JP2003204021A - Substrate for semiconductor module - Google Patents

Substrate for semiconductor module

Info

Publication number
JP2003204021A
JP2003204021A JP2002003057A JP2002003057A JP2003204021A JP 2003204021 A JP2003204021 A JP 2003204021A JP 2002003057 A JP2002003057 A JP 2002003057A JP 2002003057 A JP2002003057 A JP 2002003057A JP 2003204021 A JP2003204021 A JP 2003204021A
Authority
JP
Japan
Prior art keywords
heat sink
metal plate
insulating substrate
semiconductor module
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002003057A
Other languages
Japanese (ja)
Inventor
Ayafumi Ogami
純史 大上
Norikazu Fukunaga
憲和 福永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal SMI Electronics Device Inc
Original Assignee
Sumitomo Metal SMI Electronics Device Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal SMI Electronics Device Inc filed Critical Sumitomo Metal SMI Electronics Device Inc
Priority to JP2002003057A priority Critical patent/JP2003204021A/en
Publication of JP2003204021A publication Critical patent/JP2003204021A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Abstract

<P>PROBLEM TO BE SOLVED: To provide a substrate for semiconductor module exhibiting excellent heat dissipation characteristics by preventing occurrence of warp due to difference of coefficient of thermal expansion among the components. <P>SOLUTION: The substrate 10 for semiconductor module comprises a wiring metal plate 12 having an upper surface for mounting a semiconductor element 11, an insulating substrate 15 having an upper surface being bonded to the lower surface of the wiring metal plate 12 through a soldering material 14, and a heat sink 16 bonded to the lower surface side of the insulating substrate 15 and dissipating heat generated from the semiconductor element 11 wherein an intermediate plate 17 of a metal having a coefficient of thermal expansion approximate to that of the wiring metal plate 12 and bonded between the lower surface of the insulating substrate 15 and the upper surface of the heat sink 16 through soldering materials 14a and 14b is provided between the insulating substrate 15 and the heat sink 16 composed of a composite material containing carbon and a metal. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明が属する技術分野】本発明は、半導体モジュール
用基板に係り、より詳細には、大量の熱を発する半導体
素子を搭載するためのパワーモジュール用基板等の半導
体モジュール用基板に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor module substrate, and more particularly to a semiconductor module substrate such as a power module substrate for mounting a semiconductor element that generates a large amount of heat.

【0002】[0002]

【従来の技術】図7に示すように、従来より、半導体モ
ジュール用基板としては、例えば、パワーモジュール用
基板50が知られている。このパワーモジュール用基板
50は、AlN(窒化アルミニウム)や、Al
(アルミナ)等のセラミック基材からなる絶縁基板
51の上面にAg−Cu共晶合金(BAg−8)等から
なるろう材52を介してCu板等を回路状に形成した配
線金属板53が接合されている。また、絶縁基板51の
下面に、上面側で用いたろう材52と同様の材料からな
るろう材54を介してセラミックと熱膨張係数が近似
し、高放熱特性を有するCu−W(銅タングステン)等
からなるヒートシンク55が接合されて形成された構造
を有している。
2. Description of the Related Art As shown in FIG. 7, a power module substrate 50 is conventionally known as a semiconductor module substrate. The power module substrate 50 is made of AlN (aluminum nitride) or Al 2 O.
A wiring metal plate 53 in which a Cu plate or the like is formed in a circuit shape on the upper surface of an insulating substrate 51 made of a ceramic base material such as 3 (alumina) via a brazing material 52 made of Ag-Cu eutectic alloy (BAg-8) or the like. Are joined. Further, on the lower surface of the insulating substrate 51, through a brazing material 54 made of the same material as the brazing material 52 used on the upper surface side, a coefficient of thermal expansion is approximate to that of ceramic, and Cu-W (copper tungsten) or the like having high heat dissipation characteristics The heat sink 55 is formed by being joined.

【0003】しかしながら、ヒートシンク55にCu−
Wを用いた場合には、Cu−Wの熱伝導率が200W/
m・K程度であり放熱性に問題があった。また、Cu−
Wは、重量が非常に重いという問題があった。従って、
軽くて、高放熱特性を有する炭素と金属を含んだ複合
材、例えば、炭素繊維とCuとの複合材からなるヒート
シンク55が開発されている。
However, Cu--
When W is used, the thermal conductivity of Cu-W is 200 W /
It was about m · K, and there was a problem with heat dissipation. Also, Cu-
W has a problem that its weight is very heavy. Therefore,
A heat sink 55 made of a composite material containing carbon and a metal, which is light and has a high heat dissipation property, for example, a composite material of carbon fiber and Cu has been developed.

【0004】このようなパワーモジュール用基板50で
は、配線金属板53上の所定の位置に半導体素子56が
搭載され、半導体素子56の上面の所定の位置に形成さ
れた電極パッドと、配線金属板53のパッド電極部57
とを、ボンディングワイヤ58を用いて、ワイヤボンデ
ィングされるようになっている。
In such a power module substrate 50, the semiconductor element 56 is mounted at a predetermined position on the wiring metal plate 53, and the electrode pad formed at the predetermined position on the upper surface of the semiconductor element 56 and the wiring metal plate. 53 pad electrode portion 57
Are bonded by using the bonding wire 58.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、前述し
たような従来の半導体モジュール用基板は、次のような
問題がある。 (1)半導体モジュール用基板は、絶縁基板に配線金属
板やヒートシンクをろう付け接合して作製するので、ろ
う付け時の加熱、冷却過程で構成要素間の熱膨張係数の
差に起因する熱応力によって発生する反りを回避するこ
とが必要とされる。そこで、構成要素間の熱膨張係数を
整合させて接合させることが必要となる。ところが、図
8に示すように、例えば、配線金属板53にCu板、絶
縁基板51にAlN基板、ヒートシンク55にAlN基
板と熱膨張係数が近似する炭素繊維とCuとの複合材を
用いたとしても、絶縁基板51及びヒートシンク55
と、配線金属板53との間の熱膨張係数に差が生じるの
で、ろう付け接合後の半導体モジュール用基板50に、
ヒートシンク55の底部を凸形状とする反りの発生を防
止することができない。しかも炭素繊維とCuとの複合
材からなるヒートシンク55は、重量は軽いが、剛性が
小さいので、反りに対する抵抗がない。従って、この反
りによって、半導体素子56を搭載する時に支障があっ
たり、半導体モジュール用基板50を更に固定用ケース
に収納するのに支障が発生する。また、半導体素子を搭
載後に課せられる温度サイクル試験等の環境試験によっ
て絶縁基板51にクラック等が発生する場合がある。
However, the conventional semiconductor module substrate as described above has the following problems. (1) Since the semiconductor module substrate is manufactured by brazing a wiring metal plate and a heat sink to an insulating substrate, the thermal stress caused by the difference in the thermal expansion coefficient between the components during the heating and cooling processes during brazing. It is necessary to avoid the warpage caused by. Therefore, it is necessary to match the coefficient of thermal expansion between the components and to bond them. However, as shown in FIG. 8, for example, when a Cu plate is used for the wiring metal plate 53, an AlN substrate is used for the insulating substrate 51, and a composite material of carbon fiber and Cu having a thermal expansion coefficient similar to that of the AlN substrate is used for the heat sink 55. Insulating substrate 51 and heat sink 55
Since a difference in thermal expansion coefficient occurs between the wiring board 53 and the wiring metal plate 53, the semiconductor module substrate 50 after brazing and joining,
It is not possible to prevent the warpage of the heat sink 55 having a convex bottom. Moreover, the heat sink 55 made of a composite material of carbon fiber and Cu is light in weight, but has low rigidity, and therefore has no resistance to warpage. Therefore, this warp causes a problem when the semiconductor element 56 is mounted, and a problem that the semiconductor module substrate 50 is further housed in the fixing case. In addition, a crack or the like may occur in the insulating substrate 51 due to an environmental test such as a temperature cycle test imposed after mounting the semiconductor element.

【0006】(2)半導体モジュール用基板は、特にパ
ワーモジュール用基板として用いられる場合に、搭載さ
れる半導体素子から大量の熱が発生するので、高放熱特
性を有していることが必要とされる。そこで、半導体素
子を上面に搭載する配線金属板や、半導体素子とヒート
シンクとの間に位置する絶縁基板にも高放熱特性、すな
わち高い熱伝導率を有することが必要となる。ところ
が、図9に示すように、例えば、配線金属板53に熱伝
導率の高いCu板、絶縁基板51に熱伝導率の高いAl
N基板、ヒートシンク55に熱伝導率の高い炭素繊維と
Cuとの複合材を用いたとしても、炭素繊維とCuとの
複合材からなるヒートシンク55は、一般的に熱伝導率
に異方性があり、例えば、平面方向の熱伝導率に比較し
て厚さ方向の熱伝導率が高い。従って、半導体素子56
から発生した熱は、半導体素子56の直下部分の配線金
属板53及び絶縁基板51を介して(矢印AA)半導体
素子56の直下部分のヒートシンク55の底部から放熱
(矢印AB)されるので、ヒートシンク55の一部分を
使っての放熱となり、ヒートシンク55の放熱特性が有
効に活用されていない。
(2) A semiconductor module substrate, especially when used as a power module substrate, generates a large amount of heat from the mounted semiconductor element, and therefore it is required to have high heat dissipation characteristics. It Therefore, it is necessary that the wiring metal plate on which the semiconductor element is mounted and the insulating substrate located between the semiconductor element and the heat sink also have high heat dissipation characteristics, that is, high thermal conductivity. However, as shown in FIG. 9, for example, the wiring metal plate 53 is a Cu plate having high thermal conductivity, and the insulating substrate 51 is Al having high thermal conductivity.
Even if the composite material of carbon fiber and Cu having high thermal conductivity is used for the N substrate and the heat sink 55, the heat sink 55 composed of the composite material of carbon fiber and Cu generally has anisotropy in thermal conductivity. Yes, for example, the thermal conductivity in the thickness direction is higher than the thermal conductivity in the plane direction. Therefore, the semiconductor device 56
The heat generated from the heat sink is radiated (arrow AB) from the bottom of the heat sink 55 directly below the semiconductor element 56 via the wiring metal plate 53 and the insulating substrate 51 directly below the semiconductor element 56 (arrow AA). Heat is radiated by using a part of 55, and the heat radiation characteristics of the heat sink 55 are not effectively utilized.

【0007】本発明は、かかる事情に鑑みてなされたも
のであって、構成要素間の熱膨張係数の差による反りの
発生を防止し、放熱特性に優れる半導体モジュール用基
板を提供することを目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a substrate for a semiconductor module, which prevents warpage due to a difference in coefficient of thermal expansion between constituent elements and has excellent heat dissipation characteristics. And

【0008】[0008]

【課題を解決するための手段】前記目的に沿う本発明に
係る半導体モジュール用基板は、半導体素子を上面に搭
載するための配線金属板と、配線金属板の下面とろう材
で上面を接合する絶縁基板と、絶縁基板の下面側に接合
し半導体素子からの発熱を放熱するためのヒートシンク
を有する半導体モジュール用基板において、絶縁基板と
ヒートシンクとの間には、配線金属板と近似する熱膨張
係数を有する金属からなり、絶縁基板の下面及びヒート
シンクの上面との間にろう材で接合された中間板を有
し、しかもヒートシンクは炭素と金属を含んだ複合材か
らなる。これにより、絶縁基板を介して対向する配線金
属板と中間板の熱膨張係数を近似させることで絶縁基板
との熱膨張係数の差を相殺させて反りの発生を低減し、
炭素と金属を含んだ複合材、すなわち熱膨張係数調整材
を用いて熱膨張係数を絶縁基板に近似させたヒートシン
クの反りの発生を抑えることができる。また、半導体素
子からの発熱は、配線金属板及び絶縁基板を通過後、中
間板によって平面方向に拡張され、ヒートシンクの厚み
方向に放熱されるので、放熱特性を向上させることがで
きる。
A semiconductor module substrate according to the present invention which meets the above-mentioned object has a wiring metal plate for mounting a semiconductor element on the upper surface thereof, and a lower surface of the wiring metal plate and a brazing material for bonding the upper surface to each other. In a semiconductor module substrate having an insulating substrate and a heat sink joined to the lower surface side of the insulating substrate to radiate heat generated from a semiconductor element, a thermal expansion coefficient similar to that of a wiring metal plate is provided between the insulating substrate and the heat sink. And an intermediate plate joined by a brazing material between the lower surface of the insulating substrate and the upper surface of the heat sink, and the heat sink is made of a composite material containing carbon and metal. With this, by approximating the thermal expansion coefficients of the wiring metal plate and the intermediate plate that face each other via the insulating substrate, the difference in the thermal expansion coefficient between the insulating substrate and the insulating substrate is offset, and the occurrence of warpage is reduced.
By using a composite material containing carbon and metal, that is, a thermal expansion coefficient adjusting material, it is possible to suppress the occurrence of warpage of the heat sink whose thermal expansion coefficient is approximated to that of the insulating substrate. Further, the heat generated from the semiconductor element, after passing through the wiring metal plate and the insulating substrate, is expanded in the plane direction by the intermediate plate and radiated in the thickness direction of the heat sink, so that the heat radiation characteristics can be improved.

【0009】ここで、中間板と配線金属板とは同じ材料
が用いられて形成されているのがよい。これにより、絶
縁基板を介して対向する配線金属板と中間板の熱膨張係
数を同一とすることができるので、更に、反りの発生を
低減させることができる。
Here, the intermediate plate and the wiring metal plate are preferably made of the same material. With this, the thermal expansion coefficient of the wiring metal plate and the intermediate plate facing each other through the insulating substrate can be made to be the same, so that the occurrence of warpage can be further reduced.

【0010】また、ヒートシンクの下面に中間板と同じ
材料からなる金属板が設けられているのがよい。これに
より、ヒートシンクを通過した熱を金属板によって平面
方向に拡張し、金属板の広い範囲の表面から放熱するこ
とができるので、更に放熱特性を向上させることができ
る。
Further, a metal plate made of the same material as the intermediate plate is preferably provided on the lower surface of the heat sink. Thereby, the heat passing through the heat sink can be expanded in the plane direction by the metal plate and radiated from the surface of the metal plate in a wide range, so that the heat radiation characteristics can be further improved.

【0011】[0011]

【発明の実施の形態】続いて、添付した図面を参照しつ
つ、本発明を具体化した実施の形態について説明し、本
発明の理解に供する。ここに、図1は本発明の一実施の
形態に係る半導体モジュール用基板の側断面図、図2は
同半導体モジュール用基板に搭載された半導体素子から
の発熱の模式的な放熱経路の説明図、図3は同半導体モ
ジュール用基板の変形例の側断面図、図4は同半導体モ
ジュール用基板の変形例に搭載された半導体素子からの
発熱の模式的な放熱経路の説明図、図5(A)、(B)
はそれぞれ同半導体モジュール用基板のヒートシンク下
面反りのグラフ、絶縁基板熱応力相対値のグラフ、図6
は同半導体モジュール用基板の熱抵抗相対値のグラフで
ある。
BEST MODE FOR CARRYING OUT THE INVENTION Next, referring to the attached drawings, an embodiment in which the present invention is embodied will be described to provide an understanding of the present invention. Here, FIG. 1 is a side sectional view of a semiconductor module substrate according to an embodiment of the present invention, and FIG. 2 is an explanatory view of a schematic heat dissipation path of heat generated from a semiconductor element mounted on the semiconductor module substrate. FIG. 3 is a side sectional view of a modification of the semiconductor module substrate, FIG. 4 is an explanatory view of a schematic heat dissipation path of heat generated from a semiconductor element mounted in the modification of the semiconductor module substrate, and FIG. A), (B)
6 is a graph of the warpage of the heat sink underside of the same semiconductor module substrate, a graph of the relative value of thermal stress of the insulating substrate, and FIG.
[Fig. 4] is a graph of relative values of thermal resistance of the semiconductor module substrate.

【0012】図1に示すように、本発明の一実施の形態
に係る半導体モジュール用基板10は、上面に半導体素
子11を搭載するための配線金属板12が設けられてい
る。この配線金属板12は、例えば、Cu板からエッチ
ングや、打ち抜きプレス等によって回路が形成されてお
り、回路の所定の上面に搭載された半導体素子11のパ
ッド電極と他の回路とをボンディングワイヤ13で接続
している。
As shown in FIG. 1, a semiconductor module substrate 10 according to an embodiment of the present invention is provided with a wiring metal plate 12 for mounting a semiconductor element 11 on its upper surface. The wiring metal plate 12 has a circuit formed by etching or punching a Cu plate, for example, and a bonding wire 13 is provided between the pad electrode of the semiconductor element 11 mounted on a predetermined upper surface of the circuit and another circuit. Are connected with.

【0013】配線金属板12の下面には、上面を、例え
ば、Ag−Cu共晶合金等のろう材14で配線金属板1
2と接合された絶縁基板15が設けられている。この絶
縁基板15は、例えば、AlNや、Alや、
SiN等のセラミック基材からなり、特に限定されるも
のではないが、半導体モジュール用基板10に高放熱特
性が要求されることから、熱伝導性が高いAlNからな
る絶縁基板15が多用されている。
The lower surface of the wiring metal plate 12 is covered with a brazing material 14 such as Ag—Cu eutectic alloy on the upper surface thereof.
There is provided an insulating substrate 15 which is bonded to the substrate 2. The insulating substrate 15 is made of, for example, AlN, Al 2 O 3, or
Although it is not particularly limited, it is made of a ceramic base material such as SiN, but since the semiconductor module substrate 10 is required to have high heat dissipation characteristics, the insulating substrate 15 made of AlN having high thermal conductivity is often used. .

【0014】絶縁基板15の下面側には、半導体素子1
1からの発熱を放熱するためのヒートシンク16が設け
られている。ヒートシンク16は、炭素と金属を含んだ
複合材、例えば、炭素繊維とCuとを含んだ複合材から
なり、この複合材は、一般に熱伝導率に異方性があるこ
とが多く、平面方向の熱伝導率より厚み方向が高い、例
えば、平面方向が約170W/m・K、厚さ方向が約3
50W/m・Kと高い熱伝導率を有している。
On the lower surface side of the insulating substrate 15, the semiconductor element 1
A heat sink 16 for dissipating the heat generated from the heat sink 1 is provided. The heat sink 16 is made of a composite material containing carbon and metal, for example, a composite material containing carbon fiber and Cu, and this composite material generally has anisotropy in thermal conductivity, The thickness direction is higher than the thermal conductivity, for example, the plane direction is about 170 W / mK, and the thickness direction is about 3
It has a high thermal conductivity of 50 W / mK.

【0015】絶縁基板15とヒートシンク16との間に
は、配線金属板12と近似する熱膨張係数を有する金
属、例えば、Cuからなる中間板17が、その上面及び
下面に、例えば、Ag−Cu共晶合金等のろう材14
a、14bで接合されて設けられている。
An intermediate plate 17 made of a metal having a thermal expansion coefficient similar to that of the wiring metal plate 12, for example, Cu is provided between the insulating substrate 15 and the heat sink 16 on the upper and lower surfaces thereof, for example, Ag—Cu. Brazing material such as eutectic alloy 14
It is provided by being joined at a and 14b.

【0016】上記構成による半導体モジュール用基板1
0は、ヒートシンク16が炭素と金属とを含んだ複合
材、すなわち熱膨張係数調整材を用いて形成されている
ので、ヒートシンク16と絶縁基板15との熱膨張係数
の差を小さくすることができる。また、配線金属板12
とセラミック基材からなる絶縁基板15との間には、熱
膨張係数の差が大きいが、中間板17によって熱膨張係
数の差を打ち消すことで反りの発生を防止している。従
って、各構成部材間の熱膨張係数の差による半導体モジ
ュール基板10の反りの発生を防止することができる。
A semiconductor module substrate 1 having the above structure
In No. 0, since the heat sink 16 is formed of a composite material containing carbon and metal, that is, a thermal expansion coefficient adjusting material, the difference in thermal expansion coefficient between the heat sink 16 and the insulating substrate 15 can be reduced. . In addition, the wiring metal plate 12
Although the difference in the coefficient of thermal expansion between the insulating substrate 15 and the insulating substrate 15 made of a ceramic base material is large, the intermediate plate 17 cancels the difference in the coefficient of thermal expansion to prevent warpage. Therefore, it is possible to prevent the warp of the semiconductor module substrate 10 due to the difference in the coefficient of thermal expansion between the constituent members.

【0017】なお、上記の中間板17と配線金属板12
とは、構成する材料が同じ材料、例えば、同じCu材を
用いて形成されているのがよい。これにより、絶縁基板
15を挟んで熱膨張係数の差を完全に打ち消すことがで
きるので、反りの発生を極めて小さく抑えることができ
る。
The intermediate plate 17 and the wiring metal plate 12 described above are used.
Means that the constituent materials are the same, for example, the same Cu material is used. As a result, the difference in the coefficient of thermal expansion can be completely canceled by sandwiching the insulating substrate 15, so that the occurrence of warpage can be suppressed to an extremely small level.

【0018】ここで、図2を参照しながら、本発明の一
実施の形態に係る半導体モジュール用基板10に搭載さ
れた半導体素子11からの発熱の放熱構造を説明する。
半導体モジュール用基板10には、例えば、配線金属板
12に熱伝導率の高いCu板、絶縁基板15に熱伝導率
の高いAlN基板、中間板17に熱伝導率の高いCu
板、ヒートシンク16に熱伝導率の高い炭素繊維とCu
との複合材を用いる。半導体素子11から発生した熱
は、半導体素子11の直下部分の配線金属板12及び絶
縁基板15を介して(矢印A)半導体素子11の直下部
分の中間板17で熱が平面方向にも分散され(矢印
B)、放熱面積が拡大される。次いで、ヒートシンク1
6から効率よく底部へと(矢印C)放熱されるので、効
率よく放熱することができる。
Now, with reference to FIG. 2, a structure for radiating heat generated from the semiconductor element 11 mounted on the semiconductor module substrate 10 according to the embodiment of the present invention will be described.
In the semiconductor module substrate 10, for example, the wiring metal plate 12 is a Cu plate having high thermal conductivity, the insulating substrate 15 is an AlN substrate having high thermal conductivity, and the intermediate plate 17 is Cu having high thermal conductivity.
High heat conductivity carbon fiber and Cu for the plate and heat sink 16
Use a composite material with. The heat generated from the semiconductor element 11 is dispersed in the plane direction through the wiring metal plate 12 directly below the semiconductor element 11 and the insulating substrate 15 (arrow A) in the intermediate plate 17 directly below the semiconductor element 11. (Arrow B), the heat dissipation area is enlarged. Then the heat sink 1
Since heat is efficiently radiated from 6 to the bottom (arrow C), heat can be radiated efficiently.

【0019】図3に示すように、本発明の一実施の形態
に係る半導体モジュール用基板の変形例の半導体モジュ
ール基板10aは、上面に半導体素子11を搭載するた
めの配線金属板12と、その下面に、上面をろう材14
aで接合された絶縁基板15と、その下面側に、半導体
素子11からの発熱を放熱するためのヒートシンク16
を有している。このヒートシンク16は、炭素と金属を
含んだ複合材からなり、絶縁基板15と熱膨張係数が近
似し、一般に熱伝導率に異方性があることが多く、平面
方向より厚み方向に高い熱伝導率を有している。そし
て、絶縁基板15とヒートシンク16との間には、配線
金属板12と近似する熱膨張係数を有し、両面をろう材
14a、14bで接合する金属からなる中間板17を有
している。更に、ヒートシンク16の下面には、中間板
17と同じ材料からなる金属板18がろう材14cで接
合されている。なお、上記の中間板17と配線金属板1
2とは、材料が同じ材料を用いて形成されているのがよ
い。
As shown in FIG. 3, a semiconductor module substrate 10a, which is a modification of the semiconductor module substrate according to the embodiment of the present invention, has a wiring metal plate 12 for mounting a semiconductor element 11 on its upper surface, and a wiring metal plate 12 therefor. Brazing material 14 on the upper surface
An insulating substrate 15 joined by a and a heat sink 16 for radiating heat generated from the semiconductor element 11 on the lower surface side thereof.
have. The heat sink 16 is made of a composite material containing carbon and metal, has a thermal expansion coefficient close to that of the insulating substrate 15, generally has anisotropy in thermal conductivity, and has a higher thermal conductivity in the thickness direction than in the plane direction. Have a rate. Further, between the insulating substrate 15 and the heat sink 16, there is an intermediate plate 17 made of a metal having a coefficient of thermal expansion similar to that of the wiring metal plate 12 and joining both surfaces with the brazing materials 14a and 14b. Further, a metal plate 18 made of the same material as the intermediate plate 17 is joined to the lower surface of the heat sink 16 with a brazing material 14c. In addition, the intermediate plate 17 and the wiring metal plate 1 described above.
2 is preferably formed by using the same material.

【0020】ここで、図4を参照しながら、本発明の一
実施の形態に係る半導体モジュール用基板の変形例の半
導体モジュール用基板10aに搭載された半導体素子1
1からの発熱の放熱構造を説明する。半導体モジュール
用基板10aには、例えば、配線金属板12に熱伝導率
の高いCu板、絶縁基板15に熱伝導率の高いAlN基
板、中間板17に熱伝導率の高いCu板、ヒートシンク
16に熱伝導率の高い炭素繊維とCuとの複合材を用い
る。半導体素子11から発生した熱は、半導体素子11
の直下部分の配線金属板12及び絶縁基板15を介して
(矢印D)半導体素子11の直下部分の中間板17で熱
が平面方向にも分散され(矢印E)、放熱面積が拡大さ
れる。次いで、ヒートシンク16から効率よく底部へと
(矢印F)分散され、更に金属板18で放熱面積が拡大
されて(矢印G)下面から放熱されるので、極めて効率
よく放熱することができる。
Here, referring to FIG. 4, the semiconductor element 1 mounted on the semiconductor module substrate 10a of the modification of the semiconductor module substrate according to the embodiment of the present invention.
A heat radiation structure for generating heat from 1 will be described. The semiconductor module substrate 10a includes, for example, a wiring metal plate 12 having a high thermal conductivity Cu plate, an insulating substrate 15 having a high thermal conductivity AlN substrate, an intermediate plate 17 having a high thermal conductivity Cu plate, and a heat sink 16. A composite material of carbon fiber and Cu having high thermal conductivity is used. The heat generated from the semiconductor element 11 is
The heat is dissipated also in the planar direction (arrow E) by the intermediate plate 17 immediately below the semiconductor element 11 via the wiring metal plate 12 and the insulating substrate 15 located immediately below (arrow D), and the heat radiation area is expanded. Next, the heat sink 16 efficiently disperses the heat to the bottom (arrow F), and the metal plate 18 expands the heat dissipation area (arrow G) to dissipate heat from the lower surface, so that heat can be dissipated extremely efficiently.

【0021】なお、上記の半導体モジュール用基板1
0、10aに用いられるヒートシンク16は、炭素と金
属を含んだ複合材に、炭素繊維とCuとを含んだ複合材
を用いて形成されているが、この製造方法は、通常の炭
素繊維強化金属複合材の製造方法である、(1)炭素繊
維の粉末とCuの粉末とを混合して焼結する(粉末混合
方式)、(2)炭素繊維で構成された成形体中にCuを
含浸させる(Cu含浸方式)、(3)布帛状の炭素繊維
にCuを溶射する(Cu溶射方式)等の方法が用いられ
ている。この複合材における炭素の体積含有率は、40
〜95%の範囲が好ましい。また、ヒートシンク16
は、金属材料としてCuを用いた複合材で説明したが、
例えば、Al(アルミニウム)を用いた構成であっても
よい。
The semiconductor module substrate 1 described above is used.
The heat sink 16 used for 0, 10a is formed by using a composite material containing carbon and metal, and a composite material containing carbon fiber and Cu. In the method of manufacturing a composite material, (1) a powder of carbon fiber and a powder of Cu are mixed and sintered (powder mixing method), and (2) a molded body made of carbon fiber is impregnated with Cu. Methods such as (Cu impregnation method) and (3) spraying Cu onto cloth-like carbon fibers (Cu spraying method) are used. The volume content of carbon in this composite is 40
The range of ˜95% is preferable. In addition, the heat sink 16
Has been explained with the composite material using Cu as the metal material,
For example, a configuration using Al (aluminum) may be used.

【0022】[0022]

【実施例】本発明者は、ヒートシンクの寸法として、1
20mm×60mm、絶縁基板の寸法として、40mm
×28mm×0.65mm厚、配線金属板の厚みとし
て、0.3mmを用いた半導体モジュール用基板に、従
来のヒートシンクの厚みが3mmで、中間板を用いない
場合と、本発明の半導体モジュール用基板に中間板とし
て0.1mm、0.2mm、0.3mm、0.4mm、
0.5mmの厚みのCu板とヒートシンクの厚みを加え
た厚みが3mmとなるようにした場合の絶縁基板に発生
する熱応力を従来例を100%とするそれぞれの相対値
として、また、その時のヒートシンクの裏面の反りの値
を、有限要素法のシミュレーションによって求めた。
The present inventor has determined that the size of a heat sink is 1
20mm x 60mm, the size of the insulating substrate is 40mm
× 28 mm × 0.65 mm thick, the thickness of the wiring metal plate is 0.3 mm, the conventional heat sink has a thickness of 3 mm, the intermediate plate is not used, and the semiconductor module substrate of the present invention is used. 0.1 mm, 0.2 mm, 0.3 mm, 0.4 mm as an intermediate plate on the substrate,
The thermal stress generated in the insulating substrate when the thickness of the Cu plate with a thickness of 0.5 mm and the thickness of the heat sink is set to 3 mm is set as a relative value with respect to 100% of the conventional example. The warp value of the back surface of the heat sink was obtained by simulation of the finite element method.

【0023】図5(A)、(B)に示すように、その結
果、絶縁基板の熱応力値は、中間板を介在させることで
大幅に低減させることができる。また、中間板の厚みを
厚くすることで熱応力値の低減の改善が図られる。従っ
て、熱応力値の低減に伴って中間板を介在させることで
ヒートシンク裏面の反りも大幅に低減されている。
As shown in FIGS. 5A and 5B, as a result, the thermal stress value of the insulating substrate can be greatly reduced by interposing the intermediate plate. Further, by increasing the thickness of the intermediate plate, the reduction of the thermal stress value can be improved. Therefore, the warp on the back surface of the heat sink is greatly reduced by interposing the intermediate plate as the thermal stress value is reduced.

【0024】また、本発明者は、Cu板からなる中間板
の厚みと、炭素繊維とCuとの複合材からなり、平面方
向の熱伝導率が約170W/m・K、厚さ方向の熱伝導
率が350W/m・Kであるヒートシンクの厚みと、C
u板からなる金属板の厚みを加えた厚みが3mmとなる
組み合わせで放熱特性の指標である熱抵抗について、従
来例の中間板及び金属板が存在しない場合の熱抵抗を1
00%として、それぞれの条件における熱抵抗の相対値
を有限要素法のシミュレーションによって求めた。
The inventor of the present invention is made of a composite material of a carbon fiber and Cu, which has a thickness of an intermediate plate made of a Cu plate, and has a thermal conductivity of about 170 W / m · K in the plane direction and a heat conductivity in the thickness direction. The thickness of the heat sink whose conductivity is 350 W / mK, and C
Regarding the thermal resistance which is an index of the heat radiation characteristics in the combination of the thickness of 3 mm including the thickness of the metal plate made of u plate, the thermal resistance when the intermediate plate and the metal plate of the conventional example are not present is 1
The relative value of the thermal resistance under each condition was determined as 00% by the simulation of the finite element method.

【0025】図6に示すように、その結果、熱抵抗値
は、中間板を介在させることによって改善され、また、
金属板をヒートシンクの下面に設けることによって、更
に改善されている。従って、中間板の介在によって放熱
特性を向上させることができ、金属板の設置によって放
熱特性を更に向上させることができる。
As shown in FIG. 6, as a result, the thermal resistance value is improved by interposing the intermediate plate, and
This is further improved by providing a metal plate on the lower surface of the heat sink. Therefore, the heat dissipation characteristics can be improved by interposing the intermediate plate, and the heat dissipation characteristics can be further improved by installing the metal plate.

【0026】[0026]

【発明の効果】請求項1とこれに従属する請求項2及び
3記載の半導体モジュール用基板は、絶縁基板とヒート
シンクとの間には、配線金属板と近似する熱膨張係数を
有する金属からなり、絶縁基板の下面及びヒートシンク
の上面との間にろう材で接合された中間板を有し、しか
もヒートシンクは炭素と金属を含んだ複合材からなるの
で、配線金属板と中間板を絶縁基板を介して対向させて
絶縁基板との熱膨張係数の差を相殺させて反りの発生を
低減し、炭素と金属を含んだ複合材によって熱膨張係数
を絶縁基板に近似させたヒートシンクの反りの発生を抑
えることができる。また、半導体素子からの発熱は、配
線金属板及び絶縁基板を通過後、中間板によって平面方
向に拡張し、ヒートシンクの厚み方向に放熱して、放熱
特性を向上させることができる。また、放熱特性の向上
効果は、炭素と金属を含んだ複合材の熱伝導率に異方性
があっても、等方性があっても、それに関わらず発揮す
ることができる。
The semiconductor module substrate according to claim 1 and claims 2 and 3 subordinate thereto is made of a metal having a thermal expansion coefficient similar to that of the wiring metal plate between the insulating substrate and the heat sink. , An intermediate plate joined by a brazing material between the lower surface of the insulating substrate and the upper surface of the heat sink, and since the heat sink is made of a composite material containing carbon and metal, the wiring metal plate and the intermediate plate are separated by the insulating substrate. The warpage is reduced by canceling the difference in the coefficient of thermal expansion from that of the insulating substrate by opposing them via the composite material containing carbon and metal. Can be suppressed. Further, the heat generated from the semiconductor element, after passing through the wiring metal plate and the insulating substrate, is expanded in the plane direction by the intermediate plate and radiated in the thickness direction of the heat sink, so that the heat radiation characteristics can be improved. Further, the effect of improving the heat dissipation characteristics can be exhibited regardless of whether the composite material containing carbon and metal has anisotropic thermal conductivity or isotropic thermal conductivity.

【0027】特に、請求項2記載の半導体モジュール用
基板は、中間板と配線金属板とは同じ材料が用いられて
形成されているので、絶縁基板を介して対向する配線金
属板と中間板の熱膨張係数を同一とすることができ、更
に、反りの発生を低減させることができる。
Particularly, in the semiconductor module substrate according to the second aspect, since the intermediate plate and the wiring metal plate are formed by using the same material, the wiring metal plate and the intermediate plate facing each other through the insulating substrate are formed. The coefficient of thermal expansion can be made the same, and the occurrence of warpage can be reduced.

【0028】特に、請求項3記載の半導体モジュール用
基板は、ヒートシンクの下面に中間板と同じ材料からな
る金属板が設けられているので、ヒートシンクを通過し
た熱を金属板によって平面方向に拡張し、金属板の広い
範囲の表面から放熱することができ、更に放熱特性を向
上させることができる。
In particular, in the semiconductor module substrate according to the third aspect, since the metal plate made of the same material as the intermediate plate is provided on the lower surface of the heat sink, the heat passing through the heat sink is expanded in the plane direction by the metal plate. The heat can be dissipated from a wide range of the surface of the metal plate, and the heat dissipation characteristics can be further improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施の形態に係る半導体モジュール
用基板の側断面図である。
FIG. 1 is a side sectional view of a semiconductor module substrate according to an embodiment of the present invention.

【図2】同半導体モジュール用基板に搭載された半導体
素子からの発熱の模式的な放熱経路の説明図である。
FIG. 2 is an explanatory diagram of a schematic heat dissipation path of heat generated from a semiconductor element mounted on the semiconductor module substrate.

【図3】同半導体モジュール用基板の変形例の側断面図
である。
FIG. 3 is a side sectional view of a modified example of the semiconductor module substrate.

【図4】同半導体モジュール用基板の変形例に搭載され
た半導体素子からの発熱の模式的な放熱経路の説明図で
ある。
FIG. 4 is an explanatory diagram of a schematic heat dissipation path for heat generation from a semiconductor element mounted in a modification of the semiconductor module substrate.

【図5】(A)、(B)はそれぞれ同半導体モジュール
用基板の絶縁基板熱応力相対値のグラフ、ヒートシンク
下面反りのグラフである。
5A and 5B are a graph of a relative value of thermal stress of an insulating substrate and a graph of a warp of a heat sink undersurface of the same semiconductor module substrate, respectively.

【図6】同半導体モジュール用基板の熱抵抗相対値のグ
ラフである。
FIG. 6 is a graph of a relative value of thermal resistance of the semiconductor module substrate.

【図7】従来の半導体モジュール用基板の側断面図であ
る。
FIG. 7 is a side sectional view of a conventional semiconductor module substrate.

【図8】従来の半導体モジュール用基板の反り発生状態
を示す模式的な説明図である。
FIG. 8 is a schematic explanatory view showing a warped state of a conventional semiconductor module substrate.

【図9】従来の半導体モジュール用基板に搭載された半
導体素子からの発熱の模式的な放熱経路の説明図であ
る。
FIG. 9 is an explanatory diagram of a schematic heat dissipation path for heat generation from a semiconductor element mounted on a conventional semiconductor module substrate.

【符号の説明】[Explanation of symbols]

10、10a:半導体モジュール用基板、11:半導体
素子、12:配線金属板、13:ボンディングワイヤ、
14、14a、14b、14c:ろう材、15:絶縁基
板、16:ヒートシンク、17:中間板、18:金属板
10, 10a: substrate for semiconductor module, 11: semiconductor element, 12: wiring metal plate, 13: bonding wire,
14, 14a, 14b, 14c: brazing material, 15: insulating substrate, 16: heat sink, 17: intermediate plate, 18: metal plate

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 半導体素子を上面に搭載するための配線
金属板と、該配線金属板の下面とろう材で上面を接合す
る絶縁基板と、該絶縁基板の下面側に接合し前記半導体
素子からの発熱を放熱するためのヒートシンクを有する
半導体モジュール用基板において、 前記絶縁基板と前記ヒートシンクとの間には、前記配線
金属板と近似する熱膨張係数を有する金属からなり、前
記絶縁基板の下面及び前記ヒートシンクの上面との間に
ろう材で接合された中間板を有し、しかも前記ヒートシ
ンクは炭素と金属を含んだ複合材からなることを特徴と
する半導体モジュール用基板。
1. A wiring metal plate for mounting a semiconductor element on the upper surface, an insulating substrate for bonding the lower surface of the wiring metal plate to the upper surface with a brazing material, and a lower surface side of the insulating substrate for bonding from the semiconductor element. In a semiconductor module substrate having a heat sink for radiating the heat generated by, a metal having a thermal expansion coefficient similar to that of the wiring metal plate is provided between the insulating substrate and the heat sink, and a lower surface of the insulating substrate and A semiconductor module substrate having an intermediate plate bonded to the upper surface of the heat sink with a brazing material, and wherein the heat sink is made of a composite material containing carbon and metal.
【請求項2】 請求項1記載の半導体モジュール用基板
において、前記中間板と前記配線金属板とは同じ材料が
用いられて形成されていることを特徴とする半導体モジ
ュール用基板。
2. The semiconductor module substrate according to claim 1, wherein the intermediate plate and the wiring metal plate are formed of the same material.
【請求項3】 請求項1又は2記載の半導体モジュール
用基板において、前記ヒートシンクの下面に前記中間板
と同じ材料からなる金属板が設けられていることを特徴
とする半導体モジュール用基板。
3. The semiconductor module substrate according to claim 1, wherein a metal plate made of the same material as the intermediate plate is provided on the lower surface of the heat sink.
JP2002003057A 2002-01-10 2002-01-10 Substrate for semiconductor module Pending JP2003204021A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002003057A JP2003204021A (en) 2002-01-10 2002-01-10 Substrate for semiconductor module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002003057A JP2003204021A (en) 2002-01-10 2002-01-10 Substrate for semiconductor module

Publications (1)

Publication Number Publication Date
JP2003204021A true JP2003204021A (en) 2003-07-18

Family

ID=27642746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002003057A Pending JP2003204021A (en) 2002-01-10 2002-01-10 Substrate for semiconductor module

Country Status (1)

Country Link
JP (1) JP2003204021A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7038313B2 (en) 2003-05-06 2006-05-02 Fuji Electric Device Technology Co., Ltd. Semiconductor device and method of manufacturing the same
JP2007096285A (en) * 2005-08-29 2007-04-12 Kyocera Corp Light emitting device mounting substrate, light emitting device accommodating package, light emitting device and lighting device
WO2008053586A1 (en) * 2006-11-02 2008-05-08 Nec Corporation Semiconductor device
JP2009081195A (en) * 2007-09-25 2009-04-16 Sanyo Electric Co Ltd Light emitting module
WO2010012271A2 (en) * 2008-07-30 2010-02-04 Brose Fahrzeugteile Gmbh & Co. Kg, Würzburg Apparatus, in particular for conducting current, and a method for producing an apparatus, in particular for conducting current
DE102011086092A1 (en) 2010-12-03 2012-06-06 Mitsubishi Electric Corp. Semiconductor device and method for its production
WO2014088025A1 (en) * 2012-12-06 2014-06-12 三菱マテリアル株式会社 Substrate for power modules, substrate with heat sink for power modules, power module, method for producing substrate for power modules, paste for copper plate bonding, and method for producing bonded body
WO2015125907A1 (en) * 2014-02-21 2015-08-27 電気化学工業株式会社 Ceramic circuit board

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7038313B2 (en) 2003-05-06 2006-05-02 Fuji Electric Device Technology Co., Ltd. Semiconductor device and method of manufacturing the same
JP2007096285A (en) * 2005-08-29 2007-04-12 Kyocera Corp Light emitting device mounting substrate, light emitting device accommodating package, light emitting device and lighting device
US8476756B2 (en) 2006-11-02 2013-07-02 Nec Corporation Semiconductor device and heat sink with 3-dimensional thermal conductivity
CN101536182B (en) * 2006-11-02 2011-07-06 日本电气株式会社 Semiconductor device
US8063484B2 (en) 2006-11-02 2011-11-22 Nec Corporation Semiconductor device and heat sink with 3-dimensional thermal conductivity
WO2008053586A1 (en) * 2006-11-02 2008-05-08 Nec Corporation Semiconductor device
JP2009081195A (en) * 2007-09-25 2009-04-16 Sanyo Electric Co Ltd Light emitting module
WO2010012271A2 (en) * 2008-07-30 2010-02-04 Brose Fahrzeugteile Gmbh & Co. Kg, Würzburg Apparatus, in particular for conducting current, and a method for producing an apparatus, in particular for conducting current
WO2010012271A3 (en) * 2008-07-30 2010-05-06 Brose Fahrzeugteile Gmbh & Co. Kg, Würzburg Apparatus, in particular for conducting current, and a method for producing an apparatus, in particular for conducting current
DE102011086092A1 (en) 2010-12-03 2012-06-06 Mitsubishi Electric Corp. Semiconductor device and method for its production
WO2014088025A1 (en) * 2012-12-06 2014-06-12 三菱マテリアル株式会社 Substrate for power modules, substrate with heat sink for power modules, power module, method for producing substrate for power modules, paste for copper plate bonding, and method for producing bonded body
JP2014116353A (en) * 2012-12-06 2014-06-26 Mitsubishi Materials Corp Power module substrate, power module substrate with heat sink, power module, method for manufacturing power module substrate, paste for copper plate junction, and method for manufacturing joined body
WO2015125907A1 (en) * 2014-02-21 2015-08-27 電気化学工業株式会社 Ceramic circuit board
JPWO2015125907A1 (en) * 2014-02-21 2017-03-30 デンカ株式会社 Ceramic circuit board
US10424529B2 (en) 2014-02-21 2019-09-24 Denka Company Limited Ceramic circuit board

Similar Documents

Publication Publication Date Title
JPH10200208A (en) Semiconductor laser module
JP7105981B2 (en) Monolithic microwave integrated circuit (MMIC) cooling structure
JP2003086744A (en) Power module and power module with heat sink
JP2006269966A (en) Wiring substrate and its manufacturing method
JP2003204021A (en) Substrate for semiconductor module
JP2001217363A (en) Semiconductor device and its heat sink
JP2008306134A (en) Semiconductor module
JP2004336046A (en) Application specific heat sink element
JP2007115793A (en) High heat-dissipation package for housing electronic part
JP2004022964A (en) Al-SiC COMPOSITE BODY, HEAT SINK COMPONENT USING THE SAME, AND SEMICONDUCTOR MODULE DEVICE
JPH1117081A (en) Semiconductor module for power
JP2001298136A (en) Heat sink and wiring board with the heat sink
JP2008124067A (en) Thermal conductive substrate and power module using the same
JP2000091481A (en) Power transistor case and power transistor
JP4667723B2 (en) Power module substrate
JP2005019875A (en) Heat radiating plate, heat radiating module, semiconductor mounted module, and semiconductor device
JPH0677678A (en) Heat sink structure
JP2003068954A (en) Package for housing semiconductor element
JP2804765B2 (en) Substrate for mounting electronic components
JP2619155B2 (en) Hybrid integrated circuit device
JP2004200567A (en) Radiator and its producing process, substrate for power module, power module
JP2005277381A (en) Package for storing electronic component and electronic device
JP2002299532A (en) Al-SiC BASED COMPOUND MATERIAL AND HEAT RADIATION COMPONENT
JP2000077582A (en) Heat dissipating material
JP2003078267A (en) Heat sink