Number Publication Date
JP2003213140A true JP2003213140A (en) 2003-07-30
JP3722065B2 JP3722065B2 (en) 2005-11-30

Family

ID=27650172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002013144A Expired - Fee Related JP3722065B2 (en) 2002-01-22 2002-01-22 Antistatic resin molded product

Country Status (1)

Country Link
JP (1) JP3722065B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007099887A (en) * 2005-10-04 2007-04-19 Kyooka:Kk Head stack assembly-protecting tool and resin composition therefor
JP2021063239A (en) * 2021-01-28 2021-04-22 大塚化学株式会社 Polycarbonate resin composition and molding
KR20230098152A (en) 2020-10-29 2023-07-03 오츠카 가가쿠 가부시키가이샤 Liquid crystal polymer composition, liquid crystal polymer molded body and electrical and electronic devices

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007099887A (en) * 2005-10-04 2007-04-19 Kyooka:Kk Head stack assembly-protecting tool and resin composition therefor
KR20230098152A (en) 2020-10-29 2023-07-03 오츠카 가가쿠 가부시키가이샤 Liquid crystal polymer composition, liquid crystal polymer molded body and electrical and electronic devices
JP2021063239A (en) * 2021-01-28 2021-04-22 大塚化学株式会社 Polycarbonate resin composition and molding
JP7050973B2 (en) 2021-01-28 2022-04-08 大塚化学株式会社 Polycarbonate resin composition and molded product

Also Published As

Publication number Publication date
JP3722065B2 (en) 2005-11-30

Similar Documents

Publication Publication Date Title
US6545081B1 (en) Synthetic resin composition
US6528572B1 (en) Conductive polymer compositions and methods of manufacture thereof
WO2001011612A1 (en) Tray for conveying magnetic head for magnetic disk
KR20070100770A (en) Electrically conductive compositions and method of manufacture thereof
TWI389977B (en) Substrate with cassette
JP3736479B2 (en) Semiconductive resin molded product
JP2004134515A (en) Electromagnetic wave shield component
JP2009127038A (en) Resin composition, method for producing the same and use of the same
JP2002231051A (en) Conductive resin component, and molding product using the same
JP3722065B2 (en) Antistatic resin molded product
JP2002317384A (en) Electrically conductive fiber bundle for filament pellet, filament pellet made thereof, and formed article produced by using the same
JP4456916B2 (en) Low-contamination injection molding
JP4214654B2 (en) Magnetic head transport tray
JP2003335871A (en) Electroconductive slidable resin molded article
JP4239349B2 (en) Transport tray for magnetic head for magnetic disk
JP2021091220A (en) Resin molded body and electrostatic protection component
JP2001129826A (en) Conductive fiber-reinforced molding material and manufacturing method therefor
JP2002146679A (en) Carbon fiber bundle, resin composition, forming material and formed product using the same
JP4239347B2 (en) Transport tray for magnetic head for magnetic disk
JP2001244318A (en) Electroconductive spin chuck
JP4239348B2 (en) Transport tray for magnetic head for magnetic disk
JP2002179924A (en) Manufacturing method of molding material and manufacturing method of molding
JP4039886B2 (en) Conductive molding
JP4765163B2 (en) Conductive resin composition and conductive injection molded product
KR100646150B1 (en) Tray for transporting magnetoresistance effect head for magnetic disk

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041014

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050905

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3722065

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080922

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees